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Summary. The paper focuses on a Bayesian treatment of measurement error problems and on 
the question of the specification of the prior distribution of the unknown covariates. It presents a 
flexible semiparametric model for this distribution based on a mixture of normal distributions with 
an unknown number of components. Implementation of this prior model as part of a full Bayesian 
analysis of measurement error problems is described in classical set-ups that are encountered 
in epidemiological studies: logistic regression between unknown covariates and outcome, with a 
normal or log-normal error model and a validation group. The feasibility of this combined model is 
tested and its performance is demonstrated in a simulation study that includes an assessment 
of the influence of misspecification of the prior distribution of the unknown covariates and a 
comparison with the semiparametric maximum likelihood method of Roeder, Carroll and Lindsay. 
Finally, the methodology is illustrated on a data set on coronary heart disease and cholesterol 
levels in blood. 
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1. Introduction 

In this paper, we examine the Bayesian formulation of measurement error problems (sometimes 
known as 'errors-in-variables' problems), and we focus on the question of the specification of the 
prior distribution of the unknown true covariates. Our aim is to propose a flexible model for this 
distribution by using a mixture of normal distributions, to reduce the sensitivity to modelling 
assumptions. Our motivation comes from the field of epidemiology, where measurement error is 
an important problem and heterogeneity in the distribution of the underlying covariates cannot 
be ruled out. But the model that we outline applies outside this context, as errors-in-variables 
problems arise in a variety of domains such as social sciences and econometrics. 

Measurement error problems are concerned with inference on regression coefficients for an 
outcome Y in terms of covariates X, in cases where X is not measured accurately on all subjects, 
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but information on X is available through the recording of an imperfect surrogate U. It is well 
known that regressing Y on U and ignoring measurement error can be seriously misleading, and 
many methods have been proposed for countering this (see for example Carroll et al. (1995) and 
the references therein). 

Bayesian analysis of measurement error problems has been developed from the seminal work 
of Clayton (1992). It is based on structural and functional specifications. In most cases, structural 
specifications entail the formulation of three submodels: an outcome model relating Y to X, a 
measurement model relating U and X and a prior model p(X) for the prior distribution of X. 
These models are then linked by a graphical model using suitable conditional independence 
assumptions. Information on the measurement error process can be built in a flexible way into 
the graphical model (Richardson and Gilks, 1993a, b). 

At the second stage, functional forms for the distributions involved in the submodels must be 
chosen. For the outcome and the measurement models, this choice is guided by epidemiological 
knowledge. Typically, linear or logistic regressions, coupled with normal or log-normal error 
models corresponding to additive or multiplicative errors, have been used in epidemiology to 
model the association between (dichotomous) outcomes, covariates and their surrogates. 

However, in the common situation of observational studies, there are many reasons to suspect 
heterogeneity in the distribution of the unknown X among the population studied. Exposure 
variables often have a skew distribution with a high peak corresponding to moderate exposure 
for the majority of the population and a long tail or a second lower peak corresponding to 
larger exposure for a small fraction of the population. These have traditionally been fitted by 
log-normal distributions, but a mixture model is a plausible alternative (see, for example, the 
dietary example discussed in Schafer (2001)). Heterogeneity in the distribution of physiological 
variables can also be expected when these are linked to genetic polymorphism. Heterogeneity 
may also arise by epidemiological study design, if subgroups with extreme covariate values are 
oversampled purposely to increase the exposure contrast. 

In all these cases, there is little information to model this heterogeneity besides having either 
some observations of a gold standard in a small validation subgroup or some replicate measures 
of the surrogate, which can be misleading if the validation group is small or the measurement 
error large. Since regression results are known to be sensitive to the choice of a particular 
parametric shape for p(X), a natural question is how to model p(X) flexibly, avoiding such 
choices and allowing the data to determine the shape of p(X). 

In the measurement error context, this question has been actively pursued and has led to 
different lines of development. Carroll et al. (1993) have proposed a pseudolikelihood method, 
using validation data. Roeder et al. (1996) combined a parametric disease model and nonpara- 
metric mixtures for p(X) and carried out the estimation via nonparametric maximum likelihood 
(NPML) algorithms. A similar line was also followed by Schafer (2001) and Aitkin and Rocci 
(2002), who emphasized the general applicability of NPML to different measurement error con- 
texts. Miiller and Roeder (1997) have developed a Bayesian approach using Dirichlet process 
priors for the joint model of X and U. 

Mixture models with variable numbers of components are an alternative natural framework 
in which to consider a flexible modelling of prior distributions in Bayesian hierarchical models. 
Such mixture models have been developed in a Bayesian context by Richardson and Green 
(1997) using novel Markov chain Monte Carlo (MCMC) methods based on the reversible jump 
algorithm proposed by Green (1995). Our aim is to show how Bayesian mixtures can be used 
in this context and in particular to discuss the implementation of prior distributions for X 
based on mixtures of univariate normal distributions with an unknown number of compo- 
nents in typical measurement error situations in epidemiology involving a validation group. We 
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also include an assessment of the influence of misspecification of the prior distribution of the 
unknown covariates and a comparison with the semiparametric maximum likelihood method 
of Roeder et al. (1996). 

Using mixtures of normal distributions to increase the robustness to model misspecification 
for p(X) is in line with recent developments. Mixtures with a fixed number of components have 
been used by Carroll et al. (1999) for linear errors-in-variables models. In the closely related 
context of generalized linear mixed models, mixtures of normal distributions with common 
standard deviation were used by Magder and Zeger (1996) as prior distributions for the random 
effects. Mixtures of normal distributions have also been implemented by Carroll et al. (1999) in 
a nonparametric context of regression splines with measurement error. 

The model formulation and its estimation via MCMC algorithms are outlined in Sections 2 
and 3. In Section 4, we illustrate its implementation and some aspects of its performance. In 
Section 5 we present simulation results where two aims are pursued: demonstrating the effect 
of misspecifying the parametric model for the unknown covariates and the improvement that is 
brought by using mixture models, and showing a limited comparison of our approach with the 
NPML method of Roeder et al. (1996). An application to a data set on coronary heart disease 
and cholesterol levels in blood is presented in Section 6 and the paper concludes with a brief 
discussion. 

2. Model formulation 

Bayesian analysis of measurement error problems has been developed notably by Clayton (1992), 
Stephens and Dellaportas (1992), Richardson and Gilks (1993a, b), Mallick and Gelfand (1996), 
Miiller and Roeder (1997) and Richardson and Leblond (1997). 

2. 1. General structure 
We shall focus on the case of studies with a validation group, i.e. a subgroup where, by design, the 
covariate of interest X is accurately recorded by the use of a so-called 'gold standard' method, 
which is usually costly to implement on a large scale. Note that there are cases of measurement 
error situations where the measurement error variance is identifiable even in the absence of a 
validation group or repeated measures. For example, Aitkin and Rocci (2002) discuss linear or 
generalized linear regression models, normal measurement models and a discrete distribution 
for X. In most cases though, the identifiability of the measurement error variance will be very 
weak. Inference on the regression parameters of interest will thus be considerably strengthened 
by including information on the measurement model parameters through observations in a 
validation group. 

Throughout, let i index the individuals, let Y denote the known outcome, X the true covariate 
which is unobserved (except in the validation subgroup), U the observed surrogate for X and 
C the known covariates. For the present work, we assume that X and U are univariate. By the 
terminology 'main study', we refer to the group of individuals where X has not been recorded, 
a group which is usually by design larger than the validation group. 

As detailed in Richardson and Gilks (1993a), the general structure follows from the for- 
mulation of local submodels between the components by using conditional independence 
assumptions and information on the design used to evaluate the measurement process: 

(a) p(YilXi, Ci, P), the regression model; 
(b) p(Ui Xi, A), the (classical) measurement model; 
(c) p(Xi l[r), the prior model for X. 
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A key assumption which allows the modelling to proceed is that of non-differential 
measurement error which can be expressed as 

p(YilUi, Xi, Ci, 3) = p(YilXi, Ci, /3) 

or equivalently YiLUi I Xi for all i. This leads to the joint distribution 

p(7r, A, 0, X, U, Y) = p(7r) p(A) p((0) p(Xi Ir) H p(UilXi, A) p(Yi IXi, Ci, ,) (1) 

where p(3), p(A) and p(ir) are the prior distributions for the parameters of the three submodels. 
In expression (1), the contribution of the validation group is not formally separated out, 

because our implementation uses directly the product form of expression (1), the only distinction 
between the contribution of the main study or validation group data being that Xi is observed 
and not latent. The validation group contributes crucially information on the parameters A, 
which is used together with values of Ui to inform about Xi in the main study group; both 
groups contribute to the estimation of 3 and ir. 

If an analytical expression for the posterior distribution of all the parameters based only 
on the validation group were available, a different implementation could be envisaged. To be 
specific, let us distinguish data in the main study and the validation group by the superscript 
index main or val respectively. Then, the following identity is true (for simplicity, we are omitting 
the known covariates C from this): 

p(iT, A, , XvallXmain, Umain, ymain, Uval, yval) 

x p((r, A, 3l1Xval, Uval, yval) p(Xmain, Umain, ymain r, , 
,3). (2) 

The left-hand side is the desired posterior of interest and the first factor on the right-hand side is 
the posterior based only on the validation group. If this term had an analytical expression, then 
it could be used as a prior in the implementation, with the second term of the right-hand side 
of expression (2) as the likelihood. This would have the advantage of having a well-calibrated 
prior and would increase the efficiency of the sampling. But, as will be apparent from the next 
section, the mixture prior with an unknown number of components that we propose as the 
prior for X does not lead to a tractable analytic expression for p(7r, A, /3Xval, Uval, yval). Thus, 
our implementation does not make use of decomposition (2) but derives directly from the joint 
distribution of all the parameters expressed in distribution (1). 

2.2. Mixture model 
We now expand the structure of the mixture model chosen as a prior for p(Xir). Here 7r denotes 
generically all the parameters of the mixture model, as detailed below. Following the hierarchical 
Bayesian formulation of mixtures introduced in Richardson and Green (1997), we suppose that 

k 
Xi > r wj f(.0lj) independently for i = 1, 2,.. ., n (3) 

j=1 

where f(.I0) is a given parametric family of densities, and the parameters 0 = {Oj}, w = {wj} 
and k are unknown. 

The hierarchical formulation of this mixture model introduces latent allocation variables Zi 
indicating to which mixture component the observation Xi belongs. Hence, model (3) is formu- 
lated equivalently as 
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P(zi = j) = wj independently for i = 1,2, ..., n, 

Xilz ~ 
f(IOzi,) 

independently for i = 1, 2,...., n. 

Assuming natural conditional independence assumptions, the hierarchical mixture model is 
thus expressed by the joint distribution 

p(X, k, 0, w, z) = p(k) p(OIk) p(wlk) p(zlw, k) p(XIO, z). (4) 

With respect to the generic notation of Section 2, we have 7r = (k, 0, w, z). For flexibility, 
we allow the priors for k, 0 and w to depend on hyperparameters, drawn from independent 
hyperpriors (for details, see Richardson and Green (1997)). 

We stress that treating k, the number of components, as being unknown and integrating 
over its posterior distribution when estimating regression parameters of interest enhances the 
adaptiveness of the mixture to heterogeneity in the underlying distribution of the Xs. This is 
different from other approaches where a fixed value for k is usually estimated by using a Bayes 
information criterion approximation, as in Carroll et al. (1999). 

2.3. Joint model and parametric specifications 
Combining distributions (1) and (4) leads to the following expression for the joint distribution 
of the measurement error problem: 

p(k) p(OIk) p(wlk) p(/) p(A) H p(zilw, k) p(Xi Ozi, zi) H p(UiIXi, A) H p(YilXi, Ci, /). (5) 
i i 

We are fully benefiting here from the flexibility that is offered by Bayesian modelling, coupled 
with conditional independence assumptions, which allows us to insert the hierarchical speci- 
fication of the mixture model coherently within the measurement error model. The structure 
outlined above is generic and can accommodate many parametric specifications of the sub- 
models. In what follows, we shall concentrate on the widely entertained logistic regression with 
normal or log-normal errors, a set-up which will allow us to make comparisons with other 
approaches. 

For the regression model, we consider a binary outcome Y related to the unobserved X by a 
logistic link involving an intercept /3 and a slope i1: 

Y - B(p) with logit(p) = /o + /31X. 

With respect to the generic notation of Section 2, we have 3 = (3o, 31). The dichotomous 
observations will be referred to as cases (Y = 1) and non-cases (Y = 0). This regression model 
corresponds to a prospective formulation, i.e. where the likelihood considered is that of a disease 
given a risk factor. 

For the measurement model, we investigate Gaussian errors on an additive scale: 

Ui " N(ao + e 1Xi, 7-1). (6) 

The measurement model thus involves three parameters; in the notation of Section 2, we have 
A = (ao, a•, 7). Note that we have used a parameterization in terms of the precision 7 which 
is the inverse variance of the measurement error model, a common choice of parameterization 
in Bayesian analyses. The interpretation of the variance 7-1 depends on the context. It can be 
related to the accuracy of the measuring instrument, or more commonly in epidemiology arises 
from within-person variability of the underlying biological quantity or risk factor that we are 
trying to study. For 

•o 
and al to be identifiable, it is necessary to have additional information 
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on the measurement model provided, for example in our set-up, by the gold standard in the val- 
idation group. In the absence of validation data, only the measurement error variance could be 
identifiable, and this only when the regression model is not Gaussian. In Section 5, we consider 
one situation of a measurement error model with no validation data, but in this case the esti- 
mation is carried out with known measurement error variance and known values of ao and al. 

For the mixture model, we consider a mixture of Gaussian distributions which can approxi- 
mate any continuous distribution well; thus Oj = (j, u2) and f(.lOj) = N(pj, a4). We assume 
that there are no observations of { Yi, Ui} in the main study and n observations of {Yi, Xi, Ui} 
in the validation group. We let n = no + n l. 

2.4. Prior specifications 
Our aim is to define hyperprior settings which use the available information derived from the 
validation group, while remaining only weakly informative. Estimates for the regression param- 
eters, o0 and pi, as well as the measurement parameters, ao and al, can be obtained by standard 
analyses based only on the validation group. Of course, if the validation group is small, these 
will be highly variable and we shall only use them for centring the priors. For these parameters, 
we thus choose weakly informative Gaussian priors centred on these estimates, with a large 
variance equal to 100. For the precision 7 that is involved in the measurement model (6), we 
use a gamma distribution F(0.01, 0.01). This quasi-'non-informative' choice is possible here 
because the validation group provides information on 7. 

We also need to specify the hyperparameters of the mixture model. There, we follow 
Richardson and Green (1997), to which the reader is referred for details. In Richardson and 
Green (1997), the setting of the normal priors for the component means Pj as well as the 
hierarchical gamma priors for the inverse of the variances O2 depend on the notion of a 'range' 
R of the mixture, which is usually taken to be the observed range of the data. In our case, the 
mixture concerns 'hidden variables', so there is no observed range. Again, we make use of the 
available information to define a notional range. To be precise, from the validation group data, 
we obtain an estimate of the error variance 

+-' 
and of the regression model between Xi and 

Ui. Then, this regression is used in the main study group to predict values of Xi: Xi from the 
observed Ui. Finally, we define 'initial values' for the Xi by perturbing the Xi by a Gaussian 
(0, 1-1) distribution randomly. The range R of these initial values is used as the notional range 
for X. Other choices would be suitable so long as they do not restrict too much the range for 
X, in particular, using directly the Xi to define this range is too restrictive. In the case of known 
measurement error, the same procedure is followed using the known rather then the estimated 
value of 7. 

Once the notional range R has been defined, we then adopt the detailed specifications of 
Richardson and Green (1997) for the mixture parameters, based on this range. 

Finally for k we choose a uniform prior on 1,...., 30, and for w a Dirichlet distribution 
D(6, 6,..., 6) with 6 = 1 which corresponds to a uniform prior on the weights. In practice, the 
mixture will rarely use more than 10 components and k could be defined on a smaller range 
without any loss of flexibility. 

3. Estimation via Markov chain Monte Carlo algorithms 

Bayesian methods for estimating model parameters are based on the posterior distributions of 
the parameters given the data. Given the analytic intractability of these distributions, MCMC 
methods now play a major role in these computations; see, for example, Besag et al. (1995), Gilks 
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et al. (1996) and Green (2001). Here, apart from standard Gibbs or Metropolis algorithms, we 
shall also make use of the reversible jump algorithm introduced by Green (1995). 

In brief, at each sweep of the algorithm, the following moves are used: 

(a) updates of 3, a and 7; 
(b) updates of Xi using (zi, Ozi, Ui, Yi, Ci, )3, a., 7) for i corresponding to the individuals in the 

main study; 
(c) updates of w, z and 9 conditional on k; 
(d) updates of k and consequently of the relevant mixture parameters. 

For step (a) the moves are conventional. We used a random walk Metropolis step where the 
acceptance probabilities are calculated by using expression (5) for the joint distribution. Gibbs 
sampling was not straightforward owing to the logistic form of the regression model. 

For step (b), this involves updating one at a time all the unknown covariates Xi. Since this is 
done conditionally on zi, this is again straightforward by using a random walk Metropolis step, 
the distribution Xi fzi being N(pzi, a2). 

The moves for updating the mixture parameters and changing k, the number of components, 
by using reversible jump split-merge proposals have been described in detail in Richardson and 
Green (1997). Basically, local changes increasing or decreasing the number of components by 
1 and preserving some moment conditions are proposed, then accepted following a Metropolis 
ratio. In contrast with the usual setting for mixtures, the values of Xi for the main study group 
will change at each iteration of the algorithm. Thus, teasing out the mixture is challenging in 
this context and its feasibility needs to be tested in a simulation study. Slower convergence of 
the mixture parameters than in a case where the Xi are fixed can be expected. 

The only initialization of the algorithm that is useful to mention is that of the unobserved 
Xi in the main study. There, we use the initial values obtained by the procedure described in 
Section 2.4 for setting the notional range of the mixture. 

4. Implementation and diagnostics 
4. 1. The data sets 
In this section, we show details of the performance of the algorithm on three simulated data 
sets. The design of the three simulated data sets will also be used in the simulation study that 
is reported in Section 5. For the first two data sets, we simulate X from a mixture, whereas 
for the third we follow the simulation set-up of Roeder et al. (1996) where X has a log-normal 
distribution. 

The first example is referred to as 'bimod'. It corresponds to no = 180, ni = 60, U - 

N(X, rT-), with 7 = 0.67, and logit{P(YIX)} = )o3 + f31X with o3 = 0.5 and P, = 0.6. The dis- 
tribution of X is simulated from a well-separated symmetric bimodal mixture: 0.5 N(-2.0, 1.0) + 
0.5 N(2.0, 1.0) (with numbers from each component drawn binomially from the stated weights). 

The second example is referred to as 'skew'. It corresponds to no = 250, ni = 50, U - 
N(X, 7-1), with r = 1.8, and logit{P(YIX)} = o + ,31X with o0 = -0.8 and f1 = 0.9. 
The distribution of X is simulated from an asymmetric normal mixture: 0.5 N(0.19, 0.082) + 
0.2 N(1.05, 0.22) + 0.3 N(2.0, 0.482). 

These two examples are cases of what is considered a substantial measurement error, i.e. where 
the measurement error variance 7-1 is roughly equal to half of the variance of X (which is equal 
to 3 and 1.1 for the bimod and skew examples respectively). The value of fo ensures that the 
data sets contain approximatively half cases and half non-cases. There is more information in 
the bimod example since the relative size of the validation group to the main study is larger than 
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for the skew example. Moreover two of the components in the skew mixture have substantial 
overlap and hence inference is more challenging in this case. 

The third example is inspired by an example that was used by Roeder et al. (1996) and is 
referred to as 'RCL'. There is none-the-less a major difference from the work of Roeder et al. 
(1996), in that we treat the study as prospective rather than as a retrospective case-control set-up. 
The implementation of case-control studies in a Bayesian framework is not straightforward; 
see Seaman and Richardson (2001). 

In the RCL example, no = 180 and n = 60 as in the bimod example, but the measurement 
model is multiplicative: log(U) - N{log(X), 7-'}, with 7 = 4, and logit{P(YIX)} = !o + 

01lX with 0o = -0.7 and P1 = 0.5. The distribution of X is defined as log N(-0.43, 1.082). 
Irrespectively of the model that is used to generate the Xs, we implement an estimation of the 

joint model equation (5) below. In particular, whenever there is a validation group, we estimate 
ao and al even though their simulation settings were 0 and 1 respectively. Note that, for the 
RCL example, the normal mixture will be used to approximate a log-normal distribution. 

4.2. Performance 
The MCMC algorithm was run for 50000 sweeps. The graphical assessment of convergence 
includes time plots of the parameters indexed by sweep, cumulative averages or occupancy frac- 
tion for continuous or discrete-valued parameters. The stability of these plots as the number of 
sweeps increases gives a useful graphical check on convergence. As can be seen from the plots 
in Fig. 1, in the bimod example convergence to stable cumulative averages for the regression 
parameter p3 (posterior mean 0.63; posterior standard deviation 0.1) or the precison 7 (plotted 
every 20 sweeps) is obtained after 30000 iterations, giving values which are close to the simu- 
lated true values. Similarly, the cumulative occupancy fractions for the number of components 
in the mixture, {p(k < jIy), 2 < j < 10}, have stabilized also after 30000 sweeps. On this 
graph, p(k < 21y) is not represented because the state {k = 1 } was never visited. We see that 
p(k = 21y) = p(k < 31y) is around 0.6, giving a clear indication that there is posterior support 
for two components in the bimodal mixture. 

Convergence is somewhat slower in the skew example, but nevertheless the parameter esti- 
mates stabilize after 40000 sweeps (Fig. 1). For this particular data set, again {k = 1} was never 
visited and we see support for two or three components, with a mode of p(kly) at k = 3. It 
is interesting to see that the increased uncertainty in the skew example is reflected in a larger 
posterior standard deviation of the regression parameter 31 (posterior mean 0.89; posterior 
standard deviation 0.2) than in the bimod case. 

In Figs 2 and 3 are displayed the empirical distribution of the simulated Xs in the whole 
study with an empirical density estimate provided by the density function in S-PLUS (Figs 2(a) 
and 3(a)), that observed in the validation group (Figs 2(b) and 3(b)) and the posterior density 
estimation given by the Bayesian implementation using the full model described in equation (5) 
(Figs 2(d) and 3(d)). Indeed, from the output of the chain, we obtain an estimate of the predictive 
densities of the mixture conditional on k, by averaging across the MCMC run conditionally on 
k, and an 'overall' 'Bayesian predictive density estimate of the distribution of X integrated with 
respect to k, E{f(. Ik, w, 09) X} (full curve), by averaging across values of k. To summarize, the 
density curves in Figs 2(a) and 3(a) are based on Xmain and Xval, whereas those in Figs 2(d) 
and 3(d) are based on Xval, Umain, Uval, ymain and yval. Both curves are superimposed on the 

histogram of Xmain and Xval. We see a good recovery of the true underlying density in both 
the bimod and the skew cases, in comparison with the blurred shape of the distribution of U 
(Figs 2(c) and 3(c)), even though there was only a small fraction of the sample in the validation 
group. 
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Fig. 1. Graphical assessment of the convergence of the MCMC algorithm for (a)-(c) the bimod example 
and (d)-(f) the skew example: (a), (d) cumulative occupancy fractions p(k < jly) for j ranging from 2 to 10; 
(b), (e) cumulative mean of l1; (c), (f) cumulative mean of 7 

It is also interesting to investigate the performance of the model with respect to the latent vari- 
ables by comparing the true Xi with the distribution of the Xi simulated through the algorithm. 
This is done in Fig. 4, which displays in Figs 4(a) and 4(c) the true Xi (dots) versus their posterior 
mean (crosses) ordered by values of the surrogate U, whereas in Figs 4(b) and 4(d) an interval of 
95% posterior variability is superimposed. For both data sets, we can see a classical shrinkage 
effect of the posterior means. This is more noticeable for the skew case. Indeed, because of the 
large weight of the first component and the substantial measurement error, the observations 
in the second component are pulled down on average. Nevertheless, nearly all the true Xi are 
included in the posterior variability interval. 

The ability of the mixture model to estimate the regression coefficients as well as to characterize 
the underlying density of the true Xs is also apparent in the RCL example (Fig. 5). There, the 
mixture uses between four and seven components to approximate the log-normal shape. Again, 
the estimates stabilize quickly after 30000 sweeps. In Fig. 5(d) we see that the variability (on the 
log-scale) of the posterior estimates matches the true values well. 
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Fig. 2. Bimod case-simulated data set (all subjects and validation group) and a comparison with the pos- 
terior density estimate given by the mixture model based only on the validation, surrogate and outcome data: 
(a) true covariate X-all subjects (n = 240); (b) true covariate X-validation group (n = 60); (c) surrogate 
U-all subjects (n = 240); (d) mixture density of the true covariate density 

5. Simulation study 
We now report results from a simulation study based on the three examples described in Section 4. 

5. 1. Comparison between mixture and standard Gaussian priors 
The results corresponding to the bimod and the skew cases are presented in Table 1 and Table 2 
respectively. Three different values of the measurement error precision 7 were chosen in each 
case, which correspond to ratios R of 1, 1 and 1 between the measurement error variance and 
the variance of X. Thus in the worst case (R = 1) the size of the noise is as large as the underlying 
variability which is a very unfavourable situation. Each row in Tables I and 2 corresponds to 50 
repetitions of the same simulation set-up. To study simultaneously the influence of misspecifying 
the prior for X and the potential improvement brought by using a flexible mixture prior for X, 
we report estimates for 31 and 7 obtained on the same 50 simulated data sets using both the 
mixture model as described in Section 2.3 and a simple Gaussian prior (which corresponds 
to the mixture with fixed k = 1). We do not report posterior distributions for ao or al; these 
were concentrated close to 0 and 1 respectively. We also report a 'bench-mark estimate' which 
corresponds to the situation of no measurement error, i.e. where the analysis is carried out by 
using the true simulated values of Xi. This allows us to calculate the mean-square error (MSE) 
ratio between the estimates of /31 and 7 obtained under a measurement error model and the 
bench-mark estimates. This MSE ratio quantifies the loss of precision due to using surrogates 
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Fig. 3. Skew case-simulated data set (all subjects and validation group) and a comparison with the poste- 
rior density estimate given by the mixture model based only on the validation, surrogate and outcome data: 
(a) true covariate X-all subjects (n = 300); (b) true covariate X-validation group (n = 50); (c) surrogate 
U-all subjects (n = 300); (d) mixture density of the true covariate density 

rather than the true values of the covariate. Of course, many factors influence the MSE ratio, 
in particular the size of T and that of the validation group. 

In Table 1, we see good performance of the mixture model with the MSE ratio for 31 varying 
from 1.8 to 2.9 for the worst case (7 = 0.34 and R = 1). The deterioration of the performance 
when the exposure prior is misspecified is clearly shown, with the MSE ratio for 31 roughly 1.5 
times larger. Similar remarks can be made for 7-r. The performances of the two middle cases of 
measurement error (7 = 1.34 and R = , and 0.67 and R = ) are fairly similar, whereas 
there is a marked deterioration between 7 = 0.67 and R = 1, which 
is a particularly bad scenario. 

As expected the results for the skew case (Table 2) are not as good as those for the bimod case. 
The estimation of 31 in the case of large measurement error (7 = 0.9 and R = 1) is problematic 
with an MSE ratio that is eight times larger than for the bench-mark estimates. But in the other 
two cases the performance clearly improves with MSE ratios varying between 3 and 2. Again, 
misspecifying the prior as a standard Gaussian distribution leads to a clear deterioration in the 
performance. 

5.2. Comparison with nonparametric maximum likelihood 
Our aim here is to try to compare the performance of the Bayesian mixture model with the 
NPML approach developed by Roeder et al. (1996). Thus, we reproduce the same simulation 
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Fig. 4. Comparison of the true values of X and their posterior estimates for (a), (b) bimod and (c), (d) skew 
cases (the plots do not display values for the validation groups): (a), (c) posterior estimate (+) and true X; 
(b), (d) superimposed 95% posterior variability 

set-up as in Roeder et al. (1996) concerning the prior distribution that is used to simulate X 
and the measurement error model. The simulated distribution of X is log-normal and the error 
structure is multiplicative. But, as our model was developed in the framework of a prospective 
study and not a case-control study, a strict comparison is not possible. To keep the proportion 
of cases fairly comparable with those of Roeder et al. (1996), we have chosen in our simulations 
a high base-line risk 0o = -0.7 which, together with the range of values of X, ensures that we 
obtain approximately equal numbers of cases and non-cases. Thus, our set-up is as detailed for 
the example RCL described in Section 4.1. Two sets of simulations are presented in Tables 3 and 4. 

In Table 3, the assumption is that the measurement variance is known and that there is no 
validation group. Model (5) for the Bayesian analysis is thus modified accordingly and the values 
of ao and al are assumed known. Two study sizes are investigated, n = 80 and n = 240. In 
Table 3 are also indicated the MSE ratios given by Roeder et al. (1996) in the corresponding 
cases. We find a similar MSE ratio between the mixture and the NPML model. This is a useful 
point of comparison. 

Next, we investigate cases with a validation group, distinguishing as in Roeder et al. (1996) 
a case where the measurement error model is known and a case when it is also estimated. The 
three values of 7 chosen (16, 4 and 1.78) correspond on the log-scale approximatively to ratios 
R of 1, 1 and 3 between the measurement error variance and the variance of X. Unfortunately, 
Roeder et al. (1996) did not report the MSE ratio with respect to the case of no measurement 
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Fig. 5. Performance of the mixture model when X is simulated from a log-normal distribution: (a) k; (b) 
,l; (c) mixture estimate of the true covariate density; (d) ?5% posterior variability and true X (log-scale) 

Table 1. Sensitivity to misspecification: comparison of mixture and Gaussian priors in the 
bimod caset 

Parameter Results for the following models with validation group and values of r and R: 

T = 1.34 (R = ?) 7 = 0.67 (R = T) 7 = 0.34 (R = 1) 

Mixture Gaussian Mixture Gaussian Mixture Gaussian 

/1 0.63 0.66 0.64 0.68 0.63 0.68 
sd(/31) 0.09 0.10 0.10 0.12 0.12 0.13 
MSE ratio (/1) 1.90 2.60 1.83 3.31 2.94 4.61 
f 1.37 1.37 0.67 0.68 0.35 0.35 
sd(r) 0.22 0.23 0.10 0.11 0.05 0.06 
MSE ratio (7) 2.73 4.03 2.83 3.85 2.27 3.28 

Bench-mark estimatest (no measurement error) 

P1 0.61 0.62 0.60 
sd(P1) 0.08 0.08 0.08 
MSE(/1) 0.006 0.008 0.005 
F 1.34 0.68 0.34 
MSE(r) 0.02 0.006 0.001 

tResults are averaged over 50 repetitions. 
tEstimates calculated using the whole data set; true value of f1 = 0.6. 
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Table 2. Sensitivity to misspecification: comparison of mixture and Gaussian priors in the skew 
caset 

Parameter Results for the following models with validation group and values of r and R: 

7 = 4.0 (R = 1) 7 = 1.8 (R = ) 7 = 0.9 (R = 1) 

Mixture Gaussian Mixture Gaussian Mixture Gaussian 

/1 
0.97 1.13 1.06 1.12 1.13 1.13 

sd(f31) 0.20 0.30 0.25 0.31 0.32 0.34 
MSE ratio (31) 1.93 5.82 3.08 4.40 8.38 9.69 
I 3.37 2.24 1.66 1.44 0.85 0.82 
sd(T) 0.52 0.57 0.24 0.27 0.11 0.12 
MSE ratio (r) 5.00 26.42 2.82 7.09 2.30 2.91 

Bench-mark estimatest 

P1 0.92 0.94 0.94 
sd(31) 0.16 0.16 0.16 
MSE(31) 0.021 0.030 0.022 
T 3.91 1.81 0.90 
MSE(r) 0.120 0.023 0.006 

tResults are averaged over 50 repetitions. 
jEstimates calculated using the whole data set; true value of l1 = 0.9. 

Table 3. Comparison of mixture and NPML model performance in a case where there is no validation group 
and the measurement error parameters are knownt 

Parameter Results for the measurement error without validation group and the following values of 
n, 7 and R: 

n = 80 n = 240 

7-=16 (R= ) = 4 (R = ) = 16 (R = ) 7 = 4 (R= ) 

Mixture model 
'1 0.57 0.69 0.49 0.56 
sd(Pf) 0.28 0.36 0.15 0.17 
MSE ratio (31) 1.17 1.80 1.45 2.02 

NPML modelt 
MSE ratio (31) 1.28 1.82 1.83 2.16 

Bench-mark estimates? 

P1 0.53 0.58 0.47 0.54 
sd(f1) 0.26 0.27 0.14 0.15 
MSE(l1) 0.05 0.12 0.02 0.02 

tResults are averaged over 50 repetitions. 
tEstimates reported in Roeder et al. (1996), Table 1. 
?Estimates calculated by using the whole data set; true value of fl = 0.5. 
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Table 4. Performance of the mixture model in a similar set-up to that described in Roeder et al (1996)t 

Parameter Results for the known Results for the unknown 
measurement error model and measurement error model and 

the following values of 7-r and Rt: the following values of 7 and Rt: 

r=16 r=4 7=1.78 7=16 7=4 T=1.78 

(R= ) (R = 2 (R = 1) (R = ) (R= ) (R = ) 

31 0.54 0.53 0.58 0.56 0.55 0.58 
sd(31) 0.16 0.17 0.19 0.16 0.19 0.21 
MSE ratio (31) 1.15 1.46 2.03 1.60 2.20 2.04 

Bench-mark estimates? 

31 0.52 0.50 0.55 0.52 0.51 0.53 

sd(13l) 
0.15 0.14 0.15 0.14 0.14 0.14 

MSE(31) 0.02 0.03 0.02 0.02 0.02 0.03 

tResults are averaged over 50 repetitions. 
TModel with validation group, no = 180 and nl = 60. 
?Estimates calculated using the whole data set; true value of 31 = 0.5. 

error for the NPML method, so we cannot compare those between the mixture and NPML as 
in Table 3. 

In the known measurement parameters case, we see a slightly better performance of the 
mixture model than in the bimod case with MSE ratios varying between 1.1 and 1.5 for ratios 
R of ) and I. In the unknown measurement error model, the performance is as expected a little 
worse, but the MSE ratios stay close to 2. These ratios are well in keeping with those reported in 
Table 3. Thus, even in this case of a mixture approximation of a log-normal prior, the mixture 
model gives a satisfactory performance for estimating the regression coefficient of interest. 

6. Application to study of cholesterol and coronary heart disease 

In this example, we reanalyse a data set concerning the risk of coronary heart disease as a 
function of blood cholesterol level, which was discussed and analysed using NPML by Roeder 
et al. (1996); the data were kindly supplied to us by R. Carroll. Subjects are considered as cases 
of coronary heart disease if they had a previous heart attack, a history of angina pectoris or an 
abnormal exercise electrocardiogram. They are all non-smokers. The covariate of interest is low 
density lipoprotein cholesterol LDL, which is one of the components of total cholesterol TC. 
The direct measurement of this variable is more costly and technically demanding than that of 
the TC level. The question investigated here is thus whether TC could be a useful surrogate for 
LDL. We refer to Roeder et al. (1996) for more details concerning the data set. 

The sample analysed consists of 113 cases and 143 controls, for whom full data, i.e. coronary 
heart disease status and LDL and TC levels, are available. As in Roeder et al. (1996), we shall refer 
to coronary heart disease status as Y, LDL/100 as X and TC/100 as U. From the complete data 
set, we selected at random 32 cases and 40 controls to use in the validation set. For comparability 
with Roeder et al. (1996), we have analysed these data as if they had come from a cohort study, 
i.e. by using the prospective likelihood. Conditions for the equivalence of Bayesian analysis 
using prospective and retrospective likelihoods are discussed in Seaman et al. (2000). 
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The Bayesian analysis was carried out along the same lines as described earlier. The skewness in 
the LDL distribution was fitted by a mixture with mostly two components, p(k = 21y) = 0.53. 
Recovery of the estimated value of Pl based on the complete data set was good: the logistic 
regression analysis carried out between Y and X on the full data set gave a value of the posterior 
mean of 01 equal to 0.66 with the posterior standard deviation equal to 0.34, whereas that from 
using the surrogate U for most cases and controls and only the true X on the validation group 
gave values of 0.64 and 0.37 respectively. Note that, as expected, the posterior standard deviation 
is increased. As a point of comparison, the logistic regression analysis ignoring measurement 
error, carried out between Y and U on the whole data set, leads to an attenuated value for 31 
of 0.55. If the analysis had been carried out only on the 72 subjects of the validation set, the 
results would also be quite poor, with Pl = 1.35 and a posterior standard deviation of 0.6. Thus, 
we see the additional information obtained by combining the information from the validation 
group with that of the surrogate on a larger group. In Fig. 6, the good recovery of the LDL 
density obtained by the mixture model is shown alongside the density of TC. Note the contrasts 
in shape between the two densities. 

7. Discussion 

The model that we are proposing illustrates the flexibility of the Bayesian modelling approach 
which exploits conditional independence structure. Thus, we have been able to link two complex 
models: that relating to the measurement error problem and that concerning the underlying 
structure of the latent unobserved variable, models which were both built separately. 

In structural measurement error problems, there is a general concern about the parametric 
specification of the unknown covariates. Recent work has approched this problem via NPML 
methods that have been shown to perform well (Roeder et al., 1996; Schafer, 2001; Aitkin and 
Rocci, 2002). We have addressed this concern in a Bayesian hierarchical framework. This frame- 
work offers many other possibilities for building in additional complexity of epidemiological 
data sets, like informative missingness or subject-specific random effects. In this framework, the 
mixture model with a variable number of components that we have developed for the unknown 
covariate prior was a natural candidate to overcome potential misspecifications. 

We have shown that it is feasible to use it in measurement error problems with validation 
data and that it has a good performance, avoiding attenuation of the regression coefficients of 
interest. Mixture priors could also be envisaged in other measurement error situations where 
information on the measurement model parameters is built in the design, e.g. in designs with 
repeated measures of an unbiased instrument in a subgroup of individuals. But, in the absence 
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Fig. 6. Coronary heart disease and cholesterol study: (a) TC/100; (b) mixture density estimate of the 
underlying density of LDU100 
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of validation data, it would be inadvisable to use our approach as it would require very strong 
priors on the mixture parameters to obtain reasonable estimates. 

More generally, our mixture approach could be extended to other cases where there is un- 
certainty about the parametric specification of a latent variable, as in random-effects models. 
Preliminary work along these lines is reported in Watier et al. (1999). In this context, a semi- 
parametric maximum likelihood for generalized linear mixed models has also been used as an 
alternative approach; see Aitkin (1999). 

There could be some concern that we are overparameterizing the model by using a variable 
number of components. The alternative, as suggested in Carroll et al. (1999), would be to fit 
increasing numbers of components and to judge the improvement sequentially. This is of course 
reasonable, but our global approach avoids the delicate statistical problem of choosing k, and 
the performance does not seem to deteriorate with respect to another method, NPML, in the 
cases where we could make comparisons. Note also the good recovery of the underlying shape 
of the density of the unknown covariate, based on limited information. 

We have thus been able to show how Bayesian measurement error models can make full use of 
the flexible semiparametric nature of mixture models with an unknown number of components 
to avoid biases due to a misspecification of the distribution of unobserved covariates. 
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