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ABSTRACT. Propp & Wilson (1996) described a protocol, called coupling from the past, for 
exact sampling from a target distribution using a coupled Markov chain Monte Carlo 
algorithm. In this paper we extend coupling from the past to various MCMC samplers on a 
continuous state space; rather than following the monotone sampling device of Propp & 
Wilson, our approach uses methods related to gamma-coupling and rejection sampling to 
simulate the chain, and direct accounting of sample paths. 
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1. Introduction 

Propp & Wilson (1996, 1998) described a protocol called "coupling from the past" (CFTP) 
for exact sampling from a target distribution using a coupled Markov chain Monte Carlo 
(MCMC) algorithm. The essence of their idea was to consider running an ergodic 
simulation of a Markov chain using a sequence of random numbers ("coins") with a 
known distribution. If the simulation had been running indefinitely, then the observation at 
time 0 would be distributed exactly according to the stationary distribution .7r of the chain. 
"If we can figure out the state at time 0 by looking at a finite number of these coins used 
in the recent past, then the result is an unbiased sample" (Propp & Wilson, 1998). 

The structure of algorithms based on this idea is as follows. We consider runs of length M 
ending at time 0, for some arbitrary value of M > 0, starting at every possible state of the chain 
at time t = -M. Using a sequence of random numbers, we follow the paths from each of these 
states forward in time; occasionally two paths will merge ("coalesce"), and eventually all of the 
paths will have coalesced into one. If this has happened when we reach time 0, then we are 
done. If there are still multiple possible states, we choose a larger value of M and start again, 
using the same realization of the sequence of random numbers. 

For their detailed implementations, Propp & Wilson (1996) made this process particularly 
efficient by working with simulations with a monotonicity property, allowing them to simulate 
only paths from the minimal and maximal states; once they had coalesced, those from all 
intermediate states must have coalesced as well. 

The present paper addresses the question of extending coupling from the past to deal with 
(typically multivariate) continuous target distributions, motivated by potential applications to 
Bayesian parametric inference. The main difficulty in applying the Propp & Wilson versions of 
monotone coupling from the past to general continuous state spaces is that, for most im- 
plementations, paths from different starting values will not coalesce in finite time, though they 
may become arbitrarily close. Thus the best that can be achieved with such methods is an 
approximation to the steady-state distribution. 
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Reutter & Johnson (1995) used the idea of coupled MCMC paths to assess the rate of 
convergence of an MCMC simulation, rather than to create an exactly-sampled realization. 
Their Markov-maximal coupling and mixture coupling are similar to our multigamma coupling 
(described below), but are applied to a finite collection of chains evolving into the future, while 
our methods are applied to uncountable collections evolving from the past to the present. Cai 
(1997) used CFTP together with monotonicity to derive a coupling algorithm for an indepen- 
dence sampler, and derived the rate of convergence to the target distribution when the state 
space was finite. In a paper on some theoretical underpinnings of CFTP, Foss & Tweedie (1998) 
show the importance of uniform ergodicity in verifying successful backward coupling for CFTP. 

One special context in which coupling from the past has been developed for problems 
involving continuously-distributed random variables is that of spatial point processes. Several 
authors have developed such algorithms by careful construction of monotonic sampling func- 
tions which can be viewed as introducing discreteness into the continuous state space 
(Higgstr6m et al., 1996; Kendall, 1997, 1998). In this area, and more generally, there is 
currently intense research activity, and this brief literature review is necessarily immediately 
out-of-date. An up-to-date annotated bibliography is maintained by David Wilson at: (http:// 

dimacs.rutgers.edu/-dbwilson/exact). 
In this paper we show in section 2 that many common MCMC algorithms can be recast in a 

form in which large collections of states are all updated to a single new state. This provides the 
necessary discretization of the state space, and the CFTP algorithm may then be used to obtain 
exact samples from the limiting distribution. In section 3 we apply some of these algorithms to 
an example of a hierarchical Bayes model, and we discuss the methods in section 4. 

2. Algorithms 

We will describe several approaches for simulating realizations of ergodic Markov chains 
(X5) that couple from the past; in principle, these work in rather general state spaces. For 
simplicity and definiteness here, however, we assume that the state space is X c Jd and 
that the transition kernel of interest and its stationary distribution have densities with 
respect to d-dimensional Lebesgue measure. We write the density of Xt+l at y, given 
Xt = x as f(ylx) and that of the stationary distribution as ar(.), so that for example 

J7r(x)f(ylx) dx = 2r(y). 

In subsection 2.4 the assumption of the existence of f is relaxed slightly to allow us to 
consider Metropolis-Hastings samplers, which may have positive probability of not moving 
at each transition. 

Any program for simulating a Markov chain takes the current state Xt, generates some 
random numbers Ut+1, independent of all other Us and of Xt, and forms the new state Xt+l as a 
deterministic update function 

Xt+1 = OMX, Ut+i),(1 

designed to achieve the correct transition densities f( l). For example, the standard 
"random walk Metropolis" algorithm can be expressed via 

-XX + U if U(1 <r(X + U(2))/fr(X) 
qo(X, U) -{X otherwise 

Here U(1) is a U(O, 1) random variable and U(2) is a random increment of the same 
dimension as X with a distribution symmetric about 0, both independent of X. 
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For normal purposes, the existence of this function 0 is implicit, but in studying coupling 
from the past, it plays an explicit and crucial role. The algorithms we will consider generate 
parallel paths from different initial states, and may "re-play" segments of the paths from 
different initial times. It is conceptually convenient to imagine the Ut as generated once and for 
all, for all t, at the start of the simulation, although in practice we will maintain data structures 
that allow us to generate each Ut by the time it is first needed. This must be done in such a way 
that (1) remains literally true, and this typically requires careful housekeeping. We must ensure, 
for example, that if Xt = x leads to Xt+l = y when following one path then it does so in all 
paths regardless of the order in which the various possible transitions are actually simulated. 

Coupling from the past is based on the observation that if there exists a (random) initial time 
- T < 0, such that for all initial states X-T, Xo is the same, then Xo has density -; this is Propp 
& Wilson's th 2. Equation (1) provides a representation that allows us to check the values of T 
and Xo, and the secret of any practical implementation of coupling from the past is a method of 
tracking paths to do all the checking requires efficiently (and in particular, in finite time!) There 
are many possible representations (1) for a particular transition kemel; we are searching for one 
of these that generates highly dependent paths, with high probabilities of coalescing. 

The algorithms must be implemented carefully. Small changes invalidate them, but may give 
no outwardly visible signs of the error. For example, implementations should not call a random 
number generator anew each time a random value is required; we label the values Ut to 
emphasize that the same value must be used each time the loop passes time t. For this reason, 
unambiguous definitions of the algorithms are essential. The compact specifications using 
pseudo-code that we present in this paper are unambiguous; the syntax should be self- 
explanatory. 

All of the algorithms presented in this paper have the same general two-stage implementation. 
We start by re-expressing the general CFTP algorithm as follows, using the representation (1): 

CFTP(M): 

t < -M 
Bt +-X 

while Bt infinite and t<O 

t*- t+ 1 
Bt +- set containing b(Bt-1, Ut) 

while t<O 

t<- t+l 

Bt '- q(Bt-1, Ut) 
if #Bo = 1 then 

return(Bo) 

else 

CFTP(2M) 

Once a suitable function 5 satisfying (1) and following the recipe described above has been 
specified, the proof that if and when this algorithm exits, it produces an exact sample from the 
target distribution is identical to the proof of th 3 in Propp & Wilson (1996), rewritten for a 
continuous state space. As for whether it exits (i.e. the coupling is successful), this relies on 
choice of an update function 0, and the design of the code for "Bt +- set containing 

O(Bt51, Ut)". This question is addressed in the detailed implementations that follow. 
It may appear that dividing the algorithm into the two stages is artificial; we could use a 

single loop. However, the implementations of the algorithm that we give below all have this 
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two-stage character, because representing an infinite set is quite different from representing a 
finite set. 

When a pass through the algorithm fails to reduce to a single state and we choose a new value 
of M, our algorithm always doubles the previous choice. As Propp & Wilson (1996) show, this 
is not necessary; any increase in M would work. However, doubling is close to the optimal 
choice if our aim is to minimize the total running time of the algorithm. 

In the remainder of this section we describe implementations of the CFTP algorithm that may 
be used in different Markov chain simulations. 

2.1. The multigamma coupler 

This algorithm exploits ideas related to, but different from, Doeblin's small sets (Meyn & 
Tweedie, 1993), splitting (Nummelin, 1984), gamma coupling (Lindvall, 1992) and Markov- 
maximal coupling (Reutter & Johnson, 1995). The first three of these are devices intro- 
duced to facilitate theoretical arguments; the last provides an algorithm used in convergence 
diagnosis. Though typically not fast enough to be used alone, multigamma coupling serves 
as a component of or a motivation for several other couplers. 

We suppose here that we know explicitly the update kemel density f(. Ix) of the Markov 
chain, the density from which Xt+1 is sampled given Xt = x. Futhermore, we suppose that 

f(ylx) 2 r(y) Vx, y X (2) 

for some non-negative function r(.), for which p - f r(y) dy > 0. For notational convenience 
we restrict the discussion to one-dimensional X. 

To define what we term the multigamma coupler, write 

R(y) = p-1 J r(v) dv, 

Q(ylx) = (1 - p-J Lf(vlx) - r(v)] dv. 

The update function used by the algorithm is 

/.(x, U) R- l (U(2)) if UO) < p 
QI Q(U(2)IX) otherwise, 

using a pair U = (U(I), U(2)) of uniform random numbers. 
It is easy to see that P(Xt+l S ylXt = x) = pR(y) + (1 - p)Q(ylx), so that 0(x, U) is indeed 

a draw from f(. Ix). 
The multigamma coupler is defined by the following algorithm: 

Multigamma(M): 
t - M 

Bt' %- 
while Bt infinite and t<O 

t*- t+ 1 
if Ut() <p then 

Bt xR I(U(2)} 

else 

Bt '-X 

while t<O 
t t+ 1 
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if U(1) <p then 
Bt {R- (U(2 )} 

else 
Bt {Q-' (U(2))Ix)} where BtI = {x} 

if #Bo = 1 then 

return(Bo) 
else 

Multigamma(2M) 

Having explicitly demonstrated the form of the update function q, the proof that this is a 
valid implementation of the CFTP algorithm depends only on showing that Bt almost surely 
becomes finite in finite time. But this is immediate: in this coupler, at each time, Bt collapses to 
a single element with probability p. 

If the inverse distribution functions R-1 and Q-1 are not available, the algorithm must be 
modified to replace the references to them by calls to subprograms that produce draws from R 
or Q respectively. For example, if r(.) is bounded above by Kh(.), where h is a density from 
which we can simulate directly, we can use rejection: 

InverseR(U(2)): 

set random number seed using U(2) 

draw auxiliary random numbers V1, V2, 

j+- 1 
repeat 

draw Y from h using Vj 
if Vj+1<r(Y)/[Kh(Y)] then 

exit 

return(Y) 

An alternative, purely constructive, implementation of the multigamma coupler is as follows. 
Since there is a fixed probability p that R-1 is called at any given time t, we can choose the 
most recent such occurrence before t = 0 by sampling a random variable T from a geometric 
distribution with success probability p: P(T = t) = p(l - p)t, t = 0, 1, 2, ..., and sampling 
the value X-T at this time from the density r(.)/p. This allows us to avoid the search over M in 
the outer loop of the general CFTP algorithm. We carry Xt forward in time using Xt +- 

Q-1 (U(2) IXt_i), and obtain X0o -a(.) exactly. The validity of this version of the algorithm may 
be proved directly, either analytically or probabilistically, without coupling arguments. 

The multigamma coupler as described here will have a very limited range of application, for 
two reasons. First, the lower bound function r(.) may be too small for practical use: note that the 
coupler takes an average of 1/p transitions to couple. In many practical applications the only 
lower bound is r(.) _0 , and multigamma coupling cannot be used at all. Second, it requires the 
user to know the normalized update densities. Often (for example in hierarchical Bayes 
modelling) the update densities are only known up to a constant of proportionality. 

2.2. The partitioned multigamma coupler 

While it is often difficult or impossible to find a uniform non-zero lower bound on the 
update densities as in (2), quite commonly the state space can be partitioned into a finite 
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collection of disjoint cells .= {Ai, i = 1, ... m}, and separate lower bounds can be 
placed on the densities within each cell. That is, 

f(yIx) ? ri(y) VX E Ai, Vy C X. 

We further assume that f ri(y) dy = p > 0 is constant over all cells; this assumption will be 
relaxed in a later section. 

The partitioned multigamma coupler is then a modification of the multigamma coupler: 

Partitioned multigamma(M): 

t +- M 

Bt +- X 

while Bt infinite and t<O 

t*- t+1 

if U(1) <p then 

Bt *- {RT-(U(7)):i= 1, 2,. m} 
else 

Bt +-X 
while t<O 

t*- t+l 

if U (1) <p then 

Bt- {RT-1(U(2)): i= 1,2,. m,Ai n Bt-lB ?0} 

else 

Bt U2m {Q-' (U(2) Ix): xE Ai n Bt5} 
if #Bo= 1 then 

return(Bo) 

else 

Partitioned multigamma(2M) 

In this algorithm, Ri and Qi are defined by 

Ri(y) = p-If ri(v)dv, 

Qi(Yjx) = (1 - WI1J [f(vlx) - ri(v)] dv, 

and the update function used is 

~(x, U) R- Ry(U(2)) if UO) < p 
QTt(U(2)Ix) otherwise, 

for x E Ai. We see that P(Xt+1 - ylXt = x) = pRi(y) + (1 - p)Qi(ylx) is a proper mixture 
of distributions when x E Ai, so that 0(x, U) is again a draw from f(Ilx). As in the 
previous algorithm, if an inverse distribution function is not available, an appropriate 
alternative needs to be provided, for example a rejection sampler. 

Proof of the correctness of this algorithm includes checking that the sets of candidate states in 
the second loop do indeed shrink to a single state in a finite time. This follows from the irre- 
ducibility of the original chain, which implies that the cells of the partition inter-communicate. 

As a simple illustration of the partitioned multigamma coupler, consider the following toy 
example on the one-dimensional state space X = [0, 1). For the update transition kernel, we take 

f(ylx) = (1 + w))[min {y/x, (1 - y)/(1 -x)l] 

?) Board of the Foundation of the Scandinavian Journal of Statistics 1998. 



Scand J Statist 25 Exact sampling from a continuous state space 489 

for a fixed parameter to - 0. Increasing to reduces the overlap between f(ylx) for different 
x, and so makes coalescence harder; in our simulation we took a = 6. We partitioned X 
into 8 equal intervals Ai = [(i - 1)/8, i/8), and took ri(y) = minxEAi f(Ylx); we find 
f ri(y)dy = p = (8/9)w, independently of i as required. The function R,' (.) can be 
computed explicitly, but we use a numerical binary search to calculate Q1 l(U(2)Ix). In Fig. 
1 we display results from a single run of the coupler; coupling from the past was 
successful with M = 16, and B, became finite at t = - 14 and reduced to a single state at 
t = 0. The non-monotonic nature of the update function qb is clearly seen. 

2.3. The rejection coupler 

In this section we provide an alternative basic recipe for coupling from the past, that has 
the attraction of applicability to certain problems where the updating densities are known 
only up to a constant of proportionality, a situation rather common in Gibbs sampling. 

We suppose that the conditional update kernel is f(ylx) = k(x)g(ylx) where the un-normal- 
ized density g(ylx) is known, but k(x) is unknown. We also assume that there exists an envelope 
function h(y) such that 

g(ylx) - h(y) Vx, y E X, (3) 

i.e. the un-normalized densities are bounded above uniformly in x. We assume 
v = f h(y) dy < oo, quite a demanding condition in an unbounded state space. Finally, we 
assume that we have a way of sampling from the density h(y)/v. 

The algorithm is similar to the partitioned multigamma coupler, but the partition is 
determined randomly during each update. Specifically, we imagine using a rejection sampler to 

6 

6 

C\1 ~~~~~~~~~~~~~~~~~~~~....... 

ao 7. yC 

0 15 -10 -5 0 
time 

Fig. 1. A run of the partitioned multigamma coupler on the toy example. The solid line texture corresponds 
to paths from -oo coalescing by time 0. 
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sample from f(ylXt-1) using h(y)/v as a proposal density, and partitioning the space of Xt-I 
values into those that would be accepted on each attempt. The detailed layout of the algorithm 
is: 

Raw rejection coupler(M): 
t +- M 
set random number seed using Ut 
j O- 

repeat 

draw Yj from h(.)/v 
draw Vj from U(O, 1) 

Aj +- {x: g(YjIx) ? Vjh(Yj)} 
if U= Ai= X then 

J +-j 
exit 

Bt ( {YI, Y2, .*- YJ} 
while t<O 

t+- t+ 1 
set random number seed using Ut 

j 
O- 

repeat 

draw Yj from h(H)/v 
draw Vj from U(O, 1) 

A1 +- {x E Bt-I: g(Yj|x) Vjh(Yj)} 
if Uj Ai = Bt-1 then 

J j 

exit 

Bt <{YI, Y2, ..., YJ} 
if #Bo= 1 then 

return(Bo) 

else 

Raw rejection coupler(2M) 

Success at attaining a finite partition almost surely, and hence coupling from the past, is a 
subtle matter depending on the form of k(x)g(ylx): it is necessary but not sufficient that k(x) be 
bounded. 

We apply this algorithm to the same toy example used in the previous section; for this 
transition density, the sets Aj are easily computed explicitly; they are all intervals, so it is 
straightforward to accumulate their union, and to check whether they cover specified values. 
The results of a single run are displayed in Fig. 2. As necessarily occurs with rejection coupling, 
B-M+1 is finite for every M, and in this case has only two elements on the successful pass, with 
M = 16, on which coalescence occurred at t = -5. The unsuccessful passes with M = 2, 4 and 
8 produced #Bo = 7, 6 and 2 respectively. 

In real problems, it is sometimes awkward to keep track of the {Aj} explicitly. When there is 
additionally a lower envelope r(y) for the functions g(ylx), satisfying 

0 S r(y) > g(ylx) 
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-15 -10 -5 0 
time 

Fig. 2. A run of the raw rejection coupler on the toy example. The solid line texture corresponds to paths 
from -oo coalescing by time 0. 

with p = f r(y) dyl fh(y) dy > , we can get round this difficulty by continuing to repeat 
the inner loop until Vj <r(Yj)lh(Yj). Exit from the loop occurs almost surely, since p >0, 
and then there is certain to be at least one Yj satisfying Vj <g(Yjlx)lh(Yj), so we have 

updated all states, and implicitly created a partition of X into J cells Aj = Cj\Aj-1, 
j= , . .., J, where 

Ao = 0 

Cj = {xl Vj < g(Yjlx)lh(Yj)l. 

This is our standard implementation of the rejection coupler. 
We can further modify the rejection coupler by partitioning the state space in advance as in 

the partitioned multigamma coupler. In this variation, separate upper and lower bounds are used 
on each partition. We assume that 0 -,- ri(y) -,- g(ylx) -, hi(y) for all x E Ai and y e X, with 
vi = f hi(y) dy < oo and Pi = f ri(y) dylvi > O for i = l, . .., m. In contrast to the partitioned 

multigamma case, there is no need for Pi to be the same across partition cells. 

Partitioned rejection coupler(Aft 
t -- -M 

for i = I, ..., m 
set random number seed using Ue 
j = 0 

repeat 

j +-j +1 

draw Yij from hi(.)Ivi 

Thi isar our stadar implmenation of the rejeava ornloSaitctio coupler 
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draw Vy from U(O, 1) 

if Vij < ri(Yij)/hi(Yij) then 

Ji +- i 
exit repeat 

Bt + {Yij: i =1 ,, j = 1, *,J1i} 
while t<O 

t+- t+1 

for i= 1. m 

set random number seed using Ut 

j O- 

repeat 

draw Y11 from hi(.)/vi 
draw Vij from U(O, 1) 

if Vij<ri(Yij)/hi(Y11) then 

Ji *- j 
exit repeat 

Bt 0 

for x E BtI 
i- cell index such that xE Ai 

Bt- Bt U {first Yij in (Yil,...,Yui: Vij < g(Y1yIx)/h(Yij)} 
if #Bo = 1 then 

return (Bo) 

else 

Partitioned rejection coupler(2M) 

To decide whether or not to partition, we might aim to minimize the size of the candidate 
list at the end of the first stage. The expected number of items in the list in the partitioned 
algorithm is El/pi. As will be seen in the example below, a careful choice of partition can 
make this many orders of magnitude smaller than the I/p items expected with the simple 
algorithm. 

2.4. The Metropolis-Hastings coupler 

In this section we show how to adapt a class of Metropolis-Hastings samplers to allow 
coupling from the past. 

We suppose that the target density 7r(.) is known up to a constant of proportionality, and that 
we use a proposal distribution with density q(ylx). 

The familiar Metropolis-Hastings algorithm that updates all variables at once is implemented 
as follows. We assume that at time t - 1 we are in state Xt-1, and wish to generate Xt. We 
sample values U(1) U(O, 1) and U(2) from some fixed continuous distribution; a function 
ip(-, -) can then be constructed such that i(x, U(72)) has density q(ylx). It is important to note 
that while the distribution Yt = (Xt_l, U(2)) may depend on Xt-1, the distribution of U(2) 
does not. 

Then 

rt if U( <a(YtlXti1) x t ~~~~~~~~~~~~~~~~~~~~~~~(4) 
L Xt-I otherwise 

where 
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a(YIX) = -r(Y)q(Xj Y) (5) 
- 7T(X)q(YJX)' 

For our implementation of CFTP in this context, we require that the proposal distribution 
depends on the current state only in a discrete way, so that the function 1P(., U(2)) takes on only 
a finite list of m possible values when U(2) is held fixed. For example, for the "independence 
sampler", q(ylx) does not depend on x, so that i/ takes on only one value; the general case could 
be seen as a separate independence sampler on each cell of a finite partition of the state space. 

We further assume that for given values of U(') and U(2) we can determine a set Ct containing 
all states which would not be updated, i.e. 

{x: U") : a[ip(x, U(t2))Ix]} c C, 

and that, with probability 1 there exists T such that ntT1 Ct is empty. In the description 
below we split Bt into Ct and a finite set Ft: 

Metropolis-Hastings coupler(M): 

F, +- 0 
Ft 0 

Ct ' x 
while t<O and Ctt 0 

t*- t+ 1 
Ct- set containing {x E Ct-1: U(') >a[Vp(x, U(2))Ix]} 

Ft V (Ct- 1, U(t2)) 

Ft, Ft U {Ip(x, U(')): x E Ft-1 and U(1) a[ip(x, U (2))Ix]} 
Ft, Ft U {x: x E Ft, and U(1)> a[i(x, U(t2))x]} 

while t<O 

t- t+1 

Ft {ip(x, U(2)):x E Ft-1 and U(1) - 
a[V)(x, U(t2))x]} 

Ft, Ft U {x: xE Ft-, and U(1) > a[{ 1(x, U(t2)Ix]} 
if #Fo = 1 then 

return (Fo) 

else 

Metropolis-Hastings coupler(2M) 

The main difficulty in applying this algorithm is in calculating the sets Ct. Unless there is a 
special relationship between the proposal distribution and the target distribution, characteriza- 
tion of the sets of states which would be updated at each step can be an intractable problem. We 
now present an important special case where this calculation is straightforward. 

Consider the independence sampler, where q(ylx) = q(y) and V)(x, U) = Vp(U). Suppose that 

2r(x) K < 
q(x) 

Then a in (5) satisfies 

a(YIX)2i: a(Y) 
q(Y)K' 

It follows that if U(1) <.7r(Yt)/[q(Yt)K], all paths will couple simultaneously. In fact, if we 
set Ct = 0 when this occurs and otherwise set it to the whole space, then we simply have 
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a rejection sampler with proposal density Kq(.), and the value Xt when Ct becomes empty 
will itself be an exact sample from :r(-). 

In many cases such a rejection sampler will not exist, or will be too slow to be of practical 
use (though to our surprise, this was not the case in the example we present below). However, 
we will often be able to find a finite set of relatively efficient proposal distributions 

qj(-), j = 1, ..., m, such thatbr(x)/qj(x) - Kij for x E Ai, where A = {A i} is a partition of the 
sample space, and at least one Kij is finite for each i. If we then use the proposal distribution 

q(YjXt-1) = qi(Y) when Xt-1 C Ai, we see that when Y C Aj, U',1) < r(Y)/[qi(Y)Kji] implies 
all paths with Xt_1 E Ai will couple simultaneously. We use this result as the basis of 
the following coupling algorithm, expressed in terms of It instead of Ct; the relation is 

Ct= U ic,tAi. 

Bounded M-H coupler(M): 
tF - M 

Ft (0 

Ii {1, ..., m} 
while t<O and ItX 0 

t*- t+ 1 
for i= l...m 

Yi ' t(U(2)) 

ii cell index such that Yi E Aj, 
I, {i E I,-I: u(1) > 7(Yi)1[qi(Yi)KijJ]} 
Ft1 {Yi: iEIt-i} 
Ft - Ft U {Yi: ]x E Ft-fl nAi and U(" S [n(Yi)1qi(Yi)]1[:7(x)1qji(x)]} 
Ft - Ft U {x: x E Ft, n Ai and U(1) > [7(Yi)1qi(Yi)]1[a(x)1qji(x)]} 

while t<O 
t4- t+l 

for i= l...m 
Yi V),(U(2)) 

ji cell index such that Yi E Aj, 
Ft {Yi: 3x E Ft-1 n Ai and U(t) -< 

[a(Yi)1qi(Yi)]1[z(x)1qji(x)]} 
Ft - Ft U {x: x E Ft-1 n Ai and U(1) >[7r(Yi)lqi(Yil)]l[7r(x)lqji(x)]} 

if #Fo = 1 then 
return (Fo) 

else 
Bounded M-H coupler(2M) 

2.5. Cyclic couplers 

Many MCMC algorithms update components of a state vector sequentially. For example, if 
the state Xt is a vector (Xtl, ..., Xtp), the cyclic Gibbs sampler updates Xti conditional on 
the current values of the other components. 

It is possible to construct componentwise couplers, using the algorithms of the previous 
sections (or others) as building blocks. In general, to reduce Bt to a finite list will require that 
all p component couplers achieve finite candidate lists in sequence, and the overall list may 
comprise all combinations of values from the p lists. However, there are many special cases 
which may make coupling faster or more manageable. For example, if the update of component 
i depends only on the values of component j, then once component j has only a finite list of 
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possibilities component i will automatically inherit a list of the same or shorter length. Use is 
made of this in a two-component Gibbs sampler in the next section. 

3. Example: hierarchical Poisson/gamma model 

In this section we construct algorithms to sample exactly from the posterior distribution of 
the parameters in a model fit to a dataset on pump reliability. We take our description of 
the data from Reutter & Johnson (1995), and use their formulation of the model. The 
model and data were originally presented by Gelfand & Smith (1990). This dataset has also 
been analysed by others (Gaver & O'Muircheartaigh, 1987; Rosenthal, 1995), and M0ller 
(1997) has recently tackled it using another CFTP algorithm, one aimed at general auto- 
gamma models. 

The dataset records the counts s = (sl, ..., slo) of failures in ten pump systems at a nuclear 
power plant. The times of operation t = (tl, . . ., t1o) for each system are also known. The model 
is a hierarchical model taking advantage of conjugate priors. First, 

Sk Poisson(qktk) 

is assumed, where Ak is the failure rate for the kth pump. The prior densities for )k are 

A k - (a, P) 

where the shape parameter a = 1.802 was determined by a method of moments argument. 
The inverse scale /3 has the relatively diffuse prior 

A F 1(y, 6) 

where y = 0.01 and 6 = 1. The values for a, y and 6 are those used by Reutter & Johnson 

(1995). 
The full conditional distributions for this model are 

)k113, s '-F(a + Sk,: + tk) (6) 

and 

PIA, s F ry +l0a,b+ EA k) (7) 

where A = (Al, ..., Alo) 

3.1. Bounds on gamma densities 

The full conditional distributions in this model are gamma distributions with known shape 
and unknown inverse scale parameters. In this section we derive lower bound functions 
r(y) for families of distributions of this type. 

Let X F F(a, b) and supppose a is fixed, and b E [bo, b1 ]. Then the density for X is 

f(x; a, b) = xa- l baexp (-xb)/F(a) 

and we have the uniform lower bound 

r(x) = xa- lba exp (-xb I)/F(a) 
(8) 

6 f(x; a, b) 

Since r(x) is a rescaled F(a, bi) density, we see that p = I r(x) dx = (bolbl)a. 
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We may choose to use the unnormalized algorithm rather than the normalized one. For that 
we could use r(x) and the upper bound 

ht(x) = xa- b exp (-xbo)/F(a) 

f f(x; a, b) 

giving pt [f r(x) dx]/[f ht(x) dx] = (bo/bl)2a, but it is better to do away with the normal- 
izing constants and bound the kemels [F(a)/ba]f(x; a, b) = Xa- exp (-xb): 

r* (x) = xa-l exp (-xb I) (9) 

x xa-I exp (-xb) 

h *(x) 

=xa-I exp (-xbo) (I10) 

With this choice p* = [f r*(x) dx]/[f h*(x) dx] = (bo/bl)a as in the normalized case. 

3.2. Application to the pump data 

There are 11 unknown parameters in the pump data model, but a two component Gibbs 
sampler may be used to sample them: /3 is chosen conditional on i, and then A is chosen 
conditional on P3. As described in section 2.5, the coupling algorithms of this paper may be 
applied to one or both parameters in this situation. 

For the pump model, an immediate problem arises. Because /3 may be arbitrarily large, we 
cannot find a lower bound for the Ak densities, and because E Ak may be arbitrarily large, we 
cannot find a lower bound for the /3 density. This problem is common to many models where the 
parameter space is unbounded, and a simple solution is to make a small modification to the prior 
distribution to introduce a bound on the parameters. 

For example, we may change our prior by imposing the restriction E Ak < L. If L is chosen 
so large that the prior and posterior probabilities of exceeding it are very small in the original 
formulation of the model, then this will be a negligible change. The effect of it on the full 
conditionals will be to place the same restriction on the distribution of Al.S, s, but it will make 
no change to the PIA, s conditional. 

In this modified model, the range of update kemels for /3 will then be gamma distributions 
with shape y + lOa and inverse scale in the range [6, 6 + L], and we can find a uniform lower 
bound r(x) as described above with p = [6/(6 + L)]?Y+la. Unfortunately, this p is too small to 
be useful. A 10,000 step run of the Gibbs sampler gave E A)k values up to 13.6, so we would 
want L to be much higher to avoid changing the model significantly. But even at 
L = 20, p 10-24, and we would need on average about 1024 steps in our simulation to achieve 
coupling. 

We could also investigate modifications to the prior where /3 is bounded, but these tend to be 
even worse, since the lower bound on the product of the )k densities has p equal to the product 
of the p values for the bounds on each component. 

The solution to this problem is to use the partitioned algorithms as described in sections 2.2 
and 2.3. If we partition the space of (3, A) values into regions according to the value of E A)k, 

then we can put separate lower bounds on each cell of the partition. Specifically, set 
0 L Lo< < ... <Lm = L and use partition cells Aj = {(/3, )A)jLji < k E Lk >L, 
i = 1, ... I m. 
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As shown at the end of section 2.3, the unnormalized algorithm will have the smallest number 
of update candidates if we minimize S = /Ipi. Here 

S = [(6 + Li)/(6 + LiI)](Y+lOa). 

A straightforward calculation shows that this is minimized when m is the integer part of 
(y + lOa) ln [(6 + L)/6] or the next greater integer. The ratios (6 + Li)/(6 + Li-,) are all equal 
to [(6 + L)/6]llm. For large L, the ratios tend to exp [1/(y + 10a)] - 1.057 and pi -+ 1/e. In 
the simulations described below, we used the limiting value for the ratio rather than the slightly 
better value that depends on L; this gives S I e(y + 1Oa) ln [(6 + L)/6], so even very large 
values of L are quite feasible. In the multigamma simulation below we used L = 106, giving 
m = 249 and S 1 677. 

We are now in a position to describe sampling using the partitioned multigamma coupler for 
/3 as a component of a cyclic Gibbs coupler. We partition X on the value of E A k as described 
above. Within partition cell Ai we have the lower bound (8) with bo = Li-, = 
6 exp [(i - 1)/(y + lOa)] and b, = Li and we may draw R7-1(U(2)) by drawing /B from 
F(y + lOa, Li). The drawing of QT1(U(72)II, A) is implemented using a rejection sampler with 
the full conditional (7) as the proposal distribution. 

Implementation of the partitioned rejection coupler could use the same partition, bounds (9) 
and (10) within cell Ai, and draws from h*(.)/vi as above. However, in the numerical 
simulations we took advantage of some special structure of this model as described in the next 
section. 

3.3. Removing the restriction 

To this point, the methods of construction of the exact sampling algorithms have followed 
an approach that could be expected to apply to a wide variety of models. In this section 
we make use of the special form of the present model to improve the partitioned rejection 
coupler and remove the restriction E A k < L. 

Because the update distribution (7) depends on the previous state only through the scale of 
the distribution, when we reuse the same random seed Ut to update each separate cell, we can 
arrange that the pattem of ,ij values (where i denotes the cell and j denotes the draw number, as 
in the second algorithm of section 2.3) and their associated A values are identical in each cell 
except for scale changes. We can use this to extend our finite partition to an infinite partition 
covering the whole range of possible E Ak values as follows. 

We first note that as Li increases, the sampled values /ij will decrease to a limit of 0. 
Furthermore, smaller Pij values will lead to larger simulated A k values. To avoid confusion we 
will write these as Ak,ij to emphasize the connection to P/j. 

Thus if we know the values of /llj, then we can place an upper bound on the values of Ak,ij 
that holds for all i: it is simply )k, lj(tk + Plj)/ tk. This allows us to conclude that 

S)k,Jj 5 I)k,lj(tk +l3Ij)/tk 
k k 

uniformly over all i. The result is that we do not need a fixed bound L on the sum; each 
iteration will produce a separate random bound which we can use to the same purpose. 

To incorporate this into our partitioned rejection coupler we proceed as follows. Insert these 
new steps before the first loop, just after t + -M: 
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j O- 
repeat 

draw plj from F(y + lOa, LI) 
draw Vlj from U(O, 1) 
if Vlj < r%8j3)/h%8j3) then 

J1 '- I 
exit 

for j= 1, ..., Ji, k= 1, ... 10 
draw Ak, 1j from F(a + Sk, Plj + tk) 

L +- maxj ZkAk,lj(tk + 1llj)/tk 
m <- int (y + lOa) In [(6 + L)/6] 
t+- t+ 1 

A similar adjustment can also be made to the partitioned multigamma coupler. 
This adjustment is very reminiscent of Propp & Wilson's (1996) monotonicity property with 

states ordered by the value of E Ak, though as far as we know only the simple multigamma 
coupler of subsection 2.1 may be made monotone with respect to this ordering. (Cai (1997) 
showed that the independence coupler is always monotone with respect to a different ordering.) 
M0ller (1997) used the same technique in a large class of exponential family models, and 
Kendall (1998) used similar ideas in simulating point processes. 

3.4. The Metropolis-Hastings coupler for the pump data 

In this section we return to more generally applicable methods and describe the construc- 
tion of couplers based on independence samplers of the full posterior distribution k7r(j3, A) 
(where k is a constant of integration). We have 

log7r(,8, A)-=(10a + y - 1) log,B- ,8 + J{(Sk + a - 1) logAk - 6 + tk)Akl} (I 1) 
k 

Our first thought was to use a multivariate normal (MVN) proposal distribution. By 
matching moments to the results of a run of the Gelfand & Smith (1990) Gibbs sampler 
for the model, we were able to develop an independence sampler with a better than 60% 
acceptance rate. However, we could not use this in the Metropolis-Hastings coupler. The 
tails of the MVN distribution are much lighter than the tails of the posterior (11), so the 
ratio 7r(j3, A)/q(, A) is unbounded. 

Instead, we chose to use a gamma proposal for 13, and used the exact conditional distributions 
(6) for A. Specifically, we used 1 F(c, d) giving 

log qq3 ,) = (lOa + y - c)log, B-(6- d)/3 -c log d + logF(c) 

-{(Sk + a) log (tk + ?)-log F(a + Sk)} (12) 
k 

It can be seen that (12) will be bounded provided that the following inequalities both hold: 

c lOa + y (13) 

d '6 (14) 

and a numerical search may be used to find the bound. We chose values of c and d such 
that the mean of the distribution of 13 matched the sample mean of our Gibbs simulation, 
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and the variance was as close as possible to the sample variance, subject to the restrictions 
above. 

As described below, this is an extraordinarily good rejection sampler; nevertheless, for the 
purposes of illustration, we sought to improve on it by partitioning the sample space. Of the two 
restrictions above, only (14) affected the choice of proposal distribution, and it had a substantial 
effect, reducing d from the moment-matching estimate of 4.8 to 1, so that the proposal 
distribution had 4.8 times larger variance than the target distribution. Examination of (12) shows 
that if /3 is bounded above, (14) becomes unnecessary, so we partitioned the sample space 
according to whether or not /3 > /3* for various values of /3*. When /,- I -,< f* we used a gamma 
proposal subject only to (13), and otherwise used the same proposal as for the independence 
sampler. 

3.5. Numerical examples 

Figures 3 and 4 show the results of a single run of each of the partitioned multigamma 
and partitioned rejection coupling algorithms. The partitioned rejection coupler made use of 
the modification described in subsection 3.3. In each case, the random number seeds were 
started at the same values at each time step. 

The multigamma coupler (Fig. 3) had coalescence events at times t = -14, -12, 
-1 1, -9, -8, -7, -2, and -1. Four of these are clearly visible, as they triggered the change of 
B, to a finite set. Paths ending at the same value at time t = 0 are shown in the same texture. For 
example, it can be seen that the M = 8 paths, which first appear at t = -7, end at just two 
different values at t = 0, while the M = 16 runs all terminate at the same value. 

The rejection coupler (Fig. 4) required running from t = -8 in order that all states would 
coalesce; also shown in the figure are the paths from the other attempted starting positions. (The 
paths are not shown during the single step of the first stage.) 

LO 

LO 

co 

0 p 

-14 -12 -10 -8 -6 -4 -2 0 

Fig. 3. A single run of the multigamma coupler on the pump dataset. Different line textures correspond to 
different values for the path at time 0. 
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LO 

0 

CZ 
ai) 

LO 

-6 -4 -2 0 

Fig. 4. A single run of the rejection coupler on the pump dataset. Different line textures correspond to 
different values for the path at time 0. 

We ran the Metropolis-Hastings samplers for 10,000 steps to determine their acceptance 
rates. The Metropolis-Hastings independence sampler had an acceptance rate of approximately 
52%, and paths coalesced on approximately 43% of the steps. Using a two-cell Metropolis- 
Hastings sampler allowed a marked improvement in the Metropolis-Hastings sampler: for 
example, with ,3* = 4, its acceptance rate rose to 97%. However, it did not result in a better 
coupler than the one based on the independence sampler, because values of fi greater than 4 
coupled only about 6% of the time. 

Overall, these couplers ran very quickly. To measure the running times, we performed 1000 
independent runs of each coupler. The total time taken for all runs of all four couplers was about 
8 minutes on a 120 MHz Pentium PC. We compared the separate algorithms by counting the 
calls to the basic uniform random number generator; this provides a machine independent 
measure, and a rough measure of the relative machine dependent times. The Metropolis- 
Hastings independence coupler (i.e. the rejection sampler) was by far the simplest and fastest, 
requiring an average of 82 calls to the basic uniform random number generator for each vector 
generated from 7r(j3, A). (Each generated gamma variate required several calls.) The two-cell 
Metropolis-Hastings, rejection and multigamma couplers required on average 3800, 31,000, 
and 63,000 calls respectively. These numbers could be reduced; our implementation reset the 
random number generator seed and made repeat calls rather than storing and re-using the 
random numbers themselves. However, the pump model is a particularly tractable and rapidly 
mixing example of MCMC, and we would not expect such fast execution times in most 
applications. 

4. Conclusions 

Propp & Wilson's (1996) CFTP algorithm is an exciting development, and we expect it to 
make a large impact on the way MCMC simulations are carried out. It allows the "bum- 
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in" stage of a simulation to be done exactly, and repeated application of the algorithm can 
be used to generate i.i.d. samples from the target distribution. 

Of course, CFTP is not yet a panacea. We have attempted here to extend the idea to various 
samplers for continuous state spaces, with a view particularly towards the needs of parametric 
Bayesian inference. Compared to a straightforward application of Gibbs sampling or a 
Metropolis-Hastings method, there is an overhead cost: modest in terms of programming and 
running time, but sometimes quite considerable in terms of the cumbersome algebraic 
manipulations that are needed by our implementations. 

There is a great deal of flexibility in specifying a CFTP algorithm. Even with Foss & 
Tweedie's (1998) limitations on the usable Markov chains, there may be uncountably many with 
stationary distribution 7r(.), and for each chain uncountably many update functions 0(., -) which 
satisfy the conditions of Propp & Wilson's (1996) th. 3. The practical task is to find one which 
couples reasonably rapidly and for which the CFTP "bookkeeping" is feasible. 

Of the methods we introduce, the Metropolis-Hastings independence coupler had the best 
performance in our example, but it is equivalent to a well-known rejection sampler (Gilks, 
1996). Nevertheless, we do not believe that this phenomenon will be typical. We have used 
CFTP to develop several new exact samplers, but we have by no means exhausted the 
possibilities. Combinations of our couplers (e.g. a rejection coupler on the proposal distribution 
for a random walk Metropolis-Hastings coupler), applications of them in other contexts (e.g. 
Reutter & Johnson's (1995) couplers run from the past instead of the present, to give 
approximate samplers without stopping time biases), and other unrelated coupling algorithms 
all seem likely future developments, and we anticipate that future work will find further 
statistical application for CFTP. 
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