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1.1 Introduction

Statistical problems where ‘the number of things you don’t know is one of the
things you don’t know’ are ubiquitous in statistical modelling. They arise both
in traditional modelling situations such as variable selection in regression, and
in more novel methodologies such as object recognition, signal processing, and
Bayesian nonparametrics. All such ‘trans-dimensional’ problems can be formu-
lated generically, sometimes with a little ingenuity, as a matter of joint inference
about a model indicator k and a parameter vector θk, where the model indicator
determines the dimension nk of the parameter, but this dimension varies from
model to model.

Almost invariably in a frequentist setting, inference about these two kinds
of unknown is based on different logical principles, but, at least formally, the
Bayes paradigm offers the opportunity of a single logical framework – it is the
joint posterior π(k, θk|Y ) of model indicator and parameter given data Y that
is the basis for inference. Reversible jump Markov chain Monte Carlo (Green,
1995) is a method for computing this posterior distribution by simulation, or
more generally, for simulating from a Markov chain whose state is a vector
whose dimension is not fixed. It has many applications other than in Bayesian
statistics. Much of what follows will apply equally to them all; however, for
simplicity, we will use the Bayesian motivation and terminology throughout.

The joint inference problem can be set naturally in the form of a simple
Bayesian hierarchical model. We suppose that a prior p(k) is specified over
models k in a countable set K, and for each k we are given a prior distribution
p(θk|k), along with a likelihood L(Y |k, θk) for the data Y . For simplicity of
exposition, we suppose that p(θk|k) is a probability density, and that there are
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no other parameters, so that where there are parameters common to all models
these are subsumed into each θk ∈ Xk ⊂ Rnk . Additional parameters, perhaps
in additional layers of a hierarchy, are easily dealt with. Note that in this
chapter, all probability distributions are proper.

In some settings, p(k) and p(θk|k) are not separately available, even up to
multiplicative constants; this applies for example in many point process models.
However it will be clear that what follows requires specification only of the
product p(k, θk) = p(k)×p(θk|k) of these factors, up to a multiplicative constant.

In many models there are discrete unknowns as well as continuously dis-
tributed ones. Such unknowns, whether fixed or variable in number, cause no
additional difficulties; only discrete-state Markov chain notions are needed to
handle them, and formally speaking, the variable k can be augmented to include
these variables; such problems then fit into the above framework.

The joint posterior

π(k, θk|Y ) =
p(k, θk)L(Y |k, θk)

∑

k′∈K

∫

p(k′, θ′k′ )L(Y |k′, θ′k′)dθ′k′

can always be factorised as

π(k, θk|Y ) = π(k|Y )π(θk|k, Y )

that is as the product of posterior model probabilities and model-specific param-
eter posteriors. This identity is very often the basis for reporting the inference,
and in some of the methods mentioned below is also the basis for computation.

It is important to appreciate the generality of this basic formulation. In
particular, note that it embraces not only genuine model-choice situations, where
the variable k indexes the collection of discrete models under consideration,
but also settings where there is really a single model, but one with a variable-
dimension parameter, for example a functional representation such as a series
whose number of terms is not fixed. In the latter case, arising sometimes in
Bayesian nonparametrics, for example, k is unlikely to be of direct inferential
interest.

Some would argue that it is only responsible to adopt a Bayesian hierarchical
model of the kind introduced above when there is compatibility between models,
that is, when the parameter priors p(θk|k) are such that inference about quan-
tities that are meaningful in several models should be approximately invariant
to k. Such compatibility could in principle be exploited in the construction of
MCMC methods, although we are not aware of general methods for doing so.
However, it is philosophically tenable that no such compatibility is present, and
we shall not assume it.

In section 1.2, reversible jump MCMC is presented and discussed, and an
illustrative example is given in section 1.3, along with a brief look at past liter-
ature citing the method. Section 1.4 discusses some methodological extensions
aimed particularly at construction of efficient proposals. We then consider the
idea of a fully-automated reversible jump sampler in section 1.5. Finally in sec-
tion 1.6 we present some recent methodologies exploiting reversible jump and
briefly review other model-jumping approaches.
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This chapter is an update of Green (2003), omitting, in particular, coverage
of within-model sampling approaches to trans-dimensional sampling problems,
but including extra material on more recent developments, and on statistical
methodologies built on reversible jump and related across-model sampling meth-
ods; there are also changes in notation.

1.2 Metropolis–Hastings in a more general light

In the direct approach to computation of the joint posterior π(k, θk|Y ) via
MCMC we construct a single Markov chain simulation, with states of the form
(k, θk) = (k, θk,1, θk,2, . . . , θk,nk

); we might call this an across-model simulation.
The state space for such an across-model simulation is X =

⋃

k∈K({k} × Xk),
where for each k, Xk ⊂ Rnk . The point of defining X in this way is that even in
cases where the dimensions {nk} are all different, we often wish to have direct
inferential access to the ‘model indicator’ k; in cases where the {nk} are not all
different, this becomes essential. Mathematically, X is not a particularly awk-
ward object, and our construction involves no especially challenging novelties.
However, such a state space is at least a little non-standard!

Formally, our task is to construct a Markov chain on this general state space
with a specified limiting distribution. Reversible jump MCMC is one means of
achieving this goal, using the Metropolis–Hastings paradigm to build a suitable
reversible chain, as is usual in Bayesian MCMC for complex models.

We begin by presenting an introduction to reversible jump, considering how
transitions between different states in X might practically be achieved by a com-
puter program. We build first upon a fixed-dimensional case and then demon-
strate how this is immediately extended to the trans-dimensional case. The
aim of this perspective is to show that the generalisation of the Metropolis–
Hastings algorithm is straightforward and dispel the myth that reversible jump
is technically challenging.

There are approaches other than across-model simulation, notably based
solely on within-model simulation, but we do not address these in this chapter;
we refer the reader to Green (2003), section 4, for example.

1.2.1 A constructive representation in terms of random

numbers

Our aim is to construct a Markov chain on a general state space X with invariant
distribution π. (Note that neither X or π need refer to the Bayesian model-
choice problem formulated in the previous section). As usual in MCMC we will
consider only reversible chains, so that, put simply, we require the equilibrium
probability that the state of the chain is in a general set A and moves to a
general set B to be the same with A and B reversed. This is known as the
detailed balance condition.

Suppose initially that we have a simpler state space, X ⊂ Rn. As usual
with the Metropolis–Hastings algorithm, we can satisfy the detailed balance
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condition by applying a protocol that proposes a new state for the chain and
then accepts this proposed state with an appropriately derived probability. This
probability is obtained by considering a transition and its reverse simultaneously.
Let the density of the invariant distribution π also be denoted by π. At the
current state x, we generate, say, r random numbers u from a known joint
density g. The proposed new state of the chain x′ is then constructed by some
suitable deterministic function h such that (x′, u′) = h(x, u). Here, u′ are the
r-dimensional random numbers, generated from a known joint density g′ that
would be required for the reverse move from x′ to x, using the inverse function
h′ of h. If the move from x to x′ is accepted with probability α(x, x′) and
likewise, the reverse move is accepted with probability α(x′, x), the detailed
balance requirement can be written as

∫

(x,x′)∈A×B

π(x)g(u)α(x, x′)dxdu =

∫

(x,x′)∈A×B

π(x′)g′(u′)α(x′, x)dx′ du′.

(1.2.1)

If the transformation h from (x, u) to (x′, u′) and its inverse h′ are differen-
tiable, then we can apply the standard change-of-variable formula to the right
hand side of equation (1.2.1). We then see that the (n+ r)-dimensional integral
equality (1.2.1) holds if

π(x)g(u)α(x, x′) = π(x′)g′(u′)α(x′, x)

∣

∣

∣

∣

∂(x′, u′)

∂(x, u)

∣

∣

∣

∣

,

where the last factor is the Jacobian of the transformation from (x, u) to (x′, u′).
Thus, a valid choice for α is

α(x, x′) = min

{

1,
π(x′)g′(u′)

π(x)g(u)

∣

∣

∣

∣

∂(x′, u′)

∂(x, u)

∣

∣

∣

∣

}

, (1.2.2)

involving only ordinary joint densities.

While this formalism is perhaps a little indirect for the fixed-dimensional
case, it proves a flexible framework for constructing quite complex moves using
only elementary calculus. In particular, the possibility that r < n covers the
case, typical in practice, that given x ∈ X , only a lower-dimensional subset of
X is reachable in one step. (The Gibbs sampler is the best-known example of
this, since in that case only some of the components of the state vector are
changed at a time, although the formulation here is more general as it allows
the subset not to be parallel to the coordinate axes.) Separating the generation
of the random innovation u and the calculation of the proposal value through
the deterministic function h is deliberate; it allows the proposal distribution

q(x, B) =

∫

{u:h(x,u)∈B×Rr}

g(u)du

to be expressed in many different ways, for the convenience of the user.
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1.2.2 The trans-dimensional case

The main benefit of this formalism is that expression (1.2.2) applies, without
change, in a variable-dimension context. Consider now allowing X to be a
more complex space, such that x has different dimension in different parts of
X . (We use the same symbol π(x) for the target density whatever the dimen-
sion of x.) Provided that the transformation from (x, u) to (x′, u′) remains a
diffeomorphism, the individual dimensions of x and x′ can be different. The
dimension-jumping has become essentially ‘invisible’.

In this setting, suppose the dimensions of x, x′, u and u′ are n, n′, r and r′

respectively, then we have functions h : Rn ×Rr → Rn′ ×Rr′

and
h′ : Rn′ × Rr′ → Rn ×Rr , used respectively in (x′, u′) = h(x, u) and (x, u) =
h′(x′, u′). For the transformation from (x, u) to (x′, u′) to be a diffeomorphism
requires that n + r = n′ + r′, so-called ‘dimension-matching’; if this equality
failed, the mapping and its inverse could not both be differentiable. We note,
however, that one or both of r, r′ might be 0.

1.2.3 Multiple move types and the model-choice problem

Returning to our generic model-choice problem, we wish to use these reversible
jump moves to sample the space X =

⋃

k∈K({k}×Xk) with invariant distribution
π, which here is π(k, θk|Y ).

Just as in ordinary MCMC, although each move is a transition kernel re-
versible with respect to π, we typically need multiple types of moves to traverse
the whole space X . Again, as in ordinary MCMC, we can scan through the
available moves according to various deterministic or random schedules. Here
we consider the case of move types chosen independently for each sweep of
the MCMC run, and extend conventional Metropolis–Hastings by allowing the
probabilities of each move type to depend on the current state.

Indexing the move types by m in a countable set M, a particular move type
m consists of both the forwards move from x = (k, θk) to x′ = (k′, θ′k′) and
the reverse, taking x′ to x, for a specific pair (k, k′). For the forwards move,
rm random numbers u are generated from known joint distribution gm, and the
new state θ′k′ ∈ Rn

k′ is constructed as (θ′k′ , u′) = hm(θk, u). Here u′ are the
r′m random numbers from joint distribution g′m needed for the reverse move, to
move from θ′k′ to θk, using the inverse function h′

m of hm.
Letting jm(x) denote the probability that move m is attempted at state x,

the move-type specific equivalent to equation (1.2.1) is

∫

(x,x′)∈A×B

π(x)jm(x)gm(u)αm(x, x′)dxdu

=

∫

(x,x′)∈A×B

π(x′)jm(x′)g′m(u′)αm(x′, x)dx′ du′. (1.2.3)

Since the complete transition kernel is obtained by summing over m ∈ M ,
ensuring that the detailed balance equation (1.2.3) holds for for each move type
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m is sufficient to ensure that the detailed balance condition holds. Thus, a
sufficient choice for the acceptance probability αm associated with move type
m is given by αm(x, x′) = min{1, Am(x, x′)} where

Am(x, x′) =
π(x′)

π(x)

jm(x′)

jm(x)

g′m(u′)

gm(u)

∣

∣

∣

∣

∂(θ′k′ , u′)

∂(θk, u)

∣

∣

∣

∣

. (1.2.4)

Here the Jacobian factor is from the transformation from (θk, u) to (θ′k′ , u′), and
is obviously dependent upon the move type m. In order for this transformation
to be a diffeomorphism we again require the dimension matching to hold, so
that nk + rm = nk′ + r′m.

Finally we note, when at x = (k, θk), only a limited number of moves m
will typically be available, namely those for which jm(x) > 0. With probability
1 −

∑

m∈M jm(x) no move is attempted.

1.2.4 Some remarks and ramifications

To summarise, ‘reversible jump’ MCMC is just Metropolis–Hastings, formu-
lated to allow for sampling from a distribution on a union of spaces of differing
dimension, and permitting state-dependent choice of move type. In understand-
ing the framework, it may be helpful to stress the key role played by the joint
state–proposal equilibrium distributions. In fact, detailed balance is explicitly
characterised as the invariance of these distributions to time-reversal. The fact
that the degrees of freedom in these joint distributions are unchanged when x
and x′ are interchanged allows the possibility of reversible jumps across dimen-
sions, and these distributions directly determine the move acceptance probabil-
ities. Contrary to some accounts that connect it with the jump in dimension,
the Jacobian comes into the acceptance probability simply through the fact that
the proposal destination x′ is specified indirectly through h(x, u).

Note that the framework gives insights into Metropolis–Hastings that apply
quite generally. State-dependent mixing over a family of transition kernels in
general infringes detailed balance, but is permissible if, as here, the move prob-
abilities jm(x) enter properly into the acceptance probability calculation. Note
also the contrast between this randomised proposal mechanism, and the related
idea of mixture proposals, where the acceptance probability does not depend
on the move actually chosen; see the discussion in Appendix 1 of Besag et al.
(1995).

To properly ascertain the theoretical validity of the general state space
Metropolis–Hastings algorithm, we require a measure-theoretic approach, defin-
ing dominating measures and Radon–Nikodym derivatives. In practice however,
as is demonstrated by the presentation above, the measure theory becomes es-
sentially invisible and can be safely ignored. To avoid getting distracted by de-
tails that are peripheral to this chapter, we exclude further discussion of these
aspects. For a detailed consideration, the interested reader is referred to the
original presentation in Green (1995) or the alternative, and we trust improved,
discussion in Green (2003).
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For most purposes, theoretical study of such Markov chains simply replicates
the corresponding study of ordinary Metropolis–Hastings. There are exceptions:
for example, verification of Harris recurrence for a chain seems to demand anal-
ysis of the structure of the space X and details of the transitions. See Roberts
and Rosenthal (2006).

Finally, note that in a large class of problems involving nested models, the
only dimension change necessary is the addition or deletion of a component
of the parameter vector (think of polynomial regression, or autoregression of
variable order). In such cases, omission of a component is often equivalent to
setting a parameter to zero. These problems can be handled in a seemingly more
elementary way, through allowing proposal distributions with an atom at zero:
the usual Metropolis–Hastings formula for the acceptance probability holds for
densities with respect to arbitrary dominating measures, so the reversible jump
formalism is not explicitly needed. Nevertheless, it leads to exactly the same
algorithm.

1.2.5 Alternative presentations and related methods

Reversible jump has been presented in several different ways by other authors.
Of note is the tutorial by Waagepetersen and Sorensen (2001) which follows the
lines of Green (1995) but in more detail and minimising the measure theoretic
notation.

Sisson (2005) provides an excellent review of trans-dimensional MCMC in
the decade since Green (1995), with good coverage of the literature. Emphasis
is placed on model choice applications, the efficient construction of samplers,
and convergence diagnostics, but the review also covers other relevant work.
Particularly helpful is the collation of freely available software for implementing
various reversible jump algorithms.

Related to reversible jump, several authors have introduced different per-
spectives on trans-dimensional sampling. Keith et al. (2004) have proposed a
novel broad framework for many samplers, including RJMCMC, in the guise
of their ‘generalised Markov sampler’. The idea is to augment the state space
X by a discrete set, whose role is to provide an index to the type of the next
transition, that is, to the move m in the language of section 1.2.3 above. This
formalism provides an alternative view of state-dependent mixing over moves
that the authors have found useful in applications, notably in phylogenetic in-
ference. In contrast, Besag (1997) and Besag (2000) give a novel formulation in
which variable-dimension notation is circumvented by embedding all θk within
one compound vector. We consider the related product-space formulations in
section 1.6, along with other approaches.

There are also a number of alternative sampling methods to reversible jump.
One example is presented by Petris and Tardella (2003), who propose a formal-
ism, directed primarily at situations where all models are nested within each
other but possibly capable of generalisation, in which the variable-dimension
character of a model choice problem is finessed. All models are embedded into
the largest subspace, and the probability atoms induced by smaller models are
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smeared out across a neighbourhood. The original models can be recovered by
transformation.

1.3 A simple example and existing literature

We highlight the ideas of section 1.2 with an illustrative example, chosen for its
simplicity, allowing us to avoid the complexities that exist in many problems.
However, we note that for such a simple example, the use of within-model
approaches (see Green, 2003) may be more appropriate than reversible jump
MCMC.

1.3.1 Poisson versus negative binomial

When modelling count data a question that is often of interest is whether the
data is over-dispersed relative to a Poisson distribution. In such cases, data may
be better modelled by a negative binomial distribution.

For data Y of length N , the likelihood under a Poisson model with parameter
λ > 0 is

L(Y |λ) =
N
∏

i=1

λYi

Yi!
exp(−λ),

whereas under a negative binomial model with parameters λ > 0 and κ > 0 it
is

L(Y |λ, κ) =
N
∏

i=1

λYi

Yi!

Γ(1/κ + Yi)

Γ(1/κ)(1/κ + λ)Yi

(1 + κλ)−1/κ.

For both distributions the mean is given by λ. For the negative binomial dis-
tribution the parameter κ characterises the over-dispersion relative to a Poisson
distribution, such that the variance is given by λ(1 + κλ).

Newton and Hastie (2006) consider a question along these lines in the context
of tumour counts in genetically-engineered mice. To avoid the complexities in-
trinsic in their problem, we consider an example applied to total goals data from
1, 040 English Premiership soccer matches for the seasons 2005/06 to 2007/08,
treated simplistically as if this was a simple random sample.

Adopting the framework above our problem is a very simple model choice
problem. When k = 1, we suppose Yi ∼ Poisson(λ), for i = 1, 2, . . . , N . Using
the notation introduced above, θ1 = λ. For k = 2, the data is allowed to follow a
negative binomial distribution so that Yi ∼ NegBin(λ, κ), meaning θ2 = (λ, κ).
Over-dispersion in model 2 may be indicative of other effects, such as team
effects, that are not captured by a global mean parameter λ.

For our Bayesian approach, our priors on each model are such that p(k =
1) = p(k = 2) = 0.5. For θ1 and θ2,1 (corresponding to λ in models 1 and 2 re-
spectively) we use a Gamma(αλ, βλ) prior. For θ2,2 we adopt a Gamma(ακ, βκ)
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prior. This results in a posterior distribution of

π(k, θk|Y ) ∝
{

1
2p(θ1|k = 1)L(Y |θ1) for k = 1
1
2p(θ2,1, θ2,2|k = 2)L(Y |θ2,1, θ2,2) for k = 2.

where

p(θ1|k = 1) = γ(θ1, αλ, βλ), p(θ2,1, θ2,2|k = 2) = γ(θ2,1, αλ, βλ)×γ(θ2,2, ακ, βκ).

and γ(·, α, β) is the density of the Gamma(α, β) distribution.
We choose αλ = 25 and βλ = 10, giving a mean value of 2.5, which is typical

for total goals in a football match. In addition, we choose ακ = 1 and βκ = 10.
These priors result in an average of around 25% extra variance for the negative
binomial distribution.

Despite being an integral part of our MCMC sampler, we do not illustrate
within-model moves as these are straightforward fixed-dimensional Metropolis–
Hastings moves. However, the sampler also needs to be able to jump between
models 1 and 2, and noting that these are of different dimensions, reversible
jump methodology must be applied.

Consider the move from model 1 to model 2. Let x = (1, θ) be the current
state of the chain. Since there is no equivalent to the parameter κ in model 1,
we proceed using an independence approach. Specifically, we generate u from a
N(0, σ) distribution, where σ is fixed, so that g is the density of this distribution.
We then set x′ = (2, θ′), where θ′ = (θ′1, θ

′
2) = h(θ, u) = (θ, µ exp(u)), for some

fixed µ. In words, the parameter λ is maintained between models, but the new
parameter κ is a log-normal random variable, multiplicatively centred around
µ.

It is trivial to calculate the Jacobian factor, giving

|J | =

∣

∣

∣

∣

∣

∣

∂θ′

1

∂θ1

∂θ′

1

∂u

∂θ′

2

∂θ1

∂θ′

2

∂u

∣

∣

∣

∣

∣

∣

= µ exp(u)

The reverse move, from model 2 to 1, requires no random variable u′ (i.e.
r′ = 0), instead just setting (θ, u) = h′(θ′) = (θ′1, log(θ′2/µ)). This means the
acceptance probability for the move from model 1 to 2 is min{1, A1,2}, where

A1,2 =
π(2, θ′|Y )

π(1, θ|Y )

{

1√
2πσ2

exp

[−u2

2σ2

]}−1

µ exp(u)

and from model 2 to 1 is min{1, A2,1}, where

A2,1 =
π(1, θ|Y )

π(2, θ′|Y )

1√
2πσ2

exp

[−(log(θ′2/µ))2

2σ2

]

1

θ′2
.

Note that, as must be the case, these are reciprocals after change of notation.
Importantly, our specification of g and h was not restricted; any choice

of g and h is valid, but different choices will lead to algorithms that perform
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differently. As an example, we might alternatively have chosen u ∼ Exp(β), for
some fixed β, and h(θ, u) = (θ, u).

For our proposal, the parameters µ and σ are crucial to the success of the
algorithm; poorly chosen values may lead to slow convergence and ultimately
even non-convergence during a run of the sampler. In this example, µ can
be chosen naturally: by considering Var(Y )/E(Y ) and approximating E(Y ) by
ȳ and Var(Y ) by the sample variance, we set µκ = 0.015. Note that for a
deliberately wrong choice of µ = 1.0, no trans-dimensional moves were accepted
in our runs, so that the sampler remained in the model it had been initialised
in. The choice of σ is less sensitive, although we discuss this a little further
below.

We ran our sampler for 50 000 sweeps, with an additional burn-in of 5 000
sweeps. At each sweep a trans-dimensional move was attempted, along with
within-model moves for each parameter. The posterior probability of the models
were π(k = 1|Y ) = 0.708 and π(k = 2|Y ) = 0.292. Figure 1.3.1 shows the trace
plot of the log posterior for the last 5 000 sweeps, along with density estimates
for θ1, θ2,1 and θ2,2 (solid lines).

Although there appears to be some support for model 2, the Poisson distribu-
tion of model 1 has higher posterior probability. Because the data exhibits only
slight over-dispersion relative to the Poisson distribution, our prior specification
for κ impacts on the posterior support for model 2.

We did not attempt to optimise the choice of σ but note that for this ex-
ample, setting σ = 1.5 gave an acceptance rate of 58%, compared to 8% when
σ = 0.05. This lower acceptance rate leads to higher autocorrelation in the k
chain, although both samplers converged within the burn-in period. For harder
problems, sub-optimal choice of proposal scaling parameter cause convergence
difficulties.

We return briefly to this example in section 1.5.1. We refer the reader to
Chapter 3 of Hastie (2005), and Newton and Hastie (2006) for a related more
complex example.

1.3.2 The literature on reversible jump

In order to get an idea of the relevance of reversible jump MCMC, we might
consider the citations of the original reversible jump paper in other publica-
tions. In fact, according to the ISI Web of Knowledge, at the time of writing,
there are over 1 100 citations, although many of these are simply mentions in
passing. Some of the non-trivial citations are in reviews or tutorials, or prove
mathematical properties, others propose alternative approaches. However, the
majority are implementations of reversible jump, typically presenting statistical
methodologies using the method, recipes of generic methodological significance,
or applications to specific analyses of data. Even a superficial review of this
work would take up far more space than is available here, but the reader is
urged to consult this literature, using search engines, etc., before starting on a
purportedly novel application.
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Figure 1.1: MCMC output for example problem: (a) Trace of log posterior for last
5 000 sweeps of sampler; (b) density estimate for θ1 when k = 1; (c) density estimate
for θ2,1 when k = 2; and (d) density estimate for θ2,2 when k = 2. Solid lines are
problem specific sampler of section 1.3.1, dashed lines are AutoMix sampler of section
1.5.
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Some idea of the balance between methodology and different broad appli-
cation domains can be obtained by noting that over 450 of the articles citing
Green (1995) are in statistics and probability, over 280 in biology, genetics and
medicine (Sisson, 2005, notes that “one in every five citations . . . can be broadly
classified as genetics-based research”), over 210 in computer science and engi-
neering, and over 150 in other disciplines ranging from archaeometry through
management science to water resources research.

Later sections in this chapter highlight some of the more important method-
ological extensions to reversible jump.

1.4 Challenges of implementation

Although applications of reversible jump have been diverse, much of the reported
work has been carried out by MCMC “experts”. With wider adoption, the
method might yield promising analysis of many more problems.

Part of the apparent reluctance to adopt reversible jump methods, is a belief
that such samplers are difficult to employ. This perception may in part be
fueled by the often complex and formal language used to present the method.
In truth, reversible jump at the practical level is quite simple and it is not
necessary to fully understand the underlying technicalities in order to apply the
method. Nonetheless, while the method itself may not be complicated, for many
applications the complexity of the space X may present challenging issues.

Specifically, the construction of across-model proposals between the state
spaces Xk may appear difficult, as natural ideas of proximity and neighbour-
hood that help guide the design of within-model proposals may no longer be
intuitive. Heikkinnen (2003) demonstrates that in some extreme instances, this
may lead to difficulty in designing valid proposals. More commonly, designing
valid proposals is not the challenge, but difficulty lies in ensuring that the chosen
proposals are efficient.

Inefficient proposal mechanisms result in Markov chains that are slow to
explore the state space, and hence demonstrate slow convergence to the station-
ary distribution π; this leads to the Markov chain having high autocorrelation,
which increases the asymptotic variance of Monte Carlo estimators.

In fixed-dimensional MCMC, proposed new states will be accepted with high
probability if they are very close to the current state. Inefficiency can be caused
by not proposing large moves away from the current state of the chain or by
proposing bolder moves that have associated acceptance probabilities that are
prohibitively small. For the random-walk Metropolis and Langevin algorithms
this comes down to a well studied question of optimal scaling of a proposal
variance parameter (Roberts et al., 1997; Roberts and Rosenthal, 1998).

For reversible jump, within-model proposals are no different to fixed-dimensional
MCMC so identical principles apply. For across-model proposals the lack of a
concept of closeness means that frequently it is the problem of low acceptance
probabilities that makes efficient proposals hard to design; it is usual for across-
model moves to display much lower acceptance probabilities than within-model
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moves.

Generally, the intuitive principle behind efficient across-model proposal de-
sign is to ensure that our proposed new state (k′, θ′k′) will have similar posterior
support to our existing state (k, θk). This ensures that the move and its re-
verse will both have a good chance of being accepted. While this may be easier
said than done, for common move types which appear in a number of applica-
tions, such as the split–merge move type introduced by Richardson and Green
(1997), general ideas such as moment matching can help achieve this aim. See
Richardson and Green (1997) and Green and Richardson (2001) for details.

In order to achieve an efficient reversible jump algorithm for a specific prob-
lem of interest, many aspects of the proposal mechanism need to be carefully
specified and then tuned using pilot runs. Examples for tuning include scaling,
blocking and re-parameterisation. This process is often arduous and has mo-
tivated researchers to concentrate efforts on providing more general techniques
for efficient proposal design, to help unlock the full potential of reversible jump
MCMC. We dedicate the remainder of this section to a review of a selection of
the advances that have been made in this area.

1.4.1 Efficient proposal choice for reversible jump MCMC

Perhaps the most substantial recent methodological contribution to the general
construction of proposal distributions is work by Brooks et al. (2003b). The au-
thors propose several new methods, falling into two main classes. Their methods
are implemented and compared on examples including choice of autoregressive
models, graphical gaussian models, and mixture models.

Order methods, which are the first class of methods, focus mainly on the
quantitative question of efficiently parameterising a proposal density (g(u) in
section 1.2.1), having already fixed the transformation ((θ′, u′) = h(θ, u)) into
the new space. This is achieved by imposing various constraints on the accep-
tance ratio (1.2.4), for jumps between the existing state θk in model k and an
appropriately chosen “centring point” ck,k′ (θk) in k′. The centring point is cho-
sen with the aim of being the equivalent state in model k′ of θk in model k (in
a sense defined within the paper).

The detail of the order methods is in the specific constraints that are used.
The constraint imposed by the zeroth-order method is that

A((k, θk), (k′, ck,k′ (θk))) = 1,

where A is the acceptance ratio for a particular move-type, as in equation (1.2.4).
By scaling the proposal so that the acceptance ratio is 1 for a jump to the cho-
sen centring point, frequent across-model moves are encouraged. The authors
present a simple motivating example, wherein the method results in transition
probabilities that are optimal (in a sense explained within the paper).

Constraints imposed for the first-order (and higher-order) methods set the
first (and higher) order derivatives of the acceptance ratio (with respect to the
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random numbers u) equal to 0, so for example,

∇A((k, θk), (k′, ck,k′ (θk))) = 0.

First- and higher-order methods are inspired by the Langevin algorithm
(Roberts and Rosenthal (1998)), with the attractive property that the accep-
tance probability remains high in a region around the centring point. The
number of order methods that can be used depends upon the number of param-
eters to be determined in the proposal distribution g, but numerical support
for first and higher order methods is strong, leading to significant performance
increases.

The second class of methods, named the saturated space approach work in a
product-space formulation somewhat like that in section 1.6.2.

Essentially, the idea is to augment the state space X with auxiliary variables,
to ensure that all models share the same dimension nmax as that of the “largest”
model. MCMC is then used to create a chain with stationary distribution equal
to an augmented target distribution, which combines the target distribution π
and the distributions of the auxiliary variables.

Inclusion of auxiliary variables aids across-model moves, essentially rendering
them fixed-dimensional. In the updating mechanism introduced by Brooks et al.
(2003b), conditional upon the selection of one of a finite number of transforms,
the proposal to a state in a different model is deterministic. Randomness is
achieved by within-model updates, applied to both model parameters and the
auxiliary variables, allowing temporal memory and possible dependency in the
auxiliary variables. In essence, this allows the chain to have some memory of
states visited in other models, resulting in more efficient proposals.

Ehlers and Brooks (2008) extend this work for time series models, looking
at more flexible reversible jump moves. Godsill (2003) suggests further develop-
ments, possibly using only a randomly selected subset of the auxiliary variables
when proposing the new state.

1.4.2 Adaptive MCMC

Another area of recent research offering efficiency gains is adaptive sampling.
The underlying idea is that under suitable conditions the proposal mechanisms
may be allowed to depend on past realisations of the chain, not just the cur-
rent state, without invalidating the ergodicity of the resulting process. In other
words, the resulting chain may still be used to make inference about the target
distribution. This observation means that questions such as optimal location
and scaling of proposals can be determined online during the run of the algo-
rithm, eliminating the need for tuning and pilot runs.

Research into adaptive sampling has taken two distinct directions known
as diminishing adaptation and adaptation through regeneration, which differ in
how the adaptation of proposal distributions occur.

Diminishing adaptation is the most popular of these and allows adaptation
to continue indefinitely, but at a rate that is decreasing as the chain progresses.
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Rosenthal, this volume, provides an introduction to this approach, including the
assumptions required for the validity of the approach. Comprehensive references
for further reading are also provided.

Erland (2003) provides a review of adaptation through regeneration, which
requires the existence of parts of the state space where the Markov chain regen-
erates (i.e. the sub-chains separated by visits to these regeneration areas are
independent of each other with some probability p). It is then valid to adapt
the proposal distribution upon visits to these regeneration states.

Little work has yet been done to extend adaptive MCMC to the more general
moves of reversible jump. For within-model moves, adaptive proposals could be
applied, however for across-model moves the situation is more difficult. Hastie
(2005) discusses adapting the probabilities jm(x), in the particular case where
the probabilities of proposing a jump from one model to another do not depend
on either k or θk. (Note that the new state θ′k′ in model k′ is still allowed
to depend on x = (k, θ)). Two methods are suggested for adaptation, the
most promising being a diminishing adaptation algorithm. Although not all of
assumptions that guarantee convergence are confirmed, numerical results are
encouraging and we hope that subsequent research will extend the methods to
more general across-model moves.

1.4.3 Other ways of improving proposals

An interesting modification to Metropolis–Hastings is the splitting rejection idea
of Tierney and Mira (1999), extended to the reversible jump setting by Green
and Mira (2001), who call it delayed rejection.

Using this algorithm, if a proposal to x′ is rejected (with the usual probability
1−α(x, x′)), instead of immediately taking the new state of the chain to be the
existing state x, a secondary proposal to x′′ is attempted. This is accepted with
a probability that takes into account the rejected first proposal, in a way that
the authors show maintains detailed balance for the compound transition.

Numerical results demonstrate efficiency improvements, but the benefits of
more accepted across-model moves needs to be weighed against the increased
computational cost of the two stage proposal. Combining a “bold” first proposal
with a conservative second proposal upon rejection, might lead to a sampler that
better explores the state space but the question of sensible proposal design for
general reversible jump problems remains difficult.

Other authors have also tried to adapt the reversible jump algorithm to im-
prove across-model acceptance rates. Al-Awadhi et al. (2004) propose across-
model moves that make clever use of an intermediate within-model chain, which
maintains detailed balance with respect to an alternative distribution π∗. By
making the π∗ a flatter version of π, the aim is to encourage moves in situations
where the conditional distributions π(θk|k) are multi-modal; such cases often
have near zero acceptance rates for across-model moves. While the algorithm
increases the rates, they remain small, at a non-negligible increase in compu-
tational cost. A similarly motivated idea by Tjelmeland and Hegstad (2001),
modifies the acceptance probability by considering pairs of proposal distribu-
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tions, each one optimised at each iteration to locally approximate a mode of the
posterior distribution. Again, acceptance rate gains are realised but the opti-
misation would be prohibitively expensive in many problems, especially those
with high dimensional spaces.

While the research above highlights the progress being made, important
questions such as the choice of g and h remain largely unaddressed. Further-
more, with the possible exception of adaptive MCMC, there remains the need
for tuning runs. In section 1.5 we present a sampler designed to address these
issues.

1.4.4 Diagnostics for reversible jump MCMC

Monitoring of MCMC convergence on the basis of empirical statistics of the
sample path is important, while not of course a substitute for a good theoretical
understanding of the chain. There has been some concern that across-model
chains are intrinsically more difficult to monitor, perhaps almost amounting to
this being a reason to avoid their use.

In truth, the degree of confidence that convergence has been achieved pro-
vided by ‘passing’ a diagnostic convergence test declines very rapidly as the
dimension of the state space increases. In more than, say, a dozen dimensions,
it is difficult to believe that a few, even well-chosen, scalar statistics give an ad-
equate picture of convergence of the multivariate distribution. It is high, rather
than variable, dimensions that are the problem.

In most trans-dimensional problems in Bayesian MCMC it is easy to find
scalar statistics that retain their definition and interpretation across models,
typically those based on fitted and predicted values of observations, and these
are natural candidates for diagnostics, requiring no special attention to the
variable dimension.

However, recognising that there is often empirical evidence that a trans-
dimensional simulation stabilises more quickly within models that it does across
models, there has been recent work on diagnostic methods that address the
trans-dimensional problem more specifically. The promising approach by Brooks
and Giudici (2000), following Brooks and Roberts (1998), is based on analysis
of sums of squared variation in sample paths from multiple runs of a sampler.
This is decomposed into terms attributable to between- and within-run, and
between- and within-model variation.

More recently, Sisson and Fan (2007) have extended this idea to propose a
specific distance-based diagnostic for trans-dimensional chains, applicable when-
ever the unknown x can be given a point process interpretation, essentially, that
is, whenever the variable-dimension aspect of the parameter vector consists of
exchangeable sub-vectors. Examples include change-point problems and mix-
ture models.
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1.5 Automatic RJMCMC

One idea aimed at eliminating the intricacies of sampler design is that of an
automatic reversible jump MCMC sampler that can be applied to any given
target distribution. The first steps in this direction were taken by Green (2003),
motivated by the fixed-dimensional random-walk Metropolis sampler.

The assumption is made that an across-model move from model k to model
k′ is proposed with some probability q(k, k′) that does not depend on θk. Un-
der this set up, the central idea is that in order to maximise the acceptance
probability for the move, θ′k′ would ideally be sampled from the conditional dis-
tribution π(θ′k′ |k′). Although typically these conditional distributions are not
known, Green (2003) suggests using Normal distributions that crudely approxi-
mate these conditionals as proposal distributions. Hastie (2005) introduces the
AutoMix sampler, extending this approach by exploring the possibility that for
each k, a mixture approximation to π(θk|k) could be used instead.

Hastie (2005) supposes that for model k there are Lk components in the
mixture, indexed by l, each with weight λl

k, fixed nk-dimensional mean-vector
µl

k, and fixed nk×nk-matrix Bl
k such that Bl

k[Bl
k]T is the covariance matrix. By

allocating the existing state θk to a component lk in model k with probability

pk,θk
(lk), and choosing a component l′k′ in model k′ with probability λ

l′
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Here, [·]m1 denotes the first m elements of a vector and u is an (nk′ −nk)-vector
of random numbers drawn from density g′, which are taken to be that of inde-
pendent standard Normal distributions or independent Student t distributions.

Following simple arguments, Hastie (2005) shows that detailed balance is
preserved if the move is accepted with probability α(x, x′) = min{1, A(x, x′)}
where

A(x, x′) =
π(k′, θ′k′)
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Gk,k′ (u) =
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[g′(u)]
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.

Having allocated a state to a component lk in the existing model, the state
is standardised by using µlk

k and Blk
k . If the proposal is to a model with a higher

dimension, new standard random variables are appended to this standardised
vector; if a model with a lower dimension is proposed, the appropriate number of
elements are discarded. The new standardised vector is then transformed to θ′k′
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using the mean, µ
l′
k′

k′ , and (matrix square root of the) covariance matrix, B
l′
k′

k′ ,
corresponding to a randomly selected mixture component l′k′ . Notice also that
if q(k, k) > 0, then the above mechanism might also be used for within-model
moves, potentially allowing moves to states well separated from the current
state, by jumping between different components of the mixture.

Central to the AutoMix sampler is the specification of the mixture distribu-
tions for each model. Hastie (2005) suggests looping over the models, perform-
ing preliminary adaptive random-walk Metropolis (RWM) pilot runs to obtain
a sample from each posterior conditional and then fitting the mixtures using
the EM-like algorithm of Figueiredo and Jain (2002). The increased cost of
fitting mixtures compared to computing a mean vector and covariance matrix
(as required by the automatic sampler introduced by Green, 2003) should not
be overlooked; if the conditional posteriors appear to be largely unimodal then
the more simple sampler may be preferable, although adaptive sampling at the
initial RWM stage appears prudent.

As Hastie (2005) observes, the inclusion of within-model pilot runs and mix-
ture fitting increases run-time considerably when compared to a reversible jump
sampler designed for a particular problem. However, one should not discount
the fact that an automatic sampler may be implemented with minimal user
input, saving on the sampler design time. In addition, computational savings
could in theory be made by replacing within-model pilot-runs with adaptive
fitting of mixtures throughout the reversible jump stage.

1.5.1 A simple example revisited

Primarily automatic samplers are designed to be easy to apply and relatively
broad in their applicability. As such, it is easy to apply such an approach to the
problem we considered in section 1.3.1. By downloading the C program that
implements the AutoMix software1, we need only to specify a function which
computes log π(k, θk|y), along with simple other functions setting the maximum
number of models, the dimension of each model and initial values for the chain.

Applying the AutoMix sampler for 50 000 reversible jump sweeps gives pos-
terior model probabilities of 0.707 for model 1 and 0.293 for model 2. Density
estimates for θ1, θ2,1 and θ2,2 are included (dashed lines) in figure 1.3.1, demon-
strating good agreement with the problem specific sampler.

Hastie (2005) applies the sampler to a number of non-trivial problems in-
cluding the tumour count problem studied by Newton and Hastie (2006), and
change-point processes applied to coal-mining disaster data as studied by Green
(1995). Following a similar approach, Spirling (2007) uses the sampler to con-
sider civilian casualty rates in the Iraq conflict. Furthermore, using the sampler
for a model choice problem for 2 mixed effects model, applied to data from
an AIDS clinical trial, Hastie (2005) avoids issues of implementation, tuning
and marginalisation as encountered by Han and Carlin (2001) who studied the

1Package including code, instructions and example files are freely available from
http://www.davidhastie.me.uk/AutoMix
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problem in a comparison of reversible jump with other trans-dimensional ap-
proaches.

1.6 Subsequent and alternative methodologies

In section 1.3 we cited a handful of applications that have benefited from re-
versible jump. We have no doubt that the future will provide many other in-
teresting problems for which reversible jump may yield important conclusions.
Furthermore, we anticipate that future methodologies may be built using re-
versible jump methods as foundations. In the following sub-section we briefly
note a selection of methods that fall into this category.

1.6.1 Methodologies exploiting RJMCMC

Based on sequential Monte Carlo (SMC) (see Doucet et al. (2001) for a review),
Jasra et al. (2008) introduce a method they call Interacting sequential Monte

Carlo samplers (ISMC). The key to ISMC is that several SMC samplers are run
in parallel, initially on separate subspaces. For each sampler, at time t < T ,
particles are updated using MCMC moves (including reversible jump moves for
trans-dimensional problems) so that they are samples from πt, which is typically
a version of π that facilitates mixing, for example by tempering. Importantly,
πT = π. When some predetermined time t∗ < T is reached, the separate
samplers are combined and a single sampler is implemented, moving across all
models. Jasra et al. (2008) take advantage of this formulation by using the
separate samplers to provide samples for each model k, which are then used
to fit a mixture distribution to approximate π(θk|k). The single SMC sampler
then uses reversible jump moves very similar to those in the AutoMix sampler
(see equation (1.5.1)), extended to include an identifiability constraint that is
necessary for their application.

The authors present their work for an example in population genetics, demon-
strating a marked improvement of between-model mixing over regular SMC
methods, albeit at a cost of increased computational time.

We note the similarities between the ISMC method and the population re-
versible jump MCMC method introduced by Jasra et al. (2007). Extending pop-
ulation MCMC (Cappé et al., 2004) to the trans-dimensional case, and drawing
on the ideas of evolutionary Monte Carlo (see Liang and Wong, 2000), this algo-
rithm also employs tempered distributions (again to encourage mixing) but this
time in parallel. Markov chains are constructed using reversible jump methods
to sample from each distribution, but the parallel chains also interact by includ-
ing moves that allow the states to be swapped or combined. The authors prove
the ergodicity of the resulting algorithm, and show for a particular hard genetic
example, mixing between models is improved.

Tempering based ideas have also been used by other authors. Gramacy
et al. (2008) detail a further related method which combines simulated temper-
ing using RJMCMC and importance sampling, allowing samples from π to be
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recovered from when using the tempered distributions. Simulated tempering
and reversible jump are also combined by Brooks et al. (2006), who use the
ideas to create a perfect simulation algorithm to provide exact samples from
the target distribution π.

A common use for reversible jump is to process the output from the chain to
assess support for the various models by calculating the Bayes factor, Bk,k′ =
pk(Y )/pk′(Y ), where pk(Y ) =

∫

L(Y |θk, k)p(θk|k)dθk is the marginal likelihood
of model k. Alternatively this can be written as the ratio of posterior and prior
odds of models k and k′. Assuming equal prior probabilities on models k and k′,
this motivates the simple estimate of Bk,k′ as Jk/Jk′ , where Jk is the number
of visits (out of a chain of length J) to model k.

Applying the concept of Rao–Blackwellisation, Bartolucci et al. (2006) pro-
pose an improved estimate (in terms of reduced variance) by using the bridge
sampling identity (Meng and Wong, 1996), given by

Bk,k′ =
Ek′ [φ(θk)L(Y |θk, k)p(θk|k)]

Ek[φ(θ′k′ )L(Y |θ′k′ , k′)p(θ′k′ |k′)]
(1.6.1)

for a general function φ, where Ek is the expectation with respect to π(θk|Y ) ∝
L(Y |θk, k)p(θk|k).

Bartolucci et al. (2006) extend equation (1.6.1) to the trans-dimensional case
and suggest a choice of the function φ that requires no extra computational cost.
For models k, k′, where a jump is proposed between these models at each sweep,
the resulting estimate is:

Bk,k′ =

∑J
k′

i=1 αk′,k((θ′k′ )i, θi
k)/Jk′

∑Jk

i=1 αk,k′ (θi
k, (θ′k′ )i)/Jk

,

where θi
k is the value of θk at the ith visit to model k and αk,k′(θk, θ′k′ ) is the

reversible jump acceptance probability of moving from (k, θk) to (k′, θ′k′ ). For
the examples considered, the improvements are marked.

Probabilistic inference is not the only use of MCMC methodology. A specific
example, is the simulated annealing (Geman and Geman, 1984) algorithm for
function optimisation, recently extended for trans-dimensional problems where
an optimal model may need to be determined, see Brooks et al. (2003a) and
Andrieu et al. (2000). For a particular function f(k, θk), then it is possi-
ble to construct the Boltzmann distribution with parameter T , with density
bT (k, θk) ∝ exp(−f(k, θk)/T ). The function f is the quantity that we wish to
minimise, perhaps with some penalisation term, for example to mimic the AIC
or BIC (Andrieu et al. (2000)). Trans-dimensional simulated annealing pro-
ceeds by using reversible jump moves, to construct a Markov chain where the
invariant distribution for phase i is the Boltzmann distribution with parameter
Ti. Once equilibrium has been reached, the temperature Ti is decreased, and a
new phase is started from the state the chain ended in. By decreasing Ti in this
manner, we are left with a distribution with all its weight in the global minima,
resulting in an effective optimisation algorithm.
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1.6.2 Alternatives to reversible jump MCMC

It is important to observe that there are several alternative formalisms for across-
model simulations. While full coverage of these methods falls outside the scope
of this chapter, considering reversible jump as one of a wider class of methods
can be instructive for developing a better understanding and guiding future
research into RJMCMC methods. We now reference a few of the most relevant
alternatives.

Predating reversible jump, Grenander and Miller (1994) proposed a sampling
method they termed jump diffusion, involving between-model jumps and within-
model diffusion according to a Langevin stochastic differential equation. Had the
sampler been corrected for time discretisation by using a Metropolis–Hastings
accept/reject decision, this would have been an example of reversible jump.

Various trans-dimensional statistical models can be viewed as abstract marked

point processes (Stephens, 2000). In these problems, the items of which there are
a variable number are regarded as marked points. For example in a normal mix-
ture model the points represent the (mean, variance) pairs of the components,
marked with the component weights. Stephens borrows the birth-and-death
simulation idea of Preston (1977) and Ripley (1977) to develop a methodology
for finite mixture analysis. The key feature that allows the approach to work for
a particular application is the practicability of integrating out latent variables
so that the likelihood is fully available.

Extending the point process idea, Cappé et al. (2003) have recently given a
rather complete analysis of the relationship between reversible jump and con-
tinuous time birth-and-death samplers. Unlike reversible jump, the birth-death
process accepts all across-model moves, but maintains detailed balance through
the length of time spent in each model. The authors conclude that little benefit
is gained from formulating a problem one way or another, as low acceptance
rates in reversible jump are just replaced by significant phases where the point
process approach does not move between models. Nonetheless, as mentioned in
section 1.4, this alternative formulation can be useful in other respects, such as
the convergence diagnostic proposed by Sisson and Fan (2007).

Another class of alternative methods is termed the product space approach
and was first used to consider trans-dimensional problems by Carlin and Chib
(1995). Since then, work has been done to extend the method (Dellaportas
et al., 2002; Green and O’Hagan, 1998), leading to the more general composite

model space framework of Godsill (2001). Sisson (2005) provides a review.
As in the saturated state space of Brooks et al. (2003b) (see section 1.4),

the idea is to work on a more general state space, where the simulation keeps
track of all θk rather than only the current one. Thus the state vector is of fixed
dimension, circumventing the trans-dimensional nature of the problem.

Letting θ−k denote the composite vector consisting of all θl, l 6= k concate-
nated together, the joint distribution of (k, (θl : l ∈ K), Y ) can be expressed
as

p(k)p(θk|k)p(θ−k|k, θk)p(Y |k, θk). (1.6.2)

The third factor p(θ−k|k, θk) has no effect on the joint posterior p(k, θk|Y );
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the choice of these conditional distributions, which Carlin and Chib (1995) call
‘pseudo-priors’, is entirely a matter of convenience. However, the efficiency of
the resulting sampler depends entirely on these quantities, effective meaning
that the choice of efficient proposal distribution for reversible jump is replaced
by the specification of appropriate pseudo-priors.

Godsill’s formulation extends equation (1.6.2) to allow the parameter vectors
θk to overlap arbitrarily, and embraces both product space and reversible jump
methods, facilitating comparisons between them. The framework also provides
useful insight into some of the important factors governing the performance of
reversible jump. Godsill (2003) discusses these issues in some detail, including
using retained information from past visits to other models, to help design
effective across-model moves.

Whether or not jumping between parameter subspaces benefits sampler per-
formance has been a question of some debate. Han and Carlin (2001) suggest
that MCMC samplers that avoid a model space search may result in estimates
with improved precision whereas Richardson and Green (1997) present an ex-
ample that suggests the contrary. In fact, there is no one answer, and in some
instances trans-dimensional moves will help samplers, whereas in others they
will be unnecessary. Green (2003) considers this question in more detail, using
a simple example to provide insight.

Little research has comprehensively compared the performance of reversible
jump and product space methods. Dellaportas et al. (2002) study the methods
in the context of model choice, along with some less generally applicable ap-
proaches. There is little to differentiate the results from alternative approaches,
and both approaches perform adequately. However, neither reversible jump
proposal design or product space pseudo-prior specification appear particularly
hard for the examples they consider. More research would be welcome in this
area, but we believe that for difficult problems, implementation of both ap-
proaches will involve complex practical issues; which method yields the better
results may come down to which method the researcher has most experience
with.

1.6.3 Final thoughts

Despite more than a decade having passed since the introduction of reversible
jump MCMC, there are still many directions in which future research might
be directed. Amongst these, the guidance for efficient proposal design and the
search for generic samplers remain elusive and challenging questions. Equally
crucial is the area of reversible jump diagnostics: if we wish to encourage the
wider adoption of the technique, then it is vital that we equip the user with
tools for ascertaining that the conclusions that they reach are valid.

In many ways, the broad applicability of reversible jump, clearly a strength
of the method, is also an obstacle. A panacea for the above questions is unlikely
to be found, as no one method will be suitable for all problems. Rather, it is
probable that RJMCMC will continue to evolve slowly, with researchers adding
to the collection of existing methods and extensions, building upon contributions
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from many different perspectives.
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