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SUMMARY 
New methodology for fully Bayesian mixture analysis is developed, making use of 
reversible jump Markov chain Monte Carlo methods that are capable of jumping between 
the parameter subspaces corresponding to different numbers of components in the mixture. 
A sample from the full joint distribution of all unknown variables is thereby generated, and 
this can be used as a basis for a thorough presentation of many aspects of the posterior 
distribution. The methodology is applied here to the analysis of univariate normal 
mixtures, using a hierarchical prior model that offers an approach to dealing with weak 
prior information while avoiding the mathematical pitfalls of using improper priors in the 
mixture context. 
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1. INTRODUCTION 

This paper is a contribution to the methodology of fully Bayesian mixture modelling. 
We stress the word 'fully' in two senses. First, we model the number of components 
and the mixture component parameters jointly and base inference about these 
quantities on their posterior probabilities. This is in contrast with most previous 
Bayesian treatments of mixture estimation, which consider models for different 
numbers of components separately and use significance tests or other non-Bayesian 
criteria to infer the number of components. Secondly, we aim to present posterior 
distributions of our objects of inference (model parameters and predictive densities), 
and not just 'best estimates'. 

There are three key ideas in our treatment. 
First, we demonstrate that novel Markov chain Monte Carlo (MCMC) methods, 

the 'reversible jump' samplers introduced by Green (1994, 1995), can be used to 
sample mixture representations with an unknown and hence varying number of 
components. We believe that these methods are preferable on grounds of con-
venience, accuracy and flexibility to the use of analytic approximations or other 
recently proposed MCMC techniques. 

Secondly, we show that a sample-based approach to computation in mixture 
models allows a much more subtle extraction of information from posterior 
distributions. We give examples of presentation from posteriors that tease out 
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alternative explanations of the data, which would be difficult to discover by other 
approaches. 

Finally, we base our experiments and discussion on a hierarchical model for 
mixtures that aims to provide a simple and generalizable way of being weakly 
informative about parameters of mixture models. We propose a specific model for 
univariate normal mixtures, used throughout to illustrate implementation and 
performance, but emphasize that the rest of our methodology is in no way restricted 
to this particular model. 

Some of the issues considered in the paper, including the key ideas above, have 
relevance well beyond mixture problems. In particular, issues concerning the 
presentation of posterior distributions arise in many problems of inference about 
functions, and the interesting questions raised about labelling of parameters occur 
whenever the statistical model has partial invariance to permutations of variables. 

Since the beginning of the century, there has been strong and sustained interest in 
finite mixture distributions, attributed to the complementary aspects of mixture 
models: they provide, first, a natural framework for the modelling of heterogeneity, 
thereby establishing links with cluster analysis and, secondly, an appealing semi- 
parametric structure in which to model unknown distributional shapes, whether the 
objective is density estimation or the flexible construction of Bayesian priors. The 
whole field is comprehensively discussed by Titterington et al. (1985) and McLachlan 
and Basford (1988). 

Statistical analysis of mixtures has not been straightforward, with non-standard 
problems posed by the geometry of the parameter space, and also computational 
difficulties. Headway has been made recently both in dealing with the challenging 
distributional problems in testing hypotheses about the number of mixture com- 
ponents (Dacunha-Castelle and Gassiat, 1997; Lindsay, 1995; Feng and McCulloch, 
1996) and, on the computational side, by implementation of variants of the EM 
algorithm (Celeux et al., 1996). However, we strongly believe that the Bayesian 
paradigm is particularly suited to mixture analysis especially with an unknown 
number of components. 

Much previous work on finite mixture estimation, Bayesian or otherwise, has 
separated the issues of testing the number of components k from estimation with k 
fixed. For the fixed k case, a comprehensive Bayesian treatment using MCMC 
methods has been presented in Diebolt and Robert (1994). Early approaches to the 
general case where k is unknown typically adopted a different style of modelling, 
treating the problem as an example of 'Bayesian nonparametrics', and basing prior 
distributions on the Dirichlet process; see Escobar and West (1995) for example. 
Other researchers, e.g. Mengersen and Robert (1996), Raftery (1996) and Roeder 
and Wasserman (1997), have proposed to use respectively a Kullback-Leibler dis-
tance, a Laplace-Metropolis estimator or a Schwarz criterion to choose the number 
of components. The more direct line that we adopt here, of modelling the unknown 
k case by mixing over the fixed k case, and making fully Bayesian inference, has 
been followed by only a few researchers, including Nobile (1994) and Phillips and 
Smith (1 996). 

The paper is structured as follows. In Section 2, we present a Bayesian hierarchical 
model for mixtures. MCMC methods for variable dimension problems are discussed 
in Section 3, and then adapted to the particular case of mixture analysis. In Section 4, 
the performance of the methodology is assessed through application to three real 
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data sets, and in Sections 5 and 6 sensitivity and MCMC performance issues are 
considered. Section 7 covers classification based on mixture modelling, and we con- 
clude with a discussion of extensions and an outline of further work. 

2. BAYESIAN MODELS FOR MIXTURES 

2.1. Basic Formulation 
We write the basic mixture model for independent scalar or vector observations yi 

as 

Yi --xk wj f(.lej) independently for i = 1, 2, . . ., n, (1) 
j=I 

where f(.l8) is a given parametric family of densities indexed by a scalar or vector 
parameter 8. The objective of the analysis is inference about the unknowns: the 
number k of components, the component parameters Bj and the component weights 
wj, summing to 1. 

Such a model arises in two rather distinct contexts. In the first, we postulate a 
heterogeneouspopulation consisting of groups j = 1, 2, . . ., k of sizes proportional to 
wj, from which our random sample is drawn. The identity or label of the group from 
which each observation is drawn is unknown. In this situation, it is natural to regard 
the group label zi for the ith observation as a latent allocation variable. The zi are 
supposed independently drawn from the distributions 

and, given the values of the zi, the observations are drawn from their respective 
individual subpopulations: 

Y ~ I Z  --f(.Iezi) independently for i = 1, 2, . . ., n. (3) 

In the second context, not the prime focus of this paper, the mixture model (1) is 
thought of as a convenient parsimonious representation of a non-standard density, 
and the objective of inference is a kind of a semiparametric density estimation. 

In either case, the formulation given by expressions (2) and (3) is convenient for 
calculation and interpretation, and we shall make continued use of it. Integrating z 
out from expressions (2) and (3) brings us back to model (1). Note that we have 
specified a population model; not all components are necessarily represented in a 
finite sample, so there may be 'empty components'. 

2.2. Hierarchical Model and Priors 
In a Bayesian framework, the unknowns k, w and 8 are regarded as drawn from 

appropriate prior distributions. The joint distribution of all variables can be written 
in general as 

where here and throughout the paper we are usingp(.I.) to denote generic conditional 
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distributions consistent with this joint specification, and we use the notation 
w = z = 8 = and y = (y;):=,. In equation (4), it is natural to ( ~ j ) f = ~ ,  (~i):=~,. 
impose further conditional independences, so that p(OIz, w, k) =p(Olk) and p(yl8, 
z, w, k) =p(yl8, z). Thus the joint distribution (4) simplifies to give the Bayesian 
hierarchical model 

We only consider models in which p(yl8, z) is given by expression (3), and p(zlw, k) 
by expression (2). 

For full flexibility, we now add an extra layer to the hierarchy, and allow the priors 
for k, w and 8 to depend on hyperparameters A, 6 and 77 respectively. These will be 
drawn from independent hyperpriors. The joint distribution of all variables is then 
expressed by the factorization 

PO, 6, 77, k, w, z,o, Y) =PO) ~ ( 6 )  ~(77)p(k l4  p(wlk, 6) p(zl w, k) ~(Olk, 77) pble,z). 

( 5 )  

2.3. Normal Mixtures 
From now on, our detailed exposition is limited to the case of univariate normal 

mixtures. However, the methodology is generic and applies much more widely. Some 
specific generalizations, several of which are already implemented, are described in 
Section 8.4. 

In the univariate normal case, the generic parameter 8 is a vector of (expectation, 
variance) pairs (p,, a;), j = 1, 2, . . ., k, so that 

Our prior distributions are that the pj and u i2  are all drawn independently, with 
normal and gamma priors 

j -N K )  and ai2- r ( a ,  ,B) 

(in the latter, choosing the parameterization in which the mean and variance are a/,B 
and alp2respectively), so that the generic 77 has become (<,K,a, P). These are fairly 
natural choices of prior distributions, giving some of the advantages of conjugacy, 
advantages that are not actually needed when using MCMC computation. It is not 
the 'natural conjugate' prior for (p,, a:), under which the parameters within each pair 
are a priori dependent. 

We now come to the important issue of labelling the components. Note that our 
whole model is invariant to permutation of the labels j = 1, 2, . . ., k. For iden- 
tifiability, it is important to adopt a unique labelling. Unless stated otherwise, we 
use that in which the pj are in increasing numerical order; thus the joint prior 
distribution of the parameters is k! times the product of the individual normal and 
gamma densities, restricted to the set p1 < p2 < . . . < pk. 

The prior on w will always be taken as symmetric Dirichlet, w -D(6, 6, . . ., 6). It 
is necessary to adopt a proper prior distribution for k and a common choice is the 
Poisson distribution with hyperparameter A. For convenience of presentation and 
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interpretation, we instead use a uniform distribution between 1 and a prespecified 
integer k,,,, the choice of which is discussed when we come to our experiments. 

2.4. Weak Prior Information for Component Parameters 
In this paper, we only consider Bayesian mixture estimation in the set-up where we 

do not have (or want to use) strong prior information on the mixture parameters. 
There are cases where subjective priors are preferable, and our prior setting could be 
modified accordingly. 

Being fully non-informative and obtaining proper posterior distributions are not 
possible in a mixture context. Since there is always the possibility that no observa- 
tions are allocated to one or more components, and so the data are uninformative 
about them, standard choices of independent improper non-informative prior 
distributions for the component parameters cannot be used (Diebolt and Robert, 
1994; Roeder and Wasserman, 1997). Some previous attempts to circumvent this 
problem, which involve dependent priors, are mentioned in Section 8.3. 

It seems to us that for most purposes of mixture modelling there is a case for 
keeping to the simple independence prior structure for the pj and ay2that we have 
outlined in Section 2.3 and defining weakly informative priors, which may or may not 
be data dependent, a line also taken by Raftery (1996) and Nobile (1994). If, for 
example, we are interested in identifying subpopulations, there would be a priori 
information which can be translated into, say, a likely range for their spread. We 
thus introduce a hyperprior structure and default hyperparameter choices which 
correspond to making only 'minimal' assumptions on the data. 

It seems natural to take the N(J, IC-I) prior for p, to be rather flat over an interval 
of variation of the data, either postulated a priori or corresponding to the observed 
range. This can be achieved in a simple way by lettin 3J equal the midpoint of this 
interval, and setting IC equal to a small multiple of l /R  , where R is the length of the 
interval. 

In contrast with the case of the means pj, it seems restrictive to suppose that 
knowledge of the range of the data implies much about the size of the a;;recall that 

-. r ( a ,  p), independently. We therefore introduce an additional hierarchical level 
by allowing P to follow a gamma distribution with parameters g and h. We shall 
generally take cu > 1 > g to express the belief that the a? are similar, without being 
informative about their absolute size. The scale parameter h will be a small multiple 
of I I R ~ .  

Finally, X and S are held fixed in this paper. 
The complete hierarchical model, which we call the random /3 model, is displayed 

as a directed acyclic graph (DAG) in Fig. 1, with the usual convention of graphical 
models that square boxes represent fixed or observed quantities and circles the 
unknowns. 

3. REVERSIBLE JUMP MARKOV CHAIN MONTE CARL0 ALGORITHM 
FOR MIXTURES 

3.1. Markov Chain Monte Carlo Algorithms for Variable Dimension Parameters 
MCMC methods play a central role in modern Bayesian computation; see, for 

example, Tierney (1994) and Besag et al. (1995). Such methods were initially only 
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Fig. 1. (a) DAG specific to the normal mixture model implemented in this paper; (b) corresponding 
conditional independence graph 

available for problems where the posterior distribution has a density with respect to 
some fixed standard underlying measure, and so could not be used in cases, such as 
mixture estimation, where 'the number of things that you do not know is one of the 
things that you do not know'. Recently, MCMC methods for varying dimension 
problems have been discussed (Grenander and Miller, 1994; Green, 1994; Phillips 
and Smith, 1996). One approach, termed reversible jump MCMC, is elaborated in 
Green (1995), including applications to changepoint analysis in one and two 
dimensions, and to partition problems arising in Bayesian analysis of factorial 
experiments. In brief, reversible jump MCMC is a random sweep Metropolis- 
Hastings method (Metropolis et al., 1953; Hastings, 1970) adapted for general state 
spaces. Letting x denote the state variable (in our application x is the complete set of 
unknowns (p,p, CT,k, w, z)), and ~ ( d x )  the target probability measure (the posterior 
distribution), we consider a countable family of movl types, indexed by m = 1, 
2, . . . . When the current state is x, a move type m and destination x' are proposed, 
with joint distribution given by an essentially arbitrary subprobability measure 
qm(x, dx'). (With probability 1 - EmJx, qm(x, dx'), no move is attempted.) The move 
is accepted with probability 

{ *(dxl) qm (XI, dx) }am(x, x') = min 1, 
~ ( d x )qm(x, dx') ' 

where the ratio of measures can be given a rigorous definition as a ratio of Radon- 
Nikodym derivatives with respect to a suitably chosen common dominating measure. 
The existence of such a measure is ensured by a 'dimension balancing' condition on 
the qm(x, dx') that effectively matches the degrees of freedom of joint variation of the 
state and proposal as the dimension changes with k. 
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For a move type that does not change the dimension of the parameter, this rather 
abstract expression reduces to the familiar Metropolis-Hastings acceptance prob- 
ability, using an ordinary ratio of densities (Hastings, 1970; Peskun, 1973); for 
dimension-changing moves, a little more care is needed. However, in a typical case, a 
more concrete form can be given. Suppose that a move of type m is proposed, from x 
to a point x' in a higher dimensional space. This will very often be implemented by 
drawing a vector of continuous random variables u, independent of x, and setting 
x' by using an invertible deterministic function xl(x, u). The reverse of the move 
(from x' to x) can be accomplished by using the inverse transformation, so that the 
proposal is deterministic. Then the acceptance probability (6) reduces to 

min { 1, 

where rrn(x) is the probability of choosing move type m when in state x, and q(u) is 
the density function of u. Note that the final term in the ratio above is a Jacobian 
arising from the change of variable from (x, u) to x'. 

3.2. Reversible Jump Moves for Normal Mixtures 
Reversible jump MCMC is most simply derived mathematically in its random scan 

form, but as usual with Metropolis-Hastings methods the idea is equally valid when 
the available moves are scanned systematically, and that is the approach we have 
chosen to take here. 

For our hierarchical normal mixture model, we shall make use of six move types: 

(a) updating the weights w; 
(b) updating the parameters (p, a); 
(c) updating the allocation z; 
(d) updating the hyperparameter P; 
(e) splitting one mixture component into two, or combining two into one; 
(f) the birth or death of an empty component. 

Moves (e) and (f) involve changing k by 1, and making necessary corresponding 
changes to (p, a,  w, z). 

The only randomness in the scanning is the random choice between splitting and 
combining in move (e), or birth and death in move (f). One complete pass over these 
six moves will be called a sweep and is the basic time step of the algorithm. 

All MCMC algorithms make use of the full conditional distributions of some 
variables given all others, and in deriving these it is helpful to consult the conditional 
independence graph of the system, derived from the DAG by 'moralizing' and 
dropping the arrows (Lauritzen and Spiegelhalter, 1988). For our model this graph is 
displayed in Fig. 1, from which we note that, given all other variables, w and (p, a) 
are conditionally independent, and similarly for z and P. Moves (a) and (b) can 
therefore be performed in parallel, and so can (c) and (d). 

Move types (a), (b), (c) and (d) are conventional, largely following Diebolt and 
Robert (1994); they do not alter the dimension of the complete parameter vector 
(P, p, a,  k, w, z), and we shall not give much detail about them here. Through conjugacy, 
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the full conditional distribution for the weights w remains Dirichlet in form: 

where nj = #{i: zi =j}, and here and later we use ' 1 .  . .' to denote conditioning on all 
other vanables. Thus w can be updated by a Gibbs move, sampling from this full 
conditional by drawing independent gamma random variables, and scaling them to 
sum to 1. 

The full conditionals for {p,} are 

To preserve the ordering constraint on the {pj}, the full conditional is used only to 
generate a proposal and is accepted provided that the ordering is unchanged. 

The full conditionals for {a;}are 

and for the allocation variables we have 

whereas the only hyperparameter that we are not treating as fixed, 0,has a gamma 
distribution 

For all these variables, we use a Gibbs kernel. 
For the split or combine move (e), the reversible jump mechanism is needed. Recall 

that we need to design these moves in tandem: they form a reversible pair. The 
strategy is to choose the proposal distributions according to informal considera- 
tions suggesting a reasonable probability of acceptance, but strictly subject to the 
requirement of dimension matching. Having done so, conformation with the detailed 
balance condition is determined by the acceptance probability (7). This is the point at 
which the statistical model is used quantitatively. 

In move (e), we make a random choice between attempting to split or combine, 
with probabilities bk and dk = 1 - bk respectively, depending on k .  Of course, dl =0 
and bk,,, = 0, where kmaxis the maximum value allowed for k ,  and otherwise we 
choose bk = dk =0.5, for k = 2, 3, . . ., kmax- 1 .  Our combine proposal begins by 
choosing a pair of components GI,j2) at random, that are adjacent in terms of the 
current value of their means, i.e. 

PJI < Pj~iz~ with no other pj in the interval [p,, ,pI2]. (9) 

These two components are merged, reducing k by 1. In doing so, forming a new 
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component here labelled j*, we have to reallocate all those observations yi with 
zi=jl or zi=j2and create values for (wj*, k*,aj*). The reallocation is simply done 
by setting such zi =j*, whereas the other parameters are assigned by the expedient of 
matching the zeroth, first and second moments of the new component to those of a 
combination of the two that it replaces: 

This combine proposal is deterministic once the discrete choices of jl andj2have been 
made, so the expression (7) for the acceptance probability will be relevant. 

The reverse split proposal is now largely determined. A component j* is chosen at 
random and split into two, labelled jl and j2, with weights and parameters con- 
forming to equations (10). There are 3 degrees of freedom in achieving this, so we 
need to generate a three-dimensional random vector u to specify the new parameters. 
We use beta distributions 

for this, and set 

which provide all six required weights and parameters, satisfying equations (10). It 
can be readily shown that these are indeed valid, with weights and variances positive. 
At this point, we check whether the adjacency condition (9) is satisfied. If not, the 
move is rejected forthwith, as the (split, combine) pair could not then be reversible. If 
the test is passed, it remains only to propose the reallocation of those yiwith zi=J* 

between jl and j2. This is done analogously to the standard Gibbs allocation move; 
see equation (8). 

The acceptance probabilities for the split or combine moves, calculated from 
expression (7), have quite convoluted form. For the split move the probability is 
min(1, A),  where 
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6-I+/! 6-l+h 

A = (likelihood I) (k + 1) W ~ '  W ~ 2+ 

6- 1+/I +I2P(k) wj* B(6, kS) 

where k is the number of components before the split, lI and l2 are the numbers of 
observations proposed to be assigned to jl and j2, B(., .) is the beta function, Pan, is 
the probability that this particular allocation is made, g , ,  denotes the beta(p, q) 
density and likelihood ratio is the ratio of the product of the f(yilO,,)-terms for the 
new parameter set to that for the old. For the corresponding combine move, the 
acceptance probability is min(1, A-I), using the same expression for A but with some 
obvious differences in the substitutions. 

The correspondence between expressions (7) and (1 1) is fairly straightforward; the 
first three lines of expression (1 1) form the ratio p(xfly)/p(xly), the (k + I)-factor in 
the first line being the ratio (k + l)!/k! from the order statistics densities for the 
parameters (p, a2). The fourth line is the proposal ratio rm(xf)/rm(x)q(u), and the final 

2 2line is the Jacobian of the transformation from (wj*, pj*, gj*, MI,  242, 243) to (wjl, pjl, ajl, 
2

Wj2, Pj2, ~j2). 
The birth-and-death move (f) is somewhat simpler. We first make a random choice 

between birth and death, using the same probabilities bk and dk as above. For a birth, 
a weight and parameters for the proposed new component are drawn using 

wj* - be(1, k), pj* -N(6, K-'), - r(a,p). 
To 'make space' for the new component, the existing weights are rescaled, so that all 
weights sum to 1, using wj = wj(l - wj*). For a death, a random choice is made 
between any existing empty components, the chosen component is deleted and the 
remaining weights are rescaled to sum to 1. No other changes are proposed to the 
variables: in particular, the allocations are unaltered. 

Detailed balance holds for this move, provided that we accept births and deaths 
according to expression (7), in which (wj*, pj*, aJ<) play the role of u. The use of the 
prior distributions in proposing values for pJ* and gj*leads to a simplification of the 
resulting ratio. The acceptance probabilities for birth and death are min(1, A) and 
min(1, A - I  ) respectively, where 
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Here, k is the number of components and ko the number of empty components, 
before the birth. In equation (12), the first line is the prior ratio, and the second line 
contains the proposal ratio and Jacobian; the likelihood ratio is 1. 

This completes the specification of the moves, which we do not claim is optimal; 
indeed, this is almost the first scheme that we tried. The validity of the algorithm is 
not compromised by the choice of proposals, since detailed balance is confirmed by 
using expression (7). In Metropolis-Hastings methods, it is rarely worth fine-tuning 
the proposal distribution, especially if doing so prevents simple and explicit random 
variate generation. 

With detailed balance satisfied, it only remains to check that the Markov chain 
defined is irreducible and aperiodic. Aperiodicity is clear, since given any arbitrarily 
small neighbourhood of a current state (P, p, a, k, w, z) there is positive probability 
that after one sweep through moves (ak(f) the chain lies in that neighbourhood. 
Irreducibility is also easily established, since the chain can move from any value of k 
to any other value in steps of one at a time, in move (c) all allocations have positive 
probability and the parameters and hyperparameters are updated by drawing from 
continuous distributions whose supports are the natural parameter spaces. 

4 .  STATISTICAL PERFORMANCE OF METHODOLOGY PROPOSED 

Several interlinked aspects of the methodology proposed are to be demonstrated in 
illustrating its performance. Of course, we display examples of the results that we 
obtain from real data sets. But the presentation of substantive results is inevitably 
associated with questions of sensitivity to model specification, especially regarding 
the prior, and questions about the performance of the MCMC sampling method, i.e. 
how well it 'mixes'. These three aspects-results, sensitivity and mixing-interact 
closely. To avoid circularity in our presentation, we postpone discussion of sen- 
sitivity and mixing to Sections 5 and 6 respectively, and first present a description of 
the performance of the model itself with default settings for the hyperparameters. Of 
course, sensitivity issues informed our choices here. 

4.1. Results for Three Data Sets 
Three real data sets are used throughout the paper, as a basis for our com- 

parisons. (All three data sets can be obtained from the World Wide Web at 
h t t p :  / / W W W .  s t a t s .b r i s .  a c  . u k / - p e t e r / m i x d a t a . )  The first concerns the 
distribution of enzymatic activity in the blood, for an enzyme involved in the 
metabolism of carcinogenic substances, among a group of 245 unrelated individuals. 
The interest here is in identifying subgroups of slow or fast metabolizers as a marker 
of genetic polymorphism in the general population. This data set has been analysed 
by Bechtel et al. (1993), who identified a mixture of two skewed distributions by 
using maximum likelihood techniques implemented in the program SKUMIX of 
Maclean et al. (1976). We shall refer to this data set as the 'enzyme data'. The second 
data set, the 'acidity data', concerns an acidity index measured in a sample of 155 
lakes in north-central Wisconsin and has been previously analysed as a mixture of 
Gaussian distributions on the log-scale by Crawford et al. (1992, 1994); we also use 
the log-scale. The last data set, the 'galaxy data', was first described in Roeder (1990) 
and subsequently analysed under different mixture models by several researchers 
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including Escobar and West (1995) and Phillips and Smith (1996). It consists of the 
velocities of 82 distant galaxies, diverging from our own galaxy. Histograms of the 
three data sets are shown in Fig. 2. 

The three data sets have been analysed with the hierarchical normal random P 
mixture model defined in Sections 2.3 and 2.4, with the following settings for 
previously unspecified constants: K - 1/R2, cr = 2, g = 0.2, h = 10/R2 and S = 1. 
The prior on k is taken as uniform on the integers 1,2, . . ., k,,, = 30, for which it is 
particularly easy to convert results to those corresponding to other priors on these 
values, using the identity 

where p*(.ly) denotes the posterior for an alternative prior p*. 
For each of the three data sets, we report results corresponding to 100000 sweeps, 

following a burn-in period also of 100000 sweeps. We believe that these numbers 

10 15 20 25 30 35 
(C) 


Fig. 2. Predictive densities for (a) the enzyme, (b) the acidity and (c) the galaxy data sets, 
unconditionally (-------) and conditionally (-- --) on various values of k: the curves displayed are for 
k - 2 4 , except for the galaxy data, where they are for k = 3-6; in each case note that it is only the 
srr~allestk shown that gives an appreciably different estimate 
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TABLE 1 
Posterior distribution of k for the three data sets based on a mixture model with random /3 and default? 

parameter values 

Data set n Proportion (%) of 
moves accepted 

Split- Birth-
combine death 

Enzyme 245 	 p(1) =0.000 
p(5) = 0.206 
p(9) =0.007 

Acidity 155 	 p(1) =0.000 
p(5) =0.172 
p(9) = 0.020 
p(13) =0.001 

Galaxy 82 	 p(1) =0.000 
p(5) =0.182 
p(9) =0.071 
p(13) = 0.006 

?Range and default parameter values: enzyme data, R = 2.86, J = 1.45, K =0.122, cr = 2, g = 0.2, h = 1.22, 6 = 1 ;  
acidity data, R = 4.18, J = 5.02, K = 0.057, cr = 2, g = 0.2, h = 0.573, 6 = 1 ;  galaxy data, R = 25.1 1 ,  J = 21.73, 
K =0.0016, cr = 2, g = 0.2, h = 0.016, 6 = 1 .  

exceed what is needed for reliable results. In all the runs, the number of components 
never exceeded 24; hence the chosen value of k,,, was inconsequential. 

Estimated posterior probabilities are given in Table 1. In each of the data sets, it is 
immediately apparent that there are several competing explanations of the data 
which are tenable. For the enzyme data, the posterior for k favours 3-5 components. 
In this example, with the proviso that there is some prior evidence for enzyme level to 
be normally distributed, we could interpret the existence of three components in the 
mixture in terms of a simple underlying genetic model. For the acidity data, there is 
again fairly equal support for 3-5 components; for the galaxy data, the posterior for 
k is more widely spread and indicates a higher number of components, between 5 and 
7. In each case, the high overall number of components can be related in part to the 
skewness of the data, two or three normals being sometimes needed to fit one skewed 
component, but also to our mixture model which imposes little structure a priori, in 
contrast with those considered by Roeder and Wasserman (1997) or Gruet et al. 
(1 996). 

As a by-product of our implementation, we can also investigate changes in the 
posterior distribution of 'deviances' -2 logp(ylk, w, 8) for increasing k. For the 
enzyme data, there is a marked shift between k = 2 and k = 3, whereas from k = 3 
onwards there is substantial overlap between the deviance distributions; see Fig. 3(a). 
A similar pattern emerges for the other two data sets, with substantial overlap from 
k = 3 for the acidity data and from k = 4 for the galaxy data. 

4.2. Predictive Densities 
At each sweep of the algorithm, values (w, 8) of the weights and parameters are 

produced, from which densities 
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deviances 
(a) 

10 20 30 40 
data 

(b) 

Fig. 3. (a) Posterior distributions of deviances for the enzyme data (-, k = 2; .........., k = 3 ;  
- - - -,k = 4; ----, k = 5 ;  --, k = 6); (b) sample from the posterior distribution of f ( . lk ,  w ,  8) for 
the galaxy data 

can be computed. Posterior variation among the realized f(.lk, w, 9) is displayed in 
Fig. 3(b), for the galaxy data. 

Averaging the f(.lk, w, 8) across the MCMC run, conditionally on fixed values of 
k ,  gives an estimate of E{f(.lk, w, 9)lk, y } ,  a Bayesian predictive density estimate of 
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the mixture with k components. Averaging further across values of k gives an 
estimate of E{ f(Ik, w, 8)ly), the 'overall' Bayesian predictive density estimate of the 
distribution of y. Note further that these density estimates do not themselves have the 
shape of a finite mixture of distributions. Other density estimates, in particular the 
mixtures f(.Ik, G, 8) for each k, have been considered, where G and 8^ are summary 
posterior estimates of the weights and parameters of a k-components mixture. In the 
case where the posterior distribution of (w, 8) is fairly spread out or even multimodal, 
these plug-in estimates would give a poor oversmooth approximation of the pre- 
dictive density. 

Predictive densities, both conditional on k and unconditional, are shown in Fig. 2 
for the three data sets. Note that the difference between successive predictive densities 
decreases with increasing values of k and that the overall unconditional plot gives a 
convincing density estimate of the data distribution. The predictive fit and posterior 
distribution give complementary evidence on which to draw when assessing the 
number of components. For the enzyme data, the predictive plots for three or four 
components are very similar. Since one aim of the analysis of this data set is the 
identification of interpretable subpopulations, we would favour the mixture with 
three components. 

4.3. Parameter Estimates 
4.3.1. Labelling and post-processing Markov chain Monte Carlo output 

Although it is in some ways natural to consider the parameters as a set, labelling at 
each sweep is convenient and becomes necessary when density estimates or other 
summaries of the posterior distribution of the parameters of each component are 
required. The most appropriate labelling will depend on the example analysed and it 
is a substantial bonus of the sample-based computation method we use that this can 
be investigated after the run of the algorithm. 

To understand why the issue of labelling is not straightforward, consider the case 
where the population is really of two normal components, unambiguously labelled. 
Given a finite sample, the posterior distribution of the two means will overlap, and 
similarly for the weights and variances; the extent of the overlaps depends on the 
separation and the sample size. When the means are well separated, labelling of the 
realizations from the posterior by ordering their means will generally coincide with 
the population labelling; as the separation reduces, so-called 'label switching' will 
occur; see also Mengersen and Robert (1996). Depending on the relative separations, 
label switching can be minimized by choosing to order on the variances, weights or 
some combination of all three parameters. 

We illustrate these points in Fig. 4 by using a simulated data set of n = 250 points, 
drawn from a mixture which gives a skewed unimodal distribution (wl = w2 = 0.5; 
p1 = 0.0; p2 = 1 .O; a1 = 1.5; a 2  = 1.0). Fig. 4(a) displays the posterior densities of w,, 
and pj and aj for the runs where k = 2, for a labelling corresponding to an ordering 
of the means and Fig. 4(b) for a labelling corresponding to an ordering of the 
variances. The labelling according to the variances (Fig. 4(b)) leads to bimodal 
densities for pj, j = 1,2, which corresponds to label switching on about half the runs. 
Labelling by ordering the means gives clearer unimodal plots simultaneously for all 
three parameters, with still some evidence of switching. In a real data set, there might 
not be an obvious choice of labelling. It is then advisable to post-process the run 
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Fig. 4. Posterior density of parameter estimates for two choices of labelling, simulated data sets: (a) 
labelling according to ordering of the means; (b) labelling according to ordering of the variances 

according to different choices of labels to obtain the clearest picture of the 
component parameters. 

4.3.2. Multimodality of parameter densities 
Quite apart from the labelling problem, there might be cases of genuine mul-

timodality of the posterior distribution of parameter estimates corresponding to 
different mixture models competing for potential explanations of the data set. 

As an example we display in Fig. 5 (full curve) the posterior densities for the 
weights and the means of the second and third component for the enzyme data (with 
labels according to the ordering of the means). There is some evidence of bimodality 
in the distributions of the weights for the second and third components. Different 
labelling does not help to clarify the picture. In an attempt to exhibit possible 
competing explanations, we separate out in the MCMC output those runs 
corresponding to w3 ,< 0.17 and plot the parameter densities again (dotted curves 
in Fig. 5). This produces more clearly peaked posterior densities for all the param-
eters, and shows that low values of w3 are associated with elevated values of p3. In 
fact, a further separation according to w3 < 0.05 would show that this small group 
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

weights weights 

0 


0.0 0.5 1 .O 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 

means means 

Fig. 5. Enzyme data set: posterior densities of weights and means for the second and third component, 
default prior model, conditioning on k = 3 (-), and conditioning also on wj < 0.17 (..........) and on 
w3 > 0.17 (- - - -) (the last two have areas proportional to the posterior probability) 

corresponds to p3 2 2.0, indicating that only a small fraction of individuals have 
high enzymatic activity, as expected. 

5 .  SENSITIVITY OF RESULTS TO PRIOR ASSUMPTIONS 

Our hierarchical approach to mixture modelling involves hyperparameter speci- 
fications. We have carried out a detailed study of their influence which has led us to 
make the standard default recommendations that we have used in the previous 
section. In this section, we highlight some important aspects of our sensitivity 
analysis. We emphasize that we do not recommend that such a study should be 
performed for a standard implementation of our approach! 

5.1. Sensitivity of Posterior Distribution of k 
5.1.1. Comparison of prior models for the variance: fixed versus random P 

Our main concern here is to show how, in our model, the number of components is 
related to the prior information on the variances a;. In the standard non-hierarchical 
model with fixed P and cu the mean of the gamma distribution, a l p ,  specifies the 
typical value of the precision a;*. It is natural to relate ojto the range R of the data 
and increasing values for J(P/cu) will lead to models with fewer components. In Fig. 
6(a) we show, on the acidity data, the substantial change in the posterior distribution 
of k as J(P/cu) is varied between R/5, R/lO and R/20. There is little overlap between 
the posterior distributions of k for the two extreme cases. Hence, in the standard 
model, the choices of a and P will crucially influence the posterior distribution of k 
and it is difficult to be weakly informative. 

In contrast, the hierarchical model with fixed a but random P that we have 
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Fig. 6. Posterior distributions of k: comparison of sensitivity to hyperparameters between fixed and 
random p models: (a) fixed P, a = 2 and +/@/a)varying between R/5 (-), R/10 (..........) and R/20 
(- - - -); (b) random p, a = 2, g = 0.2 and &/ha) varying between R/5 (-), R/10 (........-) and 
R/20 (- - - -) 

implemented, which allows weak information on ajto be put in at a higher level, does 
not exhibit the same behaviour. The posterior distribution of k is quite insensitive 
over a wide range of values of the ratio g/h (related again to the range R) which all 
lead to a similar posterior mean and standard deviation for P. This is well illustrated 
in Fig. 6(b) which shows strikingly similar posterior distributions for k for three sets 
of values for a ,  g and h chosen so that the prior order of magnitude for aj at the 
higher level, J(g/ha), ranges again from R/5 to R/20. Hence our hierarchical for- 
mulation for the variance distribution in the mixture model allows a high degree 
of non-informativeness. It is in view of these results that we choose the hierarchical 
random p model with a =2, g = 0.2 and J(g/ha) = R/10 as our default option. 

5.1.2. Sensitivity to prior distribution of means 
An important component of the mixture model is the prior model for the means p,, 

which we defined as drawn independently from the normal distribution N(J,  n-I). 
Using only the extremes of the data we consider that setting 6 equal to the mid- 
range and the precision n so that n-lh is equal to R is a sensible weakly informative 
prior which places effectively no constraint on the location of the pi but does not 
encourage the fitting of mixtures with very close p,. 

There is a subtle interplay between prior information on the location of the means 
and the number of components. Indeed reducing n-'I2 at first will tend to favour a 
higher number of components. This can be interpreted as the result of defining a 
prior for the means which is increasingly more permissive of components with close 
means. However, as n-'I2 is further reduced, the number of components will start to 
decrease, as there is now a shrinkage effect and active prohibition of components 
with means located towards the extremes of the range. We illustrate these points on 
the acidity data. We have used throughout the same hierarchical default option for 
the variances, but a Poisson prior P(10) for k as some hyperparameter settings now 
encourage large k. As the values of n-'I2 decrease from R to R/10, the number of 
components with the highest posterior probability first increases to reach a peak 
value of k = 10 for ti-'I2 between R/4 and R/5 and then decreases again (Table 2). 

We have so far discussed sensitivity to the prior setting of K, with the hierarchical 
random p model for the component variances, but the same behaviour is observed 
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TABLE 2 

Influence of prior distribution N(6,  K - I )  for p on the posterior 


distribution of kt 


&-I12 Range of k with k with highest p ( k )  
p fk ly )  2 0.05 p(kly)  2 0.001 

R [3-91 [2- 1 31 6 
R / 2  ($121 [3-171 8 
R / 3  [&I41 [4-191 9 
R / 4  [7- 1 41 [3-2Ol 10 
R / 5  [7-141 [4-201 10 
~ 1 8  ~ - 1 2 1  [3-171 8 
R / ~ O  [ 4 - 1 1 1  [3-161 7 

?Acidity data: mixture model with Poisson (prior P(10)  for k),  random P 
and default parameter values o;* - r ( 2 ,  p), 0- r (0 .2 ,  h )  with , /&/ha)  = 
R/10 .  

with the fixed P model. Sensitivity was discussed by Crawford (1994) who computed, 
for the acidity data, the posterior distribution of k in three cases: cr = P = K, = 1, 
cr = p = K, = 5 and cr = ,O = K, = 10. Note that the restriction imposed on the means 
is quite severe in the last two cases, K, = 1, 5, 10 corresponding respectively to 
equal to R/4, R/10 and R/13 for this data set. By simultaneously increasing a ,  ,8and 
K,, the means of the components are restricted, whereas the standard deviations are 
tightened around 1 * R/4, a fairly large value, thus creating competing influences on 
k which are not easy to disentangle. We have fitted our model with the same 
parameter settings as Crawford. We find more support for two components than in 
our previous analysis with our default priors (see Table I), a posterior distribution 
mostly concentrated on k = 2 or k = 3, with moderate variation between the three 
cases, p(k = 21y) being equal to 0.42, 0.65 and 0.43 respectively. However, the 
Laplace approximation estimates for p(k = 2(y) given in Crawford's Table 2 vary 
over many orders of magnitude. 

5.2. Sensitivity of Posterior Distributions of Parameters 
In a complementary way and from the same MCMC runs, we can investigate the 

sensitivity of the posterior distributions of component parameters for various values 
of k. We shall briefly summarize some features. 

Results concerning the influence of K, are unsurprising. As expected, a reduction in 
the range of the means pj is observed as K , - ' / ~  is decreased, something which is more 
noticeable for large k. 

It is interesting to compare the influence of prior specifications for the variances 
a,-2 - r (a ,  p) between the fixed P and the random ,8- r(g, h) model. A similar 
sensitivity pattern to that described for the posterior distribution of k emerges. In the 
fixed P case the posterior means of aj are sensitive to variations in ,/(/?/a), the more 
so when k is larger. For example, for the acidity data with k = 4, the posterior means 
of a, become nearly halved as J(P/a) is varied from R/5 to R/20, whereas for the 
random ,B case all the posterior means of a, are remarkably similar. This is further 
evidence for the value of including an upper hierarchical level in the distribution of 
the a, in a mixture model. 



750 RICHARDSON AND GREEN [No. 4, 

6. PERFORMANCE OF MARKOV CHAIN MONTE CARL0 SAMPLER 

6.1. Mixing over k: Performance of Jump Moves 
An essential element of the performance of our MCMC sampler is its ability to 

move between different values of k. A plot of the changes in k against the number of 
sweeps for the galaxy data is presented in Fig. 7 . It shows that the MCMC algorithm 
mixes well over k,  excursions into very high values being short lived. Similar plots 
were obtained for the other data sets. Proportions of accepted 'split or combine' 
moves vary between 8% and 14% (Table 1 ) .  For dimension-changing moves, these 
proportions are satisfactory and show that our proposal based on adjacency is 
sensible. A useful check on the stationarity is given by the plot of the cumulative 
occupancy fractions for different values of k against the number of sweeps. These are 
represented in Fig. 7 for the three data sets, where it can be seen that the burn-in is 
more than adequate to achieve stability in the occupancy fractions. 

Our model does not preclude empty components, and they will be included in our 
count of k .  This might cause concern if a high number of them persisted for long 
times. We have found that including in our algorithm the birth-death moves, which 
specifically deal with empty components, improves convergence in comparison with 
that of an algorithm relying only on the split or combine moves, especially when the 
posteriors are diffuse. The acceptance rate for birth-and-death moves is highest for 
the small and multimodal galaxy data set. The mean number of empty components is 
equal to 0.10, 0.18 and 0.57 for the enzyme, acidity and galaxy data sets respectively. 

We detected no influence of starting values on the distribution of k .  For example, 
with the enzyme data, starting with k = 1 typically leads to the acceptance of the first 

sweep sweep 
(a) (b) 

sweep sweep 
(C) (d) 

Fig. 7. (a) Example of a trace of k for the galaxy data set, for 50000 sweeps after bum-in, and 
cumulative occupancy fractions for (b) the galaxy, (c) the enzyme and (d) the acidity data sets, for a 
complete run including bum-in 
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split after fewer than five sweeps, and then k = 1 is never accepted again; further, 
when starting with k =20, and observations ranked then equally allocated between 
the components, fewer than 100 sweeps are needed to reach k = 10. Unless specified 
otherwise, all our runs start with k = 1. 

The prior distribution of k, p(k), appears in the acceptance ratio for the dirnension- 
changing moves and will influence the mixing behaviour precisely through that ratio. 
Priors which are highly concentrated on a range of values of k will effectively stop the 
algorithm from accepting moves which will take it outside this range. However, the 
Bayes factors 

which are theoretically independent of p(k), have MCMC estimates that are not 
materially affected by it, within the range of k visited reasonably often. For example, 
on the acidity data, B34is estimated as 0.91, 0.99 and 1 .O1 when the prior for k is a 
Poisson distribution with mean equal to 1, 3 and 10 respectively and as 1.03 for a 
uniform prior for k (between 1 and 30). 

6.2. Mixing within k 
6.2.1. Within-k mixing for parameters 

Within the range of weak priors that we have been using, we have observed 
satisfactorily mixing patterns in all our runs and not encountered any 'trapping 
states' as reported in Robert (1996). We checked that runs with very different initial 
allocations gave almost identical posterior densities for the parameters. For the 
enzyme data and three components, Fig. 8 displays typical time plots of the sweeps 
for w, p and a. These are based on a run of 100000 sweeps, which included about 
30000 visits to k = 3, but plotted only every 20 for clarity in these plots. Different 
patterns of traces for the three components can be seen. The first component (low- 
est mean and standard deviation, highest weight) is estimated precisely. Very 
occasionally, much fewer than 60% of the observations are allocated to it, but this 
creates no problem. When this occurs, the mean of the second component dips as 
some switching arises between the two components. The weights of the second and 
third components are more fluctuating. For the third component, competing 
explanations, as discussed earlier in Section 4.3.2, are clearly visible and the 
algorithm has no trouble in covering the wider range of values, higher means 
corresponding to lower weights and standard deviations. 

6.2.2. Comparisons with $xed k sampler 
Some previous work using the MCMC method in mixture estimation with fixed k 

has encountered slow mixing, especially with weak priors. This is usually caused by 
two or more modes in the posterior distribution, separated, as far as the available 
MCMC moves are concerned, by regions of low probability. In statistical terms, 
there are two or more well-supported explanations for the data with the same k. For 
example, the data may fall into two rather well-separated clusters, and with k fixed at 
3 there may be substantial posterior probability on two components being fitted to 
the first cluster and one to the second, or vice versa. 

It is plausible that, in the presence of multimodality, mixing should be improved 
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Fig. 8. Traces of parameter estimates against visits to k = 3, enzyme data 

by the possibility of varying k. In the particular situation described above, the 
sampler could, at some stage, combine the two components in the first cluster and 
subsequently split the component in the second cluster, and so complete a transition 
from one mode to the other, without visiting regions of low posterior probability. 
This is an example of what physicists would call 'tunnelling' between regions of low 
'energy' (energy is the negative logarithm of the probability). 

Here we present an example of the improved mixing obtained by varying k. The 
example is somewhat contrived, but we believe that it is qualitatively similar to real 
problems with clustered data, in the absence of strong prior information. We take 50 
observations from N(2.5, I), 50 from N(4, 1) and assemble a synthetic data set of size 
200 by taking these 100 data points and their reflections about the origin. Our default 
prior is used, except that k is given a Poisson prior, with X = 4. We thus contrive a 
situation in which the joint posterior distribution has exact symmetry on reflection 
about 0. We compare results of simulating the joint posterior with variable k, and 
then conditioning on k = 3, with running a fixed k sampler for k = 3 using only 
moves (a t (d)  of Section 3.2. Run lengths were arranged so that the same numbers of 
visits to k = 3 were made in each case. Some results are displayed in Fig. 9. By 
symmetry, the true posterior p(p21y, k = 3) is symmetric about 0, and in particular 
p(p2 < OIy, k = 3) = 0.5. Figs 9(a) and 9(c) show traces of p2 against sweep number. 
The variable k sampler evidently mixes far better than the fixed k sampler. This 
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Fig. 9. Comparison of mixing of variable k and fixed k samplers: (a), (c) traces of p2 against sweep 
number; (b) posterior density estimates at the end of the runs; (d) sequences of estimates of p(p2 < Oly, 
k = (-, obtained as the runs proceed 3) variable k sampler) 

improvement extends to estimates of the density of p2 and the probability that it is 
positive, illustrated in Figs 9(b) and 9(d). After more than 6000 sweeps, results for the 
fixed k sampler still show severe asymmetry. 

7. BAYESIAN CLASSIFICATION 

Apart from their role in facilitating computation, the allocation variables z are of 
interest in their own right, for they form a coherent basis for classification of the 
observaiions. Some care is required in interpreting these sensibly. It will rarely be 
appropriate to discuss classification except conditionally on k, and even then the 
labels 1, 2, . . ., k are only meaningful in the context of some particular declared 
unambiguous labelling of the k mixture components, e.g. by ordering on the p,. 

Classification can either be done on a within-sample or a predictive basis. For the 
former, the posterior probabilities @(zi =jly, k); j = 1, 2, . . ., k) are appropriate, 
and these can be directly estimated as empirical averages in the MCMC run. 
Predictive classification addresses the question of classifying a future observation y*, 
say. If the allocation variable corresponding to this is z*, then we are in principle 
interested in @(z* =jly, y*, k)). Unfortunately, inclusion of the additional datum 
changes all the posterior distributions, apparently requiring that the MCMC sampler 
be rerun for each new y*! This is obviously impractical, so we employ the obvious 
approxima tion 
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= IP(Z* =jly*, k, 8, w)p (~ ,wiy, y*, k ) d ~ d w  

and estimate the last integral, like any other expectation with respect to p(8, wly, k), 
by an MCMC empirical average, in this case that of 

where 4(.; p, o) is the normal density. In Fig. 10, the estimated within-sample and 
predictive classification probabilities are illustrated for the enzyme data set. The 
lower section of each part shows the cumulative classification probabilities p(zi <jly, 
k) and p(z* <jly, y*, k) for j = 1, 2, . . ., k - 1; differences between adjacent curves 
indicate the class probabilities. The within-sample probabilities and the predictive 
probabilities coincide to within plotting accuracy. This is an effect of the law of large 
numbers; they are computed separately. 

Using the usual 'percentage correctly classified' loss function, the Bayes classifica-
tion of an existing observation yi and a future one y* are respectively given by 

h 

Z = argmax Ip(zi =jly, k)) and z* = argmax Ip(z* =jly, y*, k)}. 
j j 

These are also plotted, in the upper part of each panel, in Fig. 10. 
Note that there is no monotonicity in the classification with respect to increasing 

values of the enzyme level. For k = 3, data values classified to the third component 
lie on either side of those assigned to the second component. This is due to the large 
variance of the third component. Correspondingly, the predictive curve delimiting 
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Fig. 10. Classificationsof the enzyme data set: within-sample ( +) and predictive (------) classification 
probabilities and optimal classifications for (a) k = 2, (b) k = 3 and (c) k = 4 
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the second from the third component has a pronounced dip. This phenomenon 
persists with larger k, indicating that the classifications cannot be simply interpreted 
in terms of shifts of the mean enzyme level, but take into consideration a combina- 
tion of mean and spread. 

8. FURTHER WORK AND DISCUSSION 

8.1. Markov Chain Monte Carlo Issues 
The key idea in constructing an effective MCMC sampler is to design sensible 

moves that use current knowledge about the mixture. Basing moves on a notion of 
adjacency has a generic character, independent of the particular distributional 
assumptions, and thus these move types could be adapted to a variety of dis- 
tributions. We believe that they would be suitable for any two-parameter density 
f(.lO,, e2),where after a suitable transformation f could be reparameterized in terms 
of a mean and variance parameter with the range of the mean unconstrained. 

We could have extended our birth-and-death moves to include non-empty com- 
ponents, similarly to Phillips and Smith (1996), and then dispensed with our split and 
combine moves, or defined combine moves with respect to the underlying partition 
given by the data rather than the parameters, along the line followed by Gruet et al. 
(1996). We felt that these moves would be less efficient, but in further developments 
of our work we aim to perform some comparisons. More adventurous moves could 
be contemplated, e.g. moves that combine three components or take two components 
and simultaneously update the relevant parameters, weights and allocations. How- 
ever, there is no evidence from our results that such complications are necessary. 

Although adjacency and preserving the first two moments are quite natural 
conditions in a one-dimensional setting, the moves thus created might be too 
restricted for good mixing in applications to bivariate or multivariate mixtures. 
There, we feel that the algebra of moves will need to be extended. 

In calculating the acceptance ratios for dimension-changing moves, the only term 
which might be cumbersome is the Jacobian of the transformations. In higher 
dimensional parameter space, symbolic computation tools could be useful at this 
point. These calculations are simplified by preserving as much symmetry as possible 
in the definition of the moves. 

The intricacy of our MCMC sampler may convey an impression that it is compu- 
tationally demanding. In fact, the burden is not excessive. For the largest of our three 
real data sets, the enzyme data, with n = 245, and using the default prior setting, our 
program makes about 160 sweeps per second on a Sun SPARC 4 workstation. 

Validation of the MCMC code is an important concern. We have compared our 
results with analytic calculations on very small data sets and found a good 
correspondence. We have also checked that without any data our estimate of the joint 
posterior distribution tallies with the chosen prior. 

8.2. Presentation of Posterior Distributions 
Extracting information from such a complex multidimensional posterior distribu- 

tion is a challenge. Although MCMC methods circumvent the restrictions of 
conventional numerical methods and provide all the raw information, insightful and 
disciplined summaries are needed, adapted to the particular context. In the paper we 
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have exploited some opportunities, involving relabelling, predictive densities, 
classification, etc. New summaries, especially regarding joint parameter distributions, 
should be developed. Post-processing is especially useful in view of the inherent 
identifiability problems connected with mixture estimation, which are crystallized 
in the contrast between the variability of parameter estimates plots, representing 
competing explanations, and the stability of predictive density plots. 

Our approach has revealed clear evidence of multimodality and skewness in 
posterior distributions, features whose presence is unsurprising in view of the small 
numbers of observations sometimes allocated to some components. We believe that 
this is a situation where using analytic approximations such as the Laplace approx- 
imation can be misleading. 

8.3. Other Prior Structures 
The interaction between the model and the number of components, in terms of 

both structural and functional characteristics of the prior, has been discussed and 
illustrated extensively. We believe that the hierarchical prior structure that we have 
introduced will be useful for many examples. Nevertheless, it is certainly not a black 
box procedure. Our default choice for hyperparameters is aimed at using mixtures 
for analysing heterogeneity rather than for semiparametric density estimation. 

A relationship between the prior distribution of the means and the posterior for k 
is to be expected, and indeed we have found sensitivity to values of 6.Instead of 
considering the {p,} to be independent, it might be more natural to model the notion 
of separation of the means explicitly by using dependent priors. This is one example 
of a feature which could be built into a joint prior distribution for {p,, a?},for which 
our computational approach would still be available. 

Dependent priors over the component parameters have been considered by several 
researchers when attempting to be non-informative in the mixture context. This 
essentially entails linking the components via global parameters, to which flat priors 
can be assigned since all the data points contribute to their estimation. Related but 
distinct approaches following this line are taken by Robert (1996), Mengersen and 
Robert (1996) and Gruet et al. (1996), scaling with respect to the component with 
largest variance, and Roeder and Wasserman (1997), placing Markov priors on the 
means. 

8.4. Generalizations of the Model 
Among related models to which we have extended our MCMC sampling strategy 

is the Escobar and West (1995) mixture model based on a Dirichlet process prior. 
The hierarchical structure is now somewhat different from that of equation (9,but 
the range of moves that are needed is broadly the same, and the elegant algebraic 
structure of the Dirichlet process model facilitates the evaluations needed to 
implement the split or combine moves. 

Our approach has so far been implemented only for normal mixtures, and the 
interpretation of the number of components is conditional on this being an 
appropriate distribution for all the subpopulations. If we take any phenotypic data 
like the enzyme data, the assumption of normality might not be supported by 
biological considerations. Indeed, the maximum likelihood procedure SKUMIX of 
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Maclean et al. (1976) for analysing mixtures does allow for different degrees of 
skewness through the use of a Box-Cox transformation, and in the original analysis 
of the enzyme data Bechtel et al. (1993) concluded that the data were fitted by 
two highly skewed components. One extension that we are considering is the 
development of a framework where variable numbers of components and variable 
skewness in the mixture distribution would be simultaneously considered. 

Another straightforward extension is to consider mixtures of discrete distributions, 
a model which is commonly used in nonparametric estimation and which is usually 
estimated via the EM algorithm separately for different numbers of mass points. 

Finally we emphasize the flexibility of our modelling for incorporating many of the 
extensions which arise when mixture estimation is used in different application 
contexts. In particular we aim to consider problems involving constraints on the 
weights for genetic analysis, modelling component means in terms of covariates and 
using mixtures for robust prior modelling in Bayesian analysis and for modelling 
unknown exposure distributions in measurement error problems. 
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DISCUSSION OF THE PAPER BY RICHARDSON AND GREEN 

Christian P. Robert (Centre de Recherche en Economie et Statistique, Malakoff): This paper 
constitutes a major step, not only in the Bayesian analysis of mixtures, but also in the modelling of ill- 
defined problems and in the substitution of mixtures to less parsimonious nonparametric approxima- 
tions. It will thus be followed by many applications and extensions in the near future, and I gladly 
propose the vote of thanks. My comments mainly address implementation issues. 

Reparameterization issues 
Mengersen and Robert (1996) have shown that mixture parameterizations have strong bearings at 

both informative and algorithmic levels. This also applies in the present setting since the split or merge 
moves depend on the parameterization, in both their formulation and through the Jacobian. In 
particular, a wrong type of dependence between components may induce changes in all parameters 
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simultaneously and complicate the acceptance probability. Another factor emphasizing the impor- 
tance of the parameterization is the identifiability constraint which, while it may create traps for the 
resulting Gibbs sampler (Diebolt and Robert, 1994), and slow convergence down, also allows for 
non-informative priors. 

The alternative of Mengersen and Robert (1996) to the independent parameterization is to use a 
global location-scale reference, where the parameters of the ith component are localperturbations of the 
previous parameters, i.e., in the normal case, 

and, in the exponential case, 

k-2

C (1 -PO). . .(1 -pi-])pi Exp(X0 . . . Xi) + (1 -PO). . . (1 - P ~ - ~ )  EX^(& . . . 
i=O 

with respect to the identifiability constraints ~i < 1 and Xi < 1 (i > 0). 
While being well adapted to split or merge moves, this parameterization also allows for improper 

non-informative distributions like 

Fig. 1 I .  Comparison of allocation maps, conditioning on k, with a fixed k allocation map, for the galaxy data set: 
each component is represented with a different tone of grey and columns in the map correspond to the successive 
allocations of a given observation along 100000 iterations (a histogram of the data set is provided at the top of the 
map, with the mixture based on the average parameters superimposed): (a) T =  20343, k = 6 (precision 0.100); 
(b) T =  38933, k = 7 (precision 0.100); (c) T = 30657, k = 8 (precision 0.100); (d) T = 25000; fixed k = 7 (precision 
0.100) 
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Mean (1)  Vanance (1) Var~ance(2) 

Vanance (3) 

Fig. 12. Indicators of convergence for a fixed number of components for the data set of Izenman and Sommer 
(1988), discussed in Robert and Mengersen (1995): (a) successive fits of the mixture with estimated parameters; (b) 
convergence of the est~mated parameters; (c) allocation maps with grey level indicating the current component at a 
given iteration; (d) evaluation of the central 11m1t theorem for the standardized sample of allocation averages 
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Fig. 12. (continued) 
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3 components 4 components 

Prop 0.3167 Prop 0.2107 

5 components 6 components 

Prop 0 1507 (a) Prop 0.1018 

Fig. 13. Indicators of convergence for a varying number of components for a simulated exponential sample of size 
350 with three components: (a) fits of mixtures with estimated parameters for the most likely values of k; (b) posterior 
distribution of k, with the sample of ks and the average curve both inset; (c) allocation map with grey level indicating 
the current component at a given iteration; (d) convergence of the (conditional) parameter averages for various 
values of k 
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Fig. 13. (continued) 
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and 

These priors are associated with well-defined posterior distributions (Robert and Titterington, 1996), 
and they bypass the (proper) prior specification of the present paper. Whereas the split move for a 
normal mixture is (for component i) 

the merge move is 

in the exponential case. Note also that the identifiability constraints are satisfied, that the other 
components are not modified and that the Jacobian is then 

Marginalization requirements 
A conceptual problem with the output of the algorithm is that the 'crude' estimator of the density, 

is not a mixture (in the parsimonious sense). 
Since one goal of mixture modelling is parsimony, expression (13) indeed falls far short and we advise 

a mixed, if not fully Bayesian, strategy to estimate the model: 

(a) derive the marginal distribution of k and construct an estimate k" based on this distribution; 
(b) estimate the parameters of a kT-component mixture, as in Robert and Mengersen (1995). 

The effect of this approximation can be checked in practice by comparing the resulting estimate with 
expression (13) and, if there is strong divergence, both steps can be repeated. 

As mentioned in the present paper, the evaluation based on the estimates of the parameters condi- 
tionally on k is very poor, since the role of the jth component and thus of the particular component 
parameters (pj,k, 6j,k, T , ~ )  varies from iteration to iteration, as shown by Fig. 11. That the corresponding 
density estimates perform much better is not very surprising, given the weak identifiability of mixture 
parameters, but this only helps in controlling convergence. 

Control of convergence 
The control of convergence of a Markov chain Monte Carlo (MCMC) algorithm for fixed k 

estimation is highly complex, and the difficulty increases in the current set-up. Fig. 12 illustrates a 
control sheet used for fixed ks, the last indicator being based on the asymptotic normality of the 
standardized average allocated components, with means replaced by Ra~Blackwellized approxima- 
tions and averages computed with batch size 10 (see Robert et al. (1997) for details). 

These tools cannot be used without modification for variable component settings, since the meaning 
of individual components is vacuous, as stressed above. Parameter averages are thus slow to converge 
and corresponding fits by estimated mixtures are usually poor, whereas allocation maps do not exhibit 
any stationary feature, as shown by Fig. 13(b). Although (conditional) densities are more stationary 
(but require huge storage capacities), an evaluation based on k only should (again) provide a viable 
alternative. 

Murray Aitkin (University of Newcastle): It is a pleasure to second the vote of thanks for this 
coruscating paper. With effortless and almost omand skill, the authors whip through the awesome 
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complexities of Bayesian mixture analysis. Peter Green's previous work in iterative weighted least 
squares and GLIM demonstrated his computational power in a classical framework; this paper shows 
equally impressive power in a Bayesian framework. 

My concerns with the paper are twofold: does the much greater complexity of the Bayesian mixture 
analysis really pay off, and does the Bayesian formulation overlook a much broader formulation of 
mixture analysis? 

On the first point, I am struck by the complexity of equation (5) for the joint distribution of eight 
quantities, compared with that of equation (1) for the distribution of the data y in terms of two. This 
complexity is truly reflected in the technical difficulty of the analysis. Classical maximum likelihood 
analyses have well-known difficulties of their own, as the authors note in Section 1. The issue of the 
number of components in the mixture remains largely unsolved in this framework, despite the advances 
referenced. Local maxima of the likelihood are well known to occur, though this is no longer a serious 
computational problem. But it seems to me that maximum likelihood (ML) analyses of the mixture 
model provide much of the information of the Bayes analysis, at vastly smaller computational and 
conceptual cost. I will elaborate on this point in a moment, but I want first to voice the second concern. 

A central point in the paper is the real existence of a finite mixture. The authors' attention to posterior 
distributions for the component distribution parameters contrasts with the usual ML analysis which 
provides very little information beyond ML estimates and (unreliable) standard errors, though, as the 
authors' Fig. 4 shows, the interpretation of these posteriors is not at all straightforward. Profile 
likelihoods could also be constructed for these parameters, but this is not a straightforward problem 
either, for similar reasons of component labelling. The authors refer briefly in Section 2.1 to a second 
use of mixture models, as parsimonious representations of a non-standard density, the object of 
inference being some kind of semiparametric density estimation. But a much broader mixture 
framework exists. Consider an arbitrary mixture of normal distributions 

where mixing is over the means p with unknown density n(p). Given observations yl . . . y,, it is well 
known that the nonparametric maximum likelihood (NPML) estimate off is the finite mixture density 

where Z?, j&, jik and 6 can be determined by standard finite mixture ML methods (Laird, 1978; Lindsay, 
1983; Aitkin, 1996). Thus finite mixtures arise naturally, in an ML framework, as ML kernel density 
estimates. Mixing can be over u as well: 

is estimated nonparametrically by 

Mixtures of normals with different variances have additional difficulties, associated with boundary 
values of uk and corresponding 'infinite spikes' in the likelihood, but these are virtual rather than real, 
corresponding to failures of the normal density to represent the true likelihood as u + 0. These 
difficulties will also affect Bayes analyses, though to a much lesser extent if the prior distributions for u 
are kept away from 0. The NPML approach is remarkably flexible and powerful; examples are given in 
Aitkin (1996, 1997). 

An important issue in NPML estimation is that the discrete estimate of ~ ( p )  is only an estimate, and 
the true distribution may be continuous. It is prudent to be aware of this possibility: we should not 
'reify' finite mixtures without strong prior evidence of their reality. For this reason I am less convinced 
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than the authors of the importance of the posterior distributions for individual component parameters: 
one needs a strong act of faith to believe in the existence of these components. The nonparametric 
kernel density estimate seems to me in general of greater interest, as an estimate of the distribution of 
the observable y.  Aitkin (1996) gives a more general discussion of this approach in generalized linear 
models; here the mixing distribution is essentially a nuisance function, and interest centres on the 
structural model parameters, which are null in the authors' examples. 

Let me finally compare the NPML approach with the authors' analysis. I shall restrict the comparison 
to the enzyme data. (The lake acidity data have a stratified sample design which required some form of 
weighting in the original analysis. Do the authors allow for this in their analysis?) 

Restricting first the variance to be constant, the NPML estimate of the p-distribution is a four-point 
distribution. Thus the data effectively support only four components: all mixtures with more 
components degenerate in maximized likelihood to the four-component mixture. Table 3 gives 
parameter estimates for one, two, three and four components, with the corresponding deviances. 
Allowing mixing on both p and a also gives a four-point distribution; Table 3 also gives the 
corresponding parameter estimates and deviances. Increasing the number of components above four in 
this case gives boundary estimates of standard deviations (the boundary value being fixed at a = 0.1) 
and deviances which are a function of the boundary value. Table 3 gives the estimates for five 
components. Comparisons of fixed and varying a-models with the same number of components may be 
made through the usual likelihood ratio test. There is little evidence of the need for varying a for the 
fourcomponent mixture. 

A minor point in the paper is the difficulty of comparing densities with histograms. I prefer the 
comparison of fitted and empirical cumulative density functions (CDFs), in which there is no loss of 
information. Fig. 14 shows the empirical CDF of the enzyme data, together with the CDFs of the four- 
component fixed a-and three-component varying a-models, which have the same number of parameters 

TABLE 3 
Mixture M L  estimates for the enzyme data 

No .  of k bk &k 7;1. Deviance 
components K 

I 	 1 -0.997 1.048 1.000 718.24 

2 	 1 0.213 0'383 605.442 - 1,746) 0.437 0.617 
1 0.235 0.320 0'374 588.942 - 1.731 0.498 0.626 

3 	 1 0.2191 0.381 
2 - 1.707 0.388 0.605 579.41 
3 -3.366 0.014 
1 0.23 1 0.323 0.376 
2 - 1.704 0.429 0.6 12 572.78 
3 -3.498 0.318 0.0 12 

4 	 1 0.227 0.378 

2 - 1.526 


0.332 0'409 572.213 -2.075 0.201 
4 -3.483 0.012 
1 0.506 0.259 0.151 
2 0.052 0.201 

0'223 568.083 - 1.701 0.434 0.615 
4 -3.504 0.314 0.01 1 

5 	 1 0.292 0.325 0.307 
2 -0.029 0 . l t  0.069 
3 - 1.662 0.396 0.584 563.93t 
4 -2.51 1 0.1 0.027 
5 -3.433 0.355 0.013 

?Based on a boundary value of 0 = 0.1. 
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-3 -2 -1 0 1 

Fig. 14. (-) and three- (0 )Empirical and four-component (..........)CDFs for the enzyme data 


-3 -2 1 0 1 

Fig. 15. CDF limits (0 ) and three- (---) and four-component (..........) CDFs for the enzyme data 
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and almost the same deviance. Fig. 15 gives a pointwise 95% confidence band for the true CDF based 
on the usual binomial interval, and the two fitted CDFs. Both fitted CDFs provide a close fit to the 
observed data. 

In conclusion I have much pleasure in seconding the vote of thanks for a stimulating paper. 

The vote of thanks was passed by acclamation. 

D. R. Cox (University of Oxford): It is a pleasure to congratulate Dr Richardson and Professor Green 
on an impressive contribution. A possible further application is to problems in spectroscopy where a 
spectrum is to be decomposed into a mixture of an unknown number of Gaussian or Lorenzian 
components. Here the physical basis for the mixture model is reasonably firm. Even then I would be 
rather concerned at the possible overinterpretation that this, like other formally powerful methods, 
invites. 

In Table 2 it is concluded from 82 irregularly distributed values well fitted by a mixture of four 
normals that the probability is 0.109 that eight normals really apply, etc. What does this really mean? 
This is partly but not entirely an issue of robustness of formulation of all parts of the model. If there 
were a physical theory suggesting a mixture to be appropriate, a minimal formulation leading to a 
confidence interval argument could in principle give only lower confidence limits for k. The authors' 
approach assumes more and therefore naturally gives stronger conclusions: but so much stronger? 

The further assumptions are partly quantitative and partly structural. Seven tuning constants are 
needed to run the procedure, interpreted as constants in prior distributions. But these seven constants 
are calculated from the data. I conjecture that some of these can be regarded as roughly maximum 
likelihood estimates of parameters that are very poorly determined but also approximately orthogonal 
to the parameters of interest. From a Bayesian perspective they are aspects of a prior distribution, deter- 
mined from the data. There is nothing wrong in suitable cases in the choice of prior being influenced by 
the data, either for formal reasons as in the Bayesian treatment of the transformation problem (Box and 
Cox, 1964) or because seeing the data modifies the view taken of other information. This does, or 
should, affect the meaning of the answers. Put differently had these values been given by reliable 
substantive theory the answers would have been more meaningful. Probably, however, the more delicate 
assumptions are structural, especially perhaps the assumption that the component means are derived 
from normal order statistics, an assumption more critical the larger the value of k. 

Would the authors agree with the following speculations? 

(a) For models with small well fitting values of k the posterior intervals for component parameters 
have reasonable coverage properties. 

(b) The posterior probabilities 	 attached to the larger values of k are virtually substantively 
meaningless. 

(c) More generally in similar applications conclusions that have no approximate confidence-interval- 
like interpretation will not make sense unless the prior distributions represent genuine new well- 
based information consistent with the data. 

In many areas of statistics there are fairly strong protections partly formal and partly informal 
against overinterpretation. It may be that we are sometimes overcautious but some protection does 
seem necessary. 

Matthew Stephens (University of Oxford): I restrict my comments on this stimulating paper to the 
problem of 'label switching' described in Section 4.3.1, conditioning on a fixed value of k. In some cases 
we have found that the 'obvious' relabellings of the sample points according to the order of the means 
or the order of the variances are not adequate and more sophisticated relabelling strategies are 
necessary. To illustrate this consider a Bayesian approach to estimation of parameters 17 = (w ,  p, u2) 
given a vague prior and 100 observations from the mixture density 

where N (x; p, u2) denotes the probability density function of the normal distribution with mean p and 
variance u2. We use a Gibbs sampler to obtain a sample of size 10000 from the posterior distribution of 
the parameters given the true model. 

Fig. 16 shows the sampled values of the means p = ( p l ,  p2, p3) and label switching is in evidence as 
P I ,  p2 and p3 are switched between the means near 0 (low variance), 5 (high variance) and 5 (low 
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Fig. 16. Means ( P I ,  p2, p3) sampled from the posterior by using the Gibbs sampler: (a) original sample; (b) 
relabelled sample 

variance). Brief investigations confirmed that relabelling according to p l  < p2 < p3 fails to separate the 
two components with mean 5 properly, whereas labelling according to < u: < u: fails to distinguish 
the two components with variance 1. 

So by what criteria should we relabel our sample? We suggest that our relabelled sample should 
resemble a sample from a distribution in which the parameters of interest have unimodal marginal 
distributions. In this case we tried relabelling the sample so that it gives a good fit to some member of 
the natural conjugate family for the parameters 

k 

g(q; a, m, 1, u, n) = V(W; a) r]: ZG(cf; mi, It)N(pi; Ui, d l n i )  (14)
,=I 

where V(w; a) is the density of the Dirichlet distribution with parameter a = (a,, . . ., ak) and 
ZG(a2; mi, 1,) is the density function of the inverse gamma distribution with parameters mi and 1,. This 
was achieved as follows. 

Starting with the labelling given by the output of the Gibbs sampler iterate the following steps until 
we reach a relabelling which is unchanged by the iterations, or some upper limit on the number of 
iterations is reached: 

(a) fit g(q; a, m, I, u, n) to the current labelled sample (by maximum likelihood say) to obtain an 
estimate (6, I,I, 6, A) for (a, m,l, u, n); 

(b) for the ith sample point q n  (I - 1, . . ., 10000), choose the relabelling u,(q(") which maximizes 
g{ai(q'"); 6,I,1, 6, A). 

When applied to our example this method converges to a fixed labelling in 10 iterations. It seems from 
examination of the relabelled means (Fig. 16) that the method has been successful in selecting an 
appropriate relabelling, and this impression is reinforced by investigation of the relabelled mixture 
proportions and variances. By suitable choice of family (14) this method can be applied to mixtures of 
distributions other than normal. 

Athanase Polymenis (University of Glasgow): I would like to mention a non-Bayesian method that is 
a modification of the minimum information ratio (MIR) method of Windham and Cutler (1992), and 



DISCUSSION O F  THE PAPER BY RICHARDSON AND GREEN 

TABLE 4 

Frequencies of selected values of k from 100 repetitions by using the basic MIR 


method and the modijied MIR methodt 


u Method Frequencies for the follo~ving values of k: 

k = 2  k = 3  k = 4  k = 5  

1.50 

1.33 

1 

0.67 

MIR 
Modified MIR 

MIR 
Modified MIR 

MIR 
Modified MIR 

MIR 
Modified MIR 

55 
45 
48 
29 
38 

3 
25 
0 

42 
54 
47 
67 
62 
94 
75 
94 

3 
1 
5 
4 
0 
3 
0 
6 

0 
0 
0 
0 
0 
0 
0 
0 

+The correct value is k = 3. 

that I shall call the modified MIR method. If I is the Fisher information matrix for the mixture data 
and I, the Fisher information matrix for the associated complete data (i.e. where the subpopulation 
memberships are known), then the MIR is defined as the magnitude of the smallest eigenvalue of the 
information ratio matrix IC'.The MIR can also be expressed as 1 minus the EM convergence rate, and 
this result enables numerical calculation of the MIR values. Then, Windham and Cutler's method is to 
fit mixtures with various numbers of components and to choose the model for which the largest MIR is 
obtained. 

The modification is based on a remark in Windham and Cutler (1992) that as soon as the model is 
overfitted the Fisher information matrix Ibecomes close to singular, so that the MIR drops suddenly to 
a value close to 0. Our method works as follows. Let k denote the number of components. Then, for 
each of the replicated samples we compare the ratio MIR(k + l)/MIR(k) with the corresponding ratios 
arising when we generate 99 bootstrap samples from the fitted k-component model; if this ratio is 
'atypically large' then we increase k by 1 and repeat the procedure; otherwise we accept the current k as 
the solution. 

Our simulation results have shown a distinct improvement in performance, relative to the basic MIR 
method. Here we briefly illustrate the modified MIR method on an artificial example from Windham 
and Cutler (1992), involving a mixture of k = 3 equally weighted bivariate normal components, with 
means at the vertices of an equilateral triangle and with spread measured by a parameter a; see 
Windham and Cutler (1992) for full details. We repeated their experiment, involving 100 replications 
and Table 4 compares the MIR and modified MIR in terms of how often a particular value of k was 
chosen; the modified MIR method is noticeably superior. 

Walter R. Gilks (Medical Research Council Biostatistics Unit, Cambridge): The models and methods 
described in this paper are widely applicable. I myself struggled with similar models, in the pre- 
reversible-jump days of 1988. My task was to find clusters in patterns of reactivity of monoclonal 
antibodies. Typically, each data set contained around 60 antibodies, the observations on each antibody 
were 50 dimensional and around 20 antibody clusters were present. Each cluster represented an antigen 
(a protein) on the surface of white blood cells. My aim was to use Gibbs sampling to perform a Bayesian 
cluster analysis. Being stuck in a fixed dimensional world, my approach was to fix the number of clusters 
(groups) k, and to allow the Gibbs sampler to produce empty clusters. Thus the number of non-empty 
clusters was variable. This seemed fine in theory, but the empty clusters, having zero mass, would tend 
to fly wildly about the parameter space (when updating their location parameters p), giving little 
opportunity for wayward antibodies to hop aboard. Thus it was difficult for big clusters to break up or 
new ones to form, and mixing was generally poor. This was, I believe, the first published application of 
Markov chain Monte Carlo (MCMC) methods to mixture models (Gilks et al., 1989). Now, the 
methodology of the present paper provides just what I needed: the ability to design proposals to split, 
combine, create and kill clusters. Notwithstanding the rapid mixing of the samplers described in the 
present paper, I wonder whether this technology could produce rapid mixing in 50-dimensional prob- 
lems, without much slow and painful experimentation. 
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TABLE 5 

Posterior distribution for k for the galaxy data 


An interesting extension to the models described in the present paper, which I had thought about in 
connection with the monoclonal antibody application, but was never able to implement, is to allow for a 
hierarchy of clusters: each cluster represents a cell surface antigen, and each subcluster represents an 
epitope (an outward projection) on the antigen. Some clusters will have subclusters, and others not. This 
would involve two sources of dimensional variability, and proposal distributions to split, combine, 
create and kill subclusters within clusters would be required. 

I am not convinced by the authors' desire to produce a unique labelling of the groups. It is 
unnecessary for valid Bayesian inference concerning identifiable quantities; it worsens mixing in the 
MCMC algorithm; it is difficult to achieve in any meaningful way, especially in high dimensions, and it 
is therefore of dubious explanatory or predictive value. In the monoclonal antibody application, it is 
only the group members which lend meaning to the individual clusters. 

Agostino Nobiie (University of Bristol): In a very stimulating paper, Richardson and Green have 
provided a full Bayesian analysis of finite mixtures, exploiting a new generation of Markov chain Monte 
Carlo (MCMC) samplers defined on the union of parameters-allocations subspaces with varying 
number of mixture components. 

Before such new samplers, the obvious alternative consisted of evaluating the marginal density of the 
data under each mixture model pblk) ,  then using the prior on k and Bayes theorem to yield the 
posterior p(k1y). This was the approach taken in Nobile (1 994). The model considered there was slightly 
different from that entertained by Richardson and Green, with fixed P and a natural conjugate prior 
on the parameter 8: this permitted integrating w and 0 out of the problem and running the MCMC 
samplers (one for each value of k) on the space of allocations z. In Table 5 I report the posterior of k, 
with Monte Carlo standard errors SE, for the galaxy data set. 

As noted above, the models do not match exactly; thus a and P were chosen to mimic some 
characteristics of Richardson and Green's prior. None-the-less the estimate of the posterior of k is 
similar to that reported in their Table I .  Since they report no measure of the Monte Carlo variability of 
their estimates, I am led to believe that it is negligible. I consider this to be a major advantage of their 
procedure, over the method that I have illustrated above. 

I would also like to comment briefly on the handling of the labelling problem. Richardson and Green 
clearly state that they restrict their attention to the case 'where we do not have (or want to use) strong 
prior information on the mixture parameters'. In this case requiring pl  < . . . < pk is legitimate. In 
general, when prior information is available, its use may run contrary to the constraint. To exemplify, 
suppose that we know that if there are only two components one weight is much larger than the other. 
Then, use of this information requires us to assign a priori the components' labels and this assignment 
may be at odds with p1 < p2. I suggest including all prior information that might help to identify the 
model, while deferring to the post-processing stage the decision on whether and which constraints to 
impose. The necessary modification of the authors' sampler is straightforward. 

I thoroughly enjoyed the paper, particularly the inventive displays of the complex posterior 
distribution employed by Richardson and Green, and I applaud their achievement. 

Matthew Hodgson (University of Bristol): My comments concern the difficulties of meaningfully 
summarizing information in a posterior sample of functions. They originate from my experience in 
signal restoration in an ion channel, in which the signal is a binary step function. An initial estimate was 
obtained by thresholding the simulated posterior mean function at 50%, so that the estimated marginal 
modal value was taken at each point. This estimate performed well in misclassification terms but had an 
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atypically low number of discontinuities (henceforth termed 'switches') compared with the posterior 
distribution of this number. Only switches with strong posterior support survived. 

Consider more complicated estimates making better use of all the information contained in the 
sampler output. If we condition on a given number of switches s, perhaps the posterior median, we must 
then select the s switch times tl < t 2  < ... < t,. We might then think of choosing the mode of the joint 
density in s-dimensional space. Suppose, however, that there are S > s switch locations with non- 
negligible posterior support; then there may be of the order of 

local maxima in the joint density! Choosing the highest peak becomes rather arbitrary if at all 
practicable. The marginal densities of the switch times will be multimodal, making a meaningful s- 
dimensional summary using them problematic. 

I now describe an algorithm to construct a signal estimate having a given number of switches s. 
Choose cu E [O, 0.51, and assign one or other possible value to each point if and only if the estimated 
misclassification probability is not greater than a. This initial stage generates 'uncertainty intervals' 
containing unclassified points and also determines a certain minimal number of switches r. To make up 
the deficit of s - r switches we now decide how many extra switch pairs will be assigned to each 
uncertainty interval. We calculate the mean number of extra pairs in each interval by subsampling from 
the functions taking the 'correct' values at both ends, rank the intervals by this mean and assign an extra 
pair to the top (s - r)/2 intervals. Having decided the number of switches within each interval, we must 
suitably summarize their positions. For each interval, we use the mean positions conditional on the 
'correct' function values at both ends and the 'correct' number of switches inside. This algorithm 
appears robust to the choice of cu below a 'critical value', typically around 0.3, beyond which it fails. 
Resulting estimates have only slightly greater misclassification rates than the original threshold 
estimate. 

A. O'Hagan (University of Nottingham): This is a superb paper. To see the reversible jump Monte 
Carlo method flexing its muscles in this way is truly awe inspiring. My comments concern classification. 
Although the authors did not really talk about it, there has been much discussion about classification 
and the fact that a labelling problem is associated with it. An off-thecuff thought is that one way round 
this might be to look at pairs of observations, and simply to count how many times they are classified 
into the same mixture component. One obtains a nearness measure which could be used descriptively or 
could lead into clustering. I wonder whether this might be helpful. 

Nicholas T. Longford (De Montfort University, Leicester): I would like to mention the EM algorithm, 
the principal tool for solving the mixture problem in a non-Bayesian formulation, and in particular its 
alternating expectation-conditional maximization (AECM) extension due to Meng and van Dyk (1997). 
In the AECM algorithm the unknown number of components can be accommodated integrally as a 
second layer of conditioning. 

The full potential (and appeal) of Bayesian estimation would be realized if the process of defining the 
prior was more meaningful, e.g. based on (genuine) prior information. In the three examples, the 
definitions of prior have a somewhat ideological connotation rather than serving the originally intended 
purpose. 

I would propose to side-step the issue of labelling by defining symmetric summaries, such as 
(multivariate) sample moments of up to the lowest order, from which the estimates can be recovered. 
These moments can be defined to promote their orthogonality and they may be useful in their own 
interpretive right. 

A. P. Dawid (University College London): I would like to congratulate the authors on an impressive 
piece of work. I was concerned, though, about the labelling issue: this really only arises because we insist 
on trying to identify things which are essentially arbitrary. 

As Professor Aitkin has pointed out, the model is essentially a random mixture model. For the 
normal case the 'parameter' is a mixing measure over (p, u) space. The authors take a discrete mixing 
measure, which can be represented by a finite number of points, with possibly different masses at each 
point. So, the prior distribution is really just a marked point process in (p, u) space. If there are many 
points in the process, perhaps variable in number, and we do not specify which one we are talking 
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about, it is pointless to ask where it is, or to try to express our uncertainty about its location: this is the 
labelling issue. But, if we think of the point process as the basic prior structure, we might think of other 
ways of describing it. 

This approach also suggests that some of the established theory of point processes might be used as 
an alternative to the authors' prior structure. For example, perhaps Markov point processes might be 
realistic and lead to elegant analyses. 

The following contributions were received in writing after the meeting. 

A. C. Atkinson (London School of Economics and Political Science): I have three comments on this 
impressive display of computational skill in the pursuit of data analysis. 

(a) The paper contains many examples of S-PLUS graphics. But, like Professor Aitkin, 	I find it 
difficult to judge goodness of fit from histograms. Professor Aitkin suggested plots of cumulative 
distribution functions. These also are not ideal, as they are bounded at 0 and 1. For problems 
with one component it is standard to use normal Q-Q-plots. Of course, such plots might be far 
from straight unless the correct plotting positions were calculated for the fitted k-component 
distribution. An alternative would be to simulate several samples (there is already much 
simulation in the paper) and to use a simulation envelope. Unlike the standard envelopes of 
Atkinson (1985), here the fitted distribution would have to be used in the simulation. Have the 
authors any experience of using plots to help to decide the number of components in their data? 

(b) The measure of acidity in the lakes example takes values between about 4 and 7 and is pre- 
sumably the pH value. The authors suggest a log-transformation. Recently (Atkinson, 1995) 
I studied the transformation of multivariate data and found an example in which the log- 
transformation of pH was also indicated. Since pH is already the logarithm of the hydrogen ion 
concentration, I was rather uneasy. Do the authors have any suggestions for other models? 

(c) I was surprised to learn after the talk that the numerical calculations were done in Fortran. It 
was in fact my experience with the calculations on multivariate transformations that led me to 
abandon Fortran. More recent work has been done in GAUSS. Do the authors have any recom- 
mendation? 

Jo& M. Bernardo (Universitat de Valkncia): The authors are to be congratulated for providing 
another instance of the power and flexibility of the complete Bayesian analysis of complex models, 
which they make possible in a very important, difficult context, by using cutting edge Markov chain 
Monte Carlo techniques. There are, however, a couple of points that I would like to make. 

Mixtures and model choice 
One of the frequent uses of mixtures is model choice. The univariate normal framework discussed in 

the paper could presumably be used to obtain the authors' solution to stylized problems like 'testing' 
p = b ,  say, by using a mixture of N(xlb, no) and N(xIpi, u,),i = 1, . . ., k, where everything but b is 
unknown, and obtaining the posterior weight of N(xlpo, uo). I would like to see this run with some 
simulated data and compared with competing answers such as fractional Bayes factors (O'Hagan, 1995) 
or intrinsic Bayes factors (Berger and Pericchi, 1996). I suspect that the authors' solution may seriously 
depend on the prior chosen. 

'Weak' prior information 
The 'default' prior which the authors suggest may be fine for a class of problems, but it may be 

dangerous and misleading to suggest it as a general 'weak' information prior, for its consequences may 
crucially depend on the particular problem of inference that one chooses to study. For instance, I would 
expect that the proposed default prior would provide an unacceptable posterior for, say, 

Again, this could easily be checked by running the algorithm with simulated data. 

Really, both points are possible examples of a more general problem: in any Bayesian analysis, one is 
forced either to fine-tune a context-dependent subjective personal prior-a formidable task in complex 
problems, the result of which other colleagues might possibly disagree with-or to propose a 'default' 
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prior which is bound to depend on the specific inference problem that is envisaged; an appropriate 
'universal default' prior simply does not exist in any multiparameter model-see Bernardo (1997) for a 
recent discussion. The examples in the paper indicate that the default prior suggested for a mixture of 
normal models behaves sensibly in some classes of problems; it would be important for its users to know 
the conditions under which this might not be the case. 

Julian Besag (University of Washington, Seattle): Green (1995) represents a breakthrough in the 
development of Markov chain Monte Carlo (MCMC) methodology and is already commanding 
widespread attention. The splendid paper by Sylvia Richardson and Peter Green demonstrates the 
power of the approach in just one of its many areas of application. Perhaps the main difficulty is in 
devising suitable moves and the authors negotiate this with considerable skill. 

The following may possibly provide a slightly different perspective on reversible jumps. Consider a 
collection of target distributions pk(xk), indexed by k = 1, . . ., K. Here, according to context, k might 
identify the mixture composition (as in the present paper), the number of changepoints, the number of 
points in a spatial pattern, and so on. The pk can have different (fixed) dimensions and each may be 
composed of both discrete and continuous components. Now define a 'universal' target distribution, 

where x = (xi, . . ., XK) and eachfi is a fixed distribution, perhaps independent uniform, with respect to 
the same measure as pi. Here, p(k) is a prior distribution or is implicit in the problem at hand, as would 
be usual for point processes. Simulation of p(x, k) can then be addressed in terms of a Metropolis- 
Hastings algorithm for a distribution of fixed dimension, in which moves from (x, k) to (x', kt) are 
proposed with xj =x, for I # k, k'. If k' # k, new xk and xk, are proposed, the former fromji  and the 
latter usually closely related to xk. It is at this stage that one needs to ensure dimension matching and 
the existence of reverse moves but these arise in a natural fashion, together with the appropriate 
Jacobian. Note that the ji cancel out of the acceptance ratios and will be subject to eventual 
marginalization from the MCMC output, so they need never be sampled, nor even specified. Although k 
must be discrete, the existence of K is irrelevant. Whether or not this treatment is found helpful is 
perhaps mostly a matter of taste. 

Multigrid MCMC sampling (e.g. Sokal(1989)) provides another special case of reversible jumps and 
was devised to combat severe multimodality in spatial systems in statistical physics. To give the flavour, 
in a more general setting, suppose one wishes to study a difficult distribution h(xo). Let xi, . . ., XK 

denote 'coarsenings' of xo, which is now an additional component in x, and replace pk(xk) above by 
h(xo)pk(xklxo).Thepk are chosen so that the xk retain some of the characteristics of xo and can be used 
to generate viable but radically different proposals xb. There are some similarities to the split-combine 
moves in the paper. Possible applications include the construction of exact MCMC tests (Besag and 
Clifford, 1989, 1991) for hierarchical models in multidimensional contingency tables when standard 
algorithms are too sluggish. 

S. P. Brooks (University of Bristol): I would first like to congratulate the authors on a stimulating and 
timely presentation of their work. It is comforting to see them evaluating the performance of their 
algorithm by examining its mixing properties. Their approach, which involves looking first at the mixing 
of the k-parameter and then at the mixing within k, certainly seems the most sensible approach. 
However, we might make the examination of the mixing of these algorithms more rigorous, improving 
on raw trace plots and plots of the ergodic average, by using any of the multitude of diagnostics 
proposed in the literature. 

To assess the convergence of k is a very simple matter, since there are plenty of univariate diagnostic 
methods, such as those proposed by Gelman and Rubin (1992), Raftery and Lewis (1992), Geweke 
(1992) and Yu (1995). In fact, contrary to the authors' interpretation of Fig. 7, using any of these 
methods on the raw output (kindly provided by the authors) suggests that convergence of k has not yet 
been achieved, though this is disputed by the method of Heidelberger and Welch (1983). The problem of 
the assessment of convergence (mixing) within k is a little more complex, but since k is generally fairly 
small several multivariate methods might be appropriate, such as those proposed by Roberts (1992), 
Brooks et al. (1997), Brooks and Gelman (1996), Liu et al. (1993) and Ritter and Tanner (1992). 

Using such methods, one might assess the convergence of k and then, once k appears to have reached 
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stationarity, look at convergence within each k. However, it is very likely that, even in a long run, some 
values of k will not be visited very often and thus the assessment of convergence within such k is almost 
impossible. Thus, a problem is associated with the selection of k-values to monitor. 

Instead, we might not split the output in this way at all but apply the multivariate diagnostics to all 
parameters simultaneously. However, in the reversible jump Markov chain Monte Carlo case we do not 
know how many parameters there are, since k is allowed to vary. We could assume that all possible k- 
values have been seen in our single long run and assess convergence on that basis. But this is wrong: 
what about the k that we have not seen? 

In fact, this is not a problem in the case presented in this paper, since the prior confines k to be less 
than k,,, = 30. Thus, we know exactly how many parameters there are. But what happens if we had a 
Poisson prior, for example? Clearly the assessment of convergence for this powerful technique is a 
serious issue; I would welcome the authors' views. 

Simon Byers and Adrian Raftery (University of Washington, Seattle): We would like to thank Dr 
Richardson and Professor Green for their excellent exposition of the reversible jump Markov chain 
Monte Carlo (RJMCMC) method and of methodologies for exploring the rich output. 

The RJMCMC method can be applied in two sometimes distinct contexts. In one, the underlying 
mixture (or other) model has a direct scientific motivation, and estimating the number of components 
and their means and variances is of primary interest. In the other context, the model dimension and 
parameters are not the quantities of direct interest. Green's (1995) image segmentation problem is of 
this type: there a synthetic Voronoi tiling was used to partition an image into two parts (feature and 
background). 

We have been applying the RJMCMC method to a similar problem of the latter type: partitioning a 
spatial point process (not an image) into high density and low density regions. This arises, for example, 
in seismic fault location and mine-field detection (Byers and Raftery, 1996; Dasgupta and Raftery, 1995; 
Muise and Smith, 1992). We use a set of artificial points to generate a Voronoi tiling which partitions 
the region analysed; the number and position of the tiles is not directly relevant to the question of 
interest. In such cases, it might not be essential to allow the model dimension (here determined by the 
number of tiles) to vary; doing so will be justified only if it leads to a 'better' algorithm. When making 
this decision, the additional costs of RJMCMC relative to ordinary MCMC sampling should not be 
ignored (harder algebra; more complex programs; higher probability of errors; possibly lower accep- 
tance rates). 

It is stated in the paper that RJMCMC followed by marginalization may provide better mixing than 
the fixed dimension algorithm. However, the very low acceptance rate of insertion and deletion of tiles 
in our example makes the RJMCMC algorithm somewhat slow. We have found that using a fixed but 
large number of tiles and simply moving tile generators by ordinary MCMC sampling gives much more 
frequent movement. Nevertheless, an occasional RJ move might be good to make a large jump. Perhaps 
a judicious combination of the two would be best, possibly changing dimension more often during the 
bum-in. 

Gilles Celeux (Institut Nationale de Recherche en Informatique et Automatique, RhBnes-Alpes): 
Richardson and Green are among the few researchers who do not minimize the label switching problem 
in Bayesian analysis of mixtures. My comment concerns this problem. The mixture vector parameter 
(w, 8) is invariant under the permutations of the k labels of the components. As a consequence, the 
posterior distribution p(w, Bly) has (theoretically) k! intrinsic and symmetric modes. This posterior 
distribution is not interpretable in its own terms and there is a need to isolate one of its k! parts relative 
to a unique labelling. Label switching occurs when some labels of the mixture components permute. 

A simple idea to deal with the labelling problem when running a Markov chain Monte Carlo (MCMC) 
algorithm is to force unique labelling by putting constraints to avoid label switching. Richardson and 
Green experiment with simple constraints. Mostly, they consider in a natural way that the means pk are 
in increasing order. They also consider other constraints such as ordering the variances &. 

Forcing constraints for unique labelling when running an MCMC algorithm is not a good way to 
circumvent the problem. For instance, ordering the means pk can modify greatly the shape of the 
posterior distribution restricted to this unique labelling. The resulting posterior distribution can be 
expected to overweight the regions near the boundaries of the domain defined by the inequalities 
p1 < p2 < . . . < pk. This behaviour has been observed in unpublished numerical experiments, designed 
when preparing Celeux et al. (1996). As a consequence the posterior mean of 0 can be severely biased for 
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poorly separated components. Moreover, choosing labelling constraints for multivariate mixtures is 
difficult. 

A better way to deal with the label switching problem is to run MCMC algorithms without setting 
any constraint on the simulation parameters and then to permute the MCMC results by using data 
analysis tools. Stephens (1996) proposes an algorithm acting in such a way in a Bayesian spirit. A 
simpler way, with which we have experimented successfully, is to derive the labelling from the k! clusters 
obtained by the K-means algorithm performed on the normalized MCMC results. 

But these solutions are difficult to incorporate in the reversible jump algorithm of Richardson and 
Green. In conclusion the label switching problem is a pitfall of Bayesian analysis of mixtures which has 
not yet been addressed satisfactorily and deserves more attention in the future. 

R. C. H. Cheng and W. B. Liu (University of Kent, Canterbury): In the frequentist approach, if the 
model being fitted contains more components than that from which the data are actually drawn, then 
individual models are represented in the parameter space, not by a point, but by a subset (discussed for 
example by Feng and McCulloch (1996)). For  instance if a two-component model 

i: 	 fittedJo data drawn from a single componentflx, Oo), then the estimation process can yield estimates 
01 and 02 both close to 00 with & (unstably) between 0 and 1. A test is thus needed to check whether the 
components fitted are genuinely different; otherwise the estimated number of components needed can be 
erroneously high. Is there any reason why this same problem should not occur with the Bayesian 
approach (especially when there is great prior uncertainty about the number of components needed)? 
We are unclear how the authors' method addresses this issue. Thus for example in Table 1 for the 
enzyme data we suspect that the cases k = 4 where p(4) = 0.317 and k = 5 where p(5) = 0.206 are 
only obtained with two or  more components very similar. They would then simply be alternative 
manifestations of the same case as k = 3 where p(3) = 0.290 and so should be subsumed into it and not 
treated separately. If this is the case, one would have p(k = 3) = 0.813, a much more conclusive 
inference, especially in the light of the practical application where the possibility that k = 3 is of especial 
interest. 

Yung-Hsin Chien and Edward I. George (University of Texas, Austin): We would like to  offer our 
congratulations to the authors for succeeding in providing a computable fully Bayesian approach for 
mixture modelling. This paper is a wonderful example of the huge potential for Bayesian modelling 
which continues to be unleashed by Markov chain Monte Carlo methods. Rather than criticize this 
excellent paper, we would like to discuss two possibilities for further development. 

First, although we agree that fine-tuning of the proposal distribution may unduly increase compu- 
tational costs, we find it irresistible to suggest a refinement of the combine proposal. Currently, the 
combine proposal begins by randomly choosing a pair of adjacent components in the sense of having 
adjacent means. We wonder whether it might be more effective to define adjacency terms of a more 
comprehensive metric between distributions, perhaps based on an information distance. Of course, it 
would be necessary to use something inexpensive to compute. Intuitively, it would seem that adjacent 
components in this sense might be more natural candidates for combining and so would lead to higher 
acceptance rates. Furthermore, such a notion of adjacency would also be appropriate for higher 
dimensions and for different distributions. Finally, it might be advantageous to refine the combine step 
further by choosing a potential combination pair with probability inversely proportional to their dis- 
tance in terms of such a metric. 

Second, although we agree that an advantage of the Bayesian approach is its sensitivity to the 
subtleties in the data, this sensitivity demands extra care in the formulation of the model. In particular, 
the meaning of k may depend heavily on the normality assumption for the components. For example, 
Fig. 2(a) for the enzyme data suggests that there are three components which are skewed rather than 
normal. If, in fact, this were the meaningful scientific answer to the problem, then the proposed method 
is simply using a mixture of normals to model different distributional forms, which would not be the real 
problem of interest. In Section 8.4, the authors discuss extending their approach to treat skewness as 
another random input. The key to evaluating the success of such an extension in such problems will 
hinge on whether it can avoid overfitting by putting larger probability on a smaller number of 
components. 
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Noel Cressie and Hsin-Cheng Huang (Iowa State University, Ames): This is a very nice paper that 
demonstrates how a fully Bayesian analysis can be carried out in mixture problems when the number of 
components is unknown. It shows us how to do what we hoped should have been possible, because, in 
principle, any statistical problem can be solved using a Bayesian approach. 

Our discussion consists of two parts and is meant to expand the possible applications of the reversible 
jump Markov chain Monte Carlo (MCMC) method. First, in the paper, independence assumptions go 
quite deeply into the hierarchical model (see expressions (1H3)). Mixtures can occur in the analysis of 
spatial data, such as for remotely sensed data b(s l ,  s2): s1 = 1, . . ., M, s2 = 1, . . ., w.These might be 
reflectances that are noisy versions of the true intensity values {x(sl, s2)), discretized onto an M x N 
array of pixels. Regions of (approximately) constant x-values can be identified as objects and we 
assume x(sl, s2) E {pl,. . ., pk). Then the allocation variables z(.) are defined as z(sl, sZ) =j if 
x(sl, 2)= pj, j = 1, . . ., k. This is a mixture problem but in a setting where the distribution of the 
allocation variables z(.) probably should not be modelled as independent. A Markov random field 
model for z(.) (equivalently, x(.)) has been proposed by inter alia Derin and Elliot (1987), Pitas (1988), 
Short (1993) and Johnson (1994), although with k specified. The goal is to segment the scene into 
objects, i.e. to predict z(.). To obtain faster and better approximations to the maximum a posteriori 
estimator of z(.) when k is not specified in advance, Helterbrand and Cressie (1997) developed a 
multiresolution segmentation algorithm to find the posterior mode but they did not obtain the full 
posterior distributions. Do the authors think that their approach could be adapted to contextual 
segmentation (as described above) or, more generally, to (spatial) statistical problems where dependence 
is incorporated into the allocation variable? What problems might be encountered? 

A second comment involves the application of the reversible jump MCMC method presented by 
Green (1995) to the problem of model choice. We have now seen how it can be implemented in mixture 
modelling. There is clearly potential for its application in other areas, such as order determination of 
autoregressive integrated moving average models in time series and wavelet representations of 
regression functions. Do the authors know of current work in these areas? 

Marie-Anne Gruet (Institut Nationale de Recherche Agronomique, Jouy en Josas) and Christian P. 
Robert (Centre de Recherche en Economie et Statistique, MalakoQ: This paper illustrates the high 
potential of the reversible jump Monte Carlo technique in the Bayesian analysis of mixtures, but we 
would like to show that less symmetric alternatives are also available. 

When the number of components k is unknown, the posterior distributionp(k, w, Olz, y) is defined on 
the space 

2 = @ {k)x S k  X @ k ,  

k B Z(") 

where S k  is the simplex of w ~ - ' ,  Ok the k-component parameter set and z(,, the largest allocation. This 
distribution allows for a density with respect to the natural measure on 2 and thus for a regular 
Metropolis-Hastings implementation, by simulating k* from an instrumental distribution ?(k*Ik, z, y) 
and then (w*, 0*) from the true conditional p(w*, O*lk*, z, y), accepting the proposal of (k*, w*,  0*) 
with the usual probability ratio. 

In the special case of normal mixtures, the instrumental distribution can be based on a random walk 
on k with jumps of f1. When the prior on k is a Poisson P(X)prior, the acceptance probability is then 

This approach only cancels empty components, since k is constrained by k 2 z(,,, but it allows for 
faster moves between components since the new components are not restricted as in the split or merge 
move. Note also that the identifiability constraint can be transferred to the zs, in that the components 
are indexed as 

This modification reduces the constraint on k and produces reasonable ranges of values for k, with 
smaller acceptance rates than in this paper (Gruet and Robert, 1997). 
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Simon C. Heath (University of Washington, Seattle): I would like to present an application of the 
reversible jump Markov chain Monte Carlo method to genetic linkage analysis of extended pedigrees. 
Quantitative (continuous) traits are typically modelled as being controlled by either an infinite number 
of genes, each with infinitely small effect, or a small number of genes of larger effect. For the former 
approach, the genetic effect of each individual is normally distributed, and standard linear models 
techniques can be used. The latter approach, however, is more complicated because 

(a) the genes controlling the trait must be modelled individually and 
(b) it is not known how many genes control the trait. 

MCMC techniques have made it practical to model large numbers of genes individually, and now 
reversible jump MCMC methods allow inferences to be made about the number of genes controlling a 
trait. 

One factor that complicates implementation of effective MCMC schemes for genetic linkage analysis 
is that the genotypes of pedigree members can show strong correlations both within and between loci. 
Simple genotype sampling schemes can exhibit poor mixing because of this; in particular, proposed 
moves which change the order or number of loci often have very low acceptance probabilities. Analytic 
integration of the genotypes for a given locus out of the acceptance ratio when proposing moving, 
adding or deleting that locus can result in higher acceptance probabilities and, therefore, a faster mixing 
sampler. A partial conditioning scheme (Besag et al., 1995) such as this requires the ability to sample the 
genotypes for a given locus, simultaneously for all pedigree members, from their full conditional 
distributions. Both the integration and sampling of genotypes rely on it being possible to 'peel' the 
pedigree (Elston and Stewart, 1971; Cannings et al., 1978) at the locus being changed; this is generally 
possible unless the pedigree is very complex (contains a large number of interconnected loops). 

I have implemented a reversible jump MCMC sampler for genetic linkage analysis with large numbers 
of marker loci and extended pedigrees (Heath, 1997). Estimates of the number of loci affecting a trait, 
the probability of linkage of a trait locus to a chromosome and map position, size and allele frequency 
of trait loci can be easily obtained. The approach is more flexible than existing linkage analysis methods, 
and should increase our understanding of, and ability to model, quantitative traits. 

C. lJennison (University of Bath): My comments concern the prior distribution for the parameters 
(p,, q)of a component of the mixture distribution. The authors appear keen to make this prior as 'non- 
informative' as possible. However, I believe such a goal will prove elusive in models with a variable 
number of dimensions as the choice of prior affects the posterior distribution of the number of 
dimensions-in contrast with the fixed dimensional case where just a few observations can yield a tight 
posterior distribution from a highly dispersed prior. 

Consider the normal model with a fixed value of 7 = ([, K, a ,  P), so p, - N(c,  K-I) and a;'- r ( a ,  p), j = I,  2, . . . . The posterior distribution of the number of mixture components, k, is pro- 
portional to the prior for k multiplied by the conditional density of the observed data given k, 

Here r,,and 7ru2 denote prior densities for the pis and uis, p(z1k) is the conditional probability of the 
label vector z = (zl, . . ., z,,), given that there are k components, and 4 is the standard normal density; 
the p,s are not ordered in my notation. Rewriting pb lk)  as 

demonstrates the behaviour o f p b k )  as the priors x,, and r,: are made more disperse by decreasing K 

and increasing p. For a labelling z which allocates rn > 1 observations to component j, the jth term in 
the product over j  in expression (1 5) is of order K'I' as K + 0 and of order p-'" ' as + co;if sallocates 
no observations to component j, the term is 1 for any,x,, and x z .  If one discounts the probability 
associated with empty components, as the prior on (pi, u;) grows more disperse, p b l k  + I) decreases to 
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0 more rapidly than p(yJk)and the posterior distribution of k favours lower values of k .  Thus, in the 
limit as K -+ 0 and p + m, the posterior probability of values of k > 1 is due solely to contributions 
from labellings that allocate all observations to just one mixture component. 

Heuristically, a highly dispersed prior for (pj, a;?) allocates very little probability to values of (pj, uj) 
that are at all consistent with the data. The probability that several (p,, 4 ) s  should all take values 
consistent with some of the data is extremely small and, hence, posterior probability concentrates on 
low values of k. This is seen in the dependence of the posterior distribution of k on P (Fig. 6(a)) and on K 

(Section 5.1.2). 
The authors have treated K and /3 quite differently, introducing an extra model layer for ,B but 

choosing a value for K directly, based on the range of the data. It would be interesting to see the effect of 
adding a similar extra layer for K:  this might provide a convenient, automatic way of overcoming 
sensitivity to a prespecified value of n;however, I should hesitate to call such a prior 'non-informative'. 

Andrew B. Lawson and Allan Clark (University of Abertay, Dundee): The idea of deconvolving cluster 
sums has been of interest in spatial statistics for some time. Often the intensity of a spatial point cluster 
process consists of a sum of contributions from r?, clusters {xi}, and this leads to a mixture problem with 
unknown ({xi}, r?,). Often these contributions depend on a cluster variance K ,  and hence, if K varies with 
cluster centre, on ki. The analysis of this problem was first suggested by Lawson (1993) and inde- 
pendently by Baddeley and van Lieshout (1993). An example of a fully converged sampler applied to 
an epidemiological problem where K is a function of a spatial Gaussian field appears in Lawson (1995). 
This development of cluster samplers was based on theoretical convergence results for reversible jump 
samplers (birth-death shifting transitions) by Geyer and Mnrller (1994). 

Several issues arise from work on spatial cluster processes which are very relevant to the current 
DaDer. r - ~ r  - -

First, it is often found that the likelihood in cluster or mixture problems is very spiky (i.e. large areas 
of low likelihood occur mixed with small areas of high likelihood). This can lead to multiple-response 
problems (commonly found in object recognition in imaging). To combat this, an inhibition prior 
distribution (e.g. a Strauss distribution) is often assumed for {xi} (or in the authors' case {pi}). An 
alternative is to smooth the likelihood by penalization. 

Second, the variable z, which the authors use for component membership, can be regarded as an 
auxiliary variable, as it is not directly required in the reconstruction of the components. This dichotomy 
was alluded to by Binder (1978), and the inclusion or otherwise of z leads to the specification of a 
complete or incomplete problem. Do the authors have any insight into the effect of exclusion of step (c) 
from their algorithm? 

Third, the use of a shifting transition in addition to a birth-death transition could have been used by 
the authors in step (f) but has not been included. This could facilitate exploration of the posterior 
surface. This addition has been used in clustering examples. Have the authors considered this addition? 

Finally, spatial clustering mixture problems usually assume that wi = Ilk, Vi, and hence there is no 
requirement to include weight generation steps in such problems. In the algorithm described by the 
authors, the weights {wi} are included. However, in the suggested algorithmic steps the authors appear 
to update the weights twice: first in step (a and then recomputed in the birthdeath step. Should not the 1 .  .birthkleath step generate new p: and up jointly with the w,? 

Geoff McLachlan and David Peel (University of Queensland, Brisbane): It is of interest to compare 
the results of this Bayesian approach applied to the three real data sets with those working in a 
frequentist framework. Consequently, we fitted kcomponent univariate normal mixture models with 
unrestricted component variances by maximum likelihood via the EM algorithm of Dempster et al. 
(1977); see also McLachlan and Krishnan (1997). There can be complications for normal components 
with unrestricted variances, arising from the fact that the likelihood becomes infinite with fitted 
components corresponding to a single observation. This is a potential problem in particular for the 
galaxy data set which contains some clusters of relatively few points. One way to avoid this is to impose 
a lower bound on the ratios of the fitted component variances. The results reported below for this data 
set are those obtained without any restrictions on the ratios of the variances. 

The choice of the number of components k was made in terms of the increase in the log-likelihood as 
k was increased sequentially from k = 1. As is well known, regularity conditions do not hold for the 
usual asymptotic null distribution of the likelihood ratio X to be valid. Here the P-value was assessed by 
using the resampling approach as in McLachlan (1987). 
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TABLE 6 


Assessed P-values obtained for the three data sets 


Data set P-values for k versus k + 1 for the following no. of components k: 

I 2 3 4 5 6 

Acidity 0.01 0.08 0.44 - - -
Enzyme 0.01 0.02 0.06 0.39 - -
Galaxy 0.01 0.01 0.01 0.04 0.02 0.22 

In Table 6, we report these assessed P-values for the three real data sets. It can be seen that in two 
cases in Table 6 the assessed P-value lies between 5% and 10%. Performing further bootstrap 
replications in these cases did not clarify the situation. Also, these assessed P-values should not be 
interpreted too finely, as it is the bootstrap rather than the actual P-value that is being assessed in these 
cases since the null value of k is greater than 1. 

On the basis of these P-values interpreted rigidly at the 5% level of significance, k would be chosen to 
be 2, 3 and 6, for the acidity, enzyme and galaxy data sets respectively. If the significance level were 
increased to lo%, it would result in k being chosen equal to 3,4 and 6 for the acidity, enzyme and 
galaxy data sets respectively. This is in general agreement with the results obtained here in a Bayesian 
framework for k, except in part for the acidity data set. For this set, the Bayesian approach provides 
essentially equal support for k = 2-6, whereas, according to the P-values assessed by resampling, one 
would not go beyond k = 3 components. 

K. Mengersen and A. George (Queensland University of Technology, Brisbane): Through their 
analysis of mixture distributions with an unknown number of components, Richardson and Green have 
demonstrated some of the versatility and power of Green's reversible jump sampler. Our experience 
with this approach is in its application to the ordering of gene markers on a chromosome and 
positioning of a quantitative trait locus (QTL) relative to the markers. These problems are characterized 
by complex likelihoods represented as mixtures with a large number of parameters, entire classes of 
missing information (e.g. half-sib designs) and a large model space related to the number and position of 
the markers and QTLs. 

Despite this complexity, the implementation of Green's algorithm was refreshingly simple. A 
countable set of move types, based on genetic principles, was sufficient to characterize the model space 
independently of the number of gene markers. Moreover, the nature of the algorithm permitted a ready 
generalization of the problem in several directions and much less preanalysis of the model space than an 
alternative model selection strategy (Carlin and Chib, 1995) with which we have also had experience. 

The assessment of convergence of Markov chain Monte Carlo algorithms remains an area of intense 
research. For Richardson and Green's methodology, as in all such stochastic search algorithms for 
model determination, two issues arise. First, there is the question of whether the chains can (and do) 
adequately traverse the model space, especially when a successful move requires (chance) generation of 
a favourable combination of many parameters with complex relationships. In simulation this is easy to 
check, but in practice it is more difficult than Richardson and Green intimate. Second, there is the 
problem of assessing the overall convergence of the realized chains, especially those traversing the model 
space. Existing accessible diagnostics have mainly a univariate focus, give at best pessimistic estimates 
of run lengths and often target a specific facet of convergence. The use of a combination of such 
diagnostics does not obviate the need for 'holistic' tests applicable to the model selection situation. In 
all, although we are delighted with our experience of the reversible jump methodology, the convergence 
issue urges a critical evaluation of the results of any such analysis. 

Anne Philippe (UniversitC de Rouen, Mont-Saint-Aignan): This paper presents an interesting im- 
plementation of a Markov chain Monte Carlo (MCMC) algorithm for the complex mixture model. 
In spite of the apparent convergence of their method, a discussion of the assessment of convergence for 
this form of MCMC algorithm would be most welcome. In particular, could the authors relate their 
assessment to fixed k settings to that proposed below in the set-up of an exponential mixture (as 
discussed by Robert)? 
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The Monte Carlo method can lead to different estimators of the integral TKf(h). When f is a density on 
a set of dimension 1, an alternative to the empirical average is to consider the Riemann sum estimator 
(see Philippe (1996) or Robert (1995)). For a sample (XI, . . . .x,,) fromf, this estimator is given by 

where x(l) ,< .. .  < x(,) are the order statistics associated with the sample. 
In many MCMC set-ups, the density f is unknown, as in the particular case of the exponential 

mixture, and the estimator (16) is not available. However, we can generalize equation (16) by using the 
Rao-Blackwell estimator of the marginal density in Gibbs sampling settings (see Philippe (1996)). The 
resulting estimator is 

where .rr is the conditional distribution of the parameter of interest x l  E R, given the other parameters 
x2, . . . .  xp. This estimator can be implemented for the estimation of the parametersp and X of the two- 
components exponential mixture p Exp(X) + (1 -p) Exp(Xr) (see Fig. 17). Moreover, when we consider 
h(x) = 1, this alternative approach provides a convergence criterion. Indeed, the estimator (17) clearly 
converges to the known value 1. Therefore, we can monitor the convergence of this estimator for the 
marginal densities of the different parameters of the mixture (see Fig. 17 for p and A). 

Fig. 17. (a) Empirical average (----) and Rao-Blackwellized Riemann sums (..........), (b) convergence control 
and (c) histogram and empirical versus true cumulative density function for a sample of 100 observations from 
0.5 Exp(5) + 0.5 Exp(O.5) 
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Kathryn Roeder and Larry Wasserman (Carnegie Mellon University, Pittsburgh): We congratulate Dr 
Richardson and Professor Green for their very interesting contribution to the Bayesian analysis of 
mixtures. Mixtures are tailor made for Markov chain Monte Carlo (MCMC) methods and the authors 
have developed a particularly ingenious version for this problem. We find ourselves in agreement with 
most of what the authors say. There are a few points that we would like to raise. 

First, we wonder whether the reversible jump technology-which perhaps deserves a more fash- 
ionable name like 'transdimensional MCMC'-is not just a little too clever. Separate runs for different 
values of k seem simpler even if we must then estimate the normalizing constant, a challenging but not 
impossible task. DiCiccio et a[.  (1997) have reviewed the many methods for doing this. Have the authors 
made any direct comparisons of their method with a 'separate runs' analysis? 

Second, we agree that a prior with little influence is desirable. If we understand correctly, the prior on 
the means has variance depending on the range of the data. But such a prior is asymptotically improper. 
This is undesirable because dimension estimation, or Bayes factor calculations, are ill defined for 
improper priors. Would it not be better to use a prior that is asymptotically pro er? A different prior 4' and r/ t
that we find useful is this: the means are N(0, r2), the variances are ~ ~ ~
is ~ ~ 1 ~ : ;  the overall 
location 0 is given a flat prior and the overall scale A is given the prior T(A) a 1/A; finally, the 
hyperparameter v is set equal to 1 (Roeder and Wasserman, 1997). This model involves no data- 
dependent priors and seems to be insensitive to the choice of v. Also, the complete conditionals are 
simple distributions. 

Finally, the Dirichlet process mixture (DPM) approach is more closely related to the model in this 
paper than one might think. Instead of a finite Dirichlet prior on wl, . . ., wk the DPM takes wl = 
zl, w2 = z2(1- zl), wj = z3(l - zl)(l - z2),. . . where zj -- beta(1, a),j = 1, 2, . . . . Another difference 
between the models is that k is assumed to be infinite for the DPM and hence there is no need to do any 
dimension estimation. The prior on a takes the place of a prior on k. Notice that we have not even 
mentioned the Dirichlet process, which is really a red herring, in this description. The DPM merely 
induces a slightly different prior on the weights. 

Peter Schlattmann and Dankmar Btibning (Free University, Berlin): The paper by Sylvia Richardson 
and Peter Green provides new valuable insights into the analysis of mixtures. The Bayesian approach by 
means of reversible jump Markov chain Monte Carlo methods opens the opportunity not only to have 
posterior distributions on all the parameters of a finite mixture of normal densities, 

for samples X I ,  . . ., x,, but also on the number of components k. (Here P denotes the distribution 
giving weight pj to a parameter combination p, and uj.) One additional nice aspect of the approach 
proposed can be seen in the fact that it circumvents the well-known problem of non-existence (Lindsay, 
1995) of maximum likelihood estimates (MLEs) if different variances are allowed in every sub- 
population. 

It should be pointed out that in the approach proposed many parameters (of prior distributions) must 
be estimated or prespecified. Also, the computational burden increases and to what extent data reduc- 
tion can be achieved needs to be evaluated. 

We would like to emphasize that traditional maximum likelihood approaches also allow an 
investigation of the variability of the number of components k. There is a long tradition for obtaining 
MLEs for mixtures with unknown k which exploit the geometry of the mixture problem, usually called 
the nonparametric mixture model approach (Laird, 1978; Lindsay, 1983; Bohning, 1985; Bohning et al., 
1992). In this approach also the number of components is estimated such that the discrete distribution 
on the parameter space which maximizes the likelihood is found. This approach works best for the 
one-parameter exponential family whereas for the normal distribution a boundary condition for the 
common variance parameter is necessary. 

Reliable computational algorithms (Bohning, 1995) exist and are implemented in the software 
packages C.A.MAN (Bohning et al., 1992) and DismapWin (Schlattmann et al., 1996). 

The distribution of the number of components k may be obtained by applying the mixture algorithm 
B times to bootstrap samples (xy ,  . . ., x,*) obtained from the original sample with replacement. 

As an example (to demonstrate the alternative way of illustrating the variability in the estimate l)we 
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provide the bootstrap distribution of for the acidity data obtained after B =5000 replications: 

Here the nonparametric mixture approach would indicate heterogeneity consisting of at least two 
components. Applying the likelihood ratio test of Ho: k = 2 against H I :  k = 3 leads to rejection of HI  
with a value of -2 log X = 5.542, which is non-significant at the 5% level according to the simulation 
studies of Thode et  al. (1988) with their results transferred to our situation. 

D. M. Titterington (University of Glasgow): The reversible jump idea promoted in this paper offers an 
interesting new Bayesian approach to the analysis of mixture data, and the applications to real data are 
appealing. I think that major challenges now are to implement the method in the context of more 
complicated mixtures, such as the multivariate cases considered in Section 8.1, and to assess the method 
against possible underlying questions of interest. 

For instance, if the mixture model is to be taken seriously rather than just as a version of a latent 
structure model, so that the number of components, k, has some 'physical' meaning, then how is the 
marginal distribution fork  to be used, especially if it is important to infer a 'point estimate' for k, even if 
that goes against the Bayesian spirit expressed for instance in Table 2? This question, of course, has 
generated all the non-Bayesian work caused by the non-regularity of the likelihood ratio statistic. It 
would be interesting to investigate the performance of the posterior mode of k in this respect, but an 
alternative candidate might be the smallest k for which the posterior probability becomes 'appreciably 
positive'. Of course, this characteristic would have to be properly defined, no doubt through the 
'deviances' mentioned at the end of Section 4.1, but it would for instance lead to choosing k = 3 for the 
enzyme data, rather than the modal value of k = 4. Such a choice of k would correspond to the smallest 
k that is meaningfully supported by the data. In a somewhat similar vein Mr Polymenis's contribution, 
in the context of a different, frequentist cjterion, shows that it is more effective to select k not by 
optimizing that criterion but by choosing k - 1, where k is the smallest k for which the mixture seems 
clearly too rich. 

If, however, the mixture model is only to be regarded as a flexible density estimator, I wonder whether 
this particular Bayesian approach will catch on in competition with, say, kernel-based methods, even 
though the mixture formula is more parsimonious. Of relevance here might be the work of Priebe (1994) 
and, here again, the practicability of the method in higher dimensions will be important. 

Howell Tong (University of Kent, Canterbury): It is known (e.g. exercise 29 on p. 212 of Tong (1990)) 
that the following threshold autoregressive model admits, under very general conditions, a stationary 
marginal distribution which is the mixture of distributions: 

where the a s  are real constants and (€1) is a sequence of independent, identically distributed random 
variables each with zero mean and with E ,  being independent of X,, s < t .  For example, if 6, has a zero- 
mean normal distribution then the stationary marginal for X, is a mixture of k normal distributions with 
different locations. If we want greater generality in having a mixture of k distributions which are 
different in form, location and scale, we only need to allow the white noise terms (namely the €-terms) in 
the different regimes to be different. It is a challenging problem to determine, from the dependent data 
say ( X I ,Xz, . . ., XN), simultaneously the order d, which happens to be equal to the delay parameter in 
this set-up, and the number of regimes, namely k. I would welcome comments from the authors on 
whether and how they could extend their Bayesian approach to cover this problem. 

Mike West (Duke University, Durham): This mixture context provides a nice framework, indeed a 
showcase, for the implementation of Bayesian analysis using reversible jump Markov chain Monte 
Carlo (MCMC) methods. My only complaint is that the restriction to univariate deconvolution or 
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density estimation problems seems unambitious, as the approach applies readily to multivariate 
mixtures and more challenging, though accessible, applied problems. 

I have a few specific comments and connections to draw. 

(a) On identification and parametric constraints, West (1997) describes how the posterior symmetries 
resulting from the inherent 'labelling' feature can be exploited in assessing the convergence of 
MCMC analyses. Though presented in a specific class of structured mixture models, the ideas 
there apply widely. 

(b) On classification and discrimination, Lavine and West (1992) presented the first 'fully Bayesian' 
(Gibbs-sampling-based) approach with an illuminating two-dimensional normal mixture example 
that may interest readers in this area. 

(c) The use of Dirichlet mixtures, with implicit 'Poisson-like' priors over numbers of components, is 
more geared towards density estimation and related objectives than deconvolution or parameter 
estimation; here the number of components is treated simply as a nuisance parameter to be 
averaged away. One attraction of these models has been the ease of extension to multivariate 
problems (West et al., 1994; Miiller et al., 1996). 

(d) In problems where mixture deconvolution is really of primary focus, I am sceptical of the benefits 
of adopting reversible jump methods compared with the usual 'nested models' approach based on 
fixing an upper bound and assigning a prior on the number up to that bound. In a neuro- 
physiological application (West, 1997), for example, highly structured mixture models and priors 
arise naturally from the physical and experimental context. Here the number of components 
is a function of the underlying number of synaptic transmission sites at a neural junction under 
investigation. We have found it very fruitful to explore inferences based on fixed numbers of sites, 
sequentially increasing the number and assessing changes in resulting inferences after repeat 
analysis. This approach is coupled with a 'screening' analysis that adopts an upper bound on the 
number of sites, and hence the number of components, and then performs MCMC analysis to 
assess the number of sites in this more usual 'nested modelling' framework. Standard Gibbs 
sampling applies within this nested model framework: easily implemented and effective. It would 
be of interest to compare this with the alternative MCMC methods of the authors, with a focus 
on the overheads incurred in developing and tuning the required 'jumping rules'. 

The authors replied later, in writing, as follows. 

We are delighted that our paper has provoked a wide-ranging and lively discussion, and we thank all 
the discussants for their contributions and their interest in the topic. 

Complexity 
Some discussants (Aitkin, Cox, Schlattmann and Bohning) have categorized our approach as 

overcomplex. We contest this and claim that the key components of hierarchical Bayesian modelling, 

(a) the complete data structure, including the allocation indicators used by both Bayesian and EM- 
type procedures, 

(b) the treatment of k as random, allowing us to explore the mixture fully with a single analysis rather 
than carry out separate analyses which need to be put together coherently-a difficult task in 
maximum likelihood (ML) analyses, and finally 

(c) 	a prior model for the component parameters, which can express weak informativeness flexibly, 
and circumvents the potential problems associated with boundary values, referred to by Aitkin, 
McLachlan and Peel, and Schlattmann and Bohning, 

capture and clarify the essential elements of finite mixture estimation. Equation (4) is thus a coherent 
way to structure the ingredients underlying any mixture analysis. 

Cox emphasizes the need for seven tuning constants in our approach. However, the hyperparameters 
A, 6, (,n, a,g and h should not be grouped together: a one-parameter family of priors for k indexed by 
X was introduced for generality, but it is not used, and similarly 6 is fixed at 1, providing the uniform 
prior on the weights that would be used in most analyses. The other five hyperparameters are used in the 
prior model for the means and variances. We have chosen not to link these quantities. The dependence 
of some of these on the interval of variation of the data is natural on grounds of symmetry and scale 
invariance; this should not be regarded as data-based estimation of the prior. There remain four 
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numerical constants in our default hyperparameter settings: K = 1/R2,CY = 2, g = 0 .2  and h = R2.Here 
we have used plausible choices, supported by deliberate assumption and/or by sensitivity studies. 

Interpretation and labelling 
Many comments have been concerned with the problem of labelling and interpretation of the 

components (the connection between labelling and mixing of the Markov chain Monte Carlo (MCMC) 
sampler will be discussed along with other MCMC issues). As pointed out in our paper, mixture 
estimation is camed out with various aims. At one end of the spectrum are situations where there is firm 
scientific evidence for the existence of finite mixtures, e.g. genetic polymorphism, or in spectroscopy, as 
cited by Cox. In this case, identifying and labelling the components is meaningful and can be achieved 
by post-processing the output and labelling to seek unimodal density estimates for the component 
parameters. This can be performed by a variety of methods, either by imposing simple constraints as 
illustrated in our paper, or by using clustering-like procedures along the lines suggested by Gilks and 
Celeux, and implemented and demonstrated by Stephens. O'Hagan's pairwise comparison is another 
possibility. The success of such an exercise will depend on the separation of the components. If there is 
strong overlap, the labelling cannot be unambiguous. To clarify Celeux's comments, we stress that the 
use of ordering in our sampler is consistent with our target density and does not create any bias, but that 
in running simulation studies one should be aware that not applying the same labelling constraints on 
the output and on the truth would bias the results. In a multidimensional set-up, we agree with Gilks 
that it is the clusters which give meaning to the components. 

At the other extreme, finite mixtures are used as semiparametric density estimates, as emphasized by 
Aitkin, and may even be regarded as an approximation of continuous mixtures. We agree with Aitkin 
that, in this case, no interpretation should be given to the components and that only summaries which 
are invariant to the labelling, like density estimates or the symmetric summaries of Longford, should be 
produced. We agree that density estimation is also important but do not want to be drawn into 
qualifying the relative importance of the two contexts. Between these two extremes, there are many 
cases to which we could refer to as exploring heterogeneity (the lake acidity and the galaxy data can be 
placed in this category), where heterogeneity can be hypothesized but latent indicators have not yet been 
identified. Post-processing the output is then a means to bring out a range of (possibly competing) 
representations supported by the data, which can help to give clues towards understanding the source of 
heterogeneity. 

We cannot agree with Robert that the meaning of individual components is 'vacuous', but the 
meaning does rely entirely on the choice of labelling constraint. 

Departing from full Bayesian paradigm 
The contrast between the Bayesian and other approaches to mixture analysis has focused most 

strongly on inference about k. The standard paradigm can be caricatured as choosing the smallest k 
such that the model fits. This principle derives partly from parsimony, and partly from necessity: it is 
difficult to fit the parameters of any more components than that, or to avoid reliance on hypothesis 
testing as a tool for the choice of k. 

In the Bayesian approach, parsimony can be specified more directly, through prior modelling. 
Parsimony is not a feature of the weakly informative prior, with default parameter values, that we have 
used to present our results, but parsimonious priors may be handled readily with our methods (see the 
next section). 

Our calculations produce a good approximation to the joint posterior distribution of all unknowns; 
what is done with this is limited more by imagination than by rules of Bayesian analysis, and it is 
certainly not obligatory simply to quotep(k1y) and to abandon any attempt at model interpretation or 
selection, if the context demands. Titterington's suggestions of choosing the mode of k or the smallest k 
for which there is 'some support' and Robert's suggestion are examples; other possibilities worth 
exploring could be the monitoring of changes in the predictive densities or quantifying the overlaps in 
the posterior distributions of the deviances. 

These last two suggestions could be broadly interpreted as attempting in a Bayesian context to 
quantify 'overfitting', which in a classical framework could be detected by looking for singularity of the 
Fisher information matrix, as proposed by Polymenis with his modified minimum information ratio 
method. 

In this spirit, like Cox we would refrain from reliance on values of p(k1y) for large k. The right-hand 
tail is especially sensitive to the arbitrariness in the prior on k that we used, which we recall was adopted 
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only for computational convenience. In the absence of 'reliable substantive theory', inference about the 
right-hand tail is problematic; a fully convincing weakly informative approach perhaps needs more 
structure not less! 

We happily acknowledge the important contribution of ML-based methods to mixture analysis, 
whether fitted through the EM algorithm (McLachlan and Peel), alternating expectation~onditional 
maximization (AECM) (Longford) or from the angle of nonparametric maximum likelihood (NPML) 
estimation (Aitkin, Schlattmann and Bohning) discussed comprehensively by Lindsay (1995). We find 
the comparisons interesting and we thank the discussants who took the trouble to report them. Overall, 
the conclusions of McLachlan and Peel on the number of components for our three data sets are in 
agreement with our discussion above on how we would exploit the full joint posterior distribution with 
respect to model choice. For the acidity data, the conclusions of Schlattmann and Bohning, and 
McLachlan and Peel differ somewhat from ours and would be more compatible with an analysis using a 
prior with more spaced-out means (see the next section). We did not allow for the stratification in our 
analysis of the acidity data because it was not used in Crawford (1994) and we wanted to be able to 
compare our conclusions with hers. Looking at Table 3 reported by Aitkin on NPML analysis of the 
enzyme data (after logarithmic transformation), we notice that, for k = 3, NPML fails really to find a 
third component, the reported weight being only around 0.01. In contrast, running our model on the 
same logarithmically transformed data, we find a mode for p(k1y) at  k = 3 (with a posterior probability 
of 0.51) and posterior expectations for the means and weights of the three components equal 
respectively to (0.23, - 1.67, - 2.80) and (0.38, 0.55, 0.07). Thus we agree with Aitkin only for the 
means of the first two components but not the weights, and in our case we find a genuine third 
component. Furthermore, the uncertainty in these estimates can be assessed, whereas this is more 
difficult for ML analyses, as admitted by Aitkin. 

Prior structures and non-informativeness 
Prior structure of the mixture parameters is clearly a central issue and is referred to by many 

discussants; it is an issue which cannot be dissociated from the objective of the mixture analysis. We 
shall comment in turn on alternative prior structures and more parsimonious inference and then on the 
question of non-informativeness in mixture analysis. 

We agree with Longford that scientific evidence for the existence of the mixture should be 
incorporated into the prior model as well as possible; an interesting example is given by West. Let us say 
that the prior structure that we have proposed is best adapted to the aim described above as exploring 
heterogeneity. The priors proposed by Roeder and Wasserman could be also adapted to that purpose; 
the essential difference is the link that they postulate between the means and the variances. It will 
certainly be interesting to carry out some comparisons. Separation of the components has been queried 
by Cheng and Liu. As increasing numbers of components are fitted-which can be done in our 
framework without encountering singularity problems- the separation will clearly decrease, but not to 
the extent that they surmise. To give an example, for the enzyme data, the posterior mean of the 
minimum separation between the component means is 0.19 and 0.11 for k = 4 and k = 5 respectively. 
Nevertheless, if parsimony is a concern, there may be interest in our experiments with a different prior 
structure for the means, which jointly defines the {p,;j = 1, 2, . . ., k ]  as the s ,  2.9, . . ., ks order 
statistics from a sample of size ks + s - 1 from N(( ,  K - ' ) ,  thus encouraging separation through the 
choice of s, to a degree which can be calibrated apriori. This is akin to an inhibition prior referred to by 
Lawson and Clark, or a spatial point process prior as suggested by Dawid. The results are not 
unexpected: both the posterior mean and the variance of k are reduced as s is increased from 1 to 3. For 
example, we see a clear posterior mode at k = 3 for the enzyme data, and posterior probabilities for 
k = 2 increasing from 0.20 to 0.36 when s is varied from 2 to 3 for the acidity data. This leads to a 
tighter posterior distribution for k and more parsimonious model choice, which could answer some of 
the concerns expressed on this point by Aitkin, Besag, Cox and Titterington. 

We find ourselves in agreement with Bernardo's insightful exposition of the impossibility of defining a 
'universal default prior'. We certainly do not regard our default setting as universal and took care to 
assess it with a sensitivity study, but we have not examined it in other inferential contexts such as those 
that he mentions. Note that the range we use is supposed to correspond to a notional interval of 
variation, independent of sample size (in the reported analyses the observed range was used only for 
convenience), thus not creating the problems of asymptotic impropriety pointed out by Roeder and 
Wasserman. Their interesting alternative choice, which links the mean and variance, requires only one 
tuning constant. This linking amounts to making hidden assumptions about quantities that are 
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analogous to our hyperparameters. We would be interested to see studies on sensitivity to this choice, 
and to perform some comparisons. 

Jennison provides a careful analysis, that essentially supports our contention that with independent 
priors any attempt to approach non-informativeness too closely is doomed, although a detail we would 
quibble with is his choice of fixing a while letting P +co.A possible means for countering some of the 
degeneracy that he demonstrates would be to modify the model to condition the allocations to ensure 
non-empty components. The line that he suggests, of introducing an extra model layer for K, analogous 
to that for p, was incorporated in the first version of our paper but omitted both to save space and 
because it did not seem to solve the problems uncovered in Section 5.1.2. 

Finally, we want to comment on the separate issue of prior models and density estimation. We agree 
with West that other prior models, such as those based on Dirichlet processes, are attractive. We have 
started experimenting with them within our reversible jump structure. We are not convinced by Robert, 
that a sensible procedure is first to select a value of k, & say, and then to do density estimation 
conditional on &. It is computationally more cumbersome than the density estimate that we produce, it 
is not fully Bayesian and its justification on the ground of parsimony do not seem to us appropriate in 
the context of density estimation. 

Model extensions 
Many discussants have suggested extensions of the mixture model. One line of extension relates to 

implementing our approach for other families of densities while keeping the same graphical model 
structure. 

We agree with West and Titterington that generalizing our approach to multivariate mixtures is 
important and challenging, and might call for additional sets of moves, possibly along the lines 
suggested by Chien and George. One extension that we have implemented is the generalization to a skew 
normal family by using the transformation y ~+(exp(py) - l]/p, with a common skewness parameter p 
for all components, which creates a wide variety of distributional shapes. This parameter requires 
another move type, a Metropolis step. It is then possible to investigate the joint posterior of k and p. For 
the enzyme data this posterior gives a strong indication of high skewness, though not as strong as a 
logarithmic transformation, and favours fewer components, as surmised by Chien and George: the 
mode forp(k1y) is achieved at k = 2 (with a posterior probability of 0.39). Interestingly, having the extra 
flexibility of a family of skewed transformations gives more support for two components than log- 
transforming directly (see the discussion above). 

Other extensions of the mixture model, in particular to spatial or image applications, will require the 
lifting of some of the conditional independence assumptions, as noted by Cressie and Huang. Spatial 
structure can be introduced, for example, by modelling the weights or the joint distribution of the 
allocations as a spatial process. When k is unknown, added difficulties arise in connection with the need 
to evaluate normalizing constants. 

Summarizing posterior distributions 
The choice of scales and functions for plotting to compare data with fitted distributions is partly a 

matter of taste: densities and histograms are most familiar, but we could have used cumulative 
distributions or Q-Q-plots, as advocated by Aitkin and Atkinson respectively. Either could have been 
displayed in analogues of Figs 2 and 3(b) (although we strongly prefer to stick to densities for parameter 
posteriors such as in Figs 4, 5 and 9(b)). Atkinson suggests showing simulation envelopes in these 
comparisons. This is very natural in the Bayesian context and does not involve any additional 
simulation. Pointwise credibility bounds for cumulative distribution functions, or the quantiles used in 
Q-Q-plots, are readily computed directly from the MCMC samples, and with not much extra effort (see 
Besag et al. (1995)) simultaneous bounds are also available. All these tools are of course principally 
focused on the nonparametric distribution estimation facet of mixture modelling, rather than on the 
heterogeneity itself. 

Hodgson usefully highlights and addresses some of the difficulties in presenting posterior information 
about functions, especially those with non-linear parameterizations (as in his example and ours). It 
would be interesting to try to adapt his procedure to mixture estimation when, as sometimes happens, 
the interest is primarily in the number of modes, rather than the number of components: Bayesian 
density estimates with any prescribed number of modes could thereby be produced. 

Reversible jump technicalities 
Several discussants comment or make suggestions on the moves used in our sampler. As we stated, we 
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experimented to only a limited extent-tuning was minimal-and do not claim our choice to be 
optimal; it would be interesting to study these questions further, but we are somewhat sceptical that 
there will be great advantages gained from doing so for univariate mixture models. 

Alternative moves are proposed by Chien and George, combining (and splitting) on the basis of a 
different measure of adjacency, which we like; the last part of this idea would be expensive, however- 
reversibility must not be sacrificed, so that choosing a pair to combine with unequal probabilities means 
that, when splitting, all components must be split on a test basis, simply to compute these probabilities. 
Lawson and Clark ask about moves that update w, p and a at the same time as splitting and combining; 
this is of course possible, though it adds complication. Note that moves (a) and (b) do directly follow (e) 
and (f)  in sequence. Their idea of omitting (c) could be taken two ways; literally, it is possible, and it 
may at least be sensible, to do (c) rather rarely as it is somewhat expensive and typically makes only 
modest changes. But their phraseology suggests something else, namely integrating out the allocations z 
from the model altogether, which would totally change the algorithm, probably for the worse. We 
would be interested in comparing our mixing performance for the same model parameterization with 
that of the alternative sampler, conditioning on the allocations, proposed by Gruet and Robert. Byers 
and Raftery surprise us with their suggestion of attempting a dimension change only rarely, on grounds 
of expense. Three of their four components of expense (algebra, complexity and errors) are not 
mitigated by their suggestion. Running time is a factor in determining the balance of investment of 
effort on different move types, but the optimal balance is a subtle and complex matter that we do not 
believe is yet understood. 

We are grateful to Besag for making the connection with multigrid samplers; usually these operate on 
a systematic schedule over dimensions, but one can certainly envisage random sweep versions. In the 
case of the stochastically blocked samplers of Kandel et al. (1989), the analogy with the present methods 
is perhaps even closer. Besag's alternative representation of variable dimension MCMC simulation, 
placing all xk in one big product space, is interesting: it provides an explicit common dominating 
measure for all variables. We are not clear that it necessarily simplifies the formulation of the acceptance 
ratio, unless one goes the extra step of integrating aN the innovation variables u of Section 3.1 into the 
frame as well. 

The role of labelling of components in the sampler needs to be clarified. Contrary to the suggestion of 
Gilks, Celeux, Robert and Gruet, using adjacency (in terms of means) in the splitkcombine move 
actually improves performance; the modified program we have that ignores adjacency, mentioned by 
Nobile (and coded by him!) gives slightly inferior mixing. We emphasize that, except for this move, the 
only point in our entire methodology where labelling is used is in the output analysis, when we wish to 
make marginal inference about components, as in Section 4.3. 

We regret omitting reference to Gilks (1989) and were intrigued by his picture of empty components 
roaming unfettered in outer space; his intuition here seems close to ours in adopting the birth-and-death 
move to discipline empty components when the prior is particularly weak. 

West points out that, in a nested model context, dimension changing is possible with standard 
MCMC techniques. However, there may be a loss of performance relative to our method: as a partial 
test of his suggestion, we ran our sampler on the galaxy data with k fixed at 10, suppressing moves (e) 
and (f), and found greatly inferior mixing for the number of non-empty components. 

Comparisons with separate runs on each model 
Distinct from the possibility of departing from the full Bayesian paradigm in making inference about 

k is that of achieving that paradigm by means of separate MCMC runs within each value of k, seaming 
these together to form the full joint posterior. In answer to Roeder and Wasserman, no, we have not 
tried this, but Agostino Nobile has, and we refer to his contribution for some of the details. Our 
conclusion is to stick to our approach, at least for mixtures and other problems where the models being 
entertained interleave in a similar fashion: note the side-benefit described in Section 6.2.2. We would 
certainly like to use some of the powerful tools presented in DiCiccio et al. (1997) where the rival models 
are less closely related and construction of dimension-changing jumps might be problematical. On 
terminology, PJG prefers to retain the 'reversible jump' tag rather than anything flashier: we think that 
it is pedagogically useful to regard this as just Metropolis-Hastings sampling in a general state space 
and see all the moves as of the same general character-in contrast with the 'jumpdiffusion' 
dichotomy of Grenander and Miller (1994). 

Diagnostics 
An assessment of convergence in variable dimension problems is difficult; the best approach may be 
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to focus on monitoring statistics which have meaning independent of dimension, e.g. functionals of 
predictive densities. Invariances can sometimes be exploited, as suggested by West; Philippe also has an 
interesting proposal. An assessment of convergence simultaneously for all parameters is especially 
challenging and will doubtless be the focus of future work. 

We thank Brooks for carrying out diagnostics for k, spumng us to take a closer look at  convergence. 
For brevity, we only comment on diagnostics performed on two runs of 500000 sweeps, started either a t  
k = 1 or at  k = 30, for the galaxy and acidity data sets. We agree with Brooks that diagnostics like those 
of Gelman and Rubin, and Geweke give some indication that convergence may not be reached in 
200000 sweeps, in particular for the galaxy data. These diagnostics improve when the number of sweeps 
is increased to 500000. Even longer runs are needed according to the method of Raftery and Lewis. The 
sequence of values of k is highly autocorrelated, as expected; for some runs small haphazard shifts of 
level are detected, suggesting some room for improved mixing. Nevertheless we stress that the sub- 
stantive conclusions on p(k1y) are essentially unchanged after the initial 200000 sweeps. 

In his interpretation of the allocation plotted in his Fig. 13(c), as compared with those of Fig. 12(c), 
Robert seems to confuse posterior uncertainty (indicated by the variation in grey levels vertically) with 
slow convergence (highlighted by instability in this variation, and sometimes the presence of irregular 
stripes). For our own model and method, applied to the galaxy data without bum-in, the corresponding 
plot in Fig. 18 shows uniform texture, suggesting satisfactory mixing and stability. 

Computing environment 
Atkinson asks about our computing environment. This was a combination of Fortran and S-PLUS. 

The modem dialect of Fortran that we used seemed admirable for the numerical calculations involved 
in the sampling; the only special feature of the programming lay in the use of lists to  organize the 
components of the mixture (linked in numerical order of (p,)), and the observations allocated to each 
component. All the looping involved was straightforward with use of 'while' loops, and would have 

40 

data rank 

Fig. 18. Allocation map for our analys~s of the galaxy data, conditioning on k = 6, based on a run of length of 
100000with no burn-in 
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been very slow in S-PLUS. Selected results of each run of the sampler were dumped out into a large 
collection of files with structured file names. We then used a suite of S-PLUS functions, each reading 
one or more of these files and producing a plot or some other output analysis. This proved a powerful 
and flexible combination for our research: in a production environment, we might have coupled the 
Fortran and S-PLUS codes more closely by using dynamic loading and fewer files. Finally, the codes 
were written carefully to ensure that exactly the same numerical results are obtained on both an IBM 
workstation in Paris and a Sun workstation in Bristol, even replicating the random number streams. 

Other reversible jump applications 
Heath, and Mengersen and George describe genetic applications of reversible jump samplers. This is 

an important area where these techniques are promising and are currently generating much interest. 
One of us (SR) has also been collaborating with Duncan Thomas on applications of this methodology 
to the problem of multipoint linkage analysis with an unknown number of trait loci (Thomas et al., 
1997) in which a dimension jump is used to add and delete loci and their associated parameters. 

Tong, and Cressie and Huang refer to reversible jump in the context of model choice for time series. 
We note that a fully Bayesian version of Tong's threshold autoregressive model would treat the 
parameters r, also as unknowns, and that there is some similarity to the changepoint problems discussed 
by Green (1995); the time series dependence does not greatly affect the set-up, but the variable delay 
parameter is a novelty. Model choice for autoregressive moving average models using a reversible jump 
has been recently considered by Barbieri and O'Hagan (personal communication). Cressie and Huang 
ask about applications to wavelets: the nearest work that we are aware of is by Miiller and Vidakovic 
(1995). 

Spatial point processes are evidently productive territory for reversible jump applications: we were 
interested to hear of the work of Byers and Raftery, and Lawson and Clark, on modelling heterogeneity 
and clusterine res~ectivelv. ... . 

Gilks refers to the need in hierarchical clustering for more than one varying dimension component; 
another rather general context where this is needed is the approach to Bayesian analysis of variance 
based on mixtures that is being explored at Bristol, involving nested and, especially, crossed par- 
titioning. 

To conclude this section and our rejoinder, we were fascinated by all the on-going research reported 
by discussants, and we hope that they will keep us informed of future developments. 
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