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Bayesian Growth Curves Using Normal
Mixtures With Nonparametric Weights

Luisa SCACCIA and Peter J. GREEN

Reference growth curves estimate the distribution of a measurement as it changes
according to some covariate, often age. We present a new methodology to estimate growth
curves based on mixture models and splines.We model the distributionof the measurement
with a mixture of normal distributionswith an unknown number of components,and model
dependence on the covariate through the weights, using smooth functions based on B-
splines. In this way the growth curves respect the continuity of the covariate and there is
no need for arbitrary grouping of the observations. The method is illustrated with data on
triceps skinfold in Gambian girls and women.

Key Words: Allocation; Bayesian hierarchical model; Centile curves; Finite mixture dis-
tributions; Heterogeneity; Markov chain Monte Carlo; Normal mixtures; Path sampling;
Reversible jump algorithms; Semiparametric model; Splines; Split/merge moves.

1. INTRODUCTION

Centile reference charts are an importantscreening tool in medicalpractice.The general
form of a centile chart is a series of smoothed curves, showing how selected centiles for
a biometrical measurement, such as height, weight, or middle-upper-arm-circumference,
change when plotted against some independent, appropriate covariate, often age. Here we
will refer to these curves as centile or growth curves. This second name comes from the
fact that such charts are used widely in pediatrics, for measurements related to growth and
development.

On the basis of the centile curves for a certain biometrical measurement, it is possible
to identifypatientswho are unusual, in the sense that their value for that measurement lies in
the tails of the reference distribution. Centiles are usually chosen from a symmetric subset
of the 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97th.

The simplest way to draw the centile curves is to calculate the empirical centiles,
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after grouping or smoothing with respect to the covariate. If empirical centiles are used,
however, the more extreme are estimated relatively inaccurately, as the centile standard
errors increase steeply towards the tails of the distribution. This problem can be overcome
by � tting a theoretical distribution to the data and thereby obtaining the expected centiles.
In doing so, two main criteria must be met:

1. Generally the covariateconcerned takes continuousvalues and the distributionof the
measurements can be assumed to vary smoothly with the covariate; centile curves
should therefore be constructed in such a way to respect this continuity,and arbitrary
discretisation or grouping should be avoided.

2. Even if biometrical measurements are often approximately normally distributed, it
seems more appropriate not to make strong distributionalassumptions, or to assume
a particular parametric form for the dependence on the covariate.

In order to address the second requirement we � t a theoretical distribution to the data using
a � nite mixture model. Mixture models provide an appealing semi-parametric structure in
which to model heterogeneity and unknown distributional shapes. We refer to the mono-
graphs by Titterington, Smith, and Makov (1985) and Böhning (2000) for general back-
ground. In the present context we consider a mixture of normal distributionsand model the
dependence of the observations on the covariate through the weights. We allow the weights
to be indexed by the covariate, so that they can vary from observation to observation.

In doing so we also meet the � rst requirement. We model the weights as a smooth
functionof the covariateusing B-splines. In this way the centilecurves respect the continuity
of the covariate and there is no need for arbitrary grouping of the observations. We refer to
Green and Silverman (1994) and Wahba (1990) for a comprehensive discussion of splines.
An alternative approach to the nonparametric estimation of growth curves was taken by
Cole and Green (1992); see also the other references therein. Bayesian approaches include
those of Geisser (1970) and Fearn (1975).

The article is structured as follows. Section2 presents the Bayesian hierarchicalmixture
model proposed for the density estimate and the calculationof the expectedcentiles. Section
3 introduces splines and their application to modeling the weights of the mixture. Section 4
discusses computationalimplementationvia Markov chain Monte Carlo methods. Section 5
assesses performance of the methodology through application to a real dataset, and Section
6 concludes with general discussion and some possibilities for future work.

2. MIXTURE MODEL

2.1 NORMAL MIXTURE

Let y = (yi)
n
i = 1 be observations of a biometrical variable we want to construct growth

curves for, and t = (ti)
n
i = 1 be the corresponding observed values of a continuous covariate

(such as time or age). The model we assume for y is

yi ¹
k

j = 1

wj(ti) ¿ (¢; · j ; ¼ j) independently for i = 1; 2; : : : ; n; (2.1)
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conditionalon weights,means, and variances,where ¿ (¢; · ; ¼ ) is the densityof the N ( · ; ¼ 2)

distribution with ¹ = ( · j)k
j = 1 and ¾ = ( ¼ j)k

j = 1.

The weights satisfy wj(t) ¶ 0 with k
j = 1 wj(t) = 1 for all t and they are allowed to

vary continuously with t. Let wj be the n-vector wj(ti)
n
i= 1, for each j = 1; 2; : : : ; k, with

w the k £ n matrix of all wj(ti).
The number of components k is unknown and subject to inference, as are ¹, ¾, and w.

Note that making inference about wj(t) as functions allows us to make predictions about
future observations y for values of t lying between the observed ti.

Conditional on weights, means, and variances, the 100¬ th centile can be numerically
evaluated from (2.1) as that value C ¬ (ti) for which

¬ =

k

j = 1

wj(ti)
C ¬ (ti)

¡1
¿ (x; · j; ¼ j) dx =

k

j = 1

wj(ti)©
C ¬ (ti) ¡ · j

¼ j
; (2.2)

where ©(¢) is the cumulative density for a standard normal distribution.
Note that we have chosen to model the weights as varying with t, while keeping the

means and variances � xed; it is possible to consider other formulations with varying means
and/or variances, modeled in a similar way to our treatment of the weights in Section 3, but
we have not explored these in any detail.

It is worth stressing that we are using the mixture representation primarily as a con-
venient semi-parametric density estimation device, and we are not greatly interested in the
number of components of the mixture per se, or in a clustering of the observations.

2.2 LATENT ALLOCATION VARIABLES

An alternative perspective leading to the same mixture model (2.1) involves the intro-
duction of latent allocation variables z = (zi)

n
i = 1 and the assumption that each observation

yi arose from an unknown component zi of the mixture. The allocation variables are given
probability mass function

p(zi = j) = wj(ti) independently for i = 1; 2; : : : ; n; (2.3)

and conditional on them, the observations y are independently drawn from the densities

yijz; ¹; ¾ ¹ ¿ (¢; · zi ; ¼ zi ): (2.4)

Integrating out zi in (2.4) using the distribution in (2.3) leads back to (2.1).

2.3 PRIORS ON COMPONENT PARAMETERS

From past experience, we would not expect inference about the density in (2.1) to
be highly sensitive to prior speci� cation. As in Richardson and Green (1997), our prior
assumptions are that the · j and ¼ ¡2

j are all drawn independently,with normal and gamma
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priors

· j ¹ N ( ¹ ; µ¡1) and ¼ ¡2
j ¹ ¡ ( ² ; ± );

where the latter is parametrized so that the mean and the variance are ² =± and ² =± 2, respec-
tively.

The prior on the weights wj will be discussed in Section 3.2.
The numberof componentsk will also be consideredunknownand subject to inference.

For this purpose, we assume for the number of components k a uniform prior on the values
f1; 2; : : : ; kmaxg, where kmax is a prespeci� ed integer.As in other mixturemodel contexts (or
indeed in almost all model choice problems), it seems dif� cult to argue objectively for any
speci� c prior for k. Our choice here is for similar reasons to those in Richardson and Green
(1997), namely thatwith this choice it is easy to adjust results to get posteriors corresponding
to other priors, by importance sampling (see, e.g., Hammersley and Handscomb 1964).

In order to allow for weakly informativepriors for the model parameters, we introducea
hyperprior structure and hyperparameter choiceswhich correspond to making only minimal
assumptions on the data. Following Richardson and Green (1997) we take the N ( ¹ ; µ¡1)

prior for ¹ to be rather � at over the range of the data, by letting ¹ equal to the midpoint of
this range, and µ equal to a small multiple of 1=R2, where R is the length of the range.

For ¾2 we instead introduce an additional hierarchical level by allowing ± to follow a
Gamma distribution with parameters f and h, with ² > 1 > f and h a small multiple of
1=R2. This means that the support for ¾2 is not � xed a priori but determined by the value
sampled for ± .

3. MODELING DEPENDENCE USING SPLINES

A particular feature of our mixture model is that the weights in (2.1) are evaluated at
ti, so that they are allowed to vary from observation to observation, according to the value
recorded for the covariate. In this way, we introduce dependence on the covariate through
the modeling of the weights. In particular we want to re� ect the fact that observations
corresponding to values of the covariate t not too far from each other, are somewhat similar.
This is especially true when thinking of growth curves, for which the distribution of the
biometricalmeasurement can be assumed to vary smoothly with the covariate. In our model
this is achieved through requiring the weights (and thus also the allocation probabilities) to
be continuous functions of t.

The model we propose makes use of a linear combination of cubic B-splines, after a
suitable transformation of the weights.

3.1 MATHEMATICAL FORMULATION

The weights wj(t) are constrained to be non-negative and sum to one for all t. For
convenience,we impose the necessary constraints by transformation and, therefore, express
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the weights as

wj(t) =
exp(gj(t))

k
j 0 = 1 exp(gj 0 (t))

; (3.1)

where gj(t) is some continuousfunction of the covariate t. In order to allow the biometrical
measurement to change smoothly and slowly with the covariate, we choose to model gj(t)

and, thereby, the weights wj(t), using natural cubic splines. For more details of the mathe-
matical and statistical properties of cubic splines, needed in this and the following section,
see Green and Silverman (1994, chaps. 2 and 3).

Consider a set of distinct real numbers t1; : : : ; tn (such as, e.g., possible values of our
covariate) on some interval [a; b], satisfying a < t1 < t2 < ¢ ¢ ¢ < tn < b. A function g

de� ned on [a; b] is a cubic spline on the knots ti if:

1. g is a cubic polynomial on each of the intervals (a; t1); (t1; t2); (t2; t3); : : : ; (tn; b);
2. the polynomial pieces � t together at the points ti in such a way that g itself and its

� rst and second derivatives are continuous at each ti, and hence on the whole of
[a; b].

The continuityof the secondderivativeis enoughto give“visual smoothness”of the resulting
function. Cubic splines can be speci� ed in many equivalent ways. One of them is to give
the four polynomial coef� cients of each cubic piece; for example, in the form

g(t) = di(t ¡ ti)
3 + ci(t ¡ ti)

2 + bi(t ¡ ti) + ai for ti µ t µ ti + 1:

A cubic spline on an interval [a; b] is said to be a natural cubic spline if its second
and third derivatives are zero at a and b. These conditions, called the natural boundary
conditions, imply that d0 = c0 = dn = cn = 0, so that g is linear on the two extreme
intervals [a; t1] and [tn; b].

The importance of these functions derives from their variational characterization:
among all functions g on [a; b] that are twice continuously differentiable and interpolate a
given set of data points (ti; yi), where the ti are distinct, that minimizing the integrated-
squared-second-derivative roughness penalty (g00

j (t))2dt is the unique interpolating nat-
ural cubic spline. This result motivates both the use of such splines in modeling smooth
dependence, and the use of the prior speci� cation in the following section.

Cubic splines are very convenientfunctions to deal with computationally;the existence
of bandedmatrices in representationsof interpolatingand smoothingsplinesguarantees that
computation times are O(n) for n data points. However, the computational requirements
of our Bayesian methodology are more demanding, and it is convenient to impose a � nite-
dimensional structure on the problem, by restricting the choice of g(t) to the span of a
prescribed set of basis functions, ­ 1; : : : ; ­ q , and, thus, considering only functions g(t) that
can be expressed in the form

g(t) =

q

l = 1

® l­ l(t)
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for some numbers ® 1; : : : ; ® q.
A possible choice for the basis functions is the set of natural cubic B-splines on a � xed

grid of knots s1 < s2 < ¢ ¢ ¢ < sq, usually taken to be equally spaced to cover the range of
points ti. The B-splines form a set of natural cubic splines that are non-negative and have
only limited support: for 3 µ l µ q ¡ 2 the function ­ l is zero outside (sl¡2; sl+ 2), while
­ 1, ­ 2, ­ q¡1 and ­ q are similar but linear outside (s1; sq). Restricting g(t) to lie in the span
of a set of, say, 10 B-splines typically has minimal impact on the quality of � t to the data.

Now, in our model, we have a function g(t) for each component of the mixture. Mod-
eling them as a linear combination of B-splines on the same knots s1 < s2 < ¢ ¢ ¢ < sq , we
can write them as

gj(t) =

q

l = 1

® lj ­ l(t): (3.2)

Let °j be the q-vector ( ® lj)q
l = 1, for each j = 1; 2; : : : ; k, with ° the q £ k matrix of all ® lj.

3.2 PRIORS ON WEIGHTS

The prior on the weights is speci� ed via that on gj or °j , beginning with the natural
integral-squared-second-derivativepenalty

¶ (g00
j (t))2 dt = ¶ °T

j K°j (3.3)

for j = 1; 2; : : : ; k, where ¶ is a parameter always positive and K is the q £ q matrix with
Klm = ­ 00

l (t)­ 00
m(t) dt. The prior p(gj) / expf¡ (1=2) ¶ °T

j K°jg would be “partially
improper,” since the matrix K has rank q ¡ 2; see Wahba (1978). Essentially the prior is
invariant to the addition of a linear trend in t. Combined with the fact that while wj are
identi� able from the data, the gj are not, this can cause problems with impropriety in the
posterior. To circumvent these, the prior is converted to be proper by substituting the matrix
K with a full rank matrix, and using

p(gj) / expf¡ (1=2)°T
j ( ¶ K + ¯ I)°jg (3.4)

(where I is the identity matrix and ¯ is a positive parameter).
The natural integral-squared-second-derivative (g00

j (t))2 dt is a measure of the rough-
ness of the curve gj(t). There are many ways of measuring how rough a curve is, but this is
particularly appealing for different reasons. First of all, a natural requirement for any mea-
sure of roughness is that if two functions differ only by a constant or a linear function, then
their roughness should be identical. This logically leads to the idea of a roughness measure
based on the second derivative of the curve under consideration. Second, the integral-
squared-second-derivative has considerable computational advantages. Third, there is the
connection with the variational characterization of natural cubic splines, mentioned in the
previous section.

The role of ¶ is that of a smoothing parameter. As ¶ increases toward 1, there is a
stronger shrinkage of each °j towards a linear trend. As a result the curves gj(t) become
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smoother and so do the weights. Overall, the centile growth curves will also be very smooth
and display little curvature. In the opposite limiting case, as ¶ ! 0 the centile growth
curves will track the empirical ones very closely at the expense of being rather variable.
This variability would affect particularly the more extreme centile curves and the accuracy
of their estimates, as the centile standard errors increase steeply towards the tail of the
distribution.

In this perspective, the model chosen for the weights introduces, through the natural
integral-squared-second-derivative (g00

j (t))2 dt and the smoothing parameter ¶ , a rough-
ness penalizing element and a trade-off between smoothness and goodness of � t of the
centile curves.

The parameter ¯ can also be regarded as a smoothing parameter. As its value increases,
not only there is a stronger shrinkageof the °j towards zero, but this effect is also reinforced
by the fact that the variance for the °j is reduced and their distribution is more concentrated
around the zero-mean.

Obviously the choice of the parameters ¶ and ¯ is of some importance.This matter will
be discussed later in Section 5.3.

3.3 COMPLETE HIERARCHICAL MODEL

The joint distribution of all variables conditional on � xed hyperparameters may be
written

p(k; ° ; ¹; ± ; ¾; z; yj ¶ ; ¯ ; ¹ ; µ; ² ; f; h)

= p(k)p(°jk; ¶ ; ¯ )p(¹jk; ¹ ; µ)p( ± jf; h)p(¾jk; ² ; ± )p(zj°; k)p(yjz; ¹; ¾):

We have

p(zj° ; k) =

n

i = 1

wzi (ti);

with the relationship between w and ° given by (3.1), and

p(yjz; ¹; ¾) =

n

i = 1

¿ (yi; · zi ; ¼ zi ):

The prior distribution p(°jk; ¶ ; ¯ ) is given in Section 3.2, while p(¹jk; ¹ ; µ), p( ± jf; h),
and p(¾jk; ² ; ± ) are given in Section 2.3. The complete hierarchical model is displayed in
Figure 1 as a directedacyclicgraph (DAG). We followthe usual conventionthat squareboxes
represent � xed or observed quantitiesand circles represent the unknowns.Relationshipsthat
are deterministic, as opposed to stochastic, are indicated by broken lines.

4. COMPUTATIONAL IMPLEMENTATION

The complexity of the mixture model presented requires Markov chain Monte Carlo
(MCMC) methods to approximate the posterior distribution.Details of these computational
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Figure 1. Directed acyclic graph for the complete hierarchical model.

methods can be found, for example, in Tierney (1994) and Besag, Green, Higdon, and
Mengersen (1995).

Our sampler uses � ve different � xed-dimension moves, each updating one of the vari-
ables of the model, plus a variable dimension move for updating k. The way in which the
� rst � ve moves are performed is quite standard and thus we will go through them rather
quickly.The last move, for updatingk, is performed using a reversible jump method (Green
1995).

4.1 RANDOM WALK METROPOLIS MOVE FOR THE WEIGHTS

We can update the weights by means of a simultaneousrandom walk Metropolismethod
applied to °. Thus, we draw

® 0
lj ¹ N ( ® lj; ½ 2)

independently, compute the corresponding weights w0
j(ti), and accept this proposal with

the usual probability equal to minf1; Qg where

Q =
p(k; ° 0; ¹; ± ; ¾; z; y)

p(k; °; ¹; ± ; ¾; z; y)
=

p(°0jk)

p(° jk)

p(zj°0; k)

p(zj°; k)
;

which simpli� es into

Q = exp ¡ (1=2)

k

j = 1

[(° 0
j)T ( ¶ K + ¯ I)°0

j ¡ °T
j ( ¶ K + ¯ I)°j]

n

i= 1

w0
zi

(ti)

wzi (ti)
:
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Faster convergence in the algorithm was obtained introducing a small bias in the proposal.
Thus, instead of proposing to update ® lj to the new value

® 0
lj = ® lj + r;

where r is a random number from a N (0; ½ 2), we propose, as a new value for ® lj,

® 0
lj = ® lj + r + %

i:z(i)= j

­ l(ti);

where % is a small number (we used % = 0:001 on the basis of some limited pilot runs).
The acceptance ratio for this proposal then becomes

Q0 =
p(°0jk)

p(°jk)

p(zj°0; k)

p(zj°; k)

p(°0j°)

p(°j°0)
= Q exp ¡ 2%

½ 2

k

j = 1

q

l = 1

(°0
j ¡ °j)

i:z(i)= j

­ l(ti) ;

where p(°0j°) is the probability of proposing °0 when the current value is ° and p(°j° 0)

is the probability of proposing ° when the current value is °0.
The biased proposal has the overall effect of proposingnew weights which tend slightly

to favor the current allocation of the observations.

4.2 GIBBS MOVE FOR THE ALLOCATIONS

For the allocations we have

p(zj°; ¹; ¾; k; y) / p(°; ¹; ¾; z; k; y) / p(zj°; k)p(yjz; ¹; ¾)

(i.e., proportionalas a functionof z), so the allocationvariablezi has conditionalprobability

p(zi = jj°; ¹; ¾; k; y) =
wj(ti) ¿ (yi; · j; ¼ j)

j 0 wj 0 (ti) ¿ (yi; · j 0 ; ¼ j 0 )
: (4.1)

We can sample directly from this distribution and update the allocation variables indepen-
dently by means of Gibbs sampling.

4.3 MOVES FOR THE PARAMETERS AND THE HYPERPARAMETER

4.3.1 Updating ¹

Before considering the updating of the · j , we comment brie� y on the issue of labeling
the components. The whole model is, in fact, invariant to permutation of the labels j =

1; 2; : : : ; k. For identi� ability, Richardson and Green (1997) adopted a unique labeling in
which the · j are in increasingnumerical order. As a consequence the joint prior distribution
of the · j is k! times the product of the individual normal densities, restricted to the set
· 1 < · 2 < ¢ ¢ ¢ < · k.
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The · j can be updated by means of Gibbs sampler, drawing them independently from
the distribution

· j j ¢ ¢ ¢ ¹ N
¼ ¡2

j i:zi = j yi + µ¹

¼ ¡2
j nj + µ

; ( ¼ ¡2
j nj + µ)¡1 ;

where nj = #fi : zi = jg is the number of observations currently allocated to the j

component of the mixture. Here and later, “¢ ¢ ¢” denotes “all other variables.” In order to
preserve the ordering constraints on the · j , the move is accepted provided the ordering is
unchanged and rejected otherwise.

Except for very small values of k, this updating move has the drawback of producing
a very small acceptance ratio, due to the fact that the ordering of the · j seldom remains
unchanged. For this reason it is preferable to update · j using a trick similar to the one
that Green and Richardson (2002) adopted to update their component risk parameters. We
propose simultaneous independent zero-mean normal increments to each · j; the modi� ed
values of · j are then placed in increasing order to give ¹0 say. The complete set of updates
is accepted with probability, formed from prior ratio and likelihood ratio, which reduces to
minf1; Sg where

S = exp
k

j = 1

¡ µ

2
( · 02

j ¡ · 2
j) ¡ 2 ¹ ( · 0

j ¡ · j)

¡
i:zi = j

1
2 ¼ 2

zi

( · 02
zi

¡ · 2
zi

) ¡ 2yi( ·
0
zi

¡ · zi ) :

An alternative to imposing identi� ability constraints on the parameters, is to order the
parameters, according to some unique labeling, a posteriori, after the whole sample of
parameters drawn from the posterior is available.In the present case,where the main concern
is the inference on the posterior density of the data and its centiles, rather than on the single
parameters of the model, this labeling is not even required. In this case Gibbs sampler can
be used for updating · j without any need for their order to stay unchanged.

For reason of completeness and because of some interest, however, we preferred to
make inference also on the single parameters of the model and we decided to use the � rst
approach (i.e., to impose an ordering on the · j a priori) after having obtained much the
same results from both of them.

4.3.2 Updating ¾

The full conditionals for ¼ 2
j are

¼ ¡2
j j ¢ ¢ ¢ ¹ ¡ ² +

1
2

nj; ± +
1
2

i:zi = j

(yi ¡ · j)2 :

We update ¼ 2
j independently using a Gibbs move, sampling from their full conditionals.
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4.3.3 Updating ±

The only hyperparameter we are not treating as � xed is ± . Conditional on all the other
parameters and the data, ± has a Gamma distribution

± j ¢ ¢ ¢ ¹ ¡ f + k² ; h +

k

j = 1

¼ ¡2
j :

We update ± by a Gibbs move, sampling from its full conditional.

4.4 VARIABLE DIMENSION MOVE FOR UPDATING k

Updating the value of k implies a change of dimensionality for the components ¹ and
¾, the allocation variables z and the weights w (through the change of dimensionality for
g and °). We follow the approach used by Richardson and Green (1997) consisting of a
random choice between splitting an existing component into two, and merging two existing
components into one. The probabilities of these alternatives are bk and dk = 1 ¡ bk,
respectively, when there are currently k components. Of course, d1 = 0 and bkmax = 0, and
otherwise we choose bk = dk = 0:5, for k = 2; 3; : : : ; kmax ¡ 1.

For the combine proposal we randomly choose a pair of components (j1; j2) that are
adjacent in terms of the current value of their means, which means · j1 < · j2 , with no other
· j in the interval [· j1 ; · j2 ]. These two components are merged into a new one, labeled · j? ,
reducing k by 1. We then reallocate all those observations yi with zi = j1 or j2 to the new
component j? and create values for · j? ; ¼ j? in such a way that:

· j? = ( · j1 + · j2 )=2

· 2
j? + ¼ 2

j? = [(· 2
j1

+ ¼ 2
j1

) + ( · 2
j1

+ ¼ 2
j2

)]=2:

To create the new values wj? (ti) we � rst have to create ® lj? , for l = 1; 2; : : : ; q. We
do this by setting

® lj? = log[exp( ® lj1 ) + exp( ® lj2 )]; for l = 1; 2; : : : ; q

and calculate g?
j (ti) and w?

j (ti) using (3.2) and (3.1), respectively. Note that in this way all
the weights change slightly.

The split proposal starts by choosing a component j? at random. This component is
split into two new ones labeled j1 and j2, augmenting k by 1. Then we have to reallocate
all those observations yi with zi = j? between the two new components, and create values
for (wj1 ; wj2 ; · j1 ; · j2 ; ¼ j1 ; ¼ j2). Let us start by splitting · j? and ¼ j? . We generate a two-
dimensional random vector v to specify the new parameters. We use Beta distributions

v1 ¹ Be(1; 1) and v2 ¹ Be(1; 1)
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for this and set

· j1 = · j? ¡ v1 ¼ j? ;

· j2 = · j? + v1 ¼ j? ;

¼ 2
j1

= 2v2(1 ¡ v2
1) ¼ 2

j?

and
¼ 2

j2
= 2(1 ¡ v2)(1 ¡ v2

1) ¼ 2
j? :

We then need to check that the constraints on the means are satis� ed. If not the move is
rejected forthwith, as the misordered vector ¹ has zero density under the ordered prior. If
the constraints are satis� ed we move on and split the weights.

In doing so, we generate a q-dimensional vector u from

ul ¹ Be(0:5; 0:5); independently for l = 1; 2; : : : ; q;

and we set

® lj1 = ® lj? + log(ul); ® lj2 = ® lj? + log(1 ¡ ul) for l = 1; 2; : : : ; q:

We then calculate gj1(ti), gj2(ti), and wj1(ti), wj2 (ti) using (3.2) and (3.1), respectively.
We denote the proposed new weights by w0.

Finally we reallocate those yi with zi = j? between j1 and j2 in a way analogous to the
standard Gibbs allocationmove; see Equation (4.1). We denote the proposed new allocation
vector by z0.

According to the reversible jump framework, the acceptance probability for the split
move is min(1; A), where

A = (likelihood ratio) £ p(k + 1)

p(k)
£ (k + 1) £

n

i = 1

w0
z 0

i
(ti)

wzi (ti)

£ µ

2 º
exp ¡ µ

2
( · j1 ¡ ¹ )2 + ( · j2 ¡ ¹ )2 ¡ ( · j? ¡ ¹ )2

£ ± ²

¡ ( ² )
exp ¡ ±

1
¼ 2

j1

+
1

¼ 2
j2

¡ 1
¼ 2

j?

¼ j?

¼ j1 ¼ j2

2( ¬ ¡1)

£
j ¶ K + ¯ Ij1=2

(2 º )q=2
exp

(
¡ 1

2
°T

j1
( ¶ K + ¯ I)°j1

+ °T
j2

( ¶ K + ¯ I)°j2

¡ °T
j? ( ¶ K + ¯ I)°j?

)!

£ dk + 1

bkPalloc
£ be1;1(v1)be1;1(v2)

q

l = 1

be0:5;0:5(ul)

¡1

£
8(1 ¡ v2

1) ¼ 3
j?Qq

l = 1 ul(1 ¡ ul)
; (4.2)

where ¡ (¢) is the Gamma function, Palloc is the probability of this particular allocation,
bep;r denotes the Beta(p; r) density, and (likelihood ratio) is the ratio of the product of
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the f (yijzi; · zi
; ¼ zi

) terms for the new parameter set to that for the old one. The quantity
j ¶ K + ¯ Ij represents the determinant of the inverse of the covariance matrix for each of the
gj . The need to make the prior distribution on the gj proper and to introduce the positive
parameter ¯ is now evident.

The � rst � ve lines of (4.2) are the product of the likelihood ratio and the prior ratio
for the parameters of the model. The sixth line is the proposal ratio. The last line is the
Jacobian of the transformation from the vector ( · j? ; ¼ j? ; ® 1j? ; : : : ; ® qj? ; v1; v2; u1; : : : ; uq)

to the vector ( · j1 ; ¼ j1 ; ® 1j1 ; : : : ; ® qj1 ; · j2 ; ¼ j2 ; ® 1j2 ; : : : ; ® qj2 ).
The acceptance probability for the combine move is min(1; A¡1), with some obvious

substitutions in the expression for A.

4.5 WITHIN-MODEL SIMULATION AND PATH SAMPLING

The alternative general approach to sample-based joint inference about a model indi-
cator k and model parameters is to conduct separate simulation within each model, and
piece the results together afterwards. Inference about k is then based on the estimate of the
posterior model probabilities

p(kjy) / p(k)p(yjk):

These require estimates of the marginal likelihoods p(yjk) separately for each k, using
individualMCMCruns. Let Ãk = (¹; ¾; w) denote the unknowns¹, ¾, and w in the model
with k components. Then, possible estimates of marginal likelihoods, using importance
sampling are, for example, (see Newton and Raftery 1994)

p̂1(yjk) = M

,
M

m = 1

p(yjk; Ã
(m)
k )

¡1
;

based on an MCMC sample Á
(1)
k ; Á

(2)
k ; : : : ; Á

(M)
k from the posterior p(Ãkjy; k),

p̂2(yjk) = M¡1
M

m= 1

p(yjk; Ã
(m)
k );

based on a sample from the prior p(Ãkjk), or

p̂3(yjk) =

M
m= 1 p(yjk; Ã

(m)
k )= ° p̂3(yjk) + (1 ¡ ° )p

³
yjk; Ã

(m)
k

´

M
m= 1 ° p̂3(yjk) + (1 ¡ ° )p(yjk; Ã

(m)
k )

¡1 ;

basedon a sample from a ( ° ; 1 ¡ ° ) mixtureof the prior p(Ãkjk) and the posteriorp(Ãkjy; k)

and supposed to perform better than the previous two. It is well known, however, that when
the distance between the prior and the posterior densities is big (as it is in our case), the
variability of this last estimator can become so large that the estimate is virtually unusable.
A gain of ef� ciency can be obtained using the idea of the bridge sampling and choosing a
sensible density which serves as a “bridge” between the prior and the posterior densities.
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The idea of creating a bridge can obviously be pushed further if the prior and the posterior
densities are so far separated that the estimator based on the bridge sampling is too variable
to use in practice. In such cases it is useful to construct an in� nite series of intermediate
densities—that is, a whole “path”—from which we can make draws. We refer to Gelman
and Meng (1998) for a detailed discussion of bridge sampling and path sampling.

Brie� y, to estimate the marginal likelihood,we construct a geometric path between the
prior and the posterior parameter densities using a scalar parameter ³ 2 [0; 1],

q(Ãkj ³ ) = fp(Ãkjk)g1¡ ³ fp(Ãkjk)p(yjÃk; k)g ³ = p(Ãkjk)fp(yjÃk; k)g ³ : (4.3)

We use a notation in which q(¢) represents an unnormalized density, p(¢) is the correspond-
ing normalized density and c(¢) is the normalizing constant. From (4.3) it is evident that
estimating p(yjk) is equivalent to estimating c(1), that is, the normalizing constant when
³ = 1. Following Gelman and Meng (1998) it can be proved that

log[p(yjk)] = log[c(1)] =
1

0
E ³ [U (Ãk; ³ )] d³ ; (4.4)

where E ³ denotes the expectationwith respect to the sampling distribution p(Ãkj ³ ) (which
is the unknown normalized version of q(Ãkj³ )) and where

U (Ãk; ³ ) =
d

d³
log q(Ãkj ³ ):

For estimating log[p(yjk)] we then numerically evaluated the integral in (4.4) over a grid of
values for ³ . We chose an exponential spacing for the grid to account for the sharp variation
of q(Ãkj ³ ) for ³ close to 0. Given the indexing 0 = ³ (1) < ¢ ¢ ¢ < ³ (h) < ¢ ¢ ¢ < ³ (H) = 1

and a (possibly dependent) sample of draws (Ã
(m)
k ; ³ (m)) from p(Ãk; ³ ), applying the

trapezoidal rule, we estimate log[p(yjk)] by

log[p̂(yjk)] = log ĉ(1) =
1
2

H¡1

h= 1

( ³ (h + 1) ¡ ³ (h))(Ū(h+ 1) + Ū(h)); (4.5)

where Ū(h) is the average of the values of U (Ã
(m)
k ; ³ (m)) for all simulation draws m for

which ³ (m) = ³ (h).

We now come to the matter of obtaining an MCMC sample of draws (Ã
(m)
k ; ³ (m))

from the joint distribution p(Ãk; ³ ), using a different MCMC sample from that used to
compute the within-model posterior distribution of the parameters. We can easily draw Ãk

from p(Ãkj ³ ), but the problem of updating ³ is more complicated. Assuming a discrete
uniform distribution for ³ on the values speci� ed in the grid, we have

p( ³ jÃk) / p( ³ )p(Ãkj ³ ) = p( ³ )
q(Ãkj ³ )

c( ³ )
/ q(Ãkj³ )

c( ³ )
;

and c( ³ ) is unknown.
A � rst solutionwould be to use nested loops: for each value ³ in the grid, run an iterative

simulation algorithm until approximate convergence to obtain p(Ãkj ³ ). The problem with
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this solution is that when the grid for ³ is very � ne, as in the present case, many runs of the
algorithm are required and convergence needs to be assessed for each of them.

We thus preferred to draw from the joint density of (Ãk; ³ ), combining the simulations
of Ãk and ³ in a single loop of iterative simulation, alternately updating Ãk and ³ . In this
way, convergence can be checked looking at the sampled distribution for ³ which should
be uniform on the values speci� ed in the grid. Also, we avoid the need to do burn-in runs
for each ³ in the grid, separately. To overcome the problem of drawing ³ from p( ³ jÃk) we
used a rough estimate c?( ³ ) instead of c( ³ ) and simulated ³ with target

p( ³ )
q(Ãkj ³ )

c?( ³ )
= p( ³ )

c( ³ )

c?( ³ )
p(Ãkj³ );

so that the output distribution for ³ is only slightly altered (provided c?( ³ ) is not too
far from c( ³ )) while the output distribution for (Ãkj ³ ) is unaltered. We proceeded start-
ing from a � rst rough estimate c?( ³ ). This is obtained keeping ³ = ³ (h0 ) � xed for 20
sweeps of the algorithm, updating only Ãk , estimating c?( ³ (h0 )) from these 20 sweeps
using (4.5) where the sum is over h = 1; : : : ; h0 ¡ 1, and then moving to ³ = ³ (h 0 + 1).
Notice that there is no need to estimate c?(0) since c(0) = 1. After c?( ³ ) was calculated
for each ³ a further 100,000 sweeps were used to draw values of ³ and Ãk from their joint
distribution and to re-estimate c?( ³ ) after an exponentially increasing number of sweeps
(m = 67; 91; 168; : : : ; 73;783; 100;000). We then used the last estimate of c?( ³ ) to run the
� nal 100,000 iterations to be used to estimate p(yjk) from (4.5). The whole procedure is
quite cumbersome. It is however required to get values of c?( ³ ) as close as possible to those
of c( ³ ). This is necessary to obtain an output distribution of ³ not too far from the uniform
and to ensure, in this way, that the averages Ū(h) are calculated over a considerable number
of values for each h.

5. RESULTS

The method for determininggrowth curves illustratedso far is applied to data on triceps
skinfold in Gambian females. These data come from an anthropometry survey of 892 girls
and women up to age 50 in three Gambian villages, seen during the dry season of 1989; 620
(70%)of the subjectswere agedunder20. Five different anthropometricmeasurementswere
taken. Here we discuss only the triceps skinfold for a subset of the original data including
584 subjects aged from about 3 to 26 years. In this covariate range, the observations on
triceps skinfold vary in the interval [3:2; 21:0], determining a length R for the range of the
data equal to 17.8. This dataset was already analyzed by Cole and Green (1992) and Green
and Silverman (1994, sec. 6.7).

The results reported correspond to runs of 100,000 sweeps after a burn-in period of
50,000 sweeps. The following settings were used for previously unspeci� ed constants:
µ = 10:0=R2, ² = 2:0, f = 0:2, h = 10:0=R2, ¶ = 0:7, ¯ = 0:09. Some experimentation
indicates that results are quite robust to reasonable perturbations of these values.

Models with a number of components up to kmax = 5 were considered. The number of
knots was � xed at 10, with the knots equally spaced between 5 and 23.
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5.1 POSTERIOR INFERENCE ON k

The reversible jumpapproachallows joint(or across-model) inferenceaboutthe number

of componentsk and theotherparameters of themodel.The posteriordistributionp(kjy) can

be, therefore, directly obtained from the MCMC sample. Unfortunately, in the present case,

a few runs of the algorithm showed an extremely small acceptance rate of the split/combine

move, approximately equal to 0.06 %. This is partly due to the large number of parameters

involved in the model, that makes it dif� cult to move from a state of dimension 12k to a

new one with dimension 12(k ¡ 1) or 12(k + 1). However, the main reason for such bad

performance is the large size of the dataset. This leads to very peaked posterior distributions

for the parameters, causing a very low acceptance rate of the split/combine proposals.

An improvement in the acceptance rate was found considering one quarter of the

original dataset: the data were sorted according to the value of ti and a reduced dataset was

created taking one datum at random from every consecutive four, in order to preserve the

original structure of the data. In this way the acceptance rate increases 10 times and a further

increase was obtained repeating the split/combine move more than once in each sweep and

considering the move accepted overall, if accepted at least once.

Reversible jump was therefore used on the reduced dataset to simulate a “partial”

posterior distribution for k. The mode of this distribution was considered as an estimate of

the number of components for the mixture. The MCMC algorithm was then run again to

obtain the density estimate for the whole dataset, skipping this time the variable dimension

move and � xing k to its estimated value. This is not “using the data twice,” but is a valid

approach to approximating the posterior of all parameters conditional on k = k?, where k?

maximizes p(kjy); the probability that k? differs between the reduced and full datasets is

negligible.

In addition to the across-model approach on the partial dataset, we also tried the within-

model approach of Section 4.5. We mainly did so in order to check the estimate of k we

obtained from the reduced dataset and also to explore an alternative solution when the

amount of data makes the use of reversible jump on the whole dataset infeasible, at least

with the moves we have considered.

Even proceeding in this way, the estimate still shows some variability.In order to reduce

this variability, the � nal estimate for each model was therefore obtained as a trimmed mean

of four estimates (i.e., the mean of the middle two of the four) resulting from four different

runs of the algorithm. Figure 2 shows the posterior distribution p(kjy) obtained in this way

for the whole dataset (continuous line) and for the partial dataset (dashed line) compared

with the one resulting from the reversible jump sample on the partial dataset (dotted line). In

spiteof theirvariability,the different estimatesagree on themodeof theposteriordistribution

for k and favor an explanation of the data using four components.

A further visual comparison to evaluate the goodness-of-� t of the different models can

be based on the plot of the cumulative density of the data against the covariate. If the data

are well � tted by the model, the points must be uniformly spread (in the vertical direction)
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Figure 2. Posterior distribution p(kjy) estimated using path sampling on the whole dataset (continuous line) and
on the partial dataset (dashed line), and using reversible jump on the partial dataset (dotted line).

over the plot. The cumulative density, conditional on weights, means and variances can be

written as

F (yi) =

k

j = 1

wj(ti)
yi

¡1
¿ (x; · j ; ¼ j) dx =

k

j = 1

wj(ti)©
yi ¡ · j

¼ j
:

The cumulative density for all ti was computed at each sweep and then averaged over the

number of sweeps. Figure 3 shows these cumulative densities plotted against the age for the

� ve different models. Clearly the models with one and two components show their limits in

� tting the data, while the models with three to � ve components seem to be all reasonable. In

the bottom right corner, the � t corresponding to the across-model inference is also shown.

5.2 POSTERIOR INFERENCE FOR CENTILE CURVES

We brie� y illustrate how to evaluate the centile curves from the MCMC output. First

of all, centile curves were not evaluated for every ti but only over a grid of 47 equally

spaced values for t, between 4.0 and 26.0. We indicate these values as t? = (t?
i )n?

i = 1, where

n? = 47. This was done to reduce the computing time required to evaluate the centiles

numerically at each sweep of the algorithm.

Then we set a grid of values a = (ah)200
h= 1. For each sweep m = 1; 2; : : : ; 100;000 and

for each value t?
i , and recalling (2.2), we evaluate, for a given value ¬ , the centile C

(m)
¬ (t?

i )
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Figure 3. Cumulative density for yi plotted against ti .

as that value ah for which

k

j = 1

w
(m)
j (t?

i )©
ah ¡ ·

(m)
j

¼
(m)
j

µ ¬ <

k

j = 1

w
(m)
j (t?

i )©
ah+ 1 ¡ ·

(m)
j

¼
(m)
j

:

The centiles C
(m)
¬ (t?

i ) are then averaged over the different sweeps to obtain � nally C ¬ (t?
i ).

Figure 4 shows the centile curves obtained for the � ve different models. The results for

the model with 1 component are given only for reasons of completeness and as a visual

aid, to see how the � tting of the data changes as the number of components increases.

It expresses no dependence of the data on the covariate and simply models the data as a

normal distributionwith some estimated mean and variance. Obviously it has no pretension

of explaining the data. The two components mixture seems to be not completely adequate

to model the density of the data, either, while mixtures with three to � ve components show

similar results in terms of growth curves. In the bottom right corner of Figure 4, the centile

curves estimated for the partial dataset, using the across-model approach are also given. In

this case inference results from mixing over k, while inference on the other centile curves

is conditional upon k.

Data are characterized by high triceps values in early childhood, followed by a fall and

then a second continuous rise until the end of the age interval. The centile curves obtained

using the three models with three to � ve components closely follow this pattern. They show

the same “notch” in the dependence at around nine years, found in Cole and Green (1992).
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Figure 4. Centiles curves obtained with the � ve different models for triceps skinfold among Gambian females:
5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles.

They also showed a gradual increase in the spread of the data after age 10.

The across-model approach givesmuch the same results,with some obviousdifferences

due to the fact that here only one quarter of the data are involved in the model � tting.

The centile curves are reasonably well smoothed up to age 20. After that they appear

somewhat ragged. This might well be due to the fact that data for women aged more than 20

are very sparse. Smoother curves couldbe obtainedby increasing the valueof the smoothing

parameters ¶ or ¯ .

5.3 THE CHOICE OF THE SMOOTHING PARAMETERS

The choiceof the smoothingparameters ¶ and ¯ obviouslyinvolvean arbitrary decision.

A possiblesolutionto overcome this problemwouldbe to assigna hyperpriorto ¶ and ¯ . This

would allow extra � exibility to the model and cope with uncertainty about these parameters.

In this way, in fact, the smoothing parameter values would be chosen by the data.

In the present contextwe preferred to regard the free choiceof the smoothingparameters

as an advantage of the model rather than a problem to be solved. By varying the smoothing

parameters, in fact, features of the data that arise on different “scales” can be explored. A

� nal value for ¶ and ¯ can then be obtained by a subjective choice. Figure 5 shows the

centile curves obtained for increasing values of ¶ (by row) and increasing values of ¯ (by
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Figure 5. Centile curves obtained for different values of the smoothing parameters ¶ and ¯ , conditioning on k =

4.

column), conditioning on k = 4. The curves become smoother as the parameters increase

and ¯ , as expected, has a stronger effect than ¶ , since ¯ directly affects the variance of the

°j . For ¶ = ¯ = 10 the curves show very little curvature and a farther increase in one or

both parameters would determine straight curves, parallel to the covariate axis.

Our � nal choice of the smoothing parameters, with ¶ larger than ¯ ( ¶ = 0:7, ¯ = 0:09)

aimed to get smoothed curves without placingany strong restriction on the prior distribution

of °j .

5.4 POSTERIOR INFERENCE ON ¹, ¾2, AND wj(ti)

Even if the focus of our analysis is on the inference about the growth curves, it is also

interesting to spend a few words on the posterior distributions of the single components

of the mixture and the posterior distributions of the allocation variables. Figure 6 shows

the marginal posterior distribution of ¹ (left panel), ¾2 (central panel), and z (right panel)

conditioning on increasing values of k, from k = 3 to k = 5. Here, a line of a given type

is used to represent the posterior densities of ¹ and ¾2, for a given component, and the

probability, conditional on the value of the covariate, of an observation to be allocated to

that component. For all the models it can be noticed that the posterior distribution of · j

becomes more and more spread as we move from · 1 to · k . This is due to the fact that the
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Figure 6. Marginal posterior densities for · ·· and ¼ ¼¼ 2 and z. Models with three to � ve components.

mean value of ¼ 2
j increases with j, and also to the fact that fewer observations are generally

allocated to the last components. If we consider the modal allocation, for the model with

� ve components, 526 observations are allocated to the � rst three components and only 58

observations are allocated to the last two.

It is also interesting to notice how the effect of going from k = 3 to k = 4 components

is that all the components are shifted, while the principal effect of going from k = 4 to

k = 5 components is that the third component is split into two.

Looking at the posterior distribution of ¼ 2
j , a general increase in the variance of the

distribution is again evident, togetherwith an increase in the shift towards right, as we move

from ¼ 2
1 to ¼ 2

k. These increases are caused by a smaller number of observations allocated to

components with large ¹, but also by the fact that these observationsare the most dispersed.

The only exception in the location of the posterior densities for ¾2 can be noticed for k = 5

where the posterior mode for ¼ 2
4 is less than the posterior mode for ¼ 2

3 .

The posterior densities of zi, that is, the weight curves wj(ti), can be analyzed using

both Figure 6 and Figure 7. Figure 7 describes the modal allocationof each observation and

gives a more immediate idea than Figure 6.

In the modelwith k = 3, the observationsat ages less than � ve are very likely associated

to the second component. Then the weight of this second component decreases in favor of

the weight of the � rst one to which all the observations in the notch are allocated with

probability very close to 1. The observations at ages more than 15 are associated again with
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Figure 7. Modal allocation of the observations for models with three to � ve components.

the second component or with the third one, when their value is high.

In the models with k = 4 and k = 5, the � rst component is still associated with the

notch around the age 9. Observations on the edges of this notch are instead very likely to be

allocated to the second component. The fourth component in the model with k = 4 has the

same role of the � fth component in the model with k = 5: it is associated with observations

aged more than 15 with high triceps values. As noted before, going from k = 4 to k = 5

has the effect of splitting the third component. For k = 4, the third component is both

associated with observations at young ages and with observations at ages around 15 and

older, characterized by triceps around the value 10. In the model with k = 5, observations

at young ages and observations at ages around 15 and older are instead separated and

allocated with high probability to the fourth and the third component, respectively. It is

evident that very few observations have a reasonable probability of being allocated to the

fourth component. On the other side, these are much less dispersed than those likely to be

allocated to the third one. This explains the fact that the posterior mode for ¼ 2
4 is less than

the posterior mode for ¼ 2
3 when k = 5, and also the fact that ¼ 2

4 is more dispersed.

6. DISCUSSION

We believe that themodel introducedand discussed in thisarticleprovidesan interesting

new methodology for the estimate of growth curves. The main dif� culty lies, in fact, in
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decidingwhether a bumpor dip observed on a centilecurve at a particularage is a real feature

of the data, or whether it is simply sampling error. The Bayesian modeling approach—

together with the � exible semiparametric nature of mixture models, the adaptability of the

splines, and the roughness penalizingelement they introduce—provides an elegant solution

to this problem. Data are smoothed preserving their heterogeneity, no age cut-offs need to

be speci� ed, and the only arbitrariness in the whole procedure is the choice of the smoothing

parameters ¶ and ¯ .

The model could be extended in several directions. One interesting extension is the use

of B-splines to model not only the weights of the mixture, but also the componentparameters

· j and ¼ j . This would give the model more � exibility. Let us think of an extreme example.

If we consider a hypotheticaldataset for which the underlying theoretical model is a simple

linear regression on the covariate, it is clear that the mixture model presented in the article

would require a large number of components to � t the data. Modeling the component

parameters as a smoothed function of the covariate,would instead allow to � t the data using

only one component.

Although the validation of the MCMC code did not receive much space in the article,

numerouscheckswere conductedon thecorrectnessof our sampler. In particularwe checked

that without any data, our estimate of the joint posterior distribution tallies with the chosen

prior. We are satis� ed that the values chosen for the smoothing parameters ¶ and ¯ allow

substantial smoothing in the centile curves, so that higher values of ¶ and ¯ , for which

mixing could be slower, are not necessary.

Finally, we draw attention on the dif� cult matter of estimating the marginal likelihood

for complex, nonregular problems, when the large amount of data induce very peaked

posterior distributions for the parameters and makes the use of reversible jump infeasible.
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