A NOTE ON THE SWENDSEN-WANG ALGORITHM
AND ORDERED COLOURS

Peter J. Green

University of Bristol,
Department of Mathematics,
Bristol, BS8 ITW, UK.

ABSTRACT

The approach of Swendsen and Wang to simulating from the Potts model is
extended to more general Markov random fields, obtained by dropping symmetry over
sites and colours, and allowing general pairwise-difference interactions. The key idea
is a more general notion of bond variable, taking integer values, leading to a more
complicated cluster structure. Convergence is proved under quite general conditions.
Only informal speculations are made about implementing the resulting algorithms.

Preliminary version: comments welcome.

1. Introduction

There is currently much interest in the use of dynamic Monte Carlo methods such
as the Metropolis and Gibbs samplers to evaluate distributions and expectations in
complex stochastic systems. Such methods are being used in applications as diverse as
statistical image analysis (Geman and Geman, 1984), general multi-parameter Bayesian
inference (Gelfand and Smith, 1990), spatial epidemiology (Besag, York and Molli€,
1991), and pedigrees in genetics (Sheehan and Thomas, 1991).

Given a (high-dimensional) joint distribution of interest, p(x) say, the general
approach is to evaluate the required quantities by averaging statistics calculated from
samples drawn from the distribution; this simulation is not performed directly, how-
ever, but by constructing a Markov chain whose limiting distribution is p(x). There is
considerable freedom of choice in constructing such chains (Hastings, 1970, Green and
Han, 1991).

An obvious concern in using such methods is whether convergence is sufficiently
fast, and the samples sufficiently independent, for the approach to be practically viable.
Loosely speaking, when there is a high degree of dependence between the variables in
p(x), it can take a very long time to visit all corners of the state space adequately if
one uses the conventional strategy of changing one, or a few, of the components of x
at each transition.

This difficulty is well-documented in the computational physics literature, where
the phenomenon of chief concern is known as critical slowing-down (see Sokal, 1990).
Near a critical point, the autocorrelation time of such Markov chains typically becomes
infinite. The finite-lattice version of this phenomenon is that convergence to equili-
brium becomes increasingly slow, and successive samples increasingly dependent, as



interaction parameters increase.

One way of overcoming this difficulty is to devise a Markov chain with the same
limiting distribution p(x), but with transitions of completely different character, chang-
ing many variables at once. Such chains offer the prospect of generating sample paths
that explore the sample space much more quickly, and thus avoiding critical slowing-
down. But such chains are also difficult to construct, or rather, it is difficult to con-
struct chains that do not involve rejection sampling with extremely low acceptance
rates and which are therefore impractical.

A notable success in this direction, however, is the algorithm of Swendsen and
Wang (1987) for sampling from the Ising model, and other Potts models. This algo-
rithm exploits a duality between the Potts model and the "random-cluster" model, a
variant of bond percolation, to give dramatically better performance in terms of con-
vergence speed and autocorrelation time as the critical point is approached. Although
there have been studies in the statistical literature assessing the performance of the
Swendsen-Wang algorithm against that of conventional "single-flip" methods (e.g.
Kirkland (1989)), the algorithm has had no impact on practical applications because of
the lack of relevance of the symmetrical interaction structure in the Potts model to the
applied science contexts listed above.

In this note, we discuss an extension of the idea behind the Swendsen-Wang algo-
rithm to address models with more general pairwise interactions, depending monotoni-
cally on differences between neighbouring variables. At the same time, we provide a
cleaner derivation of the standard Swendsen-Wang construction than is usually given,
and prove convergence under very general conditions. Thus we considerably extend
the relevance and applicability of the method. We do not, however, discuss any prac-
tical applications in this note, and neither do we make more than speculative remarks
about implementing the algorithms.

2. Bond variables

Suppose that x is a random vector, with components X; indexed by
ie S={1,2,...,n}, a finite set of sites or pixels. Each x; takes values in a finite set of
colours C ={0,1,2,...,L—1}, and we denote the whole sample space CS by Q. We
are interested in distributions on Q with probability functions of the form

p() = - TT &0 T by(Ix ~ %D, M
icS§ i~j
where {a;()} and {b;()} are prescribed finite, positive, functions, each b;;() is non-
increasing, and Z is the appropriate normalising constant. Thus there are at most pair-
wise interactions, and these involve only differences between the variables. The nota-
tion i ~ j indicates that i and j are neighbours in the conditional independence graph of
the variables {x;}: that is, we will take i ~ j if and only if b;;() is not identically con-
stant. The second product in (1) is thus a product over all pairs of neighbours.
From the positivity of a;() and b;(), it is immediate that p(x) >0 for all xe Q.
Note that model (1) might more usually be written in the form

p()= exp (X 0 ()~ T By (I =51,

ieS i~J
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but the multiplicative form is more useful in what follows.

Our approach to manipulating such distributions is to introduce auxiliary random
variables, which we term bond variables. These are denoted by €ij» taking values in C,
and defined for each i,j such that i ~ j. The vector with components () is denoted
by e.

The joint distribution of (x, €) will be defined through the conditional distribution
of e given x. Let

Cij(L - 1) = bU(L - ].)
and
Cij(e) = blj(e) = bg(e + ].)
for e=0,1,2,...L—2. Then {c,-j()} are non-negative functions (since bj; is non-
increasing), and

L-1
b;(d) = %cij(e) Ifd<e],

for all d=0,1,...,L — 1, where I[ ] is the indicator function. Given x, the {eij} are
defined to be conditionally independent, with

p(e,-jlx) =0 if eij < |x,~ —‘le (2)
Cg(eg) ]
=__ 2 T if ei=|x-xl
b,-j(]x,- - x;|) Y o

It is clear from our assumptions that this is a proper distribution. Combining (1) and
(2), we have the joint distribution for x and e:

1
px,e)= _ [T ai(x) [ Tcile) Ilx; — x| < e;]. 3)
Zics i~j
Note that, by construction, the normalising constant Z is the same in (1) and (3). This
joint distribution is not everywhere positive: for any e, p(x,e) is only positive for

xe Qe)={xe Q:|x; —x;|<¢; forall i ~ j}. 4
The conditional distribution of x given e can now be read off from (3): clearly
p(x|e) < [T ai(x;) for x & Q(e). (5)
ieS

The normalising constant would not be easy to obtain. The bond variables e induce an
equivalence relation on S, where i and j are equivalent if i=j or there is a path
i=iy ~ iy ~ iy ~ ... ~ iy =] between pairs of neighbours, with each ¢; ; <L-1,
strictly. We call the equivalence classes clusters: it is evident that components of x
indexed by sites in different clusters are conditionally independent given e.

3. Special cases

The Potts model (Potts, 1952) is the special case of model (1) that arises when
g;(x)=1forallx; e C,allie S, and



bl](lx, —le) =1 xi=xj (6)
=€ -B X; =|=.x]'.

The probability p(x) is then just the exponential of the negative of the number of
unlike-coloured neighbours, suitably normalised. It is a modest generalisation of this
to allow B to depend on (i,j). In our representation above, this corresponds to
ci(L-1)= exp(—B,-j) , c,-j(O) =l — exp(—Bl-J,-), and ¢;;(e) = 0 otherwise, so that the bond
variables e;; taken only two values, 0 and (L —1). These have usually been described
as on and off, true and false, or presence and absence of a bond between the sites i
and j. In this case, the clusters induced by e will each be all of one colour.

The extra generality here in allowing a different function g;() at each site permits
some additional heterogeneity, most importantly that arising when we observe a
degraded version of x, say y, and wish to study the posterior distribution p(x]y). If
the degradation is independent, pixel-wise, so that

pIX)=TIr;ix)
ie§
and the prior distribution of x has the form (1), then the posterior will also have this
form, with an additional factor of p(y;|x;) in a;(x;).

The major extension incorporated here is that of relaxing (6), however. By
allowing bond variables taking integer, rather than just boolean, values, we can thus
sensibly handle pairwise interaction Markov random fields on ordered colours (usually
grey levels).

4. Metropolis and Gibbs samplers

The purpose of the constructions described in Section 2 is to assist in devising
dynamic Monte Carlo procedures for simulating from p(x) in the model (1). Since
direct simulation is impractical, we aim to construct a Markov chain, with transition
function P (x,x’), say, on Q x Q, which satisfies the detailed balance equation

px) P(x,x)=p(x") P(x’,x) (7)
for all x,x’ € Q, and thus for which {p(x),x € Q} is an equilibrium distribution.

The Swendsen-Wang procedure is effectively the Gibbs sampler applied to
p(x,e), with block updating of all of e, then all of x, alternately. That is, given
x{¥) =x, we first draw e from p(e|x) using (2), then draw x(+1D) =x from p(x|e) using
(5). This amounts to using the transition function

P(x,x") =Y p(elx) p(x’le), )

and (7) holds since

, p(x,e) p(x’,e)
pX)P(x,x") =3 p(x) )
% p(x) p(e
which is clearly symmetric in x and x”.
Whilst simulating from (2) is always trivial, it may be much less straightforward
to simulate from p(x|e), given by (5), particularly in the present generality. (In the
case of the Potts model, (5) just involves an independent uniform choice of colour for
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cach cluster, so this case presents no difficulty.) More flexibility is available if we use
the more general Metropolis/Hastings approach (see Metropolis, et al., (1953), Hastings
(1970), and Green and Han (1991)). Having drawn e from p(e|x), suppose that we
now draw a proposal x” for the new state x*1D | by sampling from an arbitrary transi-
tion function g(x,x’;e), indexed by e. This proposal is not immediately taken as the
new state of the chain. Rather, it is only accepted, and x*1) set equal to x’, with pro-

bability ou(x,x”;e); otherwise it is rejected, and no move is made, so that x{+1 =x.
The corresponding transition function is
Px,x")= Y plelx) ¢(x,x";e) alx,x’;e) ifx+x’ )]
e
=1-Y Px,x") if x=x’,
x"$x
and if we take
a(x,x";€) = min {1, PF¥ 199K X3€) (10)

p(x,e)q(x,x";e)
then it is readily shown that detailed balance (7) holds.
The ordinary Swendsen-Wang procedure (Gibbs sampler) is obtained by taking

g(x,x";e)=p(x’|e)
whence from (10),
ox,x;e)=1,

so that the proposal is never rejected.

In many contexts, including most image analysis applications, the number of sites
n will be very large. The ratio term in (10) then involves highly multivariate probabil-
ity functions, and so with substantial probability the acceptance probability o will be
very small. In this situation, such Metropolis methods will be unacceptably inefficient.
Fortunately, the generation and acceptance of proposals can be performed on a
cluster-by-cluster basis, thus effectively reducing this dimensional problem.

Let Cl(e)c25 be the collection of clusters induced by the particular configuration
of bond variables e. For Ae Cl(e), suppose that a proposal x4  for recolouring x, is
generated with probability g(x4,x4 ;) for each x, e C#, and accepted with probabil-
ity ou(x4,X4”;€). These choices are made independently for each cluster. The resulting
Markov transition matrix is

Px,x) =Ypeix) TI {g(xa.x4":€)uxy,X4"5€)+ (11)
e Ae Cl(e)
SXAXA'Zq(xA ’X/Dl ;e) (1_a(XA 7XZ ;e))}
X3

But by the conditional independence of x given e in different clusters, we have

p(x)p(e|x) = p(e)p(xle) =p(e) T pxale). (12)
Ae Cl(e)

Combining (11) with (12), it is then easy to show that p(x)P(x,x”) is symmetric in X
and x’, if o is defined, by analogy with (10), as
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p(x4’1e)q(x4 X4 €)
AT

Since clusters will typically contain far fewer than n vertices, these cluster recolouring
acceptance probabilities will rarely be very small.

A particular instance of this cluster-wise Metropolis procedure that is simple to
implement, is obtained by taking

q(x4,%,";€) = Bp(x4’1€) + (1-0)8y,,

o(xy,X,";€) = min{1, (13)

where 8¢ (0,1] can depend on A and e. The acceptance probability (13) is then identi-
cally 1. The motivation for this proposal distribution is that it arises if we attempt to
sample from p(x,’le) using a rejection method, and abandon the attempt after a
specified number of trials, retaining the colouring x4 instead. See section 6 for discus-
sion of such a rejection method.

5. Convergence of the chain

To establish that the Markov chains defined in the previous section converge in
distribution to the equilibrium p(x) , x € Q, we have to check that aperiodicity and
irreducibility hold. The state space Q is finite, so no other regularity conditions are
needed.

Let e* denote the configuration of bond variables in which e;; =L —1 for all i ~ j
(so that there are n clusters each containing one site). Since b;() is positive,
¢;j(L—1)>0 for all i ~ j. Hence, using (2), p"|x)>0 forall xe Q.

Suppose we only use proposal distributions g() satisfying
q(x,x’;e*) >0 forallx,x"e Q

(it is clear from (5) that p(x'le*)>0 for all x’e Q, so the Gibbs sampler case is
included). Then it is immediate from (9) that P(x,x’)>0 for all x,x" e Q, so that all
such chains are both aperiodic and irreducible.

6. Uniform colourings conditional on bond variables

Although efficient implementation of algorithms using these ideas will not be
attempted here, we do sketch an approach to generating x uniformly from €(e) for any
prescribed set of bond variable values e. When the functions {a;( )} are identically 1,
then the conditional distribution of the site variables given in (5) is precisely this uni-
form distribution. In other cases, this distribution may be a useful proposal distribution
for the Metropolis/Hastings approach.

We wish to generate X uniformly over CS subject to the constraint |x; —x;| < ey
for all i ~ j. Values assigned in different clusters will be independent, so we have
only to consider a single cluster A < S, say. A rejection method will be necessary, but
it is clearly likely to be very inefficient to sample each x;,i € A, uniformly from C,
and then reject the whole realisation and repeat, if |x; —x;| > e; for any i ~ J,i,j € A.
Instead, we propose a random walk approach. First construct a spanning tree for the
cluster - that is a subgraph containing all sites i € A and having no loops. Any span-
ning tree is valid, but for efficiency, one should be chosen that picks edges (i,j) for
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which e;; is as small as possible. A formal construction of a minimum spanning tree is
probably not worthwhile. Given the tree, assign an arbitrary "root" site the integer
value 0, and then proceed outwards from the root along the edges of the tree until all
sites are numbered. In traversing an edge (i,j) from a site i numbered z;, assign j a
uniform random integer z; from {z;—e;,z —¢€;+ 1,...,z; +e;}. Having assigned
integers to all sites in the cluster, test all edges of the original graph not in the tree,
and reject the whole assignment if |z; —z;|> ey for any i ~ j. Reject also if
max z; —minz; >L— 1. Finally draw an integer w at random from 0,1,...,L — 1, and
icA ieA

set x; =z; +w —minz; for each ie A. Reject if any x; >L — 1, otherwise the assign-

icA

ment of colours is complete. It is evident that all x € Q(e) are equally likely to be
generated.

Many of the tests, for example monitoring the range maxz; — min z;, may be per-
formed as the tree is traversed, so that rejection can take place before incurring the
expense of visiting all sites in the cluster. Various other devices might be employed in
implementing this scheme efficiently, including the use of linked lists in constructing
the tree, and a stack of visited sites, so that rejection and shifting the assigned colours

have only a small housekeeping cost.

In the Potts model, all e; are 0 or (L —1), so the procedure described simply
chooses a random colour for the cluster, and never rejects. Intuitively, the method
might be expected to work well if most e;; are 0 or (L-1), and the remainder (or at
least those associated with edges of the spanning tree) are small.
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