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Abstract

We derive methods for enumerating the distinct junction tree representations for any given

decomposable graph. We discuss the relevance of the method to estimating conditional

independence graphs of graphical models and give an algorithm that, given a junction tree,

will generate uniformly at random a tree from the set of those that represent the same

graph.
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1 Introduction

Decomposable or triangulated or chordal graphs are of interest in many areas of mathe-

matics. Our primary interest is in their role as the conditional independence graphs of

decomposable graphical models and in particular, in schemes that traverse the space of

decomposable graphs in order to sample from or maximize a given posterior probability

distribution defined from observed multivariate data [2, 10, 9]. It is often convenient with

such methods to operate not on the graph itself, but on its derived representation as a

junction tree, which raises the prospect of discarding the underlying graph and using the

junction tree exclusively. However, decomposable graphs have multiple equivalent junction

tree representations and moreover the number is variable from graph to graph. Therefore,

sampling the space of junction trees will over represent decomposable graphs with a large

number of such representations. This can be corrected for if the number of junction trees

for any particular decomposable graph can be evaluated and this is the primary motivation

for the method we present here.

We begin by reviewing some definitions and standard properties of decomposable graphs

and junction trees. For more complete information on these see [3] and [5], whose terminol-

ogy we have adopted. We then consider the number of ways that sets of edges of a junction

tree that correspond to the same clique intersection can be rearranged. These counts are

then combined to give the total number of junction trees. Finally, we outline an algorithm

that will take a junction tree and select an equivalent one uniformly at random from the

set of all possible equivalents.
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2 Definitions and preliminary results

Consider a graph G = G(V, E) with vertices V and edges E. A subset of vertices U ⊆ V

defines an induced subgraph of G which contains all the vertices U and any edges in E that

connect vertices in U . A subgraph induced by U ⊆ V is complete if all pairs of vertices in

U are connected in G. A clique is a complete subgraph that is maximal, that is, it is not

a subgraph of any other complete subgraph.

Definition 1 A graph G is decomposable if and only if the set of cliques of G can be

ordered as (C1, C2, . . . , Cc) so that for each i = 1, 2, . . . , c − 1

if Si = Ci ∩
c⋃

j=i+1

Cj then Si ⊂ Ck for some k > i. (1)

This is called the running intersection property and is equivalent to the requirement

that every cycle in G of length 4 or more is chorded. The sets S1, . . . Sc−1 are called the

separators of the graph. The set of cliques {C1, . . . Cc} and the collection of separators

{S1, . . . Sc−1} are uniquely determined from the structure of G; however, there may be

many orderings that have the running intersection property. The cliques of G are distinct

sets, but the separators are generally not all distinct.

Definition 2 The junction graph of a decomposable graph has nodes {C1, . . . , Cc} and

every pair of nodes is connected. Each link is associated with the intersection of the two

cliques that it connects, and has a weight, possibly zero, equal to the cardinality of the

intersection.

Note that for clarity we will reserve the terms vertices and edges for the elements of G,

and call those of the junction graph and its subgraphs nodes and links.
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Definition 3 Let J be any spanning tree of the junction graph. J has the junction property

if for any two cliques C and D of G, every node on the unique path between C and D in J

contains C ∩ D. In this case J is said to be a junction tree.

Figure 1 gives an example of a decomposable graph while Figure 2 shows one of its

possible junction trees. The maximum cardinality search method of [8] will find a junction

tree for a given decomposable graph in time and storage of order |V | + |E|.

Note that some authors first partition a graph into its disjoint components before making

a junction tree for each component, combining the result into a junction forest. The above

definition, however, will allow us to state results more simply without having to make

special provision for nodes in separate components. In effect, we have taken a conventional

junction forest and connected it into a tree by adding links between the components. Each

of these new links will be associated with the empty set and have zero weight. Clearly, this

tree has the junction property. Results for junction forests can easily be recovered from

the results we present below for junction trees.

As [5] describes more fully, a junction tree for G will exist if and only if G is decom-

posable, and the collection of clique intersections associated with the c − 1 links of any

junction tree of G is equal to the collection of separators of G. Also, the junction property

can be equivalently stated as the property that the subgraph of a junction tree induced by

the set of cliques that contain any set U ⊆ V is a single connected tree.

The following result, due to [4], is a useful characterization of the junction tree. We

define the weight of a subgraph of the junction graph to be the sum of the weights of its

links.

Theorem 4 A spanning tree of the junction graph is a junction tree if and only if it has
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maximal weight.

From this it is clear that any tree with the cliques of G as its nodes and for which

the collection of clique intersections associated with the links is equal to the collection of

separators of G is a junction tree of G, since such a tree must span the junction graph and

have maximal weight. Therefore, the problem of enumerating junction trees for a given

graph G is equivalent to enumerating the ways that links of a given junction tree can be

rearranged so that the result is also a tree, and the collection of clique intersections defined

by the links of the tree is unchanged.

3 Rearranging the links for the set of separators with

the same intersection

As noted above, the separators of G are not generally distinct. For example, in Figure 2

three links are associated with the clique intersection {17} and two with the intersection

{2, 3}. We now consider the effect of rearranging all the links that are associated with the

same clique intersection. Let J be any junction tree of G and S one of its separators. Define

TS to be the subtree of J induced by the cliques that contain S. The junction property

ensures that TS is a single connected subtree of J .

Clearly, any rearrangement of the links associated with S in J must be a rearrangement

among certain links of TS since both cliques joined by such a links must contain S. For

illustration, Figure 3 shows T{3}, the subtree defined by the separator {3} for the graph in

Figure 1. If we now rearrange the links that are associated with S to produce a new graph,

T ′
S say, and replace TS in J by T ′

S to give a new graph J ′, J ′ will be a junction tree of G if
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and only if

• T ′
S is a tree, and hence so is J ′, and

• T ′
S has the same weight as TS, so that J ′ has the same weight as J .

In fact the second condition is redundant: all cliques in TS contain S so their intersection

must also do so, and any pair of cliques whose intersection is a superset of S cannot be

joined in a tree T ′
S unless already joined in TS as T ′

S would then have greater weight than

TS, and J ′ greater weight than J thus violating the latter’s maximal weight property. So

we need only count the number of ways of rearranging the links of TS associated with S

such that T ′
S is a tree.

Consider FS to be the forest obtained by deleting all the links associated with S from TS.

For example, Figure 4 shows F{3}, the forest obtained by deleting links associated with the

separator {3} from the tree T{3} shown in Figure 3. Define ν(S) to be the number of ways

that the components of FS can be connected into a single tree by adding the appropriate

number of links. This value is given by a theorem by [6] which can be restated as follows.

Theorem 5 The number of distinct ways that a forest of p nodes comprising q subtrees of

sizes r1 . . . rq can be connected into a single tree by adding q − 1 links is

pq−2
q∏

i=1

ri. (2)

If the number of links associated with a given separator S is mS we know that FS will

contain mS +1 components. Let these be of sizes f1, f2, . . . fmS+1. Let the number of nodes

in TS be tS which is simply the number of cliques of G that contain S. Then, directly from

theorem 5 we obtain the following.
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Theorem 6

ν(S) = tmS−1
S

mS+1∏

j=1

fj . (3)

For example, the forest in Figure 4 has 7 nodes in 4 components of sizes 1, 1, 1 and 4.

This forest, F{3}, can be reconnected into a single tree by adding 3 links in 72×1×1×1×4 =

196 different ways.

4 The number of junction trees for a decomposable

graph

The final step in enumerating junction trees is to note that ν(S) depends only on the sizes

of the components of FS, not on their particular structure. These sizes are determined by

the sets of cliques that contain separators that are supersets of S. Since the set of cliques

and collection of separators are uniquely determined and independent of any particular

junction tree, ν(S) is independent of J . Hence, the links associated with one particular

separator can be reallocated independently of the links associated with another. Thus we

obtain the following result.

Theorem 7 Consider a decomposable graph G with separators S1, . . . Sc−1. Let S[1], . . . S[s]

be the distinct sets contained in the collection of separators. The number of junction trees

of G is

µ(G) =
s∏

i=1

ν(S[i]). (4)

As an example, the number of distinct junction trees for the graph shown in Figure 1

is 57,802,752. The calculations needed to obtain this are given in table 1.
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As noted above, we can retrieve from this result the count of the number of possible

conventional junction forests that a decomposable graph has. This is given simply by

µ(G)

ν(∅)
,

which for the example is 57802752/6144 = 9408.

5 Randomizing the junction tree

Theorem 5 is similar in style to Prüfer’s constructive proof [7] of Cayley’s result that there

are nn−2 distinct labelled trees of n vertices [1]. A similar construction lets us choose

uniformly at random from the set of possible trees containing a given forest as follows:

1. Label each vertex of the forest {i, j} where 1 ≤ i ≤ q and 1 ≤ j ≤ ri, so that the

first index indicates the subtree the vertex belongs to and the second reflects some

ordering within the subtree. The orderings of the subtrees and of vertices within

subtrees are arbitrary.

2. Construct a list v containing q − 2 vertices each chosen at random with replacement

from the set of all p vertices.

3. Construct a set w containing q vertices, one chosen at random from each subtree.

4. Find in w the vertex x with the largest first index that does not appear as a first

index of any vertex in v. Since the length of v is 2 less than the size of w there must

always be at least 2 such vertices.

5. Connect x to y, the vertex at the head of the list v.
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6. Remove x from the set w, and delete y from the head of the list v.

7. Repeat until v is empty. At this point w contains 2 vertices. Connect them.

Given any particular junction tree representation J for a decomposable graph G we

can choose uniformly at random from the set of equivalent junction trees by applying the

above algorithm to each of the forests FS defined by the distinct separators of J . Such a

randomization could be incorporated into a sampling scheme on junction trees to improve

mixing properties, or may even be needed to ensure that the sampling scheme determines

a Markov chain that is irreducible.
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Figure 1: A decomposable graph containing 23 vertices in 4 disjoint components.

12



Figure 2: One possible junction tree for the graph shown in Figure 1. The 16 cliques
are the vertices of the junction tree and are shown as ovals. The 15 clique separators are
represented by the edges of the graph and each edge is associated with the intersection of
its incident vertices. These intersections are shown as rectangles. Note that some of these
intersections are empty.

Table 1: The computations that enumerate the distinct junction trees for the decomposable
graph given in Figure 1.

Separator S mS tS {fS} ν(S)
∅ 3 16 1, 1, 2, 12 6144

{13, 14} 1 2 1, 1 1
{3} 3 7 1, 1, 1, 4 196
{2, 3} 2 3 1, 1, 1 3
{3, 18} 1 2 1, 1 1
{9} 1 2 1, 1 1
{12} 1 2 1, 1 1
{17} 3 4 1, 1, 1, 1 16

µ(G) = 6144 × 1 × 196 × 3 × 1 × 1 × 1 × 16 = 57802752
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Figure 3: T{3}, the connected subtree of the junction graph shown in Figure 2 induced by
the cliques that contain the separator {3}.

Figure 4: F{3}, the forest obtained by from the tree shown in Figure 3 by deleting edges
associated with the separator {3}.
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