
Trans-dimensional Markov chain Monte Carlo

Peter J. Green∗

University of Bristol, UK.

Partial draft – 8 November 2000

(to be discussed by Simon Godsill and Juha Heikkinen)

Summary

In the context of sample-based computation of Bayesian posterior distributions in
complex stochastic systems, this chapter discusses some of the uses for a Markov
chain with a prescribed invariant distribution whose support is a union of euclidean
spaces of differing dimensions. This leads into a re-formulation of the reversible
jump MCMC framework for constructing such ‘trans-dimensional’ Markov chains.
This framework is compared to alternative approaches for the same task, including
methods that involve separate sampling within different fixed-dimension models.
We consider some of the difficulties researchers have encountered with obtaining
adequate performance with some of these methods, attributing some of these to
misunderstandings, and offer tentative recommendations about algorithm choice for
various classes of problem. The chapter concludes with a look towards desirable
future developments.

Some key words: Bayes factors, Bayesian model selection, Delayed rejection, Jump diffusion, Metropolis-
Hastings algorithm, Reversible jump methods, Simulated tempering.

1 Introduction

For the audiences of this book, or the workshop that produced it, it should be unnecessary to
assert the huge importance of Markov chain Monte Carlo (MCMC) in numerical calculations for
highly structured stochastic systems, and in particular for posterior inference in Bayesian statistical
models. Another chapter (Roberts, ...) is devoted to discussion of some of the currently important
research directions in MCMC generally. This chapter is more narrowly focussed on MCMC methods
for what I will call ‘trans-dimensional’ problems, to borrow a nicely apt phrase from Roeder and
Wasserman (1997): those where the dynamic variable of the simulation, the ‘unknowns’ in the
Bayesian set-up, does not have fixed dimension.

Statistical problems where ‘the number of things you don’t know is one of the things you
don’t know’ are ubiquitous in statistical modelling, both in traditional modelling situations such
as variable selection in regression, and in more novel methodologies such as object recognition,
signal processing, and Bayesian nonparametrics. All such problems can be formulated abstractly
as a matter of joint inference about a model indicator k and a parameter vector θk, where the
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model indicator determines the dimension nk of the parameter, but this dimension varies from
model to model. Almost invariably in a frequentist setting, inference about these two kinds of
unknown is based on different logical principles, but, at least formally, the Bayes paradigm offers
the opportunity of a single logical framework – it is the joint posterior p(k, θk|Y ) of model indicator
and parameter given data Y that is the basis for inference. But, how to compute it?

We set the joint inference problem naturally in the form of a simple Bayesian hierarchical model.
We suppose given a prior p(k) over models k in a countable set K, and for each k a prior distribution
p(θk|k), and a likelihood p(Y |k, θk) for the data Y . For definiteness and simplicity of exposition,
we suppose that p(θk|k) is a density with respect to nk-dimensional Lebesgue measure, and that
there are no other parameters, so that where there are parameters common to all models these are
subsumed into each θk ∈ Rnk . Additional parameters, perhaps in additional layers of a hierarchy,
are easily dealt with.

The joint posterior

p(k, θk|Y ) =
p(k)p(θk|k)p(Y |k, θk)∑

k′∈K
∫

p(k′)p(θ′k′ |k′)p(Y |k′, θ′k′)dθ′k′

can always be factorised as
p(k, θk|Y ) = p(k|Y )p(θk|k, Y )

that is as the product of posterior model probabilities and model-specific parameter posteriors. This
identity is very often the basis for reporting the inference, and in some of the methods mentioned
below is also the basis for computation.

It is important to appreciate the generality of this basic formulation. In particular, note that it
embraces not only genuine model-choice situations, where the variable k indexes the collection of
discrete models under consideration, but also settings where there is a really a single model, but
one with a variable dimension parameter, for example a functional representation such as a series
whose number of terms is not fixed. In the latter case, often arising in Bayesian nonparametrics, k
is unlikely to be of direct inferential interest.

2 Reversible jump MCMC

In the direct approach to computation of the joint posterior p(k, θk|Y ) via MCMC we construct a
single Markov chain simulation, with states of the form (k, θk); we might call this an across-model
simulation. We address other approaches in later sections.

The state space for such an across-model simulation is
⋃

k∈K({k}×Rnk ); mathematically, this is
not a particularly awkward object, and our construction involves no especially challenging novelties.
However, such a state space is at least a little non-standard! Formally, our task is to construct
a Markov chain on a general state space with a specified limiting distribution, and as usual in
Bayesian MCMC for complex models, we use the Metropolis-Hasting paradigm to build a suitable
reversible chain. As we see in the next subsection, on the face of it, this requires measure-theoretic
notation, which may be unwelcome to some readers. The whole point of the ‘reversible jump’
framework is to render the measure theory completely invisible, by means of a construction using
only ordinary densities. In fact, in the formulation given below, improving that of Green (1995),
even the fact that we are jumping dimensions becomes essentially invisible!
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2.1 Metropolis-Hastings on a general state space

We wish to construct a Markov chain on a state space X with invariant distribution π, and will
require its transition kernel P to satisfy the detailed balance condition, written in integral form as∫

(x,x′)∈A×B
π(dx)P (x,dx′) =

∫
(x,x′)∈A×B

π(dx′)P (x′,dx) (1)

for all Borel sets A,B ⊂ X . In Metropolis-Hastings, we make a transition by first drawing a
proposed new state x′ from the proposal measure q(x,dx′) and then accepting it with probability
α(x, x′), to be derived below. If we reject, we stay in the current state, so that P (x,dx′) has an
atom at x. This makes an equal contribution to each side of equation (1), so can be neglected, and
we are left with the requirement∫

(x,x′)∈A×B
π(dx)q(x,dx′)α(x, x′) =

∫
(x,x′)∈A×B

π(dx′)q(x′,dx)α(x′, x). (2)

It can be shown (Green, 1995; Tierney, 1998) that π(dx)q(x,dx′) is dominated by a symmetric
measure μ on X ×X , and has density (Radon-Nikodym derivative) f with respect to this μ. Then
(2) becomes∫

(x,x′)∈A×B
α(x, x′)f(x, x′)μ(dx,dx′) =

∫
(x,x′)∈A×B

α(x′, x)f(x′, x)μ(dx′,dx)

and, using the symmetry of μ, this is clearly satisfied for all appropriate A,B if

α(x, x′) = min
{

1,
f(x′, x)
f(x, x′)

}
.

If we wrote this rather more informally as

α(x, x′) = min
{

1,
π(dx′)q(x′,dx)
π(dx)q(x,dx′)

}
(3)

then the similarity with the usual expression using densities is apparent.

2.2 An explicit representation in terms of random numbers

This may seem rather abstract. Fortunately, in most cases, the dominating measure and Radon-
Nikodym derivatives can be generated almost automatically, by considering how the transition will
actually be implemented. Take the case where X ⊂ Rd, and suppose π has a density (also denoted
π) with respect to d–dimensional Lebesgue measure. At the current state x, we generate, say, r
random numbers u from a known density g, and then form the proposed new state as some suitable
deterministic function of the current state and the random numbers: x′ = h(x, u), say. We can
then re-express the left-hand side of (2) as an integral with respect to (x, u), and it becomes:∫

(x,x′)∈A×B
π(x)g(u)α(x, x′)dx du.

Now consider how the reverse transition from x′ to x would be made, with the aid of random
numbers u′ ∼ g′ giving x = h′(x′, u′). If the transformation from (x, u) to (x′, u′) is a diffeomorphism
(the transformation and its inverse are differentiable), then we can first re-express the right-hand
side of (2) as an integral with respect to (x′, u′), and then apply the standard change-of-variable
formula, to see that the (d + r)–dimensional integral equality (2) holds if

π(x)g(u)α(x, x′) = π(x′)g′(u′)α(x′, x)
∣∣∣∣∂(x′, u′)

∂(x, u)

∣∣∣∣ ,
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whence a valid choice for α is

α(x, x′) = min
{

1,
π(x′)g′(u′)
π(x)g(u)

∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣} . (4)

It is often easier to work with this expression than the usual one.
This reversible jump formalism perhaps appears a little indirect, but it proves a flexible frame-

work for constructing quite complex moves using only elementary calculus. In particular, the pos-
sibility that r < d covers the case, typical in practice, that given x ∈ X , only a lower-dimensional
subset of X is reachable in one step, where this subset need not be parallel to coordinate axes. Thus
the proposal measure can be singular. Note that there is a deliberate redundancy in separating
the generation of the random innovation u and the calculation of the proposal value through the
deterministic function x′ = h(x, u). This allows the same proposal distribution to be expressed in
many different ways, a choice that can be exploited to the user’s convenience.

2.3 The trans-dimensional case

The real bonus of this formalism, however, is that expression (4) applies, without change, in a
variable dimension context. Provided that the transformation from (x, u) to (x′, u′) remains a
diffeomorphism, the individual dimensions of x and x′ (and hence of u and u′) can be different.
The dimension-jumping is indeed ‘invisible’.

In this setting, suppose the dimensions of x, x′, u and u′ are d, d′, r and r′ respectively, then we
have functions h : Rd ×Rr → Rd′ and h′ : Rd′ ×Rr′ → Rd, used respectively in x′ = h(x, u) and
x = h′(x′, u′). For the transformation from (x, u) to (x′, u′) to be a diffeomorphism requires that
d + r = d′ + r′, so-called ‘dimension-matching’.

2.4 Details of application to the model-choice problem

Returning to our generic model-choice problem, we wish to use these reversible jump moves to
sample the space X =

⋃
k∈K({k} × Rnk) with invariant distribution p(k, θk|Y ).

Just as in ordinary MCMC, we typically need multiple types of moves to traverse the whole
space X . Each move is a transition kernel reversible with respect to π, but only in combination do
we obtain an ergodic chain. The moves will be indexed by m in a countable set M, and a particular
move m proposes to take x = (k, θk) to x′ = (k′, θ′k′) or vice-versa for a specific pair (k, k′); we
denote {k, k′} by Km. The detailed balance equation (2) is replaced by∫

(x,x′)∈A×B
π(dx)qm(x,dx′)αm(x, x′) =

∫
(x,x′)∈A×B

π(dx′)qm(x′,dx)αm(x′, x)

for each m, where now qm(x,dx′) is the joint distribution of move type m and destination x′.
The complete transition kernel is obtained by summing over m, so that for x �∈ B, P (x,B) =∑

M

∫
B qm(x,dx′)αm(x, x′), and it is easy to see that (1) is then satisfied.

The analysis leading to (3) and (4) is modified correspondingly, and yields

αm(x, x′) = min
{

1,
π(x′)
π(x)

jm(x′)
jm(x)

g′m(u′)
gm(u)

∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣} .

Here jm(x) is the probability of choosing move type m when at x, the variables x, x′, u, u′ are
of dimensions dm, d′m, rm, r′m respectively, with dm + rm = d′m + r′m, we have x′ = hm(x, u) and
x = h′

m(x′, u′), and the Jacobian has a form correspondingly depending on m.
Of course, when at x = (k, θk), only a limited number of moves m will typically be available,

namely those for which k ∈ Km. With probability 1 −∑m:k∈Km
jm(x) no move is attempted.
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2.5 Some remarks and ramifications

In understanding the reversible jump framework, it may be helpful to stress the key role played
by equilibrium joint state/proposal distribution, the equilibrium joint state/proposal distributions.
That the degrees of freedom in this joint distribution are unchanged when x and x′ are interchanged
allows the possibility of reversible jumps across dimensions, and these distributions directly deter-
mine the move acceptance probabilities.

Note that the framework gives insights into Metropolis-Hastings that apply quite generally.
State-dependent mixing over a family of transition kernels in general infringes detailed balance,
but is permissible if, as here, the move probabilities jm(x) enter properly into the acceptance
probability calculation. Note also the contrast between this randomised proposal mechanism, and
the related idea of mixture proposals, where the acceptance probability does not depend on the
move actually chosen (see the discussion in Besag, Green, Higdon and Mengersen (1995, appendix
?)). Similarly, the Jacobian comes into the acceptance probability simply through the fact that
the proposal destination x′ = h(x, u) is specified indirectly, a formalism that gives singular moves
a natural expression; it has nothing to do with the jump in dimension.

Finally, note that in a large class of problems involving nested models, the only dimension change
necessary is the addition or deletion of a component of the parameter vector (think of polynomial
regression, or autoregression of variable order). In such cases, omission of a component is often
equivalent to setting it to zero. These problems can be handled in a seemingly more elementary
way, through allowing proposal distributions with an atom at zero: the usual Metropolis-Hastings
formula for the acceptance probability holds for densities with respect to arbitrary dominating
measures, so the reversible jump formalism is not explicitly needed. Nevertheless, it is of course
exactly equivalent.

Other authors have provided different pedagogical descriptions of reversible jump. Waagepetersen
and Sorensen (2000) provide a tutorial following the lines of Green (1995) but in much more detail,
and Besag (1997, 2000) gives a novel formulation in which variable dimension notation is circum-
vented by embedding all θk within one compound vector; this has something in common with the
product-space formulations in the next subsection.

3 Relations to other across-model approaches

There are several alternative formalisms for across-model simulation that are more or less closely
related to reversible jump.

Jump diffusion. In the context of a challenging computer vision application, Grenander and
Miller (1994) proposed a sampling strategy they termed jump diffusion. This was composed of
two kinds of move – between-model jumps, and within-model diffusion according to a Langevin
stochastic differential equation. Since in practice, continuous-time diffusion has to be approximated
by a discrete-time simulation, they were in fact using a trans-dimensional Markov chain. Had they
in fact corrected for the time discretisation by a Metropolis-Hastings accept/reject decision (giving
a so-called Metropolis-adjusted Langevin algorithm or MALA) (Besag, 1994; Roberts?, 199?), this
would have been an example of reversible jump.

Phillips and Smith (1996) applied jump-diffusion creatively to a variety of Bayesian statistical
tasks, including mixture analysis, object recognition and variable selection. Other authors (???),
however, have found jump-diffusion more complicated to set up and adjust than reversible jump.
The approach probably deserves further study, particularly to extend the very limited options for
the between-model moves: Grenander and Miller, and Phillips and Smith, consider only ‘Gibbs’
and ‘Metropolis’ jump dynamics.
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Point processes, with and without marks. Point processes form a natural example of a
distribution with variable-dimension support, since the number of points in view is random; in
the basic case, a point has only a location, but more generally may be accompanied by a mark, a
random variable in a general space.

A continuous time Markov chain approach to simulating certain spatial point processes by
regarding them as the invariant distributions of spatial birth-and-death processes was suggested
and investigated by Preston (1977) and Ripley (1977). Much more recently, Geyer and Møller (1994)
proposed a Metropolis-Hastings sampler, as an alternative to using birth-and-death processes; their
construction is a special case of reversible jump.

Stephens (2000) notes that various trans-dimensional statistical problems can be viewed as
abstract marked point processes, and borrows the birth-and-death simulation idea to give a very
promising methodology for finite mixture analysis. He also notes that the approach appears to have
much wider application, citing change point analysis and regression variable selection as partially
worked examples. The key features of these three settings that allow the approach to work seem
to be the possibility of integrating out latent variables so that the likelihood is fully available, and
the nested structure of the models under consideration. It is thus much more narrow in scope than
reversible jump, but still surprisingly powerful.

Product-space formulations. Several relatives of reversible jump work in a product space
framework, that is, one in which the simulation keeps track of all θk, not only the ‘current’ one.
The state space is therefore K × ⊗k∈KRnk instead of

⋃
k∈K({k} × Rnk). This has the advantage

of circumventing the trans-dimensional character of the problem, at the price of requiring that
the target distribution be augmented to model all θk simultaneously. For some variants of this
approach, this is just a formal device, for others it leads to significantly extra work.

Let θ−k denote the composite vector consisting of all θl, l �= k catenated together. Then the
joint distribution of (k, (θl : l ∈ K), Y ) can be expressed as

p(k)p(θk|k)p(θ−k|k, θk)p(Y |k, θk) (5)

since we make the natural assumption that p(Y |k, (θl : l ∈ K)) = p(Y |k, θk). It is easily seen
that the third factor p(θ−k|k, θk) has no effect on the joint posterior p(k, θk|Y ); the choice of these
conditional distributions, which Carlin and Chib (1995) call ‘pseudo-priors’, is entirely a matter of
convenience, but may influence the efficiency of the resulting sampler.

Carlin and Chib (1995) adopted pseudo-priors that were conditionally independent: p(θ−k|k, θk) =∏
l �=k p(θl|k) (with p(θl|k) not depending on k for k �= l), and used a Gibbs sampler, updating k

and all θl in turn. This evidently involves sampling from the pseudo-priors, and they therefore pro-
pose to design these pseudo-priors to ensure reasonable efficiency, which requires their approximate
matching to the posteriors: p(θl|k) ≈ p(θl|l, Y ).

Green and O’Hagan (1998) pointed out both that Metropolis-Hastings moves could be made in
this setting, and that in any case there was no need to update {θl, l �= k} to obtain an irreducible
sampler. In this form the pseudo-priors are only used in computing the update of k. Dellaportas,
Forster and Ntzoufras (2000) proposed and investigated a ‘Metropolised Carlin and Chib’ approach,
in which joint model indicator/parameter updates were made, and in which it is only necessary to
resample the parameter vectors for the current and proposed models.

Godsill (2000) provides a general ‘composite model space’ framework that embraces all of these
methods, including reversible jump, facilitating comparisons between them. He devised the formu-
lation (5), or rather, a more general version in which the parameter vectors θk are allowed to overlap
arbitrarily, each θk being identified with a particular sub-vector of one compound parameter. This
framework helps to reveal that a product-space sampler may or may not entail possibly cumber-
some additional simulation, updating parameters that are not part of the ‘current’ model. It also
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provides useful insight into some of the important factors governing the performance of reversible
jump, and Godsill offers some suggestions on proposal design.

Godsill’s formulation deserves further attention, as it provides a useful language for compar-
ing approaches, and in particular examining one of the central unanswered questions in trans-
dimensional MCMC. Suppose the simulation leaves model k and later returns to it. With reversible
jump, the values of θk are lost as soon as we leave k, while with some versions of the product-space
approach, the values are retained until k is next visited. Intuitively either strategy has advantages
and disadvantages for sampler performance, so which is to be preferred?

4 Alternatives to joint model-parameter sampling

Within-model simulation. Here we conduct simulations within each model k separately. The
posterior for the parameters θk is in any case a within-model notion:

p(θk|Y, k) =
p(θk|k)p(Y |k, θk)∫

p(θk|k)p(Y |k, θk)dθk

and is the target for an ordinary Bayesian MCMC calculation for model k.
As for the posterior model probabilities, since

p(k1|Y )
p(k0|Y )

=
p(k1)
p(k0)

p(Y |k1)
p(Y |k0)

(the second term being the Bayes factor for model k1 vs. k0), it is sufficient to estimate the marginal
likelihoods

p(Y |k) =
∫

p(θk, Y |k)dθk

separately for each k, using individual MCMC runs. Several different methods have been devised
for this task.

Estimating the marginal likelihood. There are various possible estimates based on impor-
tance sampling, some of which are well-studied, for example

p̂1(Y |k) = N

/
N∑

t=1

{
p(Y |k, θ

(t)
k )
}−1

based on a MCMC sample θ
(1)
k , θ

(2)
k , . . . from the posterior p(θk|Y, k), or

p̂2(Y |k) = N−1
N∑

t=1

p(Y |k, θ
(t)
k )

based on a sample from the prior p(θk|k). Both of these has its faults, and composite estimates
can perform better. See, for example, Newton and Raftery (1994) and Gelfand and Dey (1994).

• reviews: Carlin and Louis (2nd ed, sec 6.3.1), Han and Carlin

• Ritter and Tanner?, Chib(1995), Chib and Jeliazkov (2000)

• Meng and Wong, Mira and Nicholls
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5 Comparative discussion of scope, limitations and difficulties

Discussion of strengths and weaknesses of RJMCMC and the other trans-dimensional setups above
compared to within-model simulations that compute marginal likelihoods and thence Bayes factors.

• Han and Carlin (although this really has the very limited objective of computing Bayes
factors)

• RJ ‘difficult to tune’: qualitative arguments/choices.

• how many models and how homogeneous are they – a major factor in usefulness of model-
jumping MCMC

6 Is it good to jump?

There are various not entirely substantiated claims in the literature to the effect that jumping
between parameter subspaces is either inherently damaging to MCMC performance and should
therefore be avoided where possible, or alternatively that it is helpful for performance, and might
even be attempted when it is not strictly necessary.

For example, Richardson and Green (1997) describe a simple experiment, illustrated in their Fig-
ure 9 (reproduced as Figure 1 below), demonstrating that in a particular example of a mixture prob-
lem with a strongly multimodal posterior, mixing is clearly improved by using a trans-dimensional
sampler, while Han and Carlin (2000) claim to have ‘intuition that some gain in precision should
accrue to MCMC methods that avoid a model space search’.

In truth, the proper answer is ‘it depends’, but some simple analysis does reveal some of
the issues. There are three main situations that might be considered: in the first, we require
full posterior inference about (k, θk). A second possibility is that we wish to make within-model
inference about θk separately, for each of a (perhaps small) set of values of k. The third case is
where k is really fixed, and the other models are ruled out a priori. This third option is clearly the
least favourable for trans-dimensional samplers: visits of the (k, θk) chain to the ‘wrong’ model are
completely wasted from the point of view of extracting useful posterior information; let us try to
analyse when it will nevertheless be worthwhile to use a trans-dimensional sampler.

6.1 The two-model case

For simplicity, we suppose there are just two models, k = 1 and 2, and let πk denote the distribution
of θk given k: only π1 is of interest. We have transition kernels Q11, Q22, with πkQkk = πk for
each k; (we use a notation apparently aimed at the finite state space case, but it is quite general:
for example, πQ means the probability measure (πQ)(B) =

∫
π(dx)Q(x,B)). We now consider

the option of also allowing between-model transitions, with the aid of kernels Q12 and Q21; for
realism, these are improper distributions, integrating to less than 1, reflecting the fact that in
practice across-model Metropolis-Hastings moves are frequently rejected. When a move is rejected,
the chain does not move, contributing a term to the ‘diagonal’ of the transition kernel; thus we
suppose there exist diagonal kernels D1 and D2, and we have the global balance conditions for the
across-model moves: π1D1 + π2Q21 = π1 and π2D2 + π1Q12 = π2.

The overall transition kernel for the across-model sampler is

P =

(
(1 − α)Q11 + αD1 αQ12

βQ21 (1 − β)Q22 + βD2

)
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using an obvious matrix notation, assuming that we make a random choice between the two moves
available from each state: α and β are the probabilities of choosing to attempt the between-model
move in models 1, 2 respectively. The invariant distribution is easily seen to be π = (γπ1, (1−γ)π2),
where γ satisfies the equation γα = (1 − γ)β.

Now suppose we run the Markov chain given by P , but look at the state only when in model
1. By standard Markov chain theory, the resulting chain has kernel Q̃11 = (1 − α)Q11 + αD1 +
αQ12(I−(1−β)Q22−βD2)−1βQ21. The comparison we seek is that between using Q11 or the more
complicated strategy that amounts to using Q̃11, but we must take into account differences in costs
of computing. Suppose that executing Q11 or Q22 has unit cost per transition, while attempting and
executing the across-model moves has cost c times greater. Then, per transition, the equilibrium
cost of using P is γ(1−α) + γαc + (1− γ)βc + (1− γ)(1− β), and this gives on average γ visits to
model 1. The relative cost in computing resources of using Q̃11 instead of Q11 therefore simplifies
to (1 − α) + 2αc + α(1 − β)/β (using the relationship γα = (1 − γ)β).

If we choose to measure performance by asymptotic variance of a specific ergodic average, then
we have integrated autocorrelation times τ and τ̃ for Q11 and Q̃11 respectively, and jumping models
is a good idea if

τ < τ̃{(1 − α) + 2αc + α(1 − β)/β}.
Of course, τ̃ depends on α and β.

6.2 Finite state space example

It is interesting to compute these terms for toy finite-state-space examples where the eigenvalue
calculations can be made explicitly. For example, taking D1 = D2 = 0.8I, corresponding to a 80%
rejection rate for between-model moves, and all the Q matrices to be symmetric reflecting random
walks on m = 10 states, with differing probabilities of moving, to model differently ‘sticky’ samplers,
so that (Q11)i,i±1 = 0.03, (Q12)i,i±1 = 0.2×0.1, (Q21)i,i±1 = 0.2×0.1, and (Q22)i,i±1 = 0.3, we find
that model jumping is worthwhile for all c up to about 15, with optimal α ≈ 1 and β ≈ 0.1. This
is a situation where the rapid mixing in model 2 compared to that in model 1 justifies the expense
of jumping from 1 to 2 and back again.

6.3 Tempering-by-embedding

Such considerations raise the possibility of artificially embedding a given statistical model into a
family indexed by k, and conducting an across-model simulation simply to improve performance
– that is, as a kind of simulated tempering. A particular example of the benefit of doing so
was given by Hodgson (1999) in constructing a sampler for restoration of ion channel signals.
A straightforward approach to this task gave poor mixing, essentially because of high posterior
correlation between the model hyperparameters and the hidden binary signal. This correlation is
higher when the data sequence is longer, so a tempering-by-embedding solution was to break the
data into blocks, with the model hyperparameters allowed to change between adjacent blocks. The
prior on this artificial model elaboration was adjusted empirically to give moderately high rates of
visiting the real model, while spending sufficient time in the artificial heterogeneous models for the
harmful correlation to be substantially diluted.

Another example is illustrated in Figure 1.

7 Generic strategies for constructing jump proposals

Given that reversible jump is merely a formulation of quite general Metropolis-Hastings for state
spaces like X =

⋃
k∈K({k} × Rnk), and that Metropolis-Hastings is surely a very promising and
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Figure 1: Example of tempering-by-embedding (from Richardson and Green, 1997): comparison of
fixed-k and variable-k samplers for a normal mixture problem with k components, applied to the
model with k = 3.

general paradigm for building Markov chains with given invariant distributions, one has to ask:
why have some researchers found it so difficult to set up reversible jump methods for complex
problems?

The answer must be to do with the particular choices of move that are being attempted. Most
current methods have a split/merge or birth/death structure, and perhaps such choices are just too
restrictive. Split/merge and birth/death are used for a variety of reasons: there are some successful
examples to use as models, they are natural in many problems and fairly easy to think about, and
they often exploit factorisations of the joint probabilities to give computationally cheap proposals.

However, let us set such considerations aside, and attempt the construction of generic moves
that have a reasonably high chance of success, irrespective of cost.

7.1 Two linear models

We will take a very stylised situation, hoping to be able to visualise the structure of the problem.
Consider two candidate linear regression models for an n-vector response variable y. Each includes
also an offset, but we assume variances fixed at 1. The models are written as

y ∼ N(x0 + Xβ, In) and y ∼ N(z0 + Zγ, In)

respectively, and we take diffuse priors on the regression parameters, and equal prior probabilities
on the two models. We call these the X and Z models, instead of model 1 and model 2, and we
suppose both the matrices X and Z are of full rank, p and q respectively.

A state in, say, the X model may be interchangeably described by either the parameter vector
β or the ‘fitted value’ vector x0 + Xβ: we use the latter. From this point, to what point in the
Z model should we propose to jump? A first thought is this should be a random perturbation to
the nearest point in the Z model, that is, the projection of x0 + Xβ onto the hyperplane z0 + Zγ,
namely z0 +PZ(x0 +Xβ−z0), where PZ is the usual orthogonal projection operator Z(ZT Z)−1ZT .
See Figure 2 (left). Indeed, when the model hyperplanes are approximately parallel, this may be
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quite successful. Such a move can be viewed as analogous to the split/merge of steps used, for
example, in the first (change point) example in Green (1995). However, in general, such a strategy
ignores a crucial factor, namely whether or not x0 + Xβ is a good fit to the data y: it takes no
account of the residual y−x0−Xβ. It also has the unattractive and probably undesirable property
that, ignoring the random perturbations, two successive jump moves do not lead back to the same
state.

Our preferred strategy is defined as follows. Let ŷX denote the best-fitting X model, in a least-
squares sense: ŷX = x0 + PX(y − x0), and similarly let ŷZ = z0 + PZ(y − z0). Our intuition is that
from ŷX , a good point to jump to in the Z model would be ŷZ . To obtain a proposal distribution
centred at this point, we use the innovation variables u to perturb our starting point orthogonally
away from the X model hyperplane, before projecting it onto the Z hyperplane. For other current
states, we follow natural linear invariances. Thus our proposed new state in the Z model, given a
general current state x0 + Xβ in the X model is

z0 + Zγ = ŷZ + PZ{x0 + Xβ − ŷX + (In − PX)u}.
The reverse move would propose to take z0 + Zγ to

x0 + Xβ = ŷX + PX{z0 + Zγ − ŷZ + (In − PZ)u′}.
See Figure 2 (centre and right). We will suppose u, u′ to be spherical gaussian variables in n
dimensions: u ∼ N(0, σ2

XIn) and u′ ∼ N(0, σ2
ZIn). On the face of it, this proposal mechanism fails

to respect the dimension-matching constraint, but note that many components of u are not used: in
fact γ depends only on PZ(In−PX)u. The rank of PZ(In−PX) is q− t, where t is the dimension of
the intersection of the column spaces of X and Z: t ≤ min(p, q). Thus we have dimension matching
(see Section 2.3) with d = p, r = q − t, d′ = q and r′ = p − t.

+y

x +X

z +Z0

0

γ

β

ŷ

ŷ

Z

X

+y

ŷ

ŷ

Z

X

+y

o

+

o

+

Figure 2: Illustrating model-jumping for two linear models. Left panel: proposing to jump to the
nearest point in the other model; centre panel: our preferred strategy; right panel: an example,
showing random perturbation away from the current model hyperplane, and projection onto the
other model hyperplane.

If we define A to be a n × r matrix with AAT = PZ(In − PX)PZ and B to be n × r′ with
BBT = PX(In − PZ)PX , then PZ(In − PX)u can be generated as Av and PX(In − PZ)u′ as Bv′,
where v ∼ N(0, σ2

XIr) and v′ ∼ N(0, σ2
ZIr′). The mapping from (β, v) to (γ, v′) is nonsingular, and

the Jacobian of transformation is∣∣∣∣∂(γ, v′)
∂(β, v)

∣∣∣∣ =
∣∣∣∣∣ (ZT Z)−1ZTX (ZT Z)−1ZTA

(BT B)−1BT (In − PXPZ)X −(BT B)−1BTPXA

∣∣∣∣∣
which, rather extraordinarily, simplifies to(

|XT X|
|ZT Z|

)1/2

!
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The acceptance probability for the proposed jump from x0+Xβ to z0+Zγ is therefore min{1, R}
where

R =
exp(−0.5||y − z0 − Zγ||2)
exp(−0.5||y − x0 − Xβ||2)(2π)(r−r′)/2 σr

X

σr′
Z

exp(−0.5||v′||2/σ2
Z)

exp(−0.5||v||2/σ2
X)

(
|XT X|
|ZT Z|

)1/2

.

Further light on this is shed by considering some special cases and an example.

Nested models. Let us consider how this mechanism works in the case where model X is nested
within model Z: that is, x0 = z0 and X = ZS for some full rank q × p matrix S. Of course,
t = p < q, so r = q − p and r′ = 0: the proposed Z to X jump is deterministic. After some
manipulation, noting that PXPZ = PX , we find that the proposal is

x0 + Xβ = x0 + PXZγ,

in fact, simply a projection onto the X model. In the reverse direction, since PZ(In−PX)PZ = AAT

simplifies to PZ − PX , we have

x0 + Zγ = x0 + Xβ + (PZ − PX)(y − x0) + Av.

Orthogonal models. An opposite extreme arises where the models are perfectly orthogonal:
XT Z = 0. Then t = 0, and so r = q and r′ = p. The proposed moves simplify to

z0 + Zγ = ŷZ + Av and x0 + Xβ = ŷX + Bv′

where AAT and BBT are just PZ and PX . In this case, the method becomes an instance of
Independence Metropolis-Hastings: the proposal does not depend on the current state, and this
makes sense since in this orthogonal set-up, the current state provides no information to discriminate
between parameters in the other model.

An example. Here is a demonstration example on a small scale. The models are for n indepen-
dent observations (xi, yi) from

yi ∼ N(β1 + β2xi, 22) or yi ∼ N(γ1 + γ2(xi − 2)2, 22),

where xi are evenly spaced from 0 to 4. Apart from the intercept, these two models are orthogonal.
Figure 3 shows some aspects of the performance of ‘nearest point’ sampler and our preferred
alternative; the former needed much larger proposal spreads σ and σ′ for acceptable mixing, but is
nevertheless inferior to the latter.

7.2 Consequences for general models

Taken literally, this setting of two linear models is too special to be of any statistical interest.
However, this construction may have wider significance that it seems. Provided that the data are
sufficiently informative about parameters in both models, and that standard regularity conditions
apply, any two models are locally linear, so may be expanded about suitable ŷX and ŷZ , presumably
the posterior modes in each model. Although approximately linear, the geometry will change
somewhat from the special case, since we need to account for general (and model-specific) posterior
variance structures.

An additional difficulty is that of course in a realistic setting, posterior means or modes and
variances are not available – which is why we are using MCMC!

Nevertheless, we intend to explore these issues in later work, including the use of approximations
based on pilot runs, perhaps further approximated for computational efficiency.
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Figure 3: Comparisons between samplers for jumping between two simple regression models. Top
line: jumping to the nearest point in the other model; bottom line: our preferred strategy. Left:
data and samples from posterior models; centre: convergence of cumulative frequency of model Z;
right: trace plot for value of regression curve at a given x.
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8 Methodological extensions

• Delayed rejection

• Diagnostics for RJMCMC

• Automatic proposal choice for RJMCMC (Roberts, Brooks and Giudici)

9 Future directions
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