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We present new methodology to extend hidden Markov models to the spatial domain, and use this class of models to analyze spatial
heterogeneity of count data on a rare phenomenon. This situation occurs commonly in many domains of application, particularly in
disease mapping. We assume that the counts follow a Poisson model at the lowest level of the hierarchy, and introduce a finite-mixture
model for the Poisson rates at the next level. The novelty lies in the model for allocation to the mixture components, which follows a
spatially correlated process, the Potts model, and in treating the number of components of the spatial mixture as unknown. Inference is
performed in a Bayesian framework using reversible jump Markov chain Monte Carlo. The model introduced can be viewed as a Bayesian
semiparametric approach to specifying flexible spatial distribution in hierarchical models. Performance of the model and comparison
with an alternative well-known Markov random field specification for the Poisson rates are demonstrated on synthetic datasets. We show
that our allocation model avoids the problem of oversmoothing in cases where the underlying rates exhibit discontinuities, while giving
equally good results in cases of smooth gradient-like or highly autocorrelated rates. The methodology is illustrated on an epidemiologic
application to data on a rare cancer in France.

KEY WORDS: Allocation; Bayesian hierarchical model; Disease mapping; Finite mixture distributions; Heterogeneity; Hidden Markov
models; Markov chain Monte Carlo; Poisson mixtures; Potts model; Reversible jump algorithms; Semiparametric
model; Spatial mixtures; Split/merge moves.

1. INTRODUCTION

1.1 Hidden Markov Random Fields

Hidden Markov models (HMMs) assume in general terms
that the observations form a noisy realization of an underly-
ing process that has a simple structure with Markovian depen-
dence. The most studied class of HMMs has been temporal
observations linked to an underlying Markov chain. This for-
mulation originated in engineering and has since been used
in many domains, ranging from finance to molecular biol-
ogy. (A comprehensive review of mathematical properties, sta-
tistical treatment, and applications of hidden Markov chains
can found in Künsch 2001.) Robert, Rydén, and Titterington
(2000) reported a recent study that is particularly relevant to
the work presented here because of the variable number of
states in the hidden chain, the Bayesian treatment, and the use
of reversible jump algorithms in the implementation.
When the data are spatially structured, a natural extension is

to hidden Markov random fields, that is, Markov random fields
degraded by (conditionally) independent noise. One context in
which such models have been much used is image analysis,
going back to Besag (1986) and beyond; another is disease
mapping in epidemiology. By disease mapping, we mean stud-
ies aiming to uncover a potential spatial structure in disease
risk when analyzing small numbers of observed health events
in a predefined set of areas. In this case the noise is related
to the rarity of the health event and the size of the population
at risk, leading to the low disease counts per area (<10) typi-
cally found in many studies (e.g., Elliott, Wakefield, Best, and
Briggs 2000).
In this article we consider a class of hidden discrete-

state Markov random field models related to an underlying
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finite-mixture model that allows spatial dependence and does
not predefine the number of “states” or components of the
mixture. Our motivation is dual: We are interested in gener-
alizing some of the useful features of hidden Markov chains
with an unknown number of discrete states and also in propos-
ing a flexible alternative to the current Markov random field
models commonly used in disease mapping. This motivating
context has both stimulated model development and driven
some of the choices made in model implementation.
Although the extension from a hidden Markov chain to a

hidden random field is an obvious one in modeling terms,
it introduces disproportionate difficulties in implementation.
In the case of a linear chain, there are fast methods such as
the “forward-backwards” algorithm for computing likelihoods,
and if a full Bayesian approach via Markov chain Monte Carlo
(MCMC) is taken, then the normalizing constants of the joint
prior distribution of the hidden chain are explicitly available.
Neither of these is true of the general spatial case, and this has
severely limited application of these methods (see Rydén and
Titterington 1998 for a full discussion). One of the aims of
this article is to demonstrate that implementation is perfectly
practicable, at least for a moderate number of hidden variables,
when using a model with just two parameters (the number of
hidden states and the strength of interaction).

1.2 Models for Spatially Correlated Count Data

We consider the modeling of spatial heterogeneity for count
data on a rare phenomenon, observed in a predefined set of
areas. Throughout, our terminology refers to disease mapping,
but we stress that our model is easily translatable to other con-
texts in which spatial heterogeneity is of interest, for example,
in ecology or agricultural science.
There are many reasons for suspecting heterogeneity in

an underlying disease event rate and wanting to characterize
it. For example, the discovery of either local discontinuities
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or smooth gradients can be exploited for further study or
action. Indeed, the suspicion of a local excess in disease occur-
rence or the highlighting of geographic inequalities in health
are important public health concerns that can be addressed
through an analysis of spatial heterogeneity. Of course, the
analysis must take into account all relevant risk factors that
can be assessed at the area level. But it is hardly plausible
that all the factors acting on the underlying disease risk can
be identified or measured at the required geographic level.
Thus there often remains residual heterogeneity in the disease
event rate, which moreover is likely to have a spatial struc-
ture inherited from some of the unmeasured or undiscovered
risk factors for the disease. Note that epidemiologic studies
are observational by nature, and there is little or no control
over the sources of variability. Furthermore, the delicate issue
of ecological bias (Greenland and Robins 1994) must be kept
in mind when interpreting sources of variability for disease
outcomes analyzed at an aggregated level.
Modeling spatial heterogeneity of rare counts has usually

been addressed in a hierarchic framework. We do the same in
the development of our Bayesian approach, and specifically
consider a Poisson model at the lowest level of the hierarchy,

yi ∼ Poisson��iEi� independently for i = 1�2� 	 	 	 � n� (1)

where yi denotes the observed count of disease incidences or
deaths in area i; Ei is the expected count based on population
size, adjusted for, say, age and sex; and �i is an area-specific
relative risk variable, the main object of our inference. We use
the simple term “risk” to refer to the ��i� in the future.
This model may be extended straightforwardly to accom-

modate dependence on covariates �xij� measured in each area
i, so that (1) is replaced by, for example,

yi ∼ Poisson��ie
∑
j xij�jEi� independently for i = 1�2� 	 	 	 � n�

(2)

Illustrations of the use of the model both with and without
covariates are given later in the article.
We now consider the choice of structure for the joint distri-

bution of the ��i� i= 1�2� 	 	 	 � n� at the next level of the hier-
archy, a choice that can be influential on effective smoothing
of the Poisson noise. In the seminal work of Besag, York, and
Mollié (1991) and Clayton and Bernardinelli (1992) and sub-
sequent work, log-linear Gaussian models for the ��i� were
postulated using a conditional formulation that included a spa-
tial autoregressive component based on contiguity in an undi-
rected graph as well as a term modeling unstructured vari-
ability. This approach has been commonly adopted in recent
work in disease mapping and has helped highlight many inter-
esting features of the geographic distribution of some rare
diseases. Alternative formulations of a multivariate Gaussian
model for the �log�i� that directly specify a spatially param-
eterized covariance matrix have also been discussed (Best,
Arnold, Thomas, Waller, and Conlon 1999; Wakefield and
Morris 1999). In both cases, the parameters characterizing the
spatial dependence are constant across the entire study region,
although models where the strength of spatial interaction is
allowed to vary spatially have also been proposed in other
contexts (Clifford 1986; Aykroyd and Zimeras 1999). When

using these parametric models, there is the potential risk of
oversmoothing and masking of local discontinuities due to the
global effect of the parameters. Concern about this is borne out
by empirical studies, including the study reported in Section 4.
There have been several attempts to address this difficulty,

which have in common the replacement of a continuously
varying random field for ��i� by an allocation or partition
model of the form

�i = �zi � (3)

where ��j� j = 1�2� 	 	 	 � k� characterize k different compo-
nents, and �zi� i= 1�2� 	 	 	 � n� are allocation variables taking
values in �1�2� 	 	 	 � k�. Moving the spatial dependence one
level higher in the hierarchy to the discrete-valued process
�zi� has the potential of providing a greater degree of spa-
tial adaptivity, again seen empirically. Note that discreteness
in the prior is not imposed on posterior inference, in the sense
that, marginalizing over the allocations, the posterior mean
risk surface from any partition model can provide a smooth
estimate of the risk surface. Models that can be described in
this framework include the clustering or segmentation mod-
els of Knorr-Held and Raßer (2000) and Denison and Holmes
(2001), which propose different spatial models for �zi�. In the
model investigated in this article we propose using a Potts
model for �zi�, with the number of states and strength of inter-
action unknown. In contrast to the partition models cited, we
retain a Markovian structure for the �zi�. Other models in this
class are the spatial mixture models introduced by Fernández
and Green (2002), in which the spatial dependence is pushed
yet one level higher. The �zi� are conditionally independent
given weights wij = P�zi = j� constructed from Gaussian ran-
dom fields.

1.3 Mixtures and Other Related Models

Mixture models arise naturally whenever the existence of
unknown subpopulations corresponding to different models
for the quantity of interest can be hypothesized. They have
found applications in many contexts, some of which are illus-
trated, along with comprehensive accounts of the theory, in
the monographs by Titterington, Smith, and Makov (1985)
and McLachlan and Peel (2000). It is not always possible
or advisable to interpret the subgroups of areas identified
by such models directly, so an important second perspective
on the HMM adopted here is to view it as a semiparamet-
ric approach, following recent developments in both Bayesian
and frequentist settings. Indeed, the question of the specifi-
cation or the potential misspecification of the distribution of
latent variables has been the subject of much attention (see
e.g., Roeder, Carroll, and Lindsay 1996; Carroll, Roeder, and
Wasserman 1999 for discussion of such issues in the measure-
ment error context), and mixtures of distributions have been
proposed as an alternative. Our proposed model is given extra
flexibility by the treatment of the number of allocation classes
and the strength of spatial interaction as unknowns, to be esti-
mated together with the Poisson parameters.
Image analysis is another context in which hidden Markov

random field models have been extensively used. Tjelmeland
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and Besag (1998) provided a systematic study of Markov ran-
dom fields with higher-order interactions, with the aim of pro-
ducing well-calibrated posterior inference that goes beyond
simple restoration. Johnson (1994) allowed a variable number
of labels as we do, but generated rich geometric structures by
constructing specific nonlocal potential functions. We stress
that these extensions aim to recover high-level features of the
image—an aim different from ours, of flexible analysis of spa-
tial heterogeneity.
The article is organized as follows. In Section 2 we present

the spatially correlated allocation model. We describe our
MCMC implementation, which requires variable-dimension
moves, in Section 3. In Section 4, we analyze the performance
of the model on a collection of synthetic datasets designed to
test different features of the model in the context of disease-
mapping data. We also present the results of a simulation study
aimed at comparing some aspects of its performance with that
of the Markov random field formulation of Besag et al. (1991).
We discuss an epidemiologic application to French cancer data
in Section 5, and conclude with a discussion of extensions and
further work in Section 6.

2. POTTS MODELS WITH POISSON NOISE

The main novelty of our approach lies in the modeling of
the allocation variables �zi� in (3). First, the number of com-
ponents k is treated as unknown, with prior distribution p�k�,
typically either truncated Poisson in form or uniform on some
range �1�2� 	 	 	 � kmax�. Then, given k, �zi� follows a spatially
correlated process.
The formulation for this process is built on a prescribed

undirected graph, which plays the role of the prior condi-
tional independence graph of the hidden random field �zi�.
Two areas, i and i′, are said to be neighbors, written as i ∼ i′,
i ∈ �i′, or i′ ∈ �i, if they are adjacent with respect to this graph.
Typically, areas are taken to be neighbors in this sense if and
only if they are spatially contiguous. More sophisticated spa-
tial relationships can be modeled with little difficulty; we give
an example of this in Section 4.6. Apart from this specific
development, we always use spatial contiguity as our graph
structure.
In this article we concentrate on the Potts model, an allo-

cation model often used in image processing applications and
originating in statistical physics. In contrast to the hierarchical
mixture model defined by Richardson and Green (1997), and
indeed most mixture models, this formulation does not make
use of explicit weights on components.
In the Potts model formulation, the zi are modeled jointly,

p�z���= e�U�z�−�k���� (4)

where

U�z�=∑
i∼i′
I�zi = zi′ � and

�k���= log

( ∑
z∈�1�2� 	 	 	 �k�n

e�U�z�

)
(5)

are the number of like-labeled neighbor pairs in the configu-
ration z and an additive normalizing constant. The interaction

parameter � is nonnegative; �= 0 corresponds to independent
allocations, uniformly on the labels �1�2� 	 	 	 � k�. The degree
of spatial dependence increases with �, whereas allocations
remain marginally uniform on �1�2� 	 	 	 � k�. It is clear that
for positive �, p�z��� favors probabilistically those allocation
patterns where like-labeled locations are neighbors.
To complete the model specification, we must define our

prior models for �, �, and k. We place an independence prior
on ��j� j = 1�2� 	 	 	 � k�:

�j ∼ ���� � independently for j = 1�2� 	 	 	 � k�

Although we have occasionally considered also a hierarchi-
cal model in which  ∼ ��b1� b2�, we usually take the hyper-
parameters � and  as fixed. Our standard choice is � =
1,  = ∑

i Ei/
∑

i yi. Usually in epidemiologic applications,∑
i Ei =

∑
i yi, and hence  = 1; in other cases, this choice

makes the analysis equivariant to multiplicative misspecifica-
tion of the �Ei�. Although it is not strictly necessary, we pre-
fer to ensure identifiability of the labeling of mixture compo-
nents by indexing the ��j� in numerically increasing order:
�1 < �2 < · · ·< �k. Thus the joint prior for � becomes

p���k��� �= k! I��1 < �2 < · · ·< �k�
k∏
j=1

 ���−1
j e− �j

����
�

The whole issue of labeling and the impact of ordering on
MCMC performance was comprehensively discussed in the
discussion and rejoinder to Richardson and Green (1997).
(Also see Stephens 2000 for an alternative approach).
We take p��� to be a discrete distribution, uniform on

the values �0�0�1� 	 	 	 ��max�. The uniformity is arbitrary—as
usual, other forms of distribution could be substituted after
sampling, using importance reweighting. The discreteness,
which we do not believe has a significant impact on our infer-
ence, is for the sake of computational convenience, because
the normalizing constants �k��� can then be precomputed
offline and stored in a table, with no approximation or interpo-
lation necessary at run time. Finally, our prior on the number
of components k is uniform on the values �1�2� 	 	 	 � kmax�.
Prior simulations are useful to inform the choice of �max.

For the Potts model on the contiguity graph of the French
départements used in our studies reported in Section 4, we
found that the value �= 1�0 is a very high level of interaction;
the average prior probability that two neighboring regions have
the same label when � = 1�0 and k = 2 is .96, declining only
to .70 when k = 8. We thus choose default values of � = 1�0
and k = 10, which seem sufficient to ensure flexibility for all
practical purposes, although these could easily be increased if
deemed unsuitable for a specific graph. In fact, exceptionally,
in one of our examples, we extend �max up to 1.2.
All the foregoing specifications are expressed somewhat

loosely, in the interest of economy of notation. Each of the
model ingredients is actually a conditional distribution for the
stated variable, conditional on both its immediate parameters
and hyperparameters higher up in the directed acyclic graph
(DAG) describing the model (Fig. 1). Thus the joint distribu-
tion of all variables corresponding to the Potts model formu-
lation is

p�k�p���p���k��� �p�z�k���p�y��� z��
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Figure 1. DAG for the Potts Spatial Mixture Model.

3. MARKOV CHAIN MONTE CARLO

Naturally, MCMC methods are needed to fit these spatial
mixture models. Our sampler for the Potts mixture model uses
four different moves, each move updating a subset of the vari-
ables, under detailed balance with respect to the posterior dis-
tribution, which forms an irreducible Markov chain when used
together in a deterministic scan. In this general structure, our
computational method follows other recent work, including
that of Richardson and Green (1997). Three of the four are
standard fixed-dimension moves; the fourth move proposes to
change dimension by increasing or decreasing the number of
components.

3.1 Fixed-Dimension Moves

The three fixed-dimension moves update the allocations z,
the spatial interaction parameter �, and the component param-
eters ��j�. The allocations z are updated by a Gibbs kernel.
The full conditional from which an update for zi is drawn is

p�zi = j� · · · �∝ e−�jEi�yij e
�nij �

where nij = #�i′ ∈ �i # zi′ = j� is the number of neighbors of i
currently assigned to component j. Note that in contrast to the
simple random sample mixture case of Richardson and Green
(1997), here the �zi� are not conditionally independent given
all other variables, so they may not be updated simultaneously.
The interaction parameter � has full conditional

p��� · · · �∝ p���e�U�z�−�k����

a discrete distribution on a finite grid of values, like the prior.
A random walk Metropolis kernel, proposing perturbations of
±�1 with equal probability, is convenient for updating �.
Finally, we need to update the parameters ��j�. An

approach to the simultaneous update of these, maintaining the
order restriction, exploits the following simple trick that we
have not seen elsewhere. We propose simultaneous indepen-
dent zero-mean normal increments to each log �j ; the mod-
ified values of � are then placed in increasing order to give
say, ��′

j�. Remarkably, the fact that the proposal density that
we are using is actually a sum of k! rather complicated terms,
due to the reordering, does not matter; the terms that appear in
the sums in the numerator and denominator of the Metropolis–
Hastings ratio are in constant proportion and so cancel out.
The acceptance probability for the complete set of updates,

formed from the prior ratio, the likelihood ratio, and a Jaco-
bian for the log transformation, reduces to

min

{
1�

k∏
j=1

[(
�′
j

�j

)�+∑i#zi=j yi
exp�−��′

j −�j�� +
∑
i#zi=j

Ei��

]}
�

3.2 Variable-Dimension Move

Changing the number of components under detailed balance
with respect to the posterior requires a reversible jump move
(Green 1995). We follow the general idea of a random choice
between splitting an existing component into two components
and merging two existing components into one component,
as used by Richardson and Green; the probabilities of these
alternatives are bk and dk when there are currently k compo-
nents. Along with incrementing or decrementing k, the move
also entails modifying the vector � accordingly and reallocat-
ing observations into the new components(s) as necessary.
In contrast to Richardson and Green, we do the realloca-

tion part of the proposal not independently for each observa-
tion, but rather in a way that approximately respects the spa-
tial structure of the Potts model. This is with the usual aim
of increasing the probability of the move’s acceptance; exact
detailed balance is, of course, ensured by correctly calculating
the acceptance probability in terms of the model and proposal
probabilities.
We describe the split move in some detail. First, a compo-

nent to be split, say, j, is chosen uniformly at random from
�1�2� 	 	 	 � k�. This is replaced by two components that we
label “−” and “+,” with � values generated by

�− = �ju
c and �+ = �ju

−c�

where u is generated from U(0,1) and c is a proposal spread
parameter that we set at 0.1. If �− < �j−1 or �+ > �j+1 (with
appropriate modifications if j = 1 or k), then the move is
rejected, as the misordered vector has zero density under the
ordered prior. Those observations i currently allocated to com-
ponent j are then dynamically reallocated between − and +.
We scan over such i, and the probability with which zi is set
to − rather than + is

e�n−−�−Ei�yi−
e�n−−�−Ei�yi− + e�n+−�+Ei�yi+

�

where n− and n+ are the numbers of areas adjacent to i already
proposed for allocation to − and + in this scan. This choice
has the affect of mimicking the Potts model term in the target
distribution to favor proposed allocations with spatial coher-
ence. As the scan proceeds, the probability, Palloc, of the allo-
cation actually generated is accumulated. Denote the proposed
new allocation vector by z′. Following logic very similar to
that of Richardson and Green (1997, Eq. 11), the acceptance
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probability for this complete proposal is min�1�R�, where

R= ∏
i#z′i=−

e−��−−�j �Ei
(
�−
�j

)yi ∏
i#z′i=+

e−��+−�j �Ei
(
�+
�j

)yi

×  �

����

(
�−�+
�j

)�−1

e− ��−+�+−�j ��k+1�
pk+1

pk

× exp���U�z′�−U�z��+�k���−�k+1����

× dk+1

bkPalloc

× 2c�j
u

�

3.3 Approximating the Potts Model Partition Function

Although the MCMC moves for z and � make no reference
to �k���, values of this normalizing constant, the logarithm of
what is known as the partition function in statistical physics,
are needed for the update for � and the split/merge move.
Because in our model both k and � are discrete, we need
to evaluate �k��� on a grid of �k��� pairs. These are com-
puted in offline simulations, specific to the assumed neighbor-
hood graph, and provided in a look-up table for our MCMC
sampler to use. We have found the following simple method
for estimating �k��� easy to use and reliable on graphs of
the size that we have encountered in real disease-mapping
applications.

3.3.1 The Thermodynamic Integration Approach. This
method has a long history; according to Gelman and Meng
(1998), it has been used in statistical physics since the 1970s,
and Ogata and Tanemura (1984) are responsible for its first
use in spatial stochastic processes. Consider the Potts model
with k labels on a graph with n vertices, defined in (4) and
(5). Differentiating �k���, we obtain

�

��
�k���=

�

��
log

∑
z∈Z

e�U�z�

=∑
z∈Z

U�z�p�z���

= E�U�z����k�� (6)

the expectation of U�z� when z is distributed according to
the assumed Potts model. Here Z = �1�2� 	 	 	 � k�n is the set
of possible labelings of the graph. But �k�0� = log

∑
z∈Z 1 =

n logk, so

�k���= n logk+
∫ �

0
E�U ��′� k�d�′� (7)

In particular, note that when k = 1, U�z� is the constant nE ,
the number of edges in the graph, so that �1���= �nE .
Equation (7) is the basis of a simple method for estimating

�k���; the expectation is replaced by a sample average in a
MCMC simulation of the Potts model for specific �k��′�. In
our implementation, the integral is computed by numerical
integration of a cubic spline smooth of the simulated averages
with respect to �′.

3.3.2 Improving Partition Function Estimates Using the
Potts Model Mixture Sampler. Suppose that we place a prior
p�k��� on �k��� and conduct an MCMC simulation of the
distribution of �k��� z� assuming an approximate trial value
�̃k��� for the log partition function. This can be accomplished
by the posterior sampler for the Potts model mixture model
derived in Sections 3.1 and 3.2, with the data suppressed and
likelihood terms omitted from the model. We are simulating
from the joint distribution

∝ p�k��� exp��U�z�− �̃k����� (8)

so the marginal distribution for �k��� is

∝ p�k��� exp��k���− �̃k����� (9)

This observation can be used in two ways. First, compar-
ing the prior p�k��� to the observed frequencies p̂�k���, say,
provides a check on the departure of �̃k��� from �k���. Sec-
ond, if we instead equate (9) to p̂�k���, then we can solve to
give improved estimates of �k���, namely

�k���= �̃k���+ log�p̂�k���/p�k����� (10)

up to an additive constant. This device takes advantage of the
often improved mixing offered by variable-dimension sam-
plers. It cannot cope with very poor initial estimates, but
works well as a supplement to thermodynamic integration or
any other method for deriving the normalizing constant. In
the numerical experiments that follow, we use thermodynamic
integration, based on runs of length 50,000 for each �k���
combination, followed by the improvement just described.
A full analysis of the problem of estimating normalizing

constants has been given by Gelman and Meng (1998). They
discussed several methods that are more sophisticated, but also
more cumbersome; these will handle more challenging prob-
lems and might be needed to adapt our methods to bigger
graphs or a wider range of �k��� values.

3.4 Implementation of the BYM Model

As mentioned in Section 1, we make use of the method of
Besag et al. (1991) as a standard for comparison in our experi-
ments. This is based on a hierarchical model; given the values
of the variance parameters, the logarithms of the risks have a
certain multivariate normal distribution, a priori. In contrast,
in our model, conditional on the allocations and hyperparam-
eters, the risks are gamma distributed. To eliminate the impact
on our comparisons of this basic difference, the model that we
implement, and refer to as the BYM model, is a minor refor-
mulation of the model of Besag et al.
We suppose that the risk in area i is �0e

ui+vi , where, condi-
tional on �,  , +u, and +v, the terms �0, u= �ui� and v= �vi�
are independent, with

�0 ∼ ���� ��

p�u�+u�∝ exp�−+u
∑

i∼i′�ui−ui′�
2/2��

and
p�v�+v�∝ exp�−+v

∑n
i=1 v

2
i /2��
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where both �ui� and �vi� are constrained to sum to 0. (In
the case of a disconnected graph, we would apply these con-
straints separately in each connected component, but in fact
we do not need this in our examples herein.) In this formu-
lation, if +u and +v go to �, then we obtain the standard
nonspatial conjugate model, which also arises if k is fixed
at 1 in our mixture model. Allowing k > 1 or +u� +v < �
are alternative approaches to fitting spatial heterogeneity. We
assume that +u ∼ ���u� u� and +v ∼ ���v� v� a priori, with
�u =  u = �v =  v = �1.
Constructing a sampler for the BYM model requires some

care both because of the strong spatial interaction among the
u variables and because of the high correlation a posteriori
between u and +u and between v and +v. In addition, the sum-
to-zero constraints that we impose in our form of the model
pose extra difficulties. Recent work by Knorr-Held and Rue
(2002) has focused on the first of these problems. Our sampler,
which seems to perform quite adequately, explicitly addresses
the second and third problems. The variables in question are
updated in two blocks, �u� +u� and �v� +v�, using moves of a
similar design. Taking the �u� +u� block as an example, we
use a Metropolis–Hastings proposal on the whole vector u,
making simultaneous independent Gaussian perturbations con-
strained to sum to 0. The proposal is accepted or rejected by
reference to the target distribution in the usual way, but with
+u integrated out; that is, the acceptance ratio for the update
from u to u′ is(
 u+ �1/2�

∑
i∼j�u′i−u′j�

2

 u+ �1/2�
∑

i∼j�ui−uj�
2

)�u+n/2
× exp

{ n∑
i=1

yi�u
′
i−ui�−�0�e

u′i+vi − eui+vi �
}
�

Following this, whether or not the update for u is accepted, +u
is updated by a Gibbs move, drawing a new value from its full
conditional ���u+n/2� u+ �1/2�

∑
i∼j�ui−uj�2�. We adjust

the spread of the Gaussian perturbations on u and v in pilot
runs to achieve reasonable acceptance rates. On larger graphs,
it might prove necessary to apply such perturbations to subsets
of the areas instead of the whole graph. Finally, �0 is updated
by a Gibbs kernel.
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Figure 2. True Risks (a) and Observed SMRs (b) for the Block4 Dataset.

4. MODEL PERFORMANCE AND COMPARISON

4.1 The Simulated Datasets

In this section we investigate the distinguishing features of
the model and its performance on simulated datasets. Through-
out, we use the spatial layout of the 94 mainland French
départements. To test different characteristics of the model,
we generated three datasets corresponding to contrasting geo-
graphic features of the underlying simulated risks. Specifically,
the “Block4” case refers to a situation of a background value
of � equal to .7, with four groups of areas having values of
� equal to 1.5. These four groups consist of either a single
well-populated area or a group of five rural départements or
are on the border (Fig. 2). “North-South” simulates a simple
north/south divide, with � equal to .8 in the north and 1.2 in
the south (Fig. 3), whereas “Gradient NS” corresponds to risks
smoothly (linearly) decreasing from north to south (Fig. 4).
For each dataset, the observed number of events were simu-
lated as

yi ∼ Poisson��iEi� independently for i = 1�2� 	 	 	 � n�

where the expected numbers of events were chosen on the
basis of the French population structure and correspond to real
data on two types of cancer. For Block4 and “North-South,”
these numbers correspond to the expected number of deaths
for laryngeal cancer in females for the period 1986–1993 and
range from 2 to 58, whereas for Gradient NS they are about
three times larger and correspond to those of the gall bladder
dataset analyzed by Mollié (1996), for which risks were found
to have a gradient-like structure. Figures 2(b), 3(b), and 4(b)
display the maximum likelihood estimate of �i, yi/Ei, com-
monly referred to as the standardized mortality ratio (SMR)
in the epidemiologic literature.

4.2 Output Analysis and Criteria

All of the results displayed correspond to runs of 500,000
sweeps of the algorithm after a burn in of 20,000 sweeps. The
mixing performance of the split and merge moves was satis-
factory, with acceptance rates generally around 10%, except
in cases where the data support a low number of components,
as in the North-South example, where the acceptance rate
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Figure 3. True Risks (a) and Observed SMRs (b) for the North-South Dataset.

drops to 5%. From the samples, different summaries of the
posterior distribution can be computed. Our main interest is
in the spatial variation of the ��zi � and associated posterior
probabilities.
The section concludes by reporting some simulation results

that aim to compare some aspects of the performance of our
spatial mixture model to that of the BYM model. Our criteria
for comparison are fairly straightforward. For simulated data,
we know the “true” underlying risks, and these will be denoted
by ��ti�. We then calculate for each area i, MSEi = E���ti −
�i�

2�y�, the (posterior) mean squared error (MSE), where �i
corresponds to �zi for the mixture model and to �0 exp�ui+vi�
for the BYM model. To summarize the performance over the
whole map, we compute RAMSE= �

∑
iMSEi/n�

1/2, the root
averaged MSE. Because this criterion has the disadvantage of
penalizing multiplicative overestimation of a risk more than
underestimation, we also compute a corresponding criterion
on the log scale—that is, replacing above �ti and �i by log�ti
and log�i. The corresponding summary over the whole map,
denoted by RAMSEL, now treats symmetrically a risk that is,
say, doubled or halved.
Turning to a measure applicable to real data, where the

true risk map is not available and that aims to balance fit

0.31
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0.11
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Figure 4. True Risks (a) and Observed SMRs (b) for the Gradient NS Dataset.

and complexity, we have computed the deviance information
criterion (DIC) proposed by Spiegelhalter, Best, Carlin, and
van der Linde (2002). The DIC is the sum of two terms:
E�D�y�, the posterior expected deviance, and pD, a penalty
term. E�D�y� is evaluated from the MCMC output in a stan-
dard way; at each sweep, values of the parameters are pro-
duced from which can be calculated the Poisson deviance, D=
2
∑

i�yi log�yi/.i�− yi +.i�, where .i = �ziEi. The penalty
pD is the difference between the posterior expectation of this
deviance and the deviance at the posterior mean of the param-
eters. Here we have used the posterior mean of the ��zi � for
the mixture model and that of �0 exp�ui + vi� for the BYM
model. For each dataset and each model, we report the value
of DIC, of E�D�y�, and of pD, which can be interpreted as a
measure of model complexity. (See also Best et al. 1999 for a
discussion of using DIC in comparisons of spatial models.)

4.3 Posterior Inference on k and �

Figure 5 displays the joint posterior distribution of k and
� for the three datasets. There are clear differences between
the “images.” There is support for low values of k in the
first two datasets, whereas larger k and � are necessary to fit
the gradient-like structure. The posterior for � concentrates
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Figure 5. Joint Posterior Distribution of k and � for the Three Simulated Datasets: (a) Block4, (b) North-South, and (c) Gradient NS.

around higher values when relatively large “clusters” (i.e.,
neighboring areas with the same �) exist in the true setup.
The different types of correlation between k and � show the
adaptivity of the mixture to different geographic patterns. For
North-South, there is a clear peak of p�k�y� for k = 2, the
true number of components, whereas for Block4, the mode of
p�k�y� is at k = 3, with the mixture model preferring to fit
more than one component to model the variability of the large
number of areas having the background risk.

4.4 Posterior Estimates of the ��zi
�

Figures 6(a) and 7 show the posterior mean of �zi for the
three simulated datasets. Visually comparing these to the true
simulated risks shows an excellent match. Because of model
averaging, the posterior means of the �zi are smoothly vary-
ing over the space and are not steplike. The flexibility of the
mixture to adapt to very different patterns of risks is appar-
ent. Figure 6(b) displays the map of posterior standard devia-
tions of the �zi for North-South. Note that variability is a lit-
tle higher on the border areas between the contrasting zones;
of course, this is also modulated by the size of the expected
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Figure 6. Mixture Estimates of the Risks for North-South, Posterior Means (a) and Posterior Standard Deviations (b).

counts. Because mean estimates can be a misleading sum-
mary in cases of high variability or skewness, Figure 8(a) dis-
plays for Block4 a representation for each area of the poste-
rior distribution of the ��zi � as a five-bin histogram with break
points at .7, .9, 1.1, and 1.3. We see that the histograms corre-
sponding to areas of simulated elevated risk in the four blocks
are clearly right-skewed in comparison to the prevalent left-
skewed histograms corresponding to the background areas. It
is also interesting to display maps of posterior probabilities
that the risk in each area exceeds certain thresholds. These can
be easily computed from the output. Figure 8(b) shows that
Pr�RR> 1� in the North-South example provides a clear indi-
cation that the southern areas have more elevated risks than
the northern areas.
Another posterior summary that is easily obtainable from

our mixture model is the posterior distribution of the alloca-
tions zi between different components, conditional on values
of k. Such allocation graphs are simple and visually effec-
tive in isolating areas of particularly high or low risk. But
their interpretation is conditioned by the separation between
the components, and in the examples that we looked at, we
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Figure 7. Mixture Estimates of the Risks for Block4 (a) and Gradient NS (b): Posterior Means.

did not find that such graphs uncover new features not visually
apparent in the histogram of the ��zi �. One important feature
to point out is the wide posterior variability of these alloca-
tions. Indeed, a priori, our model assumes that for each k, the
different labels are equally probable. This prior assumption,
akin to the assumption of uniformly distributed weights usu-
ally made in mixture models, nevertheless allows the posterior
allocations to be far from uniform when there is information
in the data. This can be seen in Figure 9, which displays the
boxplots of the modal allocation probabilities for the Block4
and the Gradient NS datasets and a selected range of values
of k. To be precise, for each area i and each k, we determine
maxj�P�zi = j�k� y�� and form a boxplot of these probabilities
over i.
For Block4, most of the modal allocation probabilities are

above .90 when k = 2, reflecting the real contrast in the data.
When k≥ 3, the areas with background risk are split between
several components with close values of �, and their alloca-
tion probabilities are much closer to their prior mean of 1/k
(indicated by a dot in Fig. 9) as could be expected, because
there is little information in the data about these further com-
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Figure 8. Examples of Posterior Summaries Obtained Using the Mixture Model: Histograms of Posterior Risks for Block4 (a) and Posterior
Probability of Risk >1 for North-South (b).

ponents. For Gradient NS, there is substantial structure in the
data, and the modal allocation probabilities reflect this, being
well above 1/k for all values of k.

4.5 Clusters

We define a cluster as a set of like-labeled areas connected
by paths from neighbor to neighbor. To be precise, areas i
and j, say, are in the same cluster if there is a path i = l0 ∼
l1 ∼ · · · ∼ lr = j such that zlp is the same for all 0 ≤ p ≤ r .
Note that in the segmentation approach of Knorr-Held and
Raßer (2000), each cluster is labeled differently, whereas in
our model, disconnected areas can have the same label. Thus
it is interesting to compare the prior and posterior distributions
of the number of clusters m. This can be done conditionally
on a fixed value of k, and we do this in our synthetic examples
for the “true” and the modal k, or integrating over k using all
of the output.
Figure 10 displays the prior distribution of m (integrating

over the uniform priors for k and �), as well as the posterior
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Figure 9. Boxplots of the Allocation Probabilities for the Block4 (a) and Gradient NS (b) Datasets. The dots represent the prior means of 1/k.

distribution of m for the three datasets, integrating over k
(solid line), conditional on the value of k corresponding to the
“true k” when it exists (dotted line), and conditional on the
mode of p�k�y� (dashed line). We see peaked patterns for the
three datasets, contrasting with the flat shape and extended tail
of the distribution of m for the prior model. This shows that
the spatial pattern in the data resulted in concentration of the
posterior distribution of m on smaller values.
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Figure 10. Posterior Distributions of the Number m of Clusters Obtained Using the Mixture Model, Integrated Over k (solid line), Conditional
on “True” k (dotted line), and Conditional on the Posterior Mode of k (dashed line). (a) Block 4; (b) Gradient NS; (c) North-South; (d) Prior. In
the Gradient NS case, there is of course no true k; in the North-South case, the true and posterior modal k coincide. For the Prior case, we plot
only the integrated distribution, conditional on k > 1.

A simple structure for p�m�y� is apparent for North-South
and Gradient NS, with hardly any shift between the condi-
tional and the overall cluster distribution. On the other hand,
for Block4, the bimodality of p�m�y� indicates hesitation
between a simple and a more complex clustering pattern aris-
ing when the areas with the background risks are split between
more than one component. We see the flexibility of our mix-
ture model in generating different cluster patterns. Clearly,
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using the Potts model in conjunction with variable k has not
“frozen” the cluster pattern, as might have been anticipated
from the experience of Tjelmeland and Besag (1998) using
the Potts model with a fixed k in a related context in image
analysis.

4.6 Assumptions and Sensitivity

Our hierarchical formulation involves different levels of
assumptions: distributional, quantitative (in relation to hyper-
parameter specification), and structural. The distributional
assumption for the observed counts must be adapted to the
data. For disease mapping, it is standard to use the Poisson
assumption, but in other cases where spatial HMMs are used
(e.g., in ecologic applications), this component of the model
could be replaced by alternative distributions, such as the bino-
mial or negative binomial.
As in any mixture-like problem, one might anticipate that

some aspects of the model are sensitive to the choice of
prior distribution for the component parameters. We have cho-
sen to use gamma distributions for the �s with � = 1 and
 = ∑

i Ei/
∑

i yi. We conducted a sensitivity study of this
choice by letting � take the alternative values of .4 or 2.5,
with  adjusted correspondingly so that �/ =∑

i yi/
∑

i Ei;
we also allowed an additional level in the hierarchy and
treated  as random, with  ∼ ��b1� b2�. The posterior dis-
tributions of the area-specific risks were highly stable under
these various choices. For the three datasets, neither the poste-
rior means nor the posterior standard deviations vary by more
than .03 from their values under the standard choice � = 1
and  =∑i Ei/

∑
i yi. This is a welcome feature of the model.

On the other hand, as anticipated from other mixture studies
that we have conducted (Richardson and Green 1997), infer-
ence on k and z is less stable, with a tendency for the model
to fit more components as the variability of the gamma dis-
tribution is decreased. This sensitivity is the reason that one
must be careful to not overinterpret the posterior on k, and
to use the mixture simply for exploring interesting features of
the heterogeneity.
The single-parameter Potts model on the nearest-neighbor

graph with variable number of labels is a particular formu-
lation of a spatial HMM that allows computational tractabil-
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Figure 11. Mixture Estimate of the Risks for Block4 (a) and Gradient NS (b) Computed Under the Modified Potts Model Based on Eq. (11).

ity and, we believe, sufficient flexibility. In some applica-
tions, allowing higher-order neighbors might be called for, and
this can be done without changing the computational strategy.
However, it becomes more cumbersome to compute the look-
up tables for the log partition function �k��� if there are addi-
tional parameters. We have investigated the effect of replacing
the 0–1 contiguity coefficients by a piecewise linear function,

wii′ =

1� dii′ ≤ 60
�120−dii′�/60� 60< dii′ ≤ 120
0� dii′ > 120�

(11)

of the distance dii′ (in km) between the administrative cen-
ters of each area and redefining the prior potential func-
tion U�z� as

∑
i�i′ wii′I�zi = zi′ �, giving a modified Potts

model with smoother spatial dependence and effectively larger
neighborhoods.
We found that the posterior means for the area-specific risks

are quite robust overall to the modification of the Potts model,
as can be seen by comparing Figures 11 and 7. Nonetheless,
differences can be seen for some areas, and it is interesting
to explore these further. For Block4, the largest difference of
estimated risks between the two maps was .2, occurring for
an area in the middle of the central elevated block. This area
had a low SMR of .96, even though its true risk was 2. With
the standard Potts model, the posterior mean risk for this area
increases to 1.12, because of the influence of the contiguous
neighbors with elevated risks. On the other hand, with the
modified model, the influence of the further-distant areas with
a low true risk of .7 predominates, and the posterior mean risk
for this area drops to .92. A similar story is seen for Gradi-
ent NS. The largest difference of risk between the two maps,
.21, occurs for an area on the northern border, the estimated
risk for that area being pulled down when using the modified
model. For both datasets, the DIC was lower and the RAMSE
was slightly smaller for the standard model. As expected,
changing the model influences the posterior distribution of k.
For example, mixtures with fewer components were fitted with
the modified model in the Gradient NS case, reflecting the
flexible interaction between the type of spatial structure of the
data, the chosen spatial model, and the estimated mixture char-
acteristics. This modest investigation has thus indicated that
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the model shows good adaptivity. A full investigation of the
choice of spatial model for the allocations is beyond the scope
of this article.

4.7 Comparison With BYM

We first comment briefly on the results of a small simula-
tion study conducted on the basis of the three underlying risk
patterns described previously, together with three other setups.
In the first one, “CAR”, the (log) risks follow an intrinsic
autoregressive Gaussian model with zero mean based on the
contiguity matrix W , where wij = 1 if i ∼ j. To be precise,
the joint distribution of �log��i�� is simulated with covari-
ance matrix .16 times the generalized inverse of the matrix
diag�31� � � � � 3n�−W , where 3i is the number of neighbors of
area i, and the constant .16 is used to scale appropriately the
variability of the risk across the map. The corresponding maps
of true risk and SMR are displayed in Figure 12. This setup
was chosen to correspond to the spatial model underlying the
BYM analysis. The last two examples have no spatial pattern:
“Flat” refers to risks displaying no trend or spatial correla-
tion, the “null hypothesis” for an epidemiologist, taken here
as drawn at random from a uniform ��9�1�1� distribution, and
“Over” simulates overdispersed risks using a gamma mixture
of Poissons chosen so that var�y� = 1�5E�y�. For those last
three datasets, the expected number of deaths are again those
of the dataset on larynx cancer for women.
The spatial mixture and the BYM are compared on the

basis of RAMSE, RAMSEL, DIC, E�D�, and pD. Each line of
Table 1 corresponds to the criterion averaged over five inde-
pendent Poisson replications of the data pattern (the first repli-
cation for four of the datasets having been displayed previ-
ously). Note that out of the six risk patterns considered, only
the first two have discontinuities. The comparisons are thus
designed to investigate the versatility of the two models in
recovering risk patterns for which they are not necessarily well
adapted.
The table shows that the spatial mixture model gives

more faithful estimation of the underlying risks, with smaller
RAMSE in most cases. The RAMSEL criterion gives a sim-
ilar picture except for the Over dataset, where it is smaller
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Figure 12. True Risks (a) and Observed SMRs (b) for the CAR Dataset.

for BYM. As could be expected, the difference is accentu-
ated when there are contrasting zones, as in Block4 or North-
South, or when the pattern is fairly uniform, as in Flat. When
the risks are smoothly varying, as in Gradient NS or CAR,
the two models give similar results; it is perhaps surprising
that the mixture model performs competitively. Moreover, the
spatial structure of the ��i} induced by the chosen allocation
process leads to a more parsimonious model with consistently
lower DIC and pD.
If one accepts the DIC principle at face value, then the

BYM model overfits the data in five of the six cases. With
the exception of Block4, the posterior deviance under the
BYM model is substantially smaller, but the pD is so much
greater that the DIC is at least as large. In the balance between
recovering the true underlying scene and fitting the data, the
mixture model is clearly less influenced by the noise in the
data than the BYM model and is able to effect some spatially
adaptive smoothing in a variety of situations.
Complementing the results of Table 1, we display the map

of posterior means of ��i� estimated by the BYM model for
two datasets (Block4 and North-South) in Figures 13(a) and
14(a). Comparing these with those corresponding to our mix-
ture model (Figs. 6 and 7), against the maps of the simu-
lated risks (Figs. 2 and 3) reveals evidence of remaining noise,
unsmoothed by the analysis. This illustrates what was quan-
tified by the two MSE criteria in Table 1, that recovery of
the unblurred picture is less effective for the BYM model. It
is also interesting to see that the posterior variability of the
risks in both datasets is quite different from that of the mix-
ture model, whether one compares the posterior standard devi-
ations for the North-South (Figs. 6 and 14) or the histograms
for Block4 (Figs. 8 and 13). For the BYM model, variability
is not increased for areas along discontinuities. Further, the
variability of the risks is higher overall and is closely linked
to the size of the risks. This phenomenon is also true for
smoothly varying risks, as in the Gradient NS example (results
not shown).
Finally, Figure 15 displays for each area the root MSE

between the simulated and estimated ��i� corresponding to
the mixture model (a) or the BYM model (b) for the North-
South dataset. For the mixture model, the highest errors are
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Table 1. Simulation Results Comparing Spatial Mixture and BYM Models

RAMSE RAMSEL DIC E�D�y� pD

Datasets MIX BYM MIX BYM MIX BYM MIX BYM MIX BYM

Block4 �22 �27 �22 �30 118�2 138�8 89�5 91�1 28�7 47�7
North-South �15 �22 �15 �22 116�2 124�1 97�8 87�0 18�4 37�1
Gradient NS �22 �24 �27 �26 125�4 129�7 94�6 86�6 30�8 43�1
CAR �27 �28 �27 �27 133�8 136�7 102�1 95�1 31�7 41�6
Flat �09 �19 �09 �19 93�4 108�6 89�4 77�2 4�0 31�4
Over �23 �26 �24 �21 127�5 128�3 112�2 92�1 15�3 36�2

along the discontinuity, whereas for the BYM model, this pat-
tern is less clear, and higher errors can be seen over all of the
southern areas.

5. EPIDEMIOLOGIC APPLICATION
TO DISEASE DATA

The performance of the model is illustrated on data con-
cerning larynx cancer mortality in France at the level of the
94 mainland French départements reported by Rezvani, Mol-
lié, Doyon, and Sancho-Garnier (1997) for the period 1986–
1993. For this dataset, we also illustrate how the introduction
of area-level covariates in the model, as set out in (2), reduces
the spatial heterogeneity of the risks.
The update of the regression parameters �j in (2) was per-

formed using random walk Metropolis, other updates being as
described earlier, with the necessary adjustment to the likeli-
hood. Acceptance rates were around 49%, using normally dis-
tributed perturbations with standard deviations 1.5 times the
reciprocal of the range of the corresponding covariate.
Laryngeal cancer is rare in women, with the observed num-

ber of deaths per area in this dataset ranging from 0 to 148
and SMR ranging from 0 to 2.1. The epidemiology of this
cancer site has been studied mainly in men, in whom such
risk factors as smoking, alcohol consumption, dietary factors,
and specific occupational exposure have been brought to light
in case-control studies (Austin and Reynolds 1996). Here we
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Figure 13. BYM Estimates of the Risks for Block4: Posterior Means (a) and Histogram of the Risks (b).

include two covariates in our model: the per capita sales of
cigarettes in 1975 (an available proxy for smoking) and an
indicator of the urbanization of the area as recorded in the
1975 census. These variables are both time-lagged to allow
for a delay between putative exposure and disease. Under the
Potts mixture model adjusted without covariates, the posterior
distribution of k peaks at k= 2, with p�k�y�= 0� �49� �23� �12
for k = 1�2�3�4.
Regions of higher risk are apparent in the north and south

east. Even though the posterior means of the risks are fairly
similar for the spatial mixture and the BYM model (Fig. 16),
there is markedly higher variability for the BYM model
(Fig. 17), a phenomenon described previously.
When the two covariates are introduced in the Potts mixture

model, the posterior distribution of k shifts markedly toward
the left, with p�k�y� = �31� �39� �18� �07 for k = 1�2�3�4.
As expected, inclusion of the two covariates has partially
explained the heterogeneity. In fact, the range of the posterior
mean of the residual risks [�’s in (2)] is substantially reduced
to approximately one-third of the range of the risks displayed
in Figure 16.
This example supports our view that by combining infor-

mation from the mixture structure and the display of the pos-
terior distribution of the risk estimates, one can characterize
the heterogeneity of the risks and investigate how this het-
erogeneity is affected by the introduction of covariates. The
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Figure 14. BYM Estimates of the Risks for North-South: Posterior Means (a), Posterior Standard Deviations (b).
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Figure 15. Root Mean Squared Errors for the North-South Dataset: Comparison Between the Mixture Model (a) and the BYM Model (b).

0.5

1.5

0.5

1.51

(a) (b)

Figure 16. Larynx Cancer Mortality: Comparison of Posterior Means for the Risks Obtained Using the Mixture Model (a) and the BYM Model (b).
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Figure 17. Larynx Cancer Mortality: Comparison of the Posterior Distribution of the Risks Obtained Using the Mixture Model (a) and the BYM
Model (b).

ultimate goal, from a public health standpoint, is to uncover
sets of covariates that can account for most of the geographic
variability of the risks.

6. CONCLUDING REMARKS

Spatially structured heterogeneity is a common phe-
nomenon that can be tackled in a hierarchical framework
using a hidden Markov random field approach, through direct
multivariate specification of the underlying field, or via parti-
tion models. Here, focused on rare outcomes and hierarchical
Poisson models, we have proposed a new model within the
hidden Markov random field framework. Whether the features
that this model offers are useful depends on the purpose of the
modeling exercise. In our study of the performance of the allo-
cation model, we have been strongly influenced by the specific
epidemiologic context. Recovery of the underlying Poisson
rates is often the prime object of inference, supplemented by
quantification of the extent of the underlying variability and
probability statements about areas of high risk.
In terms of recovery of the “hidden state” or “true image,”

we have shown that the posterior mean risks estimated under
the allocation model give a faithful representation of the
true risks in a wide variety of situations, encompassing both
smooth and discontinuous cases. This flexibility is important,
because there is usually little prior information on the under-
lying risks. Further, we have seen that information from the
posterior estimate of the mixture structure can also be help-
ful in characterizing the spatial variability. We have explored
some other features of the joint distribution of the risks, such
as the number of clusters, but will leave a more in-depth study
to further work.
Although these do not receive much space in this article,

we have conducted numerous checks on the correctness of our
MCMC samplers, and on the adequacy of their performance.
In particular, we have verified that the prior distribution is
recovered if we implement our computations without likeli-
hood or data. We are satisfied that the range chosen for the
interaction parameter � allows substantial spatial dependence

in the allocations, so that higher values of �, for which mixing
could be slower, are not necessary. Overlong runs have been
used on purpose in our examples, the algorithm being quite
fast; our sampler, coded in Fortran, makes about 900 sweeps
per second on a 300-MHz PC.
Further work on model comparison is certainly needed; we

regard our comparisons with the BYM model as quite lim-
ited, in terms of both the scope and the criteria chosen for
comparison. It would be interesting to extend comparisons to
include the models proposed by Knorr-Held and Raßer and by
Fernández and Green, and also to include other non-Gaussian
Markov random field approaches. Indeed, when discontinuities
are expected, it is advisable to replace the quadratic poten-
tial, leading to a Gaussian prior for the spatially structured
random effects, ui, by an absolute value difference potential.
This has been discussed by Besag et al. (1991) and used by
Best et al. (1999), and is related to smoothing using medians
instead of means. Regarding the relevant criteria for compari-
son and choice, Bayesian model comparison is an active area
of research, and there is much debate on the most appropriate
approach.
As we mentioned at the end of Section 2, the model could

be extended in several directions. One interesting avenue is
the inclusion of covariates with heterogeneous effect, that
is, where covariate effects and allocations interact. We have
implemented the model outlined in (2), where the effect of
the covariates is homogeneous. A Poisson mixture model with
interaction between allocations and covariates but indepen-
dent, nonspatial allocations has been discussed by Viallefont,
Richardson, and Green (2002), and there should be no obstacle
to extending this to spatially correlated allocations. Another
extension that could be considered is to combine the spatial
mixture with a BYM model, in effect replacing �0 by �zi in
Section 3.4. It remains to be seen whether this could usefully
combine the best features of both models, or whether gross
overparameterization will result. A model containing a mix-
ture of Gaussian and non-Gaussian (median-based) conditional
autoregressive components was recently proposed by Lawson
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and Clark (2001). Finally, there is great scope for extensions
to spatiotemporal modelling, both for epidemiologic applica-
tions and more generally.

[Received July 2001. Revised April 2002.]
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