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Colouring and breaking sticks:
random distributions and
heterogeneous clustering

Peter J. Greena

Abstract

After a review of some of the implications for statistical modelling and
analysis of probabilistic results about the Dirichet Process and its close
relatives, we introduce a class of simple mixture models in which clus-
ters are of different ‘colours’, with statistical characteristics that are
constant within colours, but different between colours. Thus cluster
identities are exchangeable only within colours. The basic form of our
model is a variant on the familiar Dirichlet process, and we find that
much of the standard modelling and computational machinery asso-
ciated with the Dirichlet process may be readily adapted to our gen-
eralisation. The methodology is illustrated with an application to the
partially-parametric clustering of gene expression profiles
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1.1 Introduction

The purpose of this note is 4-fold: to remind some Bayesian nonparame-
tricians gently that closer study of some probabilistic literature might
be rewarded, to encourage probabilists to think that there are statistical
modelling problems worth of their attention, to point out to all a second
important connection between the work of John Kingman and modern
statistical methodology (the role of the coalescent in statistical genetics
being the prime example; see papers by Donnelly, Ewens and Griffiths
in this volume), and finally to introduce a modest generalisation of the
Dirichlet process.

The most satisfying basis for statistical clustering of items of data is
a probabilistic model, which usually takes the form of a mixture model,
broadly interpreted. In most cases, the statistical characteristics of each
cluster or mixture component are the same, so that cluster identities are
a priori exchangeable. In Section 1.4 we will introduce a class of simple
mixture models in which clusters are of different categories, or colours
as we shall call them, with statistical characteristics that are constant
within colours, but different between colours. Thus cluster identities are
exchangeable only within colours.

1.2 Mixture models and the Dirichlet process

Many statistical models have the following character. Data {Yi} are
available on n units that we shall call items, indexed i = 1, 2, . . . , n.
There may be item-specific covariates, and other information, and the
distribution of each Yi is determined by an unknown parameter φi ∈ Ω,
where we will take Ω here to be a subset of a euclidean space. Apart from
the covariates, the items are considered to be exchangeable, so we assume
the {Yi} are conditionally independent given {φi}, and model the {φi}
as exchangeable random variables. Omitting covariates for simplicity, we
write Yi|φi ∼ f(·|φi).

Thinking of a de Finetti-style representation theorem, or simply fol-
lowing hierarchical modelling principles, it is natural to take {φi} to be
independent and identically distributed random variables, with common
distribution G, where G itself is unknown, and treated as random. Thus,
unconditionally, Yi|G ∼

∫
f(·|φ)G(dφ), independently given G.

This kind of formulation enables us to borrow strength across the
units in inference about unknown parameters, with the aim of control-
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ling the degrees of freedom, capturing the idea that while the {φi} may
be different from item to item, we nevertheless understand that, through
exchangeability, knowing the value of one of them would tell us some-
thing about the others.

There are still several options. One is to follow a standard paramet-
ric formulation, and to assume a specific parametric form for G, with
parameters, or rather ‘hyperparameters’, in turn given a hyperprior dis-
tribution. However, many would argue that in most practical contexts,
we would have little information to build such a model for G, which
represents variation in the population of possible items of the parameter
φ that determines the distribution of the data Y .

Thus we would be led to consider more flexible models, and one of
several approaches might occur to us:

• a nonparametric approach, modelling uncertainty about G without
making parametric assumptions;

• a mixture model representation for G;
• a partition model, where the {φi} are grouped together, in a way

determined a posteriori by the data.

One of the things we will find, below, is that taking natural choices
in each of these approaches can lead to closely related formulations in
the end, so long as both modelling and inference depend solely on the
{φi}. These connections, not novel but not entirely well-known either,
shed some light on the nature and implications of the different modelling
approaches.

1.2.1 Ferguson definition of the Dirichlet process

Much Bayesian nonparametric distributional modelling (Walker et al.,
1999) begins with the Dirichlet process (Ferguson, 1973). Building on
earlier work by Dubins, Freedman and Fabius, Ferguson intended this
model to provide a nonparametric prior model for G with a large sup-
port, yet one remaining capable of tractable prior–to–posterior analysis.

Given a probability distribution G0 on an arbitrary measure space Ω,
and a positive real θ, we say the random distribution G on Ω follows a
Dirichlet process,

G ∼ DP (θ,G0)

if for all partitions Ω =
⋃m

j=1Bj (Bj ∩Bk = ∅ if j 6= k), and for all m,

(G(B1), . . . , G(Bm)) ∼ Dirichlet(θG0(B1), . . . , θG0(Bm))
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The base measure G0 gives the expectation of G:

E(G(B)) = G0(B)

Even if G0 is continuous, G is a.s. discrete (Kingman, 1967; Fergu-
son, 1973; Blackwell, 1973; Kingman, 1975), so i.i.d. draws {φi, i =
1, 2, . . . , n} from G exhibit ties. The parameter θ measures (inverse)
concentration: given i.i.d. draws {φi, i = 1, 2, . . . , n} from G,

• As θ → 0, all φi are equal, a single draw from G0.
• As θ →∞, the φi are drawn i.i.d. from G0.

1.2.2 The stick-breaking construction

A draw G from a Dirichlet process is a discrete distribution on Ω, so an
alternative way to define the Dirichlet process would be via a construc-
tion of such a random distribution, through specification of the joint
distribution of the locations of the atoms, and thir probabilities. Such
a construction was given by Ferguson (1973): in this, the locations are
i.i.d. draws from G0, with probabilities forming a decreasing sequence
constructed from increments of a gamma process.

This is not the explicit construction that is most commonly used to-
day, which is that known in the Bayesian nonparametric community
as Sethuraman’s stick-breaking model (Sethuraman and Tiwari, 1982;
Sethuraman, 1994). This leads to this algorithm for generating the {φi}:

1. draw φ?
j ∼ G0, i.i.d., j = 1, 2, . . .

2. draw Vj ∼ Beta(1, θ), i.i.d., j = 1, 2, . . .
3. defineG to be the discrete distribution putting probability (1−V1)(1−
V2) . . . (1− Vj−1)Vj on φ?

j

4. draw φi i.i.d from G, i = 1, 2, . . . , n.

This construction can be found considerably earlier in the probabil-
ity literature, especially in connection with models for species sampling.
The earliest reference seems to be in McCloskey (1965); for more readily
accessible sources, see Patil and Taillie (1977) and Donnelly and Joyce
(1989), where it is described in the context of size-biased sampling and
the GEM (Generalised Engen–McCloskey) distributions. See also King-
man (1975), Kingman (1993), page 98, Holst (2001), Ishwaran and James
(2001), and Arratia et al. (2003), page 107.



6 Peter J Green

1.2.3 Limits of finite mixtures

A more direct, classical approach to modelling the distribution of Y in
a flexible way would be to use a finite mixture model. Suppose that Yi

are i.i.d. with density
∑

j wjf0(·|φ?
j ) for a prescribed parametric density

family f0(·|φ), and consider a Bayesian formulation with priors on the
component weights {wj} and the component-specific parameters {φ?

j}.
The simplest formulation (e.g. Richardson and Green (1997)) uses a
Dirichlet prior on the weights, and takes the {φ?

j} to be i.i.d. a priori,
but with arbitrary distribution, so in algorithmic form:

1. Draw (w1, w2, . . . , wk) ∼ Dirichlet(δ, . . . , δ)
2. Draw ci ∈ {1, 2, . . . , k} with P{ci = j} = wj , i.i.d., i = 1, . . . , n
3. Draw φ?

j ∼ G0, i.i.d., j = 1, . . . , k
4. Set φi = φ?

ci

It is well known that if we take the limit k →∞, δ → 0 such that kδ →
θ, then the joint distribution of the {φi} is the same as that obtained
via the Dirichlet process formulation in the previous subsections (see
for example Green and Richardson (2001)). This result is actually a
corollary of a much stronger statement due to Kingman (1975), about
the convergence of discrete probability measures; see also Section 1.2.9.
For more recent results in this direction see Muliere and Secchi (2003)
and Ishwaran and Zarepour (2002).

We are still using the formulation Yi|G ∼
∫
f(·|φ)G(dφ), indepen-

dently given G, but note that G is invisible in this view; it has implicitly
been integrated out.

1.2.4 Partition distribution

Suppose that, as above, G is drawn from DP (θ,G0), and then {φi : i =
1, 2, . . . , n} drawn i.i.d. from G. We can exploit the conjugacy of the
Dirichlet with respect to multinomial sampling to integrate out G. For
a fixed partition {Bj}m

j=1 of Ω, and integers ci ∈ {1, 2, . . . ,m}, we can
write

P{φi ∈ Bci
, i = 1, 2, . . . , n} =

Γ(θ)
Γ(θ + n)

m∏
j=1

Γ(θG0(Bj) + nj)
Γ(θG0(Bj))

,

where nj = #{i : ci = j}. The jth factor in the product above is 1 if
nj = 0, and otherwise θG0(Bj)(θG0(Bj)+1)(θG0(Bj)+2) . . . (θG0(Bj)+
nj−1), so we find that if the partition becomes increasingly refined, and
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G0 is non-atomic, then the joint distribution of the {φi} can equivalently
be described by

1. partitioning {1, 2, . . . , n} =
⋃d

j=1 Cj at random, so that

p(C1, C2, . . . , Cd) =
Γ(θ)

Γ(θ + n)
θd

d∏
j=1

(nj − 1)! (1.1)

where nj = #Cj .

2. drawing φ?
j ∼ G0, i.i.d., j = 1, . . . , d, and then

3. setting φi = φ?
j if i ∈ Cj .

Note that the partition model (1.1) shows extreme preference for un-
equal cluster sizes. If we let ar = #{j : nj = r}, then the joint distribu-
tion of (a1, a2, . . .) is

n!
n1!n2! · · ·nd!

× 1∏
r ar!

× p(C1, C2, . . . , Cd) (1.2)

This is equation (A3) of Ewens (1972), derived in a context where nj is
the number of genes in a sample of the jth allelic type, in sampling from
a selectively neutral population process. The first factor in (1.2) is the
multinomial coefficient accounting for the number of ways the n items
can be allocated to clusters of the required sizes, and the second factor
accounts for the different sets of {n1, n2 . . . , nd} leading to the same
(a1, a2, . . .). Multiplying all this together, a little manipulation leads to
the familiar Ewens’ sampling formula:

p(a1, a2, . . .) =
n!Γ(θ)

Γ(θ + n)

∏
r

θar

rarar!
. (1.3)

See also Kingman (1993), page 97.
This representation of the partition structure implied by the Dirichlet

process was derived by Antoniak (1974), in the form (1.3). He noted
that a consequence of this representation is that the joint distribution
of the {φi} given d is independent for θ; thus given observed {φi}, d is
sufficient for θ. A similar observation was also made by Ewens (1972) in
the genetics context of his work.

Note that, having been integrated out, G is also invisible in this view
of the Dirichlet process model.
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1.2.5 Reprise

Whichever of the points of view is taken, items are clustered, according
to a tractable distribution parameterised by θ > 0, and for each cluster
the cluster-specific parameter φ is an independent draw from G0. Much
statistical methodology built on the Dirichlet process model only uses
this joint distribution of the {φi}, and so should hardly be called ‘non-
parametric’. Of course the model does support inference about G itself,
but this is seldom exploited.

Kingman (1975) modestly stressed he was only concerned with ran-
dom discrete distributions, but we have seen in passing that his results
have wider implications than that would suggest.

1.2.6 Multiple notations for partitions

In what follows, we will need to make use of different notations for the
random partition induced by the Dirichlet process model, or its relatives.
We will variously use

• c is a partition of {1, 2, . . . , n}
• clusters of partition are C1, C2, . . . , Cd (d is the degree of the parti-

tion):
⋃d

j=1 Cj = {1, 2, . . . , n}, Cj ∩ Cj′ = ∅ if j 6= j′

• c is the allocation vector: ci = j if and only if i ∈ Cj

Note that the first of these makes no use of the (arbitrary) labelling
of the clusters used in the second and third. We have to take care with
multiplicities, and the distinction between (labelled) allocations and (un-
labelled) partitions.

1.2.7 Some applications of the Dirichlet process in
Bayesian nonparametrics

Lack of space precludes a thorough discussion of the huge statistical
methodology literature exploiting the Dirichlet process in Bayesian non-
parametric procedures, so we will only review a few highlights.

Lo (1984) proposed density estimation procedures devised by mix-
ing a user-defined kernel function K(y, u) with respect to a Dirichlet
process, thus i.i.d. data {Yi} are assumed distributed as

∫
K(·, u)G(du)

with G drawn from a Dirichlet process; this is now known as the Dirich-
let process mixture model (a better terminology that the formerly-used
‘mixture of Dirichlet processes’). The formulation is identical to that we
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started with in Section 1.2, but for the implicit assumption that y and u
lie in the same space, and that the kernel K(·, u) is a unimodal density
located near u.

In the 1990’s there was a notable flourishing of applied Bayesian non-
parametrics, stimulated by interest in the Dirichlet process, and the
rapid increase computational power available to researchers, allowing al-
most routine use of the Pólya urn sampler approach (see Section 1.3) to
posterior computation. For example, Escobar (1994) re-visited the Nor-
mal Means problem, West et al. (1994) discussed regression and density
estimation, and Escobar and West (1995) further developed Bayesian
density estimation. Müller et al. (1996) ingeniously exploited multi-
variate density estimation using Dirichlet process mixtures to perform
Bayesian curve fitting of one margin on the others.

1.2.8 Example: clustered linear models for gene
expression profiles

Let us consider a substantial and more specific application in some detail.
A remarkable aspect of modern microbiology has been the dramatic

development of novel high-throughput assays, capable of delivering very
high dimensional quantitative data on the genetic characteristics of or-
ganisms from biological samples. One such technology is the measure-
ment of gene expression using Affymetrix gene chips. In Lau and Green
(2007), we work with possibly replicated gene expression measures. The
data are {Yisr}, indexed by

• genes i = 1, 2, . . . , n
• conditions s = 1, 2, . . . , S, and
• replicates r = 1, 2, . . . , Rs

Typically Rs is very small, S is much smaller than n, and the ‘conditions’
represent different subjects, different treatments, or different experimen-
tal settings.

We suppose there is a k-dimensional (k ≤ S) covariate vector xs

describing each condition, and model parametric dependence of Y on x;
the focus of interest is on the pattern of variation in these gene-specific
parameters across the assayed genes.

Although other variants are easily envisaged, we suppose here that

Yisr ∼ N(x′sβi, τ
−1
i ), independently.
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Here φi = (βi, τi) ∈ Rk+1 is a gene-specific parameter vector char-
acterising the dependence of gene expression on the condition-specific
covariates. A priori, the genes can be considered exchangeable, and a
standard hierarchical formulation would model the {φi} as i.i.d. draws
from a parametric prior distribution G, say, whose (hyper)parameters
have unknown vlaues. This set-up allows borrowing of strength across
genes in the interest of stability and efficiency of inference.

The natural nonparametric counterpart to this would be to suppose
instead that G, the distribution describing variation of φ across the
population of genes, does not have prescribed parametric form, but is
modelled as a random distribution from a ‘nonparametric’ prior such as
the Dirichlet process, specifically

G ∼ DP (θ,G0)

A consequence of this assumption, as we have seen, is that G is atomic,
so that the genes wil be clustered together into groups sharing a common
value of φ. A posteriori we obtain have a probabilistic clustering of the
gene expression profiles.

Lau and Green (2007) take a standard normal–inverse Gamma model,
so that φ = (β, τ) ∼ G0 means

τ ∼ Γ(a0, b0) and β|τ ∼ Nk(m0, (τt0)−1I)

This is a conjugate set-up, so that (β, τ) can be integrated out in each
cluster. This leads easily to explicit within-cluster parameter posteriors:

τ?
j |Y ∼ Γ(aj , bj)

β?
j |τ?

j , Y ∼ Nk(mj , (τ?
j tj)

−1)

where

aj = a0 + 1/2#{isr : ci = j}
bj = b0 + 1/2(YCj −XCjm0)′(XCj t

−1
0 X ′

Cj
)−1(YCj −XCjm0)

mj = (X ′
Cj
XCj

+ t0I)−1(X ′
Cj
YCj

+ t0m0)

tj = X ′
Cj
XCj

+ t0I.

The marginal likelihoods p(YCj
) are multivariate t distributions.

We continue this example later, in Sections 1.4.4 and 1.4.5, but we
hope to have already motivated this DP set-up as a natural elaboration
of a standard parametric Bayesian hierarchical model approach.



Colouring and breaking sticks 11

1.2.9 The two-parameter Poisson–Dirichlet distribution

to be written
Kingman (1975), Kingman (1993), Pitman and Yor (1997)

1.2.10 More recent generalisations of the Dirichlet
process, and related models.

to be written
XDP, where X=. . .
Pólya tree (Lavine, 1992, 1994)
Species sampling models

1.3 Pólya urn schemes and MCMC samplers

There is a huge literature on Markov chain Monte Carlo methods for
posterior sampling in Dirichlet mixture models (MacEachern, 1994; Es-
cobar and West, 1995; Müller et al., 1996; MacEachern and Müller, 1998;
Neal, 2000; Green and Richardson, 2001). Although these models have
‘variable dimension’, the posteriors can be sampled without necessarily
using reversible jump methods (Green, 1995).

Non-conjugate cases demand keeping {φi} in state vector, handled
through various augmentation or reversible jump schemes.

In the conjugate case, it is obviously appealing to target Markov chain
on posterior solely of the partition, and generate φ values as needed. To
discuss this, we first go back to probability theory.

1.3.1 The Pólya urn representation of the Dirichlet
process

The Pólya urn is a simple and well-known discrete probability model for
a reinforcement process: coloured balls are drawn sequentially from an
urn; after each is drawn it is replaced, together with a new ball of the
same colour. This idea can be seen in a generalised form, in a recursive
definition of the joint distribution of the {φi}.

Suppose that for each n = 0, 1, 2, . . .,

φn+1|φ1, φ2, . . . , φn ∼
1

n+ θ

n∑
i=1

δφi
+

θ

n+ θ
G0, (1.4)
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where θ > 0, G0 is an arbitrary probability distribution, and δφ is a point
probability mass at φ. Blackwell and MacQueen (1973) termed such a
sequence a Pólya sequence; they showed that the conditional distribu-
tion on the right hand side of (1.4) converges to a random probability
distribution G distributed as DP (θ,G0), and that, given G, φ1, φ2, . . .

are i.i.d. distributed as G. See also Antoniak (1974) and Pitman (1995).
Thus we have yet another approach to defining the Dirichlet process,

at least in so far as specifying the joint distribution of the {φi} is con-
cerned. This representation has a particular role, of central importance
in computing inferences in DP models. This arises directly from (1.4)
and the exchangeability of the {φi}, for it follows that

φi|φ−i ∼
1

n− 1 + θ

∑
j 6=i

δφj
+

θ

n− 1 + θ
G0, (1.5)

where φ−i means {φj : j = 1, 2, . . . , n, j 6= i}. In this form, the statement
has an immediate role as the full conditional distribution for each com-
ponent of (φi)n

i=1, and hence defines a Gibbs sampler update in a Markov
chain Monte Carlo method aimed at this target distribution. By conju-
gacy this remains true, with obvious changes, for posterior sampling as
well.

1.3.2 The Gibbs sampler for posterior sampling of
allocation variables

We will consider posterior sampling in the conjugate case in a more gen-
eral setting, specialising back to the Dirichlet process mixture case later.
The set-up we will assume is based on a partition model: it consists of
a prior distribution p(c|θ) on partitions c of {1, 2, . . . , n} with hyper-
parameter θ, together with a conjugate model within each cluster. The
prior on the cluster-specific parameter φj has hyperparameter ψ, and
is conjugate to the likelihood, so that for any subset C ⊂ {1, 2, . . . , n},
p(YC |ψ) is known explicitly, where YC is the subvector of (Yi)n

i=1 with
indices in C. We have

p(YC |ψ) =
∫ ∏

i∈C

p(Yi|φ)p(φ|ψ)dψ

We first consider only re-allocating a single item at a time (the single-
variable Gibbs sampler for ci). Then repeatedly we withdraw an item,
say i, from the model, and reallocate it to a cluster according to the full
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conditional for ci, which is proportional to p(c|Y, θ, ψ). It is easy to see
that we have two choices:

• allocate Yi to a new cluster C?, with probability

∝ p(ci→?|θ)× p(Yi|ψ),

where ci→? denotes the current partition c with i moved to C?, or
• allocate Yi to cluster C−i

j , with probability

∝ p(ci→j |θ)× p(YC−i
j ∪{i}|ψ)/p(YC−i

j
|ψ).

where ci→j denotes the partition c, with i moved to cluster Cj .

The ratio of marginal likelihoods p(Y |ψ) in the second expression can
be interpreted as the posterior predictive distribution of Yi given those
observations already allocated to the cluster, i.e. p(Yi|YC−i

j
, ψ) (a multi-

variate t for the Normal–inverse gamma set-up from Section 1.2.8).
For Dirichlet mixtures we have, from (1.1),

p(c|θ) =
Γ(θ)

Γ(θ + n)
θd

d∏
j=1

(nj − 1)!

where nj = #Cj and c = (C1, C2, . . . , Cd), so the re-allocation proba-
bilities are explicit and simple in form.

But the same sampler can be used for many other partition models,
and the idea is not limited to moving one item at a time.

See also recent work by Nobile and Fearnside (2007).

1.3.3 When the Pólya urn sampler applies

All we require of the model for the Pólya urn sampler to be available for
posterior simulation are that

1. A partition c of {1, 2, . . . , n} is drawn from a prior distribution with
parameter θ

2. Conditionally on c, parameters (φ1, φ2, . . . , φd) are drawn indepen-
dently from a distribution G0 (possibly with a hyperparameter ψ)

3. Conditional on c and on φ = (φ1, φ2, . . . , φd), {y1, y2, . . . , yn} are
drawn independently, from not necessarily identical distributions p(yi|c, φ) =
fi(yi|φj) for i ∈ Cj , for which G0 is conjugate.
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If these all hold, then the Pólya urn sampler can be used; we see from
Section 1.3.2 that it will involve computing only marginal likelihoods,
and ratios of the partition prior, up to a mutliplicative constant. The
first factor depends only on G0 and the likelihood, the second only on
the partition model.

Examples p(ci→?|θ) and p(ci→j |θ) are proportional simply to

• θ and #C−i
j for the DP mixture model

• (k−d(c−i))δ and #C−i
j +δ for the Dirichlet–multinomial finite mixture

model
• θ+αd(c−i) and #C−i

j −α for the Kingman–Pitman–Yor two-parameter
Poisson–Dirichlet process

It is curious that the ease of using the Pólya urn sampler has often
been cited as motivation to use Dirichlet process mixture models, when
the class of models for which it can be used is so wide.

1.3.4 Simultaneous re-allocation

There is no need to stick to updating only one ci at a time: the idea
extends to simultanously re-allocating any subset of items currently in
the same cluster.

The notation can be rather cumbersome, but again the subset forms
a new cluster, or moves to an existing cluster, with relative probabilities
that are each products of two terms:

• the relative (new) partition prior probabilities, and
• the predictive density of the moved set of item data, given those al-

ready in the receiving cluster

1.4 A Coloured Dirichlet process

For the remainder of this note, we focus on the use of these models
for clustering, rather than density estimation or other kinds of infer-
ence. There needs to be a small caveat – mixture models are commonly
used either for clustering, or for fitting non-standard distributions; in
a problem demanding both, we cannot expect to be able meaningfully
to identify clusters with the components of the mixture, since multiple
components may be needed to fit the non-standard distributional shape
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within each cluster. Methodology in which ... is under development in
Mike West’s group at Duke.

Here we will not pursue this complication, and simply consider a mix-
ture model used for clustering in the obvious way.

In many domains of application, practical considerations suggest that
the clusters in the data do not have equal standing; the most common
such situation is where there is believed to be a ‘background’ cluster, and
one or several ‘foreground’ clusters, but more generally, we can imagine
there being several classes of cluster, and our prior beliefs are represented
by the idea that cluster labels are exchangeable within these classes, but
not overall. It would be common, also, to have different beliefs about
cluster-specific parameters within each of these classes.

In this section, we present a variant on standard mixture/cluster mod-
els of the kinds we have already discussed, aimed at modelling this sit-
uation of partial exchangeability of cluster labels. We stress that it will
remain true that, a priori, item labels are exchangeable, and that we
have no prior information that particular items are drawn to particular
classes of cluster; the analysis is to be based purely on the data {Yi}.

We will describe the class of a cluster henceforth as its ‘colour’. To
define a variant on the DP in which not all clusters are exchangeable:

1. for each ‘colour’ k = 1, 2, . . ., draw Gk from a Dirichlet process
DP(θk, G0k), independently for each k

2. draw weights (wk) from the Dirichlet distribution Dir(γ1, γ2, . . .), in-
dependently of the Gk.

3. define G on {k} × Ω by G(k,B) = wkGk(B).
4. draw colour–parameter pairs (ki, φi) i.i.d from G, i = 1, 2, . . . , n

This process, denoted CDP({(γk, θk, G0k)}), is a Dirichlet mixture of
Dirichlet processes (with different base measures),

∑
k wkDP(θk, G0k),

with the added feature that the the colour of each cluster is identified
(and indirectly observed), while labelling of clusters within colours is
arbitrary.

It can be defined by a ‘stick-breaking-and-colouring’ construction:

1. colour segments of the stick using the Dirichlet({γk})-distributed
weights

2. break each coloured segment using an infinite sequence of independent
Beta(1, θk) variables Vjk

3. draw φ?
jk ∼ G0k, i.i.d., j = 1, 2, . . . ; k = 1, 2, . . .
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4. define Gk to be the discrete distribution putting probability (1 −
V1k)(1− V2k) . . . (1− Vj−1,k)Vjk on φ?

jk

Contrast with NP cases where might want more sharing of informa-
tion.

1.4.1 Coloured partition distribution

The CDP generates the following partition model: partition {1, 2, . . . , n} =⋃
k

⋃dk

j=1 Ckj at random, so that

p(C11, C12, . . . , C1d1 ;C21, . . . , C2d2 ;C31, . . .) =

Γ(
∑

k γk)
Γ(n+

∑
k γk)

∏
k

Γ(θk)Γ(nk + γk)
Γ(nk + θk)Γ(γk)

θdk

k

dk∏
j=1

(nkj − 1)!


where nkj = #Ckj , nk =

∑
j nkj .

It is curious to note that this expression simplifies when θk ≡ γk,
although such a choice seems to have no particular significance in the
probabilistic construction of the model. Only when it is also true that
the θk are independent of k (and the colours are ignored) does the model
degenerate to an ordinary Dirichlet process.

The clustering remains exchangeable over items. To complete the con-
struction of the model, analogously to Section 1.2.4, for i ∈ Ckj , we set
ki = k and φi = φ?

j , where φ?
j are drawn i.i.d. from G0k.

1.4.2 Pólya urn sampler for the CDP

The explicit availability of the (coloured) partition distribution immedi-
ately allows generalisation of the Pólya urn Gibbs sampler to the CDP.

In reallocating item i, let n−i
kj denote the number among the remain-

ing items currently allocated to Ckj , and define n−i
k accordingly. Then

reallocate i to

• a new cluster of colour k, with probability ∝ θk × (γk + n−i
k )/(θk +

n−i
k )× p(Yi|ψ), for k = 1, 2, . . .

• the existing cluster Ckj , with probability ∝ n−i
kj × (γk + n−i

k )/(θk +
n−i

k )× p(Yi|YC−i
kj
, ψ), for j = 1, 2, . . . , n−i

k ; k = 1, 2, . . .

Again, the expressions simplify when θk ≡ γk.
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1.4.3 A Dirichlet process mixture with a background
cluster

In many applications of probabilistic clustering, including the gene ex-
pression example from Section 1.2.8, it is natural to suppose a ‘back-
ground’ cluster that is not a priori exchangeable with the others. One
way to think about this is to adapt the ‘limit of finite mixtures’ view
from Section 1.2.3:

1. Draw (w0, w1, w2, . . . , wk) ∼ Dirichlet(γ, δ, . . . , δ)

2. Draw ci ∈ {0, 1, . . . , k} with P{ci = j} = wj , i.i.d., i = 1, . . . , n

3. Draw φ?
0 ∼ H0, φ?

j ∼ G0, i.i.d., j = 1, . . . , k

4. Set φi = φ?
ci

Now let k →∞, δ → 0 such that kδ → θ, but leave γ fixed. The cluster
labelled 0 represents the ‘background’.

The background cluster model is a special case of the CDP, specif-
ically CDP({(γ, 0,H0), (θ, θ,G0)}). The two colours correspond to the
background and regular clusters. The limiting-case DP(0,H0) is a point
mass, randomly drawn from H0. We can go a little further in a regression
setting, and allow different regression models for each colour.

The Pólya urn sampler for prior or posterior simulation is readily
adapted. When re-allocating item i, there are three kinds of choice: a
new cluster C?, the ‘top table’ C0, or a regular cluster Cj , j 6= 0: the
corresponding prior probabilities p(ci→?|θ), p(ci→0|θ) and p(ci→j |θ) are
proportional to θ, (γ + #C−i

0 ) and #C−i
j for the background cluster

CDP model.

1.4.4 Using the CDP in a clustered regression model

As a practical illustration of the use of the CDP background cluster
model, we discuss a regression set-up that expresses a vector of mea-
surements yi = (yi1, . . . , yiS) for i = 1 . . . , n, where S is the number of
samples, as a linear combination of known covariates, (z1 · · · zS) with
dimension K ′ and (x1 · · ·xS) with dimension K. These two collections
of covariates, and the corresponding regression coefficients δj and βj .
are distinguished since we wish to hold one set of regression coefficients
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fixed in the background cluster. We assume

yi =

 yi1

...
yiS

 =
K′∑

k′=1

δjk′

 z1k′

...
zSk′

 +
K∑

k=1

βjk

 x1k

...
xSk

 +

 εj1
...
εjS


= [z1 · · · zS ]′δj + [x1 · · ·xS ]′βj + εj (1.6)

where εj ∼ N(0S×1, τ
−1
j IS×S) and 0S×1 is the S–dimension zero vector

and IS×S is the order–S identity matrix. Here, δj , βj and τj are cluster-
specific parameters. The profile of mesaurements for individual i is yi =
[yi1 · · · yiS ]′ for i = 1, . . . , n. Given the covariates zs = [zs1 · · · zsK′ ]′,
xs = [xs1 · · ·xsK ]′, and the cluster j, the parameters/latent variables
are δj = [δj1 · · · δjK′ ]′ , βj = [βj1 · · ·βjK ]′ and τj . The kernel is now
represented as k(yi|δj ,βj , τj) and which is a multivariate Normal den-
sity, N([z1 · · · zS ]′δj + [x1 · · ·xS ]′βj , τ

−1
j IS×S). In particular, we take

different probability measures, the parameters of heterogeneous DP, for
the background and regular clusters,

u0 = (δ0,β0, τ0) ∼ H0(dδ0, dβ0, dτ0)

= δδ0
(dδ0)×Normal–Gamma(dβ0, dτ

−1
0 )

uj = (δj ,βj , τj) ∼ G0(dδj , dβj , dτj)

= Normal–Gamma(d(δ′j ,β
′
j)
′, dτ−1

j )

for j = 1, . . . , n(p)− 1

Here H0 is a probability measure that includes a point mass at δ0 and
a Normal–Gamma density for β0 and τ−1

0 . On the other hand, we take
G0 to be a probability measure that is a Normal–Gamma density for
(δ′j ,β

′
j)
′ and τ−1

j . Thus the regression parameters corresponding to the
z covariates are held fixed at δ0 in the background cluster, but not in
the others.

We will first discuss the marginal distribution for the regular clus-
ters. Given τj , (δ′j ,β

′
j)
′ follows the (K ′ + K)–dimensional multivari-

ate Normal with mean m̃ and variance (τj t̃)−1 and τj follows the uni-
variate Gamma with shape ã and scale b̃. We denote the joint distri-
bution G0(d(δ′j ,β

′
j)
′, dτj) as a joint Gamma and Normal distribution,

Normal–Gamma(ã, b̃, m̃, t̃) and further we take

m̃ =
[
m̃δ

m̃β

]
and t̃ =

[
t̃δ 0
0 t̃β

]
(1.7)
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Based on this set-up, we have

mG0(yCj
) =

t2ea(YCj |ZCjm̃δ + XCjm̃β ,
b̃

ã
(ZCj

t̃−1
δ Z′Cj

+ XCj t̃
−1
β X′

Cj
+ IejS×ejS))

(1.8)

where YCj
= [y′i1 · · ·y

′
iej

]′, XCj
= [[x1 · · ·xS ] · · · [x1 · · ·xS ]]′ and ZCj

=
[[z1 · · · zS ] · · · [z1 · · · zS ]]′ for Cj = {i1, . . . , iej

}. Note that YCj
is a ejS

vector, ZCj is a ejS×K ′ matrix and XCj is a ejS×K matrix. Moreover,
mG0(yCj

) is a multivariate t density with mean ZCj
m̃δ +XCj

m̃β , scale
eb
ea (ZCj

t̃−1
δ Z′Cj

+ XCj
t̃−1
β X′

Cj
+ IejS×ejS))and degree of freedom 2ã.

For the background cluster, we take H0 to be a joint Gamma and Nor-
mal distribution, Normal–Gamma(a, b,mβ , tβ). The precision τ0 follows
the univariate Gamma with shape a and scale b. Given τ0, β0 follows the
K–dimension multivariate Normal with mean mβ and variance (τ0tβ)−1

and τ0 follows the univariate Gamma with shape a and scale b. The
marginal distribution becomes

mH0(yC0) = t2a(YCj |ZCj δ0 + XCjmβ ,
b

a
(XCjt

−1
β X′

Cj
+ IejS×ejS))

(1.9)
So, mH0(yC0) is a multivariate t density with mean ZCj

δ0 + XCj
mβ ,

scale b
a (XCjt

−1
β X′

Cj
+ IejS×ejS) and degree of freedom 2a.

In some applications, the xs and βs are not needed and so can be
omitted, and we consider the following model,

yi =

 yi1

...
yiS

 =
K′∑

k′=1

δjk′

 z1k′

...
zSk′

 +

 εj1
...
εjS

 = [z1 · · · zS ]′δj + εj

(1.10)
here we assume that K = 0 or [x1 · · ·xS ]′ = 0S×K where 0S×K is the
S×K matrix with all zero entries of the model (1.6). We can derive the
marginal distributions analogous to (1.8) and (1.9),

mG0(yCj
) = t2ea(YCj

|ZCj
m̃δ,

b̃

ã
(ZCj

t̃−1
δ Z′Cj

+ IejS×ejS)) (1.11)

mH0(yC0) = t2a(YCj |ZCj δ0,
b

a
IejS×ejS) (1.12)

Here tν (x |µ,Σ ) is a multivariate t density in d dimension with mean



20 Peter J Green

µ and scale Σ with degree of freedom ν,

tν(x|µ,Σ) =
Γ((ν + d)/2)

Γ((ν)/2)
|Σ|−1/2

(νπ)d/2
(1 +

1
ν

(x− µ)′Σ−1(x− µ))−(ν+d)/2

(1.13)

1.4.5 Time course gene expression data

We consider the application of this methodology to data from a gene
expression time course experiment. Wen et al. (1998) studied the central
nervous system development of the rat; see also Yeung et al. (2001). The
mRNA expression levels of 112 genes were recorded over the period of
development of the central nervous system development. In the dataset,
there are 9 records for each gene over 9 time points, they are from
embryonic days 11, 13, 15, 18, 21, postnatal days 0, 7, 14, and the ‘adult’
stage (postnatal day 90).

In their analysis, Wen et al. (1998) obtained 5 clusters/waves (totally 6
clusters), taken to characterize distinct phases of development. The data
set is available at http://faculty.washington.edu/kayee/cluster/

GEMraw.txt. We take S = 9 and K ′ = 5. The design matrix of covariates
is taken to be

[z1 · · · zS ]′ =


1 1 1 1 1 0 0 0 0
11 13 15 18 21 0 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 7 14 0
0 0 0 0 0 0 0 0 1


′

representing piecewise linear dependence on time, within three separate
phases (embryonic, postnatal and adult).

In our analysis of these data, we take θ = 1, γ = 5, ã = a = 0.01,
b̃ = b = 0.01, m̃δ = mδ = [0 · · · 0]′, t̃δ = tδ = 0.01I, m̃β = [0 · · · 0]′,
t̃β = 0.01I and δ0 = [0 · · · 0]′. The Pólya urn sampler was implemented,
and run for 20000 sweeps starting from the partition consisting of all
singleton clusters, 10000 being discarded as burn-in. We then use the
last 10000 partitions sampled as in Lau and Green (2007), to estimate
the optimal Bayesian partition on a decision-theoretic basis, using a
pairwise coincidence loss function that equally weights false ’positves’
and ’negatives’.

We present some views of the resulting posterior analysis of this data
set.

Figure 1.1 shows the profiles in the inferred clusters plotted, and
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Figure 1.1 Profile plot of our partition estimate for the Rat data set
of Wen et al. (1998).

Figure 1.2 the mean and the 95% CI of the clusters. Figure 1.3 cross-
tabulates the clusters with the biological functions of the relevant genes,
according to Wen et al. (1998).

1.5 Summary

• (C)DP+regression is a flexible model that combines

– parametric dependence on condition-specific covariates
– non-parametric clustering of items, allowing baseline category or

other ‘colours’

• conjugate specification greatly facilitates computation
• wider applicability of ‘incremental’ samplers
• possibility to approximate optimal clustering for certain loss functions
• Statistics and probability literature not perfectly joined up
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Figure 1.2 Mean and 95% CI of genes across clusters of our partition
estimate.
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