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Summary

We investigate the relationships between Dirichlet process (DP) based models and
allocation models for a variable number of components, based on exchangeable dis-
tributions. It is shown that the DP partition distribution is a limiting case of a
Dirichlet-Multinomial allocation model. Comparative posterior performance of DP
and allocation models are made in the Bayesian paradigm and illustrated in the con-
text of univariate mixture models. It is shown in particular that the unbalancedness
of the allocation distribution, which exists in the prior DP model, persists a posteri-
ori. Exploiting the model connections, a new MCMC sampler for general DP based
models is introduced which uses split/merge moves in a reversible jump framework.
Performance of this new sampler relative to that of some traditional samplers for
DP processes is then explored.

Some key words: Allocation, Bayesian nonparametrics, Entropy, Finite mixture distributions, Heterogene-
ity, Markov chain Monte Carlo, Normal mixtures, Partition, Reversible jump algorithms, Semi-parametric
density estimation, Sensitivity analysis, Split/merge moves.

1 Introduction

Models incorporating Dirichlet process (DP) priors have played an important role in recent develop-
ments in Bayesian applied statistics. The apparent flexibility of these models has found application
in diverse areas: density estimation, nonparametric regression, autoregression, survival analysis,
etc. In many applications, DP priors are not used directly because of inconvenient discreteness.
Instead, DP mixtures (MDP) are introduced, tacitly exploiting the discreteness but in an appealing
hierarchical framework. More precisely, since a distribution realised from a DP is almost surely
discrete, a random sample drawn from that realised distribution has positive probability of ties,
and so provides a flexible model for clustering of items of various kinds in hierarchical models:
random effects, parameters of sampling distributions, etc, an early version of which can be found in
Lo (1984). Many applied nonparametric Bayesian model building has used this clustering property
in the development of statistical methods based on MDP.
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The central role of the DP/MDP models in Bayesian nonparametrics, and the various lines of
research stemming from it are recounted in the review article by Walker, et. al.(1998). An inherent
difficulty of the DP model is that a single parameter controls variability and coagulation, creating
difficulties for prior specifications. This has motivated much of the recent work on generalisations
of DP, including the construction of nonparametric priors based on more flexible control of the
variability of the chosen partitioning of the space, as in Polya tree priors. In a hierarchical frame-
work, a natural alternative to DP mixtures is to use mixtures based on multinomial allocations,
thus increasing the flexibility of the allocation model.

The purpose of this article is generally to relate the DP based models and associated clustering
methods to more explicit multinomial allocation variable approaches. By exhibiting the MDP model
as a special case of a simple and familiar parametric model for mixtures, we reinforce the claim
that in typical settings the DP models are far from the usual sense of nonparametric. Distribution
theory for this connection between model classes is explored in Section 2. In Section 3, we then
investigate some of the statistical implications of DP models compared to the corresponding more
flexible allocation variable approaches and illustrate these comparison principally in a univariate
mixture context. We show in particular that the unbalancedness of the allocation distribution
which exists in the prior DP model persists a posteriori. We also compare the two approaches in a
latent variable set-up (Section 4).

Not least of the attractions of using the DP as a model component is the fact that Gibbs
samplers for both prior and posterior are readily derived. We go on in Section 5 to compare
MCMC samplers for the two classes of models, and, motivated by this connection, introduce a
new sampler for general DP based models using split and merge moves. In Section 6, we compare
the performance of new and old samplers for DP based univariate mixture models. Finally, in the
Appendix, we begin to explore wider classes of models for partition and allocation from a more
axiomatic standpoint.

2 Distribution theory

Various nonparametric Bayesian hierarchical models have a structure which includes a n-vector
¢ of p-dimensional variables (¢1,...,¢,), with an exchangeable prior distribution giving positive
probability to ties and specified, sometimes indirectly, in terms of a parameter «, and a continuous
distribution G on RP. Usually, but not necessarily, the variables (¢1,...,¢,) are not directly
observed but parameterise the distributions for observables (y1,¥2,...,y,), respectively. We give
concrete motivating examples for this set-up in Section 2.3.

In such settings, a realisation of such a ¢ provides simultaneously a partition of the n items
into groups, and a parameter value ¢; equal for all items in a group. Alternatively, we can view
¢ as providing a set of distinct parameter values, together with an allocation of the n items to
those values. These viewpoints are not quite equivalent, since the second implies a labelling of the
groups. Whether a group is regarded as existing before any items are allocated to it depends on the
statistical consideration of whether it is appropriate to consider the ¢; as arising from a population
model or not.

2.1 Dirichlet process priors

One formulation for such a random vector ¢ is that using a Dirichlet process prior. For the sake
of clarity, we briefly recall some general characteristics of the Dirichlet process, following Ferguson
(1973). The Dirichlet process is a model for a random distribution function: given a positive real
a and a distribution G on a space £2, we say

G~ DP(O[, Go)



if for all Borel sets (Ay, As, ..., Ay) partitioning 2, and for all m,
(G(A1). G(Az), ..., G(AR)) ~ D(aGo(Ar), aGo(Az), .. .. alo(An))

where D(...) denotes the Dirichlet distribution with the specified parameters on the unit simplex
in R™.
The DP model for ¢ is defined in two stages:

(a) arandom distribution G is drawn from the Dirichlet process: G ~ DP(a, Gy), then given G,
(b) ¢ = (¢1,...,¢,) consists of n i.i.d. draws from G.

Since in the DP, GGy is the prior expectation of (G, the ¢; are marginally drawn from Gl.

Let us examine the distributions of partition and allocation induced by the DP model. The
pattern of ties among the entries of ¢ determines a partition of I = {1,2,...,n}, an unordered
set of d disjoint nonempty subsets of I, whose union is I; the number d of subsets is the degree of
the partition; here we will call the subsets groups, denoting them generlcally by g. If we label the
groups 1,2,...,d, we impose an ordering on them: g; < g3 < --- < g4. Then we can write z; = j
if + € g;, and deﬁne 0 by ¢; =0.,1=1,2,...,n. We could use various possible rules to order the
groups, for example, (i) ordering the g; according to min{i : 7 € g;}, or, (ii) given a partial order
on Q, ordering according to the values {#;}. Under the DP model and using (ii), all allocations
giving the same partition are equally likely.

We find (e.g. Antoniak, 1974)

P(9) = P(g1: 92, 9a) = ['(a + n) S afa+1) . (atn—1) (1)
where n; = #¢;,7 = 1,2,...,d. It is sometimes useful to express this conditionally on d; we have
dy==—="=-"_ 7 2
p(gld) ) (2)
and ; (n.d)
c(n,d
d) = ’ 3
p(d) ala+1)...(a+n—-1) 3)
where

d
d) = Z 1:[("] -
(d)

is the absolute value of a Stirling number of the first kind, denoted S5’ by Abramowitz and Stegun
(1972, p.824). These well-known relationships will be useful for establishing our limiting results in
Section 2.4 .

2.2 Explicit allocation priors

A more explicit formulation that arises naturally, particularly in mixture models,

(a) draws the number of groups k from an arbitrary distribution p(k|a); then, given k, it

(b) draws an n-vector of allocation variables z, with z; € {1,2,...,k}, from some distribution
exchangeable over items,

(c) draws § = (6;,...,60x) as k i.i.d. variables from Gy, and finally



(d) sets ¢; =6.,.

Our canonical example of step (b) in this second formulation is to first draw w from an ap-
propriate distribution on the k-dimensional simplex and then given & and w, draw {z;} i.i.d. with
p(z = j) = w;. We usually take w to have the symmetric Dirichlet distribution D(é,...,d)), so
that the allocation variables are also exchangeable over groups; we then refer to this set-up as the
Dirichlet/Multinomial Allocation (DMA) model. A default choice is to take é = 1, making the
weight distribution uniform on the simplex. (Another possibility, not further explored here, would
have been to draw z given w conditional on there being no empty components. A component j is
empty if z; # jV1i.)

To find the allocation distribution induced by the DMA model means marginalising over the
weights w. We have p(z|w, k) specified by

p(zi =j) = w; independently for j =1,2,...,k,

and

k6) % sy
o= (8 1

on the simplex {w : w; > 072?:1 w; = 1}, where this latter expression can be interpreted as the
density of any (k — 1) of {wq,ws, ..., wi} with respect to Lebesgue measure.
Integrating out w, we find

T e D@ +n) T |
p(2’|k,6)— {F((S)}k F(ké—l—n) - F(k6—|-n){F(6)}d j:gor(5+n])

where n; = #{i: 2, =j}.

For comparison with the DP model, it is helpful to express this as a distribution over partitions.
Since the groups are labelled 1,2,...,k, there are k(g = k!/(k — d)! allocations z giving the same
partition g of the items 1,2,...,n, where d is the degree of the partition, d = #{j : n; > 0}. These
allocations are equally probable under the DMA model, so we have

B r(hs
plglk.8) = (k—d)!F(ké—l—Ez){)F(é)}d II T+ @

Jm;>0

2.3 Using the DP and DMA specifications in hierarchical models

The specification of a random n-vector ¢ in terms of a, 6 and G in the DMA model, or a and Gy
in the DP model, will form only a part of the full hierarchical model needed for our data. Other
nodes will be added to the directed acyclic graph representing the model, both ancestors of a,é
and G and descendants of ¢.

Asintroduced in section 2, a typical data generating mechanism is that observables (y1,y2, ..., ¥n)
are available, conditionally independent given ¢ and other parameters in the model, with distri-
butions of known form parameterised respectively by (¢1, ¢2,...,¢,). For instance, all six of the
applications listed in MacEachern and Miiller (1994) include this feature.

In the DP case, this setup frequently enjoys the misleading appellation of a “mixture of Dirichlet
processes” (MDP) model, the terminology of DP mixture models used by West, Miiller and Escobar
(1994) being clearer. See O’Hagan (1994, pp. 288ff.) for further discussion.

At the top of the graph, the parameters «, § and Gy could in principle be fixed or random, and
if random possibly in turn modelled hierarchically, depending on the context. Let us consider one



example, that of Bayesian density estimation using a flexible class of multivariate normal mixtures,
which has recently been discussed by Miiller, Erkanli and West (1996). Here the (y1,¥2,...,¥,) are
observed random quantities independently drawn from an uncertain distribution, to be estimated.
A hierarchical model is defined in which y; ~ N(u;,€;), where the pairs of parameters ¢; = (u;, €%;)
are chosen to be dependent, but are marginally identically distributed according to a product of
normal N (a, B) and inverse Wishart densities W (s, ). Thus Go(p, Q|n) = N (5 a, BYW (2715 5,.5)
and above Gy the hyperparameters 7 = (a, B, s, 5) are also given prior densities.

In application to univariate normal mixtures, as implemented by Richardson and Green (1997),
a is fixed, and Gg set to be Normal({, x)-inverse gammal(y, 5) where only § is random, with a
gamma, hyperprior. We return to this setup in more detail later in the paper; it provides a running
example, used to illustrate the calculations needed to implement MCMC methods for these models,
and the basis for our experimental comparisons.
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Figure 1: Directed acyclic graphs representing the DMA models (left and centre) and the DP model
(right).
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It may be helpful to examine the relationship between the allocation models in terms of Directed
Acyclic Graphs (DAGs). Figure 1 shows, on the left, part of the DAG for a DMA allocation model.
In the centre, ¢ is shown explicitly, and w integrated out, while on the right we see the DAG for
the corresponding DP based model. Comparing the last two, we see that the DP and DMA models
are simply providing different specifications for p(¢|Go, a).

2.4 Connections between the DP and DMA models

The DP partition distribution arises from the corresponding distribution for the DM A model under
two different limiting regimes, as can be seen by comparing equations (1) and (4). For the first,
suppose that in (4), § — 0 and k — oo in such a way that k6 — a > 0. Then k!/(k — d)! ~ (a/6)?
and T'(8) ~ ¢! so (4) clearly converges to (1). Thus, so far as the occupancy of non-empty



Table 1: Partition and allocation distribution for DP model, n = 4. All probabilities should be
divided by (a4 1)(a + 2)(a + 3). The notation < m > means that to save space, other cases of
similar pattern and equal probability have been omitted; there are m such cases in all.

degree partition allocation
p(d) g plg) | = p(2)
1 6 (1234) 6 1111 2
(123)(4) <4> 2a 1112 <2> «a
2 lla (12)(34) <3> a |1122 <2> aj2
3 6a? (12)(3)(4)  <6> a? |1123 <6> a?/6
4 o’ (1)(2)(3)(4) o 1234 <24> o’/24

components is concerned, the DP model arises as a limit in which the number of components in
the DMA model goes to oo while the total of the Dirichlet parameters for p(w) remains fixed at
a. This limiting case of the DMA model was studied by Neal (1992), see also Neal (1998); in some
sense this seems to have been “generally known”, but we have been unable to find a clear prior
statement of this connection to the DP process.

Alternatively, consider the DMA partition distribution (4) under the condition that there are
no empty components, that is, d = k or equivalently n; > 0V;. We find

H;‘lzl ['(6 +ny)
Y I T (6 +my)

plglk,6,d=Fk) =

On letting 6 — 0, this converges to (2).

Thus the DP also corresponds to taking the explicit allocation Dirichlet/Multinomial distribu-
tion for p(w, z|k), and both conditioning on n; > 0V (that is, there are no empty components)
and letting & — 0 (that is, favouring more unequal allocations). In this limiting regime we must
also set the p(d) distribution to be that given in (3).

In both models, the distinct ¢;, that is {#;,j = 1,2,...,k} are drawn i.i.d. (given a and G)
from Gy = Go(+|n).

It is instructive to see numerical values for the partition and allocation distributions for the
two models, for small n. See Tables 1 and 2. For example, compare the probabilities assigned
under either model to the partitions (123)(4) and (12)(34). Under the DP model, each partition
of the pattern (123)(4) is 2 times as likely as any of the pattern (12)(34), while under the DMA
model the ratio of probabilities is b/¢ = (6 +2)/(6 + 1), or 1.5 in the uniform case 6 = 1. Thus,
relatively, the DP model favours more unequal allocations. This is a general phenomenon, and
indeed is much more dramatic numerically as n increases. For example, for 100 items partitioned
into 4 groups, both models give astronomically more probability to each partition with ny = 97
and ny = ng = ny = 1 than to one with ny = ny = ns = ny = 25, but the ratio is about 4000 times
greater for the DP than for the DMA with 6 = 1.

3 Statistical comparisons between DP and DMA models

In this section, we explore comparative posterior performance of the DP and DMA models. We
start by introducing some predictive criteria that are relevant for model comparisons between DMA
and DP formulations.



Table 2: Partition and allocation distribution for DMA model, n = 4. All probabilities should
be divided by ké(ké + 1)(ké + 2)(ké + 3). The notation < m > means that to save space, other
cases of similar pattern and equal probability have been omitted; there are m such cases in all.
Abbreviations: @ = §(6+1)(6+2)(6+3), b =626+ 1)(6+2), c = 6%(6+1)%, d = 8°(6+1), e = 6%,

degree partition allocation
p(d) g plg) | = p(2)
1 ka (1234) ka 1111 <k > a
123)(4) <4 > kb | 1112 < ky> b
Fip(4b+ 3¢) L0 (2) (2)
2 @UT3) e <35 ke | 1122 < kg > ¢
3 6k(3)d (12) (3) (4) <6 > k(3)d 1123 < k(g) > d
4 k(4)6 (1)(2) (3) (4) k(4)6 1234 < k(4) > e

3.1 Predictive distributions and deviances

Predictive distributions are key quantities on which to base model comparison for non-nested
models, as is the case for DP and DMA. Here, we are not interested in prediction per se, but in using
predictive density estimates in a measure of fit to be specified. Note that several ‘types’ of predictive
densities for a new observation, corresponding to different conditionings, can be constructed. Since
it is not possible to calibrate p(k|a) and p(d|n, o) a priori to have the same impact on the respective
models, we will always condition our density estimates either on k or on the degree d. We stress
that this conditioning, which is not natural if one adopts the usual DP perspective, is made here
in order to uncover specific features to the performance of both models.

Let us first consider the predictive density for a new observation y* given the data, p(y*|y, k).
The extension of the DAG for the DMA mixture model to include y* and its allocation z* is shown
in Figure 2. Using the fact that y and y* are conditionally independent given 8,z and z*, it can
be shown that

p(y*ly, k) =F

> wif(y716))

Y, k] : (5)

It will be convenient to write this function as gx(y*), a quantity which can be computed on a
grid of y* values by averaging across the MCMC run, conditional on fixed values of k. For the DP
model, we condition on the degree d and on the fact that the new observation does not create a
group by itself to define the corresponding expression to (5):

gi(y*) =L

> Fle))

Y, d] : (6)

For observables (y1,¥2,...,¥s), we summarise the quality of fit of a point estimate h of their
density by defining the associated deviance

G(h) = —Qilog(h(yi)). (7)

(Note that we depart from the usual sense of the term “deviance” in not subtracting from this
twice-negative-log-likelihood some baseline value corresponding to a saturated model, because in
this nonparametric setting, such a baseline would be —c0.) By computing G(gx) and G(g4), we
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Figure 2: DAG of the DMA mixture model with new observation y*.

thus get a global measure of quality of fit of the point estimates of the predictive densities gz and
gaq given by the DMA and DP models respectively.

It is also of interest to understand the variability around these point estimates. Thus instead
of taking expectations, we condition at the highest level at which the models are compatible,
and consider the quantities ¢(y*) = p(y*|y, z, 0, k) and the associated deviance G/(g) as defined in
(7). Note that we have integrated out the w’s to facilitate comparability between DMA and DP.
Similarly to (5), it can be shown that for the DMA model

9 = Y 2210, 5

For the DP model, we use p(y*|y,0,d) and the expression (8) with § = 0. It will be interesting to
compare the distribution of G'(g¢) given k or d, in particular its mean and variability. Note that, by
Jensen, we always have E/(G(g)) > G(g) and that the difference E(G(g)) — G(gx) will be larger
if ¢ is more variable. This measure of variability is equivalent to pp, introduced as a measure of
complexity by Spiegelhalter ef al. (1998), with a particular choice of parameterisation. We intend
to explore the role of pp in mixture model determination in later work.

3.2 Model and data specification

Our comparisons will be made in the context of a distribution Gy corresponding to univariate
normal mixtures. We have used 3 data sets, enzyme, acidity and galaxy, described in Richard-
son and Green (1997), as well as 4 simulated data sets of 100 points. These latter correspond
to a unimodal leptokurtic mixture (“lepto”): 0.67N(0,1) + 0.33N (0.3, (0.25)%), a bimodal mix-
ture (“bimod”): 0.5N(—1,(0.5)?) + 0.5N(1,(0.5)?), an asymmetric separated mixture (“sep”):



0.1N(5,1)4+0.4N(12,1)+0.3N (16, (0.5)?)+0.2N (20, (1.5)2), and a symmetric strongly overlapping
platykurtic mixture (“platy”): 0.2N(—4,1)+ 0.2N(-2,1) 4+ 0.2N(0,1) + 0.2N(2,1) + 0.2N (4, 1).
The four synthetic mixture densities are graphed, on a standardised scale, in Figure 3. Throughout
we let R denote the interval of variation of the data and we adopt the following specification for
the normal mixture model: 8 = (u,07%) and Go = N(&,x71) x T'(v,8) with fixed values of £ =
midrange, x = 1/R?,7 = 2, and a random 3 which follows a I'(g, k) distribution. This hierarchical
mixture model and the choice of g and h (g = 0.2,h = 10/ R?) are discussed in Richardson and
Green (1997). For the DP model, we set o = 1. For the DMA model, we let § = 1 throughout which
corresponds to a uniform prior on the weights, a natural choice in the absence of real prior informa-
tion. In the simulation, a prior uniform on {1,2,...,30} was assumed for k, although as usual this
could be amended to any other prior on this support by importance sampling in the output analysis.
For the DP model, the results presented correspond to runs of 100 000 sweeps (after a burn-in of
100 000 sweeps) of the reversible jump algorithm described in Section 5.1; similarly for the DMA
model, 100 000 sweeps of the reversible jump algorithm presented in Richardson and Green (1997)

were used after a burn-in of 100 000 sweeps.

Figure 3: Plots of the bimod, sep, lepto and platy normal mixture density functions, translated

and scaled to have similar ranges.

3.3 Posterior distribution of the number of components

Recall that for the DMA model there is a free choice of the prior distribution p(k) of the number of
components k, which include empty components; in contrast the prior p(d) on the partition degree
d of the DP model is completely determined by n and a. In order partially to “factor out” the
influence of the priors, we thus chose to compare modified posteriors p*(k|y) = p(kly)/p(k) and
p*(d|y) = p(d|y)/p(d) corresponding to uniform priors for k& and d in the two models.

Figure 4 plots the cumulative distribution of p*(k|y) versus p*(d|y) for the 7 data sets. The
average number of empty components was small for most data sets, ranging from 0.07 to 0.15,
except for the “sep” data set (0.45) and the galaxy data (0.65). For the “lepto” data set, the



cumulative distributions are identical (diagonal line). For all the other data sets, except galaxy, the
plots show small convexity, indicating that the mixture models estimated with DMA priors have
fewer components — a fortiori, fewer non-empty components — than those corresponding to the DP
priors. It is interesting to note that the single data set, galaxy, where this does not hold has small
clusters of outlying observations, which is well in keeping with the DP allocation model.
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Figure 4: Modified cumulative posterior distributions for the number of components, compared for
the DMA and DP models using PP plots.

3.4 Entropy and partitions

Our next concern is to investigate whether the DP model’s prior emphasis on unequal allocation
persists in the posterior. A similar concern was expressed in Petrone and Raftery (1997) with
particular reference to change point models. We can summarise equality of allocation by the entropy
—>_j(n;/n)log(n;/n) and look at the conditional posterior of entropy given degree d, interpreted
for DMA models as the number of non-empty components.

We found that the mixtures with a DP prior have systematically lower entropy, the difference
being noticeable for any value of d above 3 (see Figure 5). This difference is accentuated for larger
samples drawn from the same simulated models (results not shown). The persistence of unequal
allocations can also be seen when one compares mean group sizes for the two models. Figure 6
presents a typical comparison; the lack of balance is more noticeable as the degree increases. Hence,
as was also noted by Petrone and Raftery, in most cases the unbalancedness of the prior allocation
model is still noticeable in the posterior.

To illustrate further the difference of the induced partitions, it is also of interest to investigate
posterior classification for the data conditional on d and a declared unambiguous labelling, for
example by ordering of the means. This can be done either within-sample or predictively. Let
¥y be a future observation with allocation variable z*. As detailed in Richardson and Green

10
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Figure 5: Conditional distribution of entropy given degree, for DMA and DP mixture models
applied to four data sets.

Figure 6: Mean group sizes for DMA and DP mixture models, enzyme data.
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Table 3: Enzyme data: deviances associated with predictive densities derived from DMA or DP
models.

kord 2 3 4 5 6
G(gy) for DMA | 107.0 93.2 84.0 80.5 79.4
G/ (gq) for DP 106.9 93.6 88.7 86.0 83.5

(1997), p(=* = jly,y*, k) can be estimated from the MCMC run for the DMA model by averaging
w;p(y*s pj,05)/ Z?:l w;p(y*s 1y, 05) where ¢(- ; i, 0) is the normal density. For the DP model, the
same expression is used with w; replaced by n;/n. Figure 7 exhibits some of the most striking
differences we found on our data sets. For the enzyme data set, note that the DMA model assesses
a noticeable lower limit (below 1.5) for the the sub-group classified as high enzymatic metabolisers
than the DP model. When classifying the acidity data into 4 groups, it is interesting to see that
the left hand outlying observation is treated quite differently under the two models, the DP model
placing this single observation in one component.
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Figure 7: Posterior classification for DMA and DP models on enzyme and acidity data.

3.5 Deviances

We computed G(gr) and G(gq) as defined in (5), (6) and (7) for the 7 data sets and values of
k or d well-supported a posteriori. We found nearly identical values for simple well-separated
mixtures (“bimod” and “sep”), and slightly lower values in general for G/(gx) but with few differences
exceeding 1. The only notable difference in fit concerns the enzyme data (see Table 3), a data set

for which we had already noticed that the induced partitions and classification differ markedly
between the DMA and the DP models.

12
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Figure 8: Distributions of deviance G/(g): comparison between DMA and DP models.

4 DP and DMA models as prior distributions in measurement
error problems

A common use for DP models is as a class of nonparametric priors in hierarchical models or in
models with latent variables. Here, we present a brief comparison of DMA and DP models in the
context of measurement error analysis. Measurement error problems are concerned with inference
on regression coefficients for an outcome y in terms of covariates z, in cases where z is not measured
accurately on all subjects, but information on z is available through the recording of an imperfect
surrogate u.

Bayesian analysis of measurement error problems is based on structural and functional speci-
fications. Structural specifications entail the formulation of three submodels: an outcome model
relating @ and y, a measurement model relating v and & and a prior model 7 (-) for the distribution of
x. These three submodels are combined through a DAG using the fundamental assumption that y
is conditionally independent of u given z, an assumption which is also referred to as non-differential
measurement error. Information on the measurement error process can be built into the graphical
model in a flexible way. Typical designs involve validation groups, that is, subgroups of subjects,
usually small, where both 2 and u are recorded. At a second stage, functional forms for the dis-
tributions involved in the submodels are chosen to reflect knowledge of the underlying outcome
and measurement process. Fully Bayesian implementation of such models has been discussed by
Richardson and Gilks (1993) and illustrated in the context of epidemiological studies.

An important element of the analysis is the modelling of 7(z). In observational studies, hetero-
geneity in the distribution of 2 among the population studied is common and it would be somewhat
restrictive to assume a particular parametric shape for w(z). In epidemiology, the heterogeneity of
the distribution of the latent exposure variable x follows, for example, from the different genetic,
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socio-demographic or cultural composition of the population studied. Recent approaches aiming
at flexible specification of 7(z) involve maximum likelihood with modelling of 7() using nonpara-
metric mixture distributions (Roeder, Carroll and Lindsay, 1996) or a Bayesian framework with a
Dirichlet process prior model for the unknown joint distribution of # and u (Miiller and Roeder,
1997).

We have implemented a measurement error model with validation group where 7(z) is modelled
either by a DMA or a DP mixture. Specifically, we consider the following setting: a logistic outcome
model for a dichotomous y and a Gaussian measurement error model:

logit{ Py = 1|2)} = fo + fhz, u~ N(z,07).

For the study design, we suppose that z,u and y are observed on a subset of ng individuals (the
validation group), while only u and y are observed in a larger group of size n; (the main study).
Detailed formulation of the graphical model, the prior settings and the algorithms will be presented
in a forthcoming paper.

Table 4 summarises the results of a small simulation study comparing the performances of using
either DP or DMA models for 7, on the estimation of the measurement error precision 8 and the
regression slope 1. 50 replicate data sets were used. The simulation model for generating the
unknown values of x was that of a mixture of 3 normals: 0.6V (0.19, (0.08)%) + 0.2N (1.05, (0.2)?) +
0.2N (1.63, (0.48)?), chosen to have an asymetric bimodal shape with a long tail, to mimic a common
feature of many exposure distribution found in epidemiological studies . We chose ng = 30 and
ny = 300 and a logistic model with g9 = —0.8, and $; = 0.4. From Table 4, we see that # and
b1 are both well-estimated, with similar results for DMA and DP in terms of mean square error
for the regression coeflicient. We also compared DP and DMA posterior estimation of the latent
variable. We found that the posterior means were nearly identical, but that in some cases the DP
model led to higher variability of the latent variables for some extreme observations (Figure 9 ).
This is well in keeping with our previous observations on the treatment of extreme observations by
the DP.

Posterior means for latent variable Posterior variances for latent variable
o
N
o~
-
3 3
. o .
e o .
D .O‘
a o P o .
o -« P (s} g “‘.-,:.

0.5

0.2 0.4

'Ss ,

%
o

0.0
0.0

0.0 0.5 1.0 15 2.0 00 0.2 04 06 0.8 1.0 1.2
DMA DMA

Figure 9: Posterior mean and variance for the latent variable z in one of the data sets of Table 4:
comparison of DP and DMA estimation.
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Table 4: Performance of DMA and DP models as priors in a measurement error model, from a
simulation study with 50 replicates.

Analysis

True 0 DMA DP
0.9 [ 0.92 (0.11) 0.93 (0.11)
5 0.47 (0.33)  0.46 (0.33)

mse(3;) 0.08 0.08
0.5 [ 0.51 (0.05) 0.51 (0.05)
B1 0.40 (0.40) 0.41 (0.39)

mse(3;) 0.07 0.07

5 MCMC methods for DP and related models

The interest in DP and MDP models for practical Bayesian analysis has generated much research
into the efficient implementation of MCMC methods for computing the resulting posteriors. Signifi-
cant contributions to this effort are MacEachern (1994), Escobar and West (1995), and MacEachern
and Miiller (1994, 1998); these make use of the constructive incremental nature of the DP process
(see Appendix) leading to natural Gibbs samplers for allocation variables or parameters. Conver-
gence rates for these Gibbs samplers have recently been investigated by Petrone et al. (1998). In
contrast, Richardson and Green (1997) developed reversible jump Metropolis-Hastings samplers for
their DMA representation of the finite mixture models.

In view of the intimate correspondence between DP and DMA models discussed above, it is
interesting to examine the possibilities of using either class of MCMC methods for the other model
class. We have been unsuccessful in our search for incremental Gibbs samplers for the DMA models,
but it turns out to be reasonably straightforward to implement reversible jump split/merge methods
for DP models.

For the necessary dimension-jumping, Richardson and Green used empty-component birth /death
moves in addition to the splits and merges (and Phillips and Smith (1994) implemented general
birth and deaths of components in their mixture methods), but we do not pursue that line here.
Instead, we focus on the split/merge mechanism; this seems to be an idea with very general ap-
plicability, and in discussing this, in the next subsection, we do not need to be specific to the DP
setting, but work with general allocation models.

Later, in subsection 5.2, we draw some comparisons between this new sampler and two existing
methods, one of which is also suitable for non-conjugate MDP models.

5.1 Split/merge samplers for allocation models

Consider a general DP model, with a p-dimensional parameter 8 € R?. A MCMC sampler set in
the reversible jump framework (Green, 1995) will comprise a collection of reversible moves, some
of which will be routine fixed-dimension transition kernels, but including at least one move that
changes d, the degree of the partition. We follow usual practice in attempting only rather modest
changes to the parameter space. A split/merge move is one that increases d by taking one group,
say ¢;, and its corresponding parameter ; and splits it into two non-empty groups ¢;— and g¢;4
with corresponding 6;_ and 6, ; the reverse merge move merges the groups, and produces a single
parameter 6;. As always, we use intuition to specify the details of these mechanisms, based on an
intuitive notion of probable acceptance, and ensure that detailed balance is obtained with respect
to the required target (posterior) distribution by correctly calculating the Metropolis acceptance
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ratio, which deals with the split and merge as a pair.

In terms of counting parameters, note that we are jumping between (K + p) and
(K + 2p)-dimensional parameter spaces, where K denotes the number of other parameters of the
model, not altered by this move. How can this be accomplished?

We need to generate #;_; and 8,1 ;, 1 = 1,2,...,p. Intuitively, proposed values will be well-
supported in the posterior if they provide similar explanatory power as {6;;}. We follow the pattern
of the applications in Green (1995) and Richardson and Green (1997) by aiming to conserve p
conditions of the form

mi(0;) = w_m(6;-) + wymi(6;1), (9)

for suitably chosen ‘mock weights’ w_, w4 summing to 1, choice of which is to be discussed shortly.
We assume the vector function m : R? — RP is invertible. (For example in mixture density
estimation, m;(6) might be the {*" moment of the density specified by #.) Then in merging, (9)
defines 6;. In splitting, we have considerable freedom, but it may be useful here to sketch out some
generic methods. Which is most suitable will depend on the detail of the model, and the form of
the matching functions {my(-)}.

The general pattern is to draw a p-vector of auxiliary random numbers u = (uq, ug, ..., u,), and
set up a bijection between (6;,u) and (6;_,6;1) using the {m;(-)}.

For example, if the {my(-)} vary freely over R, we might use (9) together with

up = wymi(04) — w_m(0;-),

which evidently satisfies (9). This provides an invertible transformation between (6;,u) and
(0;—,0;4+) whose Jacobian can be simplified to the form

90— 6i+)
8(0j7 u)

_ [Vm(6;)]
[V (8,-)[[Vm(8;4) [ (2w_w. )P’

where V denotes the gradient operator.

Alternatively, if the {m;(-)} are positive but free of any other constraints, then we might draw
w; ~ U(0,1) independently (or indeed use any other continuous distribution on [0, 1]?) and use
(1 — w)m(6;)

" and mi(0;4+) = Ty

m(f;-) = wurmi(6;)

and this time the Jacobian reduces to

0(0;-.0;+)
8(0j7 u)

_ [V (0)| T1; [ (8;)]
[Vm(6;-)[[Vm(6;1)|[(w_wy)?

In fact for the normal mixture application Richardson and Green (1997) use neither of these,
as their matching functions are the mean and mean square of the corresponding components, and
of course, the mean square must exceed the square of the mean. So they use

w4 w_
Hj— = fj — U105y [—— 5 Hj4 = Hj + U104 [ —
w_ w4

oi_=u(l—ui)oi/w_ , of = (1—up)(1—uf)oi/wy

where 6 = (u,0%), mq(0) = p and my() = p? 4+ 2. For this transformation, the Jacobian is

o; (w_ajz_ + w_|_0]2«_|_)
CRTE
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They draw uq ~ Be(2,2) and uy ~ U(0,1).

Now, we must discuss allocating items into the groups g;— and g;;. Having chosen to split g;,
and given the new parameter values #;_ and 6,1, we suppose we distribute ¢ € g; between ¢;_ and
¢;+ according to the natural conditional probabilities

w_p(y|z; = j—)

P(i )= , —
(i = 9i-) w_p(y|lzi = 7—) + wep(ylzi = j+)

It remains only to define the mock weights w_, w,. Their purpose is to allow uneven splitting,
and adjust for unequal n; in merging. On splitting, we propose to generate w_ ~ U(0,1); on
merging, w_ ~ Be(n;_ + w,n;; + w) for a simulation parameter w, in our experiments taken to
have the value 5.

There is no additional contribution to the Jacobian from either these weights, or the remaining
K unchanged parameters.

For definiteness, let us now complete the specification of the move probabilities by saying that
when we split we choose each group with equal probability, and that when we merge we choose each
pair of groups with equal probability. This can easily be modified. The move is now fully specified,
and it may be of interest, for comparison with the corresponding expression (equation(11)) of
Richardson and Green (1997), to give the complete acceptance probability, in the context of the
univariate normal mixture problem.

The probability for the split move is min(1, A), where A is

aB(n_,ny)
(k+1)

X o e [ 3eflne — 7+ Gy — 7~ (s — €7

v (o2 g2, \ !
X b ( / 2]+) exp (—ﬁ(a;f+a;f—a;2))

(likelihood ratio) X

I'(v) 0;
« dry1 Jwtn_ ,wtny (w—)

bi Palloc 91,1(w—)92,2(ul)g1,1(uz)
y O']‘(w_O']z_ + w_|_0]2«_|_)

(w_wy)?7?

In this expression, the second and third lines, being the prior ratios for parameters given k,
are unchanged from the DMA version as given in equation(11) of Richardson and Green (1997).
The new terms are aB(n_,n4)/(k+ 1), the prior ratio for (k4 1) versus k, the additional factor
Jutn_ wtny (w-) in the proposal ratio, and the new Jacobian of transformation (the final line in
the expression). The notation g,p(-) refers to the Beta(a,b) density. As usual, the acceptance
probability for the merge move, providing the reverse of this split, is min(1, A~1).

5.2 Comparison of samplers

The split/merge procedure defined above differs quite fundamentally from the approaches custom-
arily used for computing MDP models, so it is of interest to draw comparisons. The methods we
choose to compare are the “incremental” sampler of West, Miiller and Escobar (1994), and what
we call the “augmentation” sampler, which is a variant on the proposals of MacEachern and Miiller
(1994, 1998). Empirical comparisons are made in Section 6, but some general points can be made
here.

Each of the three methods: split/merge, incremental and augmentation are examples of hybrid
MCMC methods, in which a portfolio of reversible moves, each maintaining detailed balance with
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respect to the target (posterior) distribution, is available, and these are used in cyclic fashion to
form a sampler that is irreducible. In each case, one of the moves involves updating # by sampling
from its full conditional, thus conditioning in particular on k& and z; this Gibbs update being
available because of conjugacy.

The methods differ in their approaches to updating k& and z, and in their amenability for use
in a hierarchical setting, in which hyperparameters governing the prior for # need to be updated.

In the incremental sampler, in place of the split/merge and allocation moves, k and z are
updated implicitly, by drawing each ¢; in turn from its full conditional. Since this step may lead
to either or both of a component being created or destroyed, irreducibility is attained. Also, € is
gradually updated during this process. Note that no separate move updating 8 would be necessary
for irreducibility, but that such a move is included in the portfolio to improve performance.

However, the full conditional for ¢; involves an off-line integration (see West, Miiller and Escobar
(1994)), sometimes approximated by a Monte Carlo estimate; this integral (over the prior for a single
8;) of course depends on values of hyperparameters for . Unless, therefore, conjugate hyperpriors
are used, the incremental method is cumbersome to use in the context of variable hyperparameters.

This difficulty is circumvented in the approach of MacEachern and Miiller (1994, 1998). The
idea is to draw one or more potential additional values of 8; first, and only then to compute the
probability that an observation is reassigned to such a new component — this probability does
not involve any integral. In the ‘no-gaps’ variant of their algorithm, a single additional component
is created, while the ‘complete’ variant uses a full set of n potential components. It is not fully
clear from their description whether they propose simulating the additional {f;} anew for each
observation considered.

We propose another variant on this idea, aimed at correctly simulating from the posterior
distribution conditional on d < dpax, Where dpay is a fixed sufficiently large integer (we used
dmax = 30). We augment the 6 vector once each sweep by generating (dmax — d) additional 6;
independently from Gy. The probabilities of assigning observation ¢ to component j are analogous
to equation (9) of MacEachern and Miiller (1994), but with n replaced by dmax.

Neal (1998) suggests yet another variant in a similar spirit. His uses a fixed number m of addi-
tional components §;, which are re-simulated for every observation considered. There are complex
trade-offs between the costs of generating extra variables, or introducing more serial dependence,
which we will not pursue here.

Both the incremental and augmentation methods have the apparent disadvantage that new
components are formed by moving one observation at a time, in contrast to the split/merge ap-
proach, in which a large but heterogeneous component can be split into two more homogeneous
parts in one go. The augmentation method appears to carry an overhead, through the state space
being extended to include {§;} not currently in the model. But it is difficult to quantify these
factors in the abstract, and we therefore conduct comparative numerical experiments on the three
samplers in the next section.

Finally, we observe that since all the moves mentioned maintain detailed balance, there is the
potential for new methods to be devised that pool the best features of each of the current ones.

6 Comparative performance of the MCMC samplers for the DP
model

We compare the performance of the MCMC samplers described in the previous section in the case
of univariate normal mixtures. What summaries from a multidimensional posterior distribution are
most useful is a debatable question. We have chosen to concentrate our discussion on the output
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of two functionals: the degrees of the partition and the deviance,
Glg)=-2) log) ;]f(yil@')-
=1 7

Monitoring the change in the degree against the number of sweeps is clearly an important char-
acteristic of the samplers, while the deviance is used as a meaningful global function of all the
parameters. Visual assessment of the burn-in period is helped by plotting the ergodic averages of
the cumulative frequencies of degrees of partition. The efficiency of the samplers in their stationary
regime is characterised by computing, for each monitored functional, an estimate of the integrated
autocorrelation time 7 = Y72 p;, where p; is the lag-l autocorrelation of the realised values of
the functional. For the results below, we have used an adaptive window estimate of 7 due to Sokal
(see Besag and Green, 1993) which was calculated on the last 25000 sweeps of long runs thinned
by subsampling at the rate 1/20. For our comparisons, we have used 3 data sets, enzyme, acidity
and galaxy, as well as the simulated data sets.

6.1 Comparison of the three samplers in the case of fixed hyperparameters

As commented by several authors, one of the shortcomings of the incremental sampler is the
necessity of computing an integral of f(.|#) with respect to Gi(f), which restricts its use mostly to
fixed hyperparameter cases. For our comparison of the 3 samplers, we thus consider the following
specification for the normal mixture model: a = 1,8 = (u,07%) and Gy = N (&, x71) x I'(y, 8) with
fixed values of £ = midrange, k = 1/R?,y = 2,3 = 0.02R?. We computed the required integral by
adaptive 15-point Gauss-Kronrod quadrature.
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Figure 10: Cumulative frequencies of partition degrees of the galaxy data for the three samplers.

Figure 10 shows a typical output for the cumulative frequencies of partition degrees of the
galaxy data for the three samplers: incremental, augmentation and reversible-jump. Stability
to the same posterior levels is achieved quickly for the three samplers, the incremental sampler
having the shortest burn-in. In terms of running times, the incremental sampler — which does not
separately update the allocations — is the fastest. The other two samplers update the allocations;
unsurprisingly, we found the augmentation sampler to be approximately 4 times slower than the
reversible-jump sampler. Qur display plots correspond to approximately equivalent running times
for 250 000, 50 000, and 200 000 sweeps of the incremental, augmentation and reversible-jump
samplers respectively. On the three data sets (enzyme, acidity and galaxy), we found similar
integrated autocorrelation times for the three samplers (between 0.9 and 1.7) on the deviance
output. For the partition degree, we found a somewhat higher value of 7 for the reversible-jump
sampler (3 to 4) than for the other two samplers (1 to 1.7).
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6.2 Comparisons between augmentation and reversible-jump samplers for a
hierarchical DP model

It is of interest to compare the performance of our proposed reversible-jump sampler with that of
the augmentation sampler in a situation with random hyperparameters. We thus modify the setting
defined above to assume a random 3 which follows a I'(g, k) distribution with ¢ = 0.2,h = 10/ R?
as before.

These two samplers are constructed on radically different principles. The augmentation sampler
proposes new components containing only single observations, these will be accepted conditional on
all other allocations if there is support from that data point and a prior which is not too tight. This
construction suggests a mixing behaviour which could be influenced by the value of a (small a’s
correspond to tighter priors on low partition degree), in interaction with the shape of the mixture
(well-separated or not). On the other hand, the proposal of the reversible-jump sampler is not
influenced by a, its performance should not deteriorate for small a’s, but with a high number of
components containing fewer observations, the random splits might be less effective.

3
O d aug
O — djj
A k aug
0 A — kij
e 3

0.5 1.0 15 2.0

Figure 11: Integrated autocorrelation time for “lepto” data set.

Figures 11 and 12 display values of the integrated autocorrelation time for two deliberately
contrasting data sets (“lepto” and galaxy) and values of a ranging from 0.1 to 2. On the “lepto”
data set, we see clearly the difficulties encountered by the augmentation sampler when « is small
and the data is not well-separated, which leads to high 7’s. (See also Figure 13 for an illustration of
the differences in burn-in induced by small values of a). On the galaxy data set, the performance
of the augmentation sampler is less influenced by «, but again worse when « is small. On the other
hand, the reversible-jump sampler has somewhat opposite behaviour with higher 7’s for larger a’s.
Altogether Figures 11 and 12 show satisfactory performance for the reversible-jump sampler. The
integrated autocorrelation times are smaller than or equal to those of the augmentation sampler
in about half the cases. When they are larger, they are below 4 times those of the augmentation
sampler, except in one case, so the loss of efficiency is compensated by the faster running time
of the reversible-jump sampler. Thus the reversible-jump sampler is competitive, not markedly
superior overall, but mixes well in particular situations where it is known that DP type samplers
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Figure 12: Integrated autocorrelation time for galaxy data set.
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become trapped.

As a final point, we recall that there is some freedom in designing the reversible-jump sampler
which can be usefully exploited for tuning its performance. In particular, the Beta parameter w of
the “mock weights” can be adapted. All the results reported correspond to a default value of w = 5.
For a model with a large number of components, this value might be too large. For example, with
w = 1, we found for a = 2 and the “lepto” data set that the values of 7 were more than halved.

In this section, we have focussed on comparisons between the augmentation sampler, chosen
to represent the family of samplers introduced by MacEachern and Miiller, and our split/merge
reversible-jump sampler, both of which avoid the need for integration. There is much current
interest in comparing the performance of different variants of the augmentation sampler (Neal,
1998), as well as developing other approaches to efficient sampling of DP processes, see for example
Newton, et. al.(1998), Liu, et. al.(1996). As was shown in our simulations, we believe that the
reversible-jump sampler, which derives from a different principle, has the potential to be a useful
addition to the menu of samplers for DP.
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Appendix

General aspects of partition and allocation models

Here we attempt a more axiomatic approach to the specification of partition and allocation distri-
butions.

There are two key properties possessed by both the DP and DMA models for partitions, that
should also hold for any alternative model, namely

(a) exchangeability: the probability of any partition should be invariant to any relabelling of
the items;

(b) heritability: the model should remain self-consistent as the number of items increases, the
probability assigned to a partition of a set of items being the same whether these are all the
available items, or just a subset.

The first of these properties seems essential; the second is less vital, but desirable, the more so
for some applications (for example, mixture modelling) than for others (for example, clustering).

The simplest way to ensure exchangeability is to work with a notation in which it is auto-
matic. The maximal invariant of a partition under relabelling of the items is the set of group sizes,
called here the signature. The signature can be written in a standard order, say listing the sizes
in decreasing numerical order, to avoid double-counting. Thus the partitions {{1,2},{3},{4}} and
{{1},{2,4},{3}} both have signature (2,1,1) and are assigned the same probability ¢(2,1,1). Note
that the signature (n1,ng,...,nq) determines both the degree of the partition d and the number of
items n =3, n;. Thus any exchangeable model for partitions is equivalent to a specification of the
probabilities ¢(n1, ng,...,nq) of any single partition with this signature. The only consistency con-
dition required is that the probabilities sum to 1 for each number of items n. Let m(ny,ng, ..., ng)
denote the number of partitions of n =}, n; items with signature (n1,n2,...,nq), then for each
n we need

Zm(n17n27'"7nd)Q(n17n27"'7nd):17 (10)
where the sum is over all sets of positive integers ny > ny > ... > ng summing to n.
There is obviously great flexibility in choosing such models. The only constraint, (10), is easily
imposed, especially as there is an explicit formula for the counts m(nq, ng,...,n4), namely
n! 1

gl g T1, (#j = n; =)

m(ni, ng,...,ng) =
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For an exchangeable partition distribution, the necessary and sufficient condition on the ¢’s
for heritability is that for all signatures (nq,ng2,...,nq), the effect of adding one item maintains
consistency, that is

d
Z(Z(nl ‘|’6j17n2 ‘|’6j27- . '7nd‘|’6jd) +q<n17n27' . '7nd71) = Q(nlvn%' . '7nd) (11)

i=1

where 6 is the Kronecker symbol (and note that addition of these may have disrupted the standard
order in the signature). Any set of non-negative numbers ¢(ny,ng,...,nq) satisfying (11) and the
initial condition ¢(1) = 1 automatically satisfies (10): nothing else is needed to guarantee a proper,
exchangeable, partition distribution.

We see that the heritability condition is much more demanding than exchangeability, as it
imposes much more stringent constraints on the ¢’s.

The DP and DMA models form familiar examples of allocation models that are both exchange-
able and heritable. A third class possessing both properties is that of the partition models of
Consonni and Veronese (1995), in which the degree d is drawn from a distribution of convenience
(in fact, they use the form p(d) o< d=! for d = 1,2,...,n), and then partitions drawn uniformly
given d: p(g|d) = constant.

Recursive construction of partition distributions, and incremental samplers

A heritable exchangeable partition distribution can be constructed recursively, by considering the

placement of the (n+ 1)th item conditional on the partition of the first n items, forn = 1,2,.... The
recursion is started trivially with ¢(1) = 1. Given the partition g with signature (ny,ng,...,n4)
for the first n items, the additional item may join one of the existing groups j = 1,2,...,d, or
form a new group by itself. The probabilities ay,as, ..., aq,b, say, of these options are given by the

corresponding terms on the left hand side of (11), divided by the sum.
For the DMA model we have
6+ n; (k—d)é

T ko+n b= ko +n (12)

aj

on substituting from (4) into (11). For the DP model, we have

oy o«
a]— 9 b— 9
a+n a—+n

which can either be obtained explicitly from (1), or from (12) by letting 6 — 0, k¥ — oo and
k6 — a > 0.
Another simple model is obtained by letting § — oo in (12); we obtain

1 d
= — b=1-——.
k’ k
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This corresponds to the symmetric multinomial model in which the z; are drawn i.i.d. from the
uniform distribution on {1,2,...,k}, that is, the items are allocated independently, equally likely
to each of the groups.

Because of exchangeability, these recursive probabilities are equally appropriate for conditional
distributions such as p(z; = j|zi, i’ # i), which are needed in MCMC sampling item-by-item, such
as in the “incremental” method, described in Section 3.2. Unfortunately, we have not been able to

derive incremental methods using these recursive probabilities for posterior simulation, except for
the DP case.
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