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Summary

We investigate the relationships between Dirichlet process �DP� based models and
allocation models for a variable number of components� based on exchangeable dis�
tributions� It is shown that the DP partition distribution is a limiting case of a
Dirichlet�Multinomial allocation model� Comparative posterior performance of DP
and allocation models are made in the Bayesian paradigm and illustrated in the con�
text of univariate mixture models� It is shown in particular that the unbalancedness
of the allocation distribution� which exists in the prior DP model� persists a posteri�

ori� Exploiting the model connections� a new MCMC sampler for general DP based
models is introduced which uses split�merge moves in a reversible jump framework�
Performance of this new sampler relative to that of some traditional samplers for
DP processes is then explored�

Some key words� Allocation� Bayesian nonparametrics� Entropy� Finite mixture distributions� Heterogene�

ity� Markov chain Monte Carlo� Normal mixtures� Partition� Reversible jump algorithms� Semi�parametric
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� Introduction

Models incorporating Dirichlet process �DP� priors have played an important role in recent develop�
ments in Bayesian applied statistics� The apparent �exibility of these models has found application
in diverse areas	 density estimation� nonparametric regression� autoregression� survival analysis�
etc� In many applications� DP priors are not used directly because of inconvenient discreteness�
Instead� DP mixtures �MDP� are introduced� tacitly exploiting the discreteness but in an appealing
hierarchical framework� More precisely� since a distribution realised from a DP is almost surely
discrete� a random sample drawn from that realised distribution has positive probability of ties�
and so provides a �exible model for clustering of items of various kinds in hierarchical models	
random e
ects� parameters of sampling distributions� etc� an early version of which can be found in
Lo ���
��� Many applied nonparametric Bayesian model building has used this clustering property
in the development of statistical methods based on MDP�
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The central role of the DP�MDP models in Bayesian nonparametrics� and the various lines of
research stemming from it are recounted in the review article by Walker� et� al�����
�� An inherent
di�culty of the DP model is that a single parameter controls variability and coagulation� creating
di�culties for prior speci�cations� This has motivated much of the recent work on generalisations
of DP� including the construction of nonparametric priors based on more �exible control of the
variability of the chosen partitioning of the space� as in Polya tree priors� In a hierarchical frame�
work� a natural alternative to DP mixtures is to use mixtures based on multinomial allocations�
thus increasing the �exibility of the allocation model�

The purpose of this article is generally to relate the DP based models and associated clustering
methods to more explicit multinomial allocation variable approaches� By exhibiting the MDPmodel
as a special case of a simple and familiar parametric model for mixtures� we reinforce the claim
that in typical settings the DP models are far from the usual sense of nonparametric� Distribution
theory for this connection between model classes is explored in Section �� In Section �� we then
investigate some of the statistical implications of DP models compared to the corresponding more
�exible allocation variable approaches and illustrate these comparison principally in a univariate
mixture context� We show in particular that the unbalancedness of the allocation distribution
which exists in the prior DP model persists a posteriori� We also compare the two approaches in a
latent variable set�up �Section ���

Not least of the attractions of using the DP as a model component is the fact that Gibbs
samplers for both prior and posterior are readily derived� We go on in Section � to compare
MCMC samplers for the two classes of models� and� motivated by this connection� introduce a
new sampler for general DP based models using split and merge moves� In Section �� we compare
the performance of new and old samplers for DP based univariate mixture models� Finally� in the
Appendix� we begin to explore wider classes of models for partition and allocation from a more
axiomatic standpoint�

� Distribution theory

Various nonparametric Bayesian hierarchical models have a structure which includes a n�vector
� of p�dimensional variables ���� � � � � �n�� with an exchangeable prior distribution giving positive
probability to ties and speci�ed� sometimes indirectly� in terms of a parameter �� and a continuous
distribution G� on Rp� Usually� but not necessarily� the variables ���� � � � � �n� are not directly
observed but parameterise the distributions for observables �y�� y�� � � � � yn�� respectively� We give
concrete motivating examples for this set�up in Section ����

In such settings� a realisation of such a � provides simultaneously a partition of the n items
into groups� and a parameter value �i equal for all items in a group� Alternatively� we can view
� as providing a set of distinct parameter values� together with an allocation of the n items to
those values� These viewpoints are not quite equivalent� since the second implies a labelling of the
groups� Whether a group is regarded as existing before any items are allocated to it depends on the
statistical consideration of whether it is appropriate to consider the �i as arising from a population
model or not�

��� Dirichlet process priors

One formulation for such a random vector � is that using a Dirichlet process prior� For the sake
of clarity� we brie�y recall some general characteristics of the Dirichlet process� following Ferguson
������� The Dirichlet process is a model for a random distribution function	 given a positive real
� and a distribution G� on a space �� we say

G � DP���G��
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if for all Borel sets �A�� A�� � � � � Am� partitioning �� and for all m�

�G�A��� G�A��� � � � � G�Am�� � D��G��A��� �G��A��� � � � � �G��Am��

where D�� � �� denotes the Dirichlet distribution with the speci�ed parameters on the unit simplex
in Rm�

The DP model for � is de�ned in two stages	

�a� a random distribution G is drawn from the Dirichlet process	 G � DP���G��� then given G�

�b� � � ���� � � � � �n� consists of n i�i�d� draws from G�

Since in the DP� G� is the prior expectation of G� the �i are marginally drawn from G��
Let us examine the distributions of partition and allocation induced by the DP model� The

pattern of ties among the entries of � determines a partition of I � f�� �� � � � � ng� an unordered
set of d disjoint nonempty subsets of I � whose union is I � the number d of subsets is the degree of
the partition� here we will call the subsets groups� denoting them generically by g� If we label the
groups �� �� � � � � d� we impose an ordering on them	 g� � g� � � � � � gd� Then we can write zi � j

if i � gj � and de�ne � by �i � �zi � i � �� �� � � � � n� We could use various possible rules to order the
groups� for example� �i� ordering the gj according to minfi 	 i � gjg� or� �ii� given a partial order
on �� ordering according to the values f�jg� Under the DP model and using �ii�� all allocations
giving the same partition are equally likely�

We �nd �e�g� Antoniak� �����

p�g� � p�g�� g�� � � � � gd� �
�d����

Qd
j���nj � ���

��� � n�
�

�d
Qd

j���nj � ���

���� �� � � ���� n� ��
���

where nj � �gj�j � �� �� � � � � d� It is sometimes useful to express this conditionally on d� we have

p�gjd� �

Qd
j���nj � ���

c�n� d�
���

and

p�d� �
�dc�n� d�

���� �� � � ���� n� ��
���

where

c�n� d� �
X
g

dY
j��

�nj � ����

is the absolute value of a Stirling number of the �rst kind� denoted S
�d�
n by Abramowitz and Stegun

������ p�
���� These well�known relationships will be useful for establishing our limiting results in
Section ��� �

��� Explicit allocation priors

A more explicit formulation that arises naturally� particularly in mixture models�

�a� draws the number of groups k from an arbitrary distribution p�kj��� then� given k� it

�b� draws an n�vector of allocation variables z� with zi � f�� �� � � � � kg� from some distribution
exchangeable over items�

�c� draws � � ���� � � � � �k� as k i�i�d� variables from G�� and �nally
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�d� sets �i � �zi �

Our canonical example of step �b� in this second formulation is to �rst draw w from an ap�
propriate distribution on the k�dimensional simplex and then given k and w� draw fzig i�i�d� with
p�zi � j� � wj� We usually take w to have the symmetric Dirichlet distribution D��� � � � � ���� so
that the allocation variables are also exchangeable over groups� we then refer to this set�up as the
Dirichlet�Multinomial Allocation �DMA� model� A default choice is to take � � �� making the
weight distribution uniform on the simplex� �Another possibility� not further explored here� would
have been to draw z given w conditional on there being no empty components� A component j is
empty if zi �� j � i��

To �nd the allocation distribution induced by the DMA model means marginalising over the
weights w� We have p�zjw� k� speci�ed by

p�zi � j� � wj independently for j � �� �� � � � � k�

and

p�wjk� �
��k��

f����gk

kY
j��

w���
j

on the simplex fw 	 wj � ��
Pk

j�� wj � �g� where this latter expression can be interpreted as the
density of any �k � �� of fw�� w�� � � � � wkg with respect to Lebesgue measure�

Integrating out w� we �nd

p�zjk� �� �
��k��

f����gk

Qk
j�� ��� � nj�

��k� � n�
�

��k��

��k� � n�f����gd

Y
j�nj��

��� � nj�

where nj � �fi 	 zi � jg�
For comparison with the DP model� it is helpful to express this as a distribution over partitions�

Since the groups are labelled �� �� � � � � k� there are k�d� � k�	�k � d�� allocations z giving the same
partition g of the items �� �� � � � � n� where d is the degree of the partition� d � �fj 	 nj 
 �g� These
allocations are equally probable under the DMA model� so we have

p�gjk� �� �
k�

�k � d��

��k��

��k� � n�f����gd

Y
j�nj��

��� � nj� ���

��� Using the DP and DMA speci�cations in hierarchical models

The speci�cation of a random n�vector � in terms of �� � and G� in the DMA model� or � and G�

in the DP model� will form only a part of the full hierarchical model needed for our data� Other
nodes will be added to the directed acyclic graph representing the model� both ancestors of �� �
and G� and descendants of ��

As introduced in section �� a typical data generating mechanism is that observables �y�� y�� � � � � yn�
are available� conditionally independent given � and other parameters in the model� with distri�
butions of known form parameterised respectively by ���� ��� � � � � �n�� For instance� all six of the
applications listed in MacEachern and M�uller ������ include this feature�

In the DP case� this setup frequently enjoys the misleading appellation of a �mixture of Dirichlet
processes �MDP� model� the terminology of DP mixture models used by West� M�uller and Escobar
������ being clearer� See O!Hagan ������ pp� �


�� for further discussion�

At the top of the graph� the parameters �� � and G� could in principle be �xed or random� and
if random possibly in turn modelled hierarchically� depending on the context� Let us consider one
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example� that of Bayesian density estimation using a �exible class of multivariate normal mixtures�
which has recently been discussed by M�uller� Erkanli and West ������� Here the �y�� y�� � � � � yn� are
observed random quantities independently drawn from an uncertain distribution� to be estimated�
A hierarchical model is de�ned in which yi � N��i��i�� where the pairs of parameters �i � ��i��i�
are chosen to be dependent� but are marginally identically distributed according to a product of
normal N�a� B� and inverse Wishart densities W �s� S�� Thus G�����j�� � N��� a� B�W ����� s� S�
and above G� the hyperparameters � � �a� B� s� S� are also given prior densities�

In application to univariate normal mixtures� as implemented by Richardson and Green �������
� is �xed� and G� set to be Normal�
� ���inverse gamma��� �� where only � is random� with a
gamma hyperprior� We return to this setup in more detail later in the paper� it provides a running
example� used to illustrate the calculations needed to implement MCMC methods for these models�
and the basis for our experimental comparisons�

G0
G0 G0

k

zz

w G

y y y

α αα
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k

Figure �	 Directed acyclic graphs representing the DMA models �left and centre� and the DP model
�right��

It may be helpful to examine the relationship between the allocation models in terms of Directed
Acyclic Graphs �DAGs�� Figure � shows� on the left� part of the DAG for a DMA allocation model�
In the centre� � is shown explicitly� and w integrated out� while on the right we see the DAG for
the corresponding DP based model� Comparing the last two� we see that the DP and DMA models
are simply providing di
erent speci�cations for p��jG�� ���

��� Connections between the DP and DMA models

The DP partition distribution arises from the corresponding distribution for the DMA model under
two di
erent limiting regimes� as can be seen by comparing equations ��� and ���� For the �rst�
suppose that in ���� � � � and k �	 in such a way that k� � � 
 �� Then k�	�k� d�� � ��	��d

and ���� � ���� so ��� clearly converges to ���� Thus� so far as the occupancy of non�empty
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Table �	 Partition and allocation distribution for DP model� n � �� All probabilities should be
divided by �� � ����� ���� � ��� The notation � m 
 means that to save space� other cases of
similar pattern and equal probability have been omitted� there are m such cases in all�

degree partition allocation

d p�d� g p�g� z p�z�

� � ������ � ���� �

� ���
�������� � � 
 �� ���� � � 
 �

�������� � � 
 � ���� � � 
 �	�

� ��� ���������� � � 
 �� ���� � � 
 ��	�

� �� ������������ �� ���� � �� 
 ��	��

components is concerned� the DP model arises as a limit in which the number of components in
the DMA model goes to 	 while the total of the Dirichlet parameters for p�w� remains �xed at
�� This limiting case of the DMA model was studied by Neal ������� see also Neal ����
�� in some
sense this seems to have been �generally known � but we have been unable to �nd a clear prior
statement of this connection to the DP process�

Alternatively� consider the DMA partition distribution ��� under the condition that there are

no empty components� that is� d � k or equivalently nj 
 � �j� We �nd

p�gjk� �� d� k� �

Qd
j�� ��� � nj�P

g

Qd
j�� ��� � nj�

�

On letting � � �� this converges to ����
Thus the DP also corresponds to taking the explicit allocation Dirichlet�Multinomial distribu�

tion for p�w� zjk�� and both conditioning on nj 
 � �j �that is� there are no empty components�
and letting � � � �that is� favouring more unequal allocations�� In this limiting regime we must
also set the p�d� distribution to be that given in ����

In both models� the distinct �i� that is f�j � j � �� �� � � � � kg are drawn i�i�d� �given � and G��
from G� � G���j���

It is instructive to see numerical values for the partition and allocation distributions for the
two models� for small n� See Tables � and �� For example� compare the probabilities assigned
under either model to the partitions �������� and ��������� Under the DP model� each partition
of the pattern �������� is � times as likely as any of the pattern ��������� while under the DMA
model the ratio of probabilities is b	c � �� � ��	�� � ��� or ��� in the uniform case � � �� Thus�
relatively� the DP model favours more unequal allocations� This is a general phenomenon� and
indeed is much more dramatic numerically as n increases� For example� for ��� items partitioned
into � groups� both models give astronomically more probability to each partition with n� � ��
and n� � n� � n	 � � than to one with n� � n� � n� � n	 � ��� but the ratio is about ���� times
greater for the DP than for the DMA with � � ��

� Statistical comparisons between DP and DMA models

In this section� we explore comparative posterior performance of the DP and DMA models� We
start by introducing some predictive criteria that are relevant for model comparisons between DMA
and DP formulations�
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Table �	 Partition and allocation distribution for DMA model� n � �� All probabilities should
be divided by k��k� � ���k� � ���k� � ��� The notation � m 
 means that to save space� other
cases of similar pattern and equal probability have been omitted� there are m such cases in all�
Abbreviations	 a � ����������������� b � ������������� c � ��������� d � �������� e � �	�
k�r� � k�	�k� r���

degree partition allocation

d p�d� g p�g� z p�z�

� ka ������ ka ���� � k 
 a

� k�����b� �c�
�������� � � 
 k���b ���� � k��� 
 b

�������� � � 
 k���c ���� � k��� 
 c

� �k���d ���������� � � 
 k���d ���� � k��� 
 d

� k�	�e ������������ k�	�e ���� � k�	� 
 e

��� Predictive distributions and deviances

Predictive distributions are key quantities on which to base model comparison for non�nested
models� as is the case for DP and DMA� Here� we are not interested in prediction per se� but in using
predictive density estimates in a measure of �t to be speci�ed� Note that several "types! of predictive
densities for a new observation� corresponding to di
erent conditionings� can be constructed� Since
it is not possible to calibrate p�kj�� and p�djn� �� a priori to have the same impact on the respective
models� we will always condition our density estimates either on k or on the degree d� We stress
that this conditioning� which is not natural if one adopts the usual DP perspective� is made here
in order to uncover speci�c features to the performance of both models�

Let us �rst consider the predictive density for a new observation y� given the data� p�y�jy� k��
The extension of the DAG for the DMA mixture model to include y� and its allocation z� is shown
in Figure �� Using the fact that y and y
 are conditionally independent given �� z and z�� it can
be shown that

p�y�jy� k� � E

��X
j

wjf�y
�j�j� y� k

�� � ���

It will be convenient to write this function as bgk�y��� a quantity which can be computed on a
grid of y� values by averaging across the MCMC run� conditional on �xed values of k� For the DP
model� we condition on the degree d and on the fact that the new observation does not create a
group by itself to de�ne the corresponding expression to ���	

bgd�y�� � E

��X
j

nj
n
f�y�j�j� y� d

�� � ���

For observables �y�� y�� � � � � yn�� we summarise the quality of �t of a point estimate h of their
density by de�ning the associated deviance

G�h� � ��
nX
i��

log�h�yi��� ���

�Note that we depart from the usual sense of the term �deviance in not subtracting from this
twice�negative�log�likelihood some baseline value corresponding to a saturated model� because in
this nonparametric setting� such a baseline would be �	�� By computing G�bgk� and G�bgd�� we
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Figure �	 DAG of the DMA mixture model with new observation y��

thus get a global measure of quality of �t of the point estimates of the predictive densities bgk andbgd given by the DMA and DP models respectively�
It is also of interest to understand the variability around these point estimates� Thus instead

of taking expectations� we condition at the highest level at which the models are compatible�
and consider the quantities g�y�� � p�y�jy� z� �� k� and the associated deviance G�g� as de�ned in
���� Note that we have integrated out the w!s to facilitate comparability between DMA and DP�
Similarly to ���� it can be shown that for the DMA model

g�y�� �
X
j

nj � �

n� k�
f�y�j�j�� �
�

For the DP model� we use p�y�jy� �� d� and the expression �
� with � � �� It will be interesting to
compare the distribution of G�g� given k or d� in particular its mean and variability� Note that� by
Jensen� we always have E�G�g�� � G�bgk� and that the di
erence E�G�g��� G�bgk� will be larger
if g is more variable� This measure of variability is equivalent to pD� introduced as a measure of
complexity by Spiegelhalter et al� ����
�� with a particular choice of parameterisation� We intend
to explore the role of pD in mixture model determination in later work�

��� Model and data speci�cation

Our comparisons will be made in the context of a distribution G� corresponding to univariate
normal mixtures� We have used � data sets� enzyme� acidity and galaxy� described in Richard�
son and Green ������� as well as � simulated data sets of ��� points� These latter correspond
to a unimodal leptokurtic mixture ��lepto �	 ����N��� �� � ����N����� ��������� a bimodal mix�
ture ��bimod �	 ���N���� ������� � ���N��� �������� an asymmetric separated mixture ��sep �	






���N��� ������N���� ������N���� �����������N���� �������� and a symmetric strongly overlapping
platykurtic mixture ��platy �	 ���N���� ��� ���N���� �� � ���N��� ��� ���N��� �� � ���N��� ���
The four synthetic mixture densities are graphed� on a standardised scale� in Figure �� Throughout
we let R denote the interval of variation of the data and we adopt the following speci�cation for
the normal mixture model	 � � ��� ���� and G� � N�
� ���� � ���� �� with �xed values of 
 �
midrange� � � �	R�� � � �� and a random � which follows a ��g� h� distribution� This hierarchical
mixture model and the choice of g and h �g � ���� h � ��	R�� are discussed in Richardson and
Green ������� For the DP model� we set � � �� For the DMA model� we let � � � throughout which
corresponds to a uniform prior on the weights� a natural choice in the absence of real prior informa�
tion� In the simulation� a prior uniform on f�� �� � � � � ��g was assumed for k� although as usual this
could be amended to any other prior on this support by importance sampling in the output analysis�
For the DP model� the results presented correspond to runs of ��� ��� sweeps �after a burn�in of
��� ��� sweeps� of the reversible jump algorithm described in Section ���� similarly for the DMA
model� ��� ��� sweeps of the reversible jump algorithm presented in Richardson and Green ������
were used after a burn�in of ��� ��� sweeps�

bimod
sep
lepto
platy

Figure �	 Plots of the bimod� sep� lepto and platy normal mixture density functions� translated
and scaled to have similar ranges�

��� Posterior distribution of the number of components

Recall that for the DMA model there is a free choice of the prior distribution p�k� of the number of
components k� which include empty components� in contrast the prior p�d� on the partition degree
d of the DP model is completely determined by n and �� In order partially to �factor out the
in�uence of the priors� we thus chose to compare modi�ed posteriors p��kjy� � p�kjy�	p�k� and
p��djy� � p�djy�	p�d� corresponding to uniform priors for k and d in the two models�

Figure � plots the cumulative distribution of p��kjy� versus p��djy� for the � data sets� The
average number of empty components was small for most data sets� ranging from ���� to �����
except for the �sep data set ������ and the galaxy data ������� For the �lepto data set� the
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cumulative distributions are identical �diagonal line�� For all the other data sets� except galaxy� the
plots show small convexity� indicating that the mixture models estimated with DMA priors have
fewer components # a fortiori� fewer non�empty components # than those corresponding to the DP
priors� It is interesting to note that the single data set� galaxy� where this does not hold has small
clusters of outlying observations� which is well in keeping with the DP allocation model�
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Figure �	 Modi�ed cumulative posterior distributions for the number of components� compared for
the DMA and DP models using PP plots�

��� Entropy and partitions

Our next concern is to investigate whether the DP model!s prior emphasis on unequal allocation
persists in the posterior� A similar concern was expressed in Petrone and Raftery ������ with
particular reference to change point models� We can summarise equality of allocation by the entropy
�
P

j�nj	n� log�nj	n� and look at the conditional posterior of entropy given degree d� interpreted
for DMA models as the number of non�empty components�

We found that the mixtures with a DP prior have systematically lower entropy� the di
erence
being noticeable for any value of d above � �see Figure ��� This di
erence is accentuated for larger
samples drawn from the same simulated models �results not shown�� The persistence of unequal
allocations can also be seen when one compares mean group sizes for the two models� Figure �
presents a typical comparison� the lack of balance is more noticeable as the degree increases� Hence�
as was also noted by Petrone and Raftery� in most cases the unbalancedness of the prior allocation
model is still noticeable in the posterior�

To illustrate further the di
erence of the induced partitions� it is also of interest to investigate
posterior classi�cation for the data conditional on d and a declared unambiguous labelling� for
example by ordering of the means� This can be done either within�sample or predictively� Let
y� be a future observation with allocation variable z�� As detailed in Richardson and Green

��
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Table �	 Enzyme data	 deviances associated with predictive densities derived from DMA or DP
models�

k or d � � � � �

G�bgk� for DMA ����� ���� 
��� 
��� ����
G�bgd� for DP ����� ���� 

�� 
��� 
���

������� p�z� � jjy� y�� k� can be estimated from the MCMC run for the DMA model by averaging
wj��y

���j � �j�	
Pk

j�� wj��y
���j � �j� where ��� ��� �� is the normal density� For the DP model� the

same expression is used with wj replaced by nj	n� Figure � exhibits some of the most striking
di
erences we found on our data sets� For the enzyme data set� note that the DMA model assesses
a noticeable lower limit �below ���� for the the sub�group classi�ed as high enzymatic metabolisers
than the DP model� When classifying the acidity data into � groups� it is interesting to see that
the left hand outlying observation is treated quite di
erently under the two models� the DP model
placing this single observation in one component�
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Figure �	 Posterior classi�cation for DMA and DP models on enzyme and acidity data�

��� Deviances

We computed G�bgk� and G�bgd� as de�ned in ���� ��� and ��� for the � data sets and values of
k or d well�supported a posteriori� We found nearly identical values for simple well�separated
mixtures ��bimod and �sep �� and slightly lower values in general forG�bgk� but with few di
erences
exceeding �� The only notable di
erence in �t concerns the enzyme data �see Table ��� a data set
for which we had already noticed that the induced partitions and classi�cation di
er markedly
between the DMA and the DP models�

��
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Figure 
	 Distributions of deviance G�g�	 comparison between DMA and DP models�

� DP and DMA models as prior distributions in measurement

error problems

A common use for DP models is as a class of nonparametric priors in hierarchical models or in
models with latent variables� Here� we present a brief comparison of DMA and DP models in the
context of measurement error analysis� Measurement error problems are concerned with inference
on regression coe�cients for an outcome y in terms of covariates x� in cases where x is not measured
accurately on all subjects� but information on x is available through the recording of an imperfect
surrogate u�

Bayesian analysis of measurement error problems is based on structural and functional speci�

�cations� Structural speci�cations entail the formulation of three submodels	 an outcome model

relating x and y� ameasurement model relating u and x and a prior model ���� for the distribution of
x� These three submodels are combined through a DAG using the fundamental assumption that y
is conditionally independent of u given x� an assumption which is also referred to as non�di�erential
measurement error� Information on the measurement error process can be built into the graphical
model in a �exible way� Typical designs involve validation groups� that is� subgroups of subjects�
usually small� where both x and u are recorded� At a second stage� functional forms for the dis�
tributions involved in the submodels are chosen to re�ect knowledge of the underlying outcome
and measurement process� Fully Bayesian implementation of such models has been discussed by
Richardson and Gilks ������ and illustrated in the context of epidemiological studies�

An important element of the analysis is the modelling of ��x�� In observational studies� hetero�
geneity in the distribution of x among the population studied is common and it would be somewhat
restrictive to assume a particular parametric shape for ��x�� In epidemiology� the heterogeneity of
the distribution of the latent exposure variable x follows� for example� from the di
erent genetic�
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socio�demographic or cultural composition of the population studied� Recent approaches aiming
at �exible speci�cation of ��x� involve maximum likelihood with modelling of ��x� using nonpara�
metric mixture distributions �Roeder� Carroll and Lindsay� ����� or a Bayesian framework with a
Dirichlet process prior model for the unknown joint distribution of x and u �M�uller and Roeder�
������

We have implemented a measurement error model with validation group where ��x� is modelled
either by a DMA or a DP mixture� Speci�cally� we consider the following setting	 a logistic outcome
model for a dichotomous y and a Gaussian measurement error model	

logitfP �y � �jx�g � �� � ��x� u � N�x� �����

For the study design� we suppose that x� u and y are observed on a subset of n� individuals �the
validation group�� while only u and y are observed in a larger group of size n� �the main study��
Detailed formulation of the graphical model� the prior settings and the algorithms will be presented
in a forthcoming paper�

Table � summarises the results of a small simulation study comparing the performances of using
either DP or DMA models for �� on the estimation of the measurement error precision � and the
regression slope ��� �� replicate data sets were used� The simulation model for generating the
unknown values of x was that of a mixture of � normals	 ���N������ ����
��� � ���N������ ������� �
���N������ ����
���� chosen to have an asymetric bimodal shape with a long tail� to mimic a common
feature of many exposure distribution found in epidemiological studies � We chose n� � �� and
n� � ��� and a logistic model with �� � ���
� and �� � ���� From Table �� we see that � and
�� are both well�estimated� with similar results for DMA and DP in terms of mean square error
for the regression coe�cient� We also compared DP and DMA posterior estimation of the latent
variable� We found that the posterior means were nearly identical� but that in some cases the DP
model led to higher variability of the latent variables for some extreme observations �Figure � ��
This is well in keeping with our previous observations on the treatment of extreme observations by
the DP�
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Figure �	 Posterior mean and variance for the latent variable x in one of the data sets of Table �	
comparison of DP and DMA estimation�
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Table �	 Performance of DMA and DP models as priors in a measurement error model� from a
simulation study with �� replicates�

Analysis
True � DMA DP

��� � ���� ������ ���� ������
�� ���� ������ ���� ������

mse���� ���
 ���


��� � ���� ������ ���� ������
�� ���� ������ ���� ������

mse���� ���� ����

� MCMC methods for DP and related models

The interest in DP and MDP models for practical Bayesian analysis has generated much research
into the e�cient implementation of MCMC methods for computing the resulting posteriors� Signi��
cant contributions to this e
ort are MacEachern ������� Escobar and West ������� and MacEachern
and M�uller ������ ���
�� these make use of the constructive incremental nature of the DP process
�see Appendix� leading to natural Gibbs samplers for allocation variables or parameters� Conver�
gence rates for these Gibbs samplers have recently been investigated by Petrone et al� ����
�� In
contrast� Richardson and Green ������ developed reversible jump Metropolis�Hastings samplers for
their DMA representation of the �nite mixture models�

In view of the intimate correspondence between DP and DMA models discussed above� it is
interesting to examine the possibilities of using either class of MCMC methods for the other model
class� We have been unsuccessful in our search for incremental Gibbs samplers for the DMAmodels�
but it turns out to be reasonably straightforward to implement reversible jump split�merge methods
for DP models�

For the necessary dimension�jumping� Richardson and Green used empty�component birth�death
moves in addition to the splits and merges �and Phillips and Smith ������ implemented general
birth and deaths of components in their mixture methods�� but we do not pursue that line here�
Instead� we focus on the split�merge mechanism� this seems to be an idea with very general ap�
plicability� and in discussing this� in the next subsection� we do not need to be speci�c to the DP
setting� but work with general allocation models�

Later� in subsection ���� we draw some comparisons between this new sampler and two existing
methods� one of which is also suitable for non�conjugate MDP models�

��� Split	merge samplers for allocation models

Consider a general DP model� with a p�dimensional parameter � � Rp� A MCMC sampler set in
the reversible jump framework �Green� ����� will comprise a collection of reversible moves� some
of which will be routine �xed�dimension transition kernels� but including at least one move that
changes d� the degree of the partition� We follow usual practice in attempting only rather modest
changes to the parameter space� A split�merge move is one that increases d by taking one group�
say gj � and its corresponding parameter �j and splits it into two non�empty groups gj� and gj

with corresponding �j� and �j
� the reverse merge move merges the groups� and produces a single
parameter �j � As always� we use intuition to specify the details of these mechanisms� based on an
intuitive notion of probable acceptance� and ensure that detailed balance is obtained with respect
to the required target �posterior� distribution by correctly calculating the Metropolis acceptance
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ratio� which deals with the split and merge as a pair�
In terms of counting parameters� note that we are jumping between �K � p� and

�K � �p��dimensional parameter spaces� where K denotes the number of other parameters of the
model� not altered by this move� How can this be accomplished$

We need to generate �j��l and �j
�l� l � �� �� � � � � p� Intuitively� proposed values will be well�
supported in the posterior if they provide similar explanatory power as f�j�lg� We follow the pattern
of the applications in Green ������ and Richardson and Green ������ by aiming to conserve p
conditions of the form

ml��j� � w�ml��j�� � w
ml��j
�� ���

for suitably chosen "mock weights! w�� w
 summing to �� choice of which is to be discussed shortly�
We assume the vector function m 	 Rp � Rp is invertible� �For example in mixture density
estimation� ml��� might be the lth moment of the density speci�ed by ��� Then in merging� ���
de�nes �j � In splitting� we have considerable freedom� but it may be useful here to sketch out some
generic methods� Which is most suitable will depend on the detail of the model� and the form of
the matching functions fml���g�

The general pattern is to draw a p�vector of auxiliary random numbers u � �u�� u�� � � � � up�� and
set up a bijection between ��j � u� and ��j�� �j
� using the fml���g�

For example� if the fml���g vary freely over R� we might use ��� together with

ul � w
ml��j
�� w�ml��j���

which evidently satis�es ���� This provides an invertible transformation between ��j � u� and
��j�� �j
� whose Jacobian can be simpli�ed to the form��������j�� �j
����j � u�

����� � jrm��j�j

jrm��j��jjrm��j
�j��w�w
�p
�

where r denotes the gradient operator�
Alternatively� if the fml���g are positive but free of any other constraints� then we might draw

ul � U��� �� independently �or indeed use any other continuous distribution on %�� �&p� and use

ml��j�� �
ulml��j�

w�
and ml��j
� �

��� ul�ml��j�

w

�

and this time the Jacobian reduces to��������j�� �j
����j � u�

����� � jrm��j�j
Q

l jml��j�j

jrm��j��jjrm��j
�j�w�w
�p

In fact for the normal mixture application Richardson and Green ������ use neither of these�
as their matching functions are the mean and mean square of the corresponding components� and
of course� the mean square must exceed the square of the mean� So they use

�j� � �j � u��j

s
w


w�
� �j
 � �j � u��j

s
w�
w


��j� � u���� u����
�
j 	w� � ��j
 � ��� u����� u����

�
j 	w


where � � ��� ���� m���� � � and m���� � �� � ��� For this transformation� the Jacobian is

�j�w��
�
j� � w
�

�
j
�

�w�w
����

��



They draw u� � Be��� �� and u� � U��� ���
Now� we must discuss allocating items into the groups gj� and gj
� Having chosen to split gj �

and given the new parameter values �j� and �j
� we suppose we distribute i � gj between gj� and
gj
 according to the natural conditional probabilities

P �i� gj�� �
w�p�yjzi � j��

w�p�yjzi � j�� � w
p�yjzi � j��
�

It remains only to de�ne the mock weights w�� w
� Their purpose is to allow uneven splitting�
and adjust for unequal nj in merging� On splitting� we propose to generate w� � U��� ��� on
merging� w� � Be�nj� � �� nj
 � �� for a simulation parameter �� in our experiments taken to
have the value ��

There is no additional contribution to the Jacobian from either these weights� or the remaining
K unchanged parameters�

For de�niteness� let us now complete the speci�cation of the move probabilities by saying that
when we split we choose each group with equal probability� and that when we merge we choose each
pair of groups with equal probability� This can easily be modi�ed� The move is now fully speci�ed�
and it may be of interest� for comparison with the corresponding expression �equation����� of
Richardson and Green ������� to give the complete acceptance probability� in the context of the
univariate normal mixture problem�

The probability for the split move is min��� A�� where A is

�likelihood ratio��
�B�n�� n
�

�k � ��

� �k � ��

r
�

��
exp

h
��

�
�f��j� � 
�� � ��j
 � 
�� � ��j � 
��g

i
�

��

����

�
��j��

�
j


��j

�����
exp

	
������j� � ���j
 � ���j �



�

dk
�
bkPalloc

�
g�
n���
n��w��

g����w��g����u��g����u��

�
�j�w��

�
j� � w
�

�
j
�

�w�w
����

In this expression� the second and third lines� being the prior ratios for parameters given k�
are unchanged from the DMA version as given in equation���� of Richardson and Green �������
The new terms are �B�n� � n
�	�k � ��� the prior ratio for �k � �� versus k� the additional factor
g�
n���
n��w�� in the proposal ratio� and the new Jacobian of transformation �the �nal line in
the expression�� The notation ga�b��� refers to the Beta�a� b� density� As usual� the acceptance
probability for the merge move� providing the reverse of this split� is min��� A����

��� Comparison of samplers

The split�merge procedure de�ned above di
ers quite fundamentally from the approaches custom�
arily used for computing MDP models� so it is of interest to draw comparisons� The methods we
choose to compare are the �incremental sampler of West� M�uller and Escobar ������� and what
we call the �augmentation sampler� which is a variant on the proposals of MacEachern and M�uller
������ ���
�� Empirical comparisons are made in Section �� but some general points can be made
here�

Each of the three methods	 split�merge� incremental and augmentation are examples of hybrid
MCMC methods� in which a portfolio of reversible moves� each maintaining detailed balance with
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respect to the target �posterior� distribution� is available� and these are used in cyclic fashion to
form a sampler that is irreducible� In each case� one of the moves involves updating � by sampling
from its full conditional� thus conditioning in particular on k and z� this Gibbs update being
available because of conjugacy�

The methods di
er in their approaches to updating k and z� and in their amenability for use
in a hierarchical setting� in which hyperparameters governing the prior for � need to be updated�

In the incremental sampler� in place of the split�merge and allocation moves� k and z are
updated implicitly� by drawing each �i in turn from its full conditional� Since this step may lead
to either or both of a component being created or destroyed� irreducibility is attained� Also� � is
gradually updated during this process� Note that no separate move updating � would be necessary
for irreducibility� but that such a move is included in the portfolio to improve performance�

However� the full conditional for �i involves an o
�line integration �seeWest� M�uller and Escobar
�������� sometimes approximated by a Monte Carlo estimate� this integral �over the prior for a single
�j� of course depends on values of hyperparameters for �� Unless� therefore� conjugate hyperpriors
are used� the incremental method is cumbersome to use in the context of variable hyperparameters�

This di�culty is circumvented in the approach of MacEachern and M�uller ������ ���
�� The
idea is to draw one or more potential additional values of �j �rst� and only then to compute the
probability that an observation is reassigned to such a new component ' this probability does
not involve any integral� In the "no�gaps! variant of their algorithm� a single additional component
is created� while the "complete! variant uses a full set of n potential components� It is not fully
clear from their description whether they propose simulating the additional f�jg anew for each
observation considered�

We propose another variant on this idea� aimed at correctly simulating from the posterior
distribution conditional on d � dmax� where dmax is a �xed su�ciently large integer �we used
dmax � ���� We augment the � vector once each sweep by generating �dmax � d� additional �j
independently from G�� The probabilities of assigning observation i to component j are analogous
to equation ��� of MacEachern and M�uller ������� but with n replaced by dmax�

Neal ����
� suggests yet another variant in a similar spirit� His uses a �xed number m of addi�
tional components �j � which are re�simulated for every observation considered� There are complex
trade�o
s between the costs of generating extra variables� or introducing more serial dependence�
which we will not pursue here�

Both the incremental and augmentation methods have the apparent disadvantage that new
components are formed by moving one observation at a time� in contrast to the split�merge ap�
proach� in which a large but heterogeneous component can be split into two more homogeneous
parts in one go� The augmentation method appears to carry an overhead� through the state space
being extended to include f�jg not currently in the model� But it is di�cult to quantify these
factors in the abstract� and we therefore conduct comparative numerical experiments on the three
samplers in the next section�

Finally� we observe that since all the moves mentioned maintain detailed balance� there is the
potential for new methods to be devised that pool the best features of each of the current ones�

� Comparative performance of the MCMC samplers for the DP

model

We compare the performance of the MCMC samplers described in the previous section in the case
of univariate normal mixtures� What summaries from a multidimensional posterior distribution are
most useful is a debatable question� We have chosen to concentrate our discussion on the output
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of two functionals	 the degrees of the partition and the deviance�

G�g� � ��
nX
i��

log
X
j

nj
n
f�yij�j��

Monitoring the change in the degree against the number of sweeps is clearly an important char�
acteristic of the samplers� while the deviance is used as a meaningful global function of all the
parameters� Visual assessment of the burn�in period is helped by plotting the ergodic averages of
the cumulative frequencies of degrees of partition� The e�ciency of the samplers in their stationary
regime is characterised by computing� for each monitored functional� an estimate of the integrated
autocorrelation time � �

P�
l��� �l� where �l is the lag�l autocorrelation of the realised values of

the functional� For the results below� we have used an adaptive window estimate of � due to Sokal
�see Besag and Green� ����� which was calculated on the last ����� sweeps of long runs thinned
by subsampling at the rate ����� For our comparisons� we have used � data sets� enzyme� acidity
and galaxy� as well as the simulated data sets�


�� Comparison of the three samplers in the case of �xed hyperparameters

As commented by several authors� one of the shortcomings of the incremental sampler is the
necessity of computing an integral of f��j�� with respect to G����� which restricts its use mostly to
�xed hyperparameter cases� For our comparison of the � samplers� we thus consider the following
speci�cation for the normal mixture model	 � � �� � � ��� ���� and G� � N�
� ��������� �� with
�xed values of 
 � midrange� � � �	R�� � � �� � � ����R�� We computed the required integral by
adaptive ���point Gauss�Kronrod quadrature�
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Figure ��	 Cumulative frequencies of partition degrees of the galaxy data for the three samplers�

Figure �� shows a typical output for the cumulative frequencies of partition degrees of the
galaxy data for the three samplers	 incremental� augmentation and reversible�jump� Stability
to the same posterior levels is achieved quickly for the three samplers� the incremental sampler
having the shortest burn�in� In terms of running times� the incremental sampler # which does not
separately update the allocations # is the fastest� The other two samplers update the allocations�
unsurprisingly� we found the augmentation sampler to be approximately � times slower than the
reversible�jump sampler� Our display plots correspond to approximately equivalent running times
for ��� ���� �� ���� and ��� ��� sweeps of the incremental� augmentation and reversible�jump
samplers respectively� On the three data sets �enzyme� acidity and galaxy�� we found similar
integrated autocorrelation times for the three samplers �between ��� and ���� on the deviance
output� For the partition degree� we found a somewhat higher value of � for the reversible�jump
sampler �� to �� than for the other two samplers �� to �����
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�� Comparisons between augmentation and reversible�jump samplers for a
hierarchical DP model

It is of interest to compare the performance of our proposed reversible�jump sampler with that of
the augmentation sampler in a situation with random hyperparameters� We thus modify the setting
de�ned above to assume a random � which follows a ��g� h� distribution with g � ���� h � ��	R�

as before�
These two samplers are constructed on radically di
erent principles� The augmentation sampler

proposes new components containing only single observations� these will be accepted conditional on
all other allocations if there is support from that data point and a prior which is not too tight� This
construction suggests a mixing behaviour which could be in�uenced by the value of � �small �!s
correspond to tighter priors on low partition degree�� in interaction with the shape of the mixture
�well�separated or not�� On the other hand� the proposal of the reversible�jump sampler is not
in�uenced by �� its performance should not deteriorate for small �!s� but with a high number of
components containing fewer observations� the random splits might be less e
ective�
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Figure ��	 Integrated autocorrelation time for �lepto data set�

Figures �� and �� display values of the integrated autocorrelation time for two deliberately
contrasting data sets ��lepto and galaxy� and values of � ranging from ��� to �� On the �lepto 
data set� we see clearly the di�culties encountered by the augmentation sampler when � is small
and the data is not well�separated� which leads to high � !s� �See also Figure �� for an illustration of
the di
erences in burn�in induced by small values of ��� On the galaxy data set� the performance
of the augmentation sampler is less in�uenced by �� but again worse when � is small� On the other
hand� the reversible�jump sampler has somewhat opposite behaviour with higher � !s for larger �!s�
Altogether Figures �� and �� show satisfactory performance for the reversible�jump sampler� The
integrated autocorrelation times are smaller than or equal to those of the augmentation sampler
in about half the cases� When they are larger� they are below � times those of the augmentation
sampler� except in one case� so the loss of e�ciency is compensated by the faster running time
of the reversible�jump sampler� Thus the reversible�jump sampler is competitive� not markedly
superior overall� but mixes well in particular situations where it is known that DP type samplers
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Figure ��	 Integrated autocorrelation time for galaxy data set�
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Figure ��	 Cumulative frequencies of partition degrees for �lepto data set �number of sweeps
adjusted for equivalent run time��
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become trapped�
As a �nal point� we recall that there is some freedom in designing the reversible�jump sampler

which can be usefully exploited for tuning its performance� In particular� the Beta parameter � of
the �mock weights can be adapted� All the results reported correspond to a default value of � � ��
For a model with a large number of components� this value might be too large� For example� with
� � �� we found for � � � and the �lepto data set that the values of � were more than halved�

In this section� we have focussed on comparisons between the augmentation sampler� chosen
to represent the family of samplers introduced by MacEachern and M�uller� and our split�merge
reversible�jump sampler� both of which avoid the need for integration� There is much current
interest in comparing the performance of di
erent variants of the augmentation sampler �Neal�
���
�� as well as developing other approaches to e�cient sampling of DP processes� see for example
Newton� et� al�����
�� Liu� et� al�������� As was shown in our simulations� we believe that the
reversible�jump sampler� which derives from a di
erent principle� has the potential to be a useful
addition to the menu of samplers for DP�
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Appendix

General aspects of partition and allocation models

Here we attempt a more axiomatic approach to the speci�cation of partition and allocation distri�
butions�

There are two key properties possessed by both the DP and DMA models for partitions� that
should also hold for any alternative model� namely

�a� exchangeability	 the probability of any partition should be invariant to any relabelling of
the items�

�b� heritability	 the model should remain self�consistent as the number of items increases� the
probability assigned to a partition of a set of items being the same whether these are all the
available items� or just a subset�

The �rst of these properties seems essential� the second is less vital� but desirable� the more so
for some applications �for example� mixture modelling� than for others �for example� clustering��

The simplest way to ensure exchangeability is to work with a notation in which it is auto�
matic� The maximal invariant of a partition under relabelling of the items is the set of group sizes�
called here the signature� The signature can be written in a standard order� say listing the sizes
in decreasing numerical order� to avoid double�counting� Thus the partitions ff�� �g� f�g� f�gg and
ff�g� f�� �g� f�gg both have signature ������� and are assigned the same probability q��� �� ��� Note
that the signature �n�� n�� � � � � nd� determines both the degree of the partition d and the number of
items n �

P
j nj � Thus any exchangeable model for partitions is equivalent to a speci�cation of the

probabilities q�n�� n�� � � � � nd� of any single partition with this signature� The only consistency con�
dition required is that the probabilities sum to � for each number of items n� Let m�n�� n�� � � � � nd�
denote the number of partitions of n �

P
j nj items with signature �n�� n�� � � � � nd�� then for each

n we need X
m�n�� n�� � � � � nd�q�n�� n�� � � � � nd� � �� ����

where the sum is over all sets of positive integers n� � n� � � � � � nd summing to n�
There is obviously great �exibility in choosing such models� The only constraint� ����� is easily

imposed� especially as there is an explicit formula for the counts m�n�� n�� � � � � nd�� namely

m�n�� n�� � � � � nd� �
n�

n��n�� � � �nd�

�Q
r��j 	 nj � r��

�

��



For an exchangeable partition distribution� the necessary and su�cient condition on the q!s
for heritability is that for all signatures �n�� n�� � � � � nd�� the e
ect of adding one item maintains
consistency� that is

dX
j��

q�n� � �j�� n� � �j�� � � � � nd � �jd� � q�n�� n�� � � � � nd� �� � q�n�� n�� � � � � nd� ����

where � is the Kronecker symbol �and note that addition of these may have disrupted the standard
order in the signature�� Any set of non�negative numbers q�n�� n�� � � � � nd� satisfying ���� and the
initial condition q��� � � automatically satis�es ����	 nothing else is needed to guarantee a proper�
exchangeable� partition distribution�

We see that the heritability condition is much more demanding than exchangeability� as it
imposes much more stringent constraints on the q!s�

The DP and DMA models form familiar examples of allocation models that are both exchange�
able and heritable� A third class possessing both properties is that of the partition models of
Consonni and Veronese ������� in which the degree d is drawn from a distribution of convenience
�in fact� they use the form p�d� 
 d�� for d � �� �� � � � � n�� and then partitions drawn uniformly
given d	 p�gjd� � constant�

Recursive construction of partition distributions� and incremental samplers

A heritable exchangeable partition distribution can be constructed recursively� by considering the
placement of the �n���th item conditional on the partition of the �rst n items� for n � �� �� � � �� The
recursion is started trivially with q��� � �� Given the partition g with signature �n�� n�� � � � � nd�
for the �rst n items� the additional item may join one of the existing groups j � �� �� � � � � d� or
form a new group by itself� The probabilities a�� a�� � � � � ad� b� say� of these options are given by the
corresponding terms on the left hand side of ����� divided by the sum�

For the DMA model we have

aj �
� � nj
k� � n

� b �
�k� d��

k� � n
� ����

on substituting from ��� into ����� For the DP model� we have

aj �
nj

�� n
� b �

�

� � n
�

which can either be obtained explicitly from ���� or from ���� by letting � � �� k � 	 and
k� � � 
 ��

Another simple model is obtained by letting � �	 in ����� we obtain

aj �
�

k
� b � ��

d

k
�

This corresponds to the symmetric multinomial model in which the zi are drawn i�i�d� from the
uniform distribution on f�� �� � � � � kg� that is� the items are allocated independently� equally likely
to each of the groups�

Because of exchangeability� these recursive probabilities are equally appropriate for conditional
distributions such as p�zi � jjzi�� i

� �� i�� which are needed in MCMC sampling item�by�item� such
as in the �incremental method� described in Section ���� Unfortunately� we have not been able to
derive incremental methods using these recursive probabilities for posterior simulation� except for
the DP case�
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