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Abstract
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1 Introduction

Decomposable or triangulated or chordal graphs are of interest in many areas of mathe-
matics. Our primary interest is in their role as the conditional independence graphs of
decomposable graphical models. In particular, we are interested in estimating decompos-
able graphical models from observed data using Markov chain Monte Carlo, or MCMC,
schemes that traverse the space of decomposable graphs in order to sample from, or maxi-
mize, the posterior probability distribution defined by the data. The underlying approach
is the same whether the data is continuous (Giudici & Green 1999, Jones et al. 2005) or
discrete (Thomas & Camp 2004, Thomas 2005). A common feature of such schemes is
that, given an incumbent decomposable graph G, we propose a new graph G′ which is
then accepted or rejected according to probabilities that depend on the distribution being
sampled (Metropolis et al. 1953, Hastings 1970, Kirkpatrick et al. 1982). However, there
are no known proposal schemes that guarantee in advance that G′ will be decomposable,
even if G is. Hence, it is necessary to test G′ for decomposability before evaluating the
usual acceptance probability. While such tests can be very quick (Giudici & Green 1999),
for all practical methods for proposing a random G′ of which we are aware, the probability
that G′ is decomposable decreases rapidly with the size of the graph, making this approach
infeasible for large problems. For instance, in the genetic examples considered by Thomas
(2008), involving up to 20,000 variables, the probability of proposing a decomposable G′

decreases roughly as the inverse of the number of variables. Given these circumstances it
would be very useful to have an alternative representation of the problem that avoids the
test for decomposability. It is with this in mind that we consider what follows.

It is often convenient in graphical modelling to operate not on the graph itself, but
on its derived representation as a junction tree. This raises the prospect of discarding the
underlying conditional independence graph entirely and defining MCMC schemes on the
space of junction trees. As each junction tree uniquely defines a decomposable graph, this
might avoid the expensive need to propose non-decomposable models. However, decom-
posable graphs have multiple equivalent junction tree representations and moreover the
number is variable from graph to graph. Therefore, sampling the space of junction trees
will over-sample decomposable graphs with a large number of such representations. This
can be corrected for if the number of junction trees for any particular decomposable graph
can be evaluated and this is the motivation for the method we present here.

We begin by reviewing some definitions and standard properties of decomposable graphs
and junction trees. For more complete information on these see Golumbic (1980) and
Lauritzen (1996), whose terminology we have adopted. We then consider the number of
ways that sets of links of a junction tree that correspond to the same clique intersection
can be rearranged. These counts are then combined to give the total number of junction
trees. A simple algorithm is then presented that will take a junction tree and select an
equivalent one uniformly at random from the set of all possible equivalents. Finally, we
discuss the computational complexity of our method showing that it is faster than existing
algorithms, and outline potential junction tree sampling methods.
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2 Definitions and preliminary results

Consider a graph G = G(V, E) with vertices V and edges E. A subset of vertices U ⊆ V
defines an induced subgraph of G which contains all the vertices U and any edges in E that
connect vertices in U . A subgraph induced by U ⊆ V is complete if all pairs of vertices in
U are connected in G. A clique is a complete subgraph that is maximal, that is, it is not
a subgraph of any other complete subgraph.

Definition 1 A graph G is decomposable if and only if the set of cliques of G can be

ordered as (C1, C2, . . . , Cc) so that for each i = 1, 2, . . . , c − 1

if Si = Ci ∩
c⋃

j=i+1

Cj then Si ⊂ Ck for some k > i. (1)

This is called the running intersection property and is equivalent to the requirement
that every cycle in G of length 4 or more is chorded. The sets S1, . . . Sc−1 are called the
separators of the graph. The set of cliques {C1, . . . Cc} and the collection of separators
{S1, . . . Sc−1} are uniquely determined from the structure of G; however, there may be
many orderings that have the running intersection property. The cliques of G are distinct
sets, but the separators are generally not all distinct.

Definition 2 The junction graph of a decomposable graph has nodes {C1, . . . , Cc} and

every pair of nodes is connected. Each link is associated with the intersection of the two

cliques that it connects, and has a weight, possibly zero, equal to the cardinality of the

intersection.

Note that for clarity we will reserve the terms vertices and edges for the elements of G,
and call those of the junction graph and its subgraphs nodes and links.

Definition 3 Let J be any spanning tree of the junction graph. J has the junction property
if for any two cliques C and D of G, every node on the unique path between C and D in J
contains C ∩ D. In this case J is said to be a junction tree.

Figure 1 gives an example of a decomposable graph while Figure 2 shows one of its
possible junction trees. The lexicographic search method of Tarjan & Yannakakis (1984)
will find a junction tree for a given decomposable graph in time and storage of order
|V | + |E|.

Note that some authors first partition a graph into its disjoint components before making
a junction tree for each component, combining the result into a junction forest. The above
definition, however, will allow us to state results more simply without having to make
special provision for nodes in separate components. In effect, we have taken a conventional
junction forest and connected it into a tree by adding links between the components. Each
of these new links will be associated with the empty set and have zero weight. Clearly, this

3



tree has the junction property. Results for junction forests can easily be recovered from
the results we present below for junction trees.

As Lauritzen (1996) describes more fully, a junction tree for G will exist if and only if
G is decomposable, and the collection of clique intersections associated with the c−1 links
of any junction tree of G is equal to the collection of separators of G. Also, the junction
property can be equivalently stated as the property that the subgraph of a junction tree
induced by the set of cliques that contain any set U ⊆ V is a single connected tree.

As stated in Definition 2, we can consider each link of the junction graph to have
a weight. Thus, any subgraph of it, and in particular any spanning tree, can also be
associated with a weight defined by the sum of the weights of the links included. Jensen
(1988) exploits this to give the following useful characterization of a junction tree.

Theorem 4 A spanning tree of the junction graph is a junction tree if and only if it has

maximal weight.

From this it is clear that any tree with the cliques of G as its nodes and for which
the collection of clique intersections associated with the links is equal to the collection of
separators of G is a junction tree of G, since such a tree must span the junction graph and
have maximal weight. Therefore, the problem of enumerating junction trees for a given
graph G is equivalent to enumerating the ways that links of a given junction tree can be
rearranged so that the result is also a tree, and the collection of clique intersections defined
by the links of the tree is unchanged.

3 Rearranging the links for the set of separators with

the same intersection

As noted above, the separators of G are not generally distinct. For example, in Figure 2
three links are associated with the clique intersection {17} and two with the intersection
{2, 3}. We now consider the effect of rearranging all the links that are associated with the
same clique intersection. Let J be any junction tree of G and S one of its separators. Define
TS to be the subtree of J induced by the cliques that contain S. The junction property
ensures that TS is a single connected subtree of J .

Clearly, any rearrangement of the links associated with S in J must be a rearrangement
among certain links of TS since both cliques joined by such a link must contain S. For
illustration, Figure 3 shows T{3}, the subtree defined by the separator {3} for the graph in
Figure 1. If we now rearrange the links that are associated with S to produce a new graph,
T ′

S say, and replace TS in J by T ′
S to give a new graph J ′, J ′ will be a junction tree of G if

and only if

• T ′
S is a tree, and hence so is J ′, and

• T ′
S has the same weight as TS, so that J ′ has the same weight as J .
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In fact the second condition is redundant: all cliques in TS contain S so their intersection
must also do so, and any pair of cliques whose intersection is a superset of S cannot be
joined in a tree T ′

S unless already joined in TS as T ′
S would then have greater weight than

TS, and J ′ greater weight than J thus violating the latter’s maximal weight property. So
we need only count the number of ways of rearranging the links of TS associated with S
such that T ′

S is a tree.
Consider FS to be the forest obtained by deleting all the links associated with S from TS.

For example, Figure 4 shows F{3}, the forest obtained by deleting links associated with the
separator {3} from the tree T{3} shown in Figure 3. Define ν(S) to be the number of ways
that the components of FS can be connected into a single tree by adding the appropriate
number of links. This value is given by a theorem by Moon (1970) which can be restated
as follows.

Theorem 5 The number of distinct ways that a forest of p nodes comprising q subtrees of

sizes r1 . . . rq can be connected into a single tree by adding q − 1 links is

pq−2
q∏

i=1

ri. (2)

If the number of links associated with a given separator S is mS we know that FS will
contain mS +1 components. Let these be of sizes f1, f2, . . . fmS+1. Let the number of nodes
in TS be tS which is simply the number of cliques of G that contain S. Then, directly from
theorem 5 we obtain the following.

Theorem 6

ν(S) = tmS−1
S

mS+1∏

j=1

fj . (3)

For example, the forest in Figure 4 has 7 nodes in 4 components of sizes 1, 1, 1 and 4.
This forest, F{3}, can be reconnected into a single tree by adding 3 links in 72×1×1×1×4 =
196 different ways.

4 The number of junction trees for a decomposable

graph

The final step in enumerating junction trees is to note that ν(S) depends only on the sizes
of the components of FS, not on their particular structure. These sizes are determined by
the sets of cliques that contain separators that are supersets of S. Since the set of cliques
and collection of separators are uniquely determined and independent of any particular
junction tree, ν(S) is independent of J . Hence, the links associated with one particular
separator can be reallocated independently of the links associated with another. Thus we
obtain the following result.
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Theorem 7 Consider a decomposable graph G with separators S1, . . . Sc−1. Let S[1], . . . S[s]

be the distinct sets contained in the collection of separators. The number of junction trees

of G is

µ(G) =
s∏

i=1

ν(S[i]). (4)

As an example, the number of distinct junction trees for the graph shown in Figure 1
is 57,802,752. The calculations needed to obtain this are given in Table 1.

As noted above, we can retrieve from this result the count of the number of possible
conventional junction forests that a decomposable graph has. This is given simply by

µ(G)

ν(∅)
,

which for the example is 57802752/6144 = 9408.

5 Randomizing the junction tree

Theorem 5 is similar in style to Prüfer’s constructive proof (Prüfer 1918) of Cayley’s result
that there are nn−2 distinct labelled trees of n vertices (Cayley 1889). A similar construction
lets us choose uniformly at random from the set of possible trees containing a given forest
as follows:

1. Label each vertex of the forest {i, j} where 1 ≤ i ≤ q and 1 ≤ j ≤ ri, so that the
first index indicates the subtree the vertex belongs to and the second reflects some
ordering within the subtree. The orderings of the subtrees and of vertices within
subtrees are arbitrary.

2. Construct a list v containing q − 2 vertices each chosen at random with replacement
from the set of all p vertices.

3. Construct a set w containing q vertices, one chosen at random from each subtree.

4. Find in w the vertex x with the largest first index that does not appear as a first
index of any vertex in v. Since the length of v is 2 less than the size of w there must
always be at least 2 such vertices.

5. Connect x to y, the vertex at the head of the list v.

6. Remove x from the set w, and delete y from the head of the list v.

7. Repeat until v is empty. At this point w contains 2 vertices. Connect them.

Given any particular junction tree representation J for a decomposable graph G we can
choose uniformly at random from the set of equivalent junction trees by applying the above
algorithm to each of the forests FS defined by the distinct separators of J .
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6 Computational complexity

Jensen’s characterization of a junction tree as a maximal spanning tree of the junction
graph means that general methods for enumerating the optimal spanning trees of a graph
can also be applied to enumerating junction trees. The method of Broder & Mayr (1997)
does precisely this. Recalling the notation used in section 2, the junction graph will have c
nodes and c(c− 1)/2 links. Broder and Mayr’s method would require O(M(c)) elementary
operations to enumerate its maximal spanning trees, where M(c) is the number of oper-
ations needed to multiply c × c matrices. Asymptotically, the best algorithm for matrix
multiplication is that of Coppersmith & Winograd (1990) which requires O(c2.376) opera-
tions, although for realistically sized matrices the best practical methods, based on that of
Strassen (1969), need O(c2.807) operations. Letting n = |V |, the number of vertices in G,
we note that c can be as large as n and typically grows linearly with n. Hence, Broder and
Mayr’s algorithm is at best an O(n2.376) method.

However, as noted above, Jensen’s characterization is not the only route to obtaining a
junction tree. The lexicographic search of Tarjan & Yannakakis (1984) will find a simple
elimination scheme, and hence a junction tree, in time O(n + m), where m = |E| the
number of edges in G. While m = O(n2) in the worst case, typical graphical models are
sparse and the time required is closer to linear in n. The enumeration method presented
here depends only on knowing a single junction tree for G. The time required to carry it
out is dominated by the time needed to find each TS[i]

. We note that any link L of J will
be a link in TS[i]

for each i such that S[i] ⊆ L. Finding all the TS[i]
can be done by iterating

over the c − 1 links of J , and for each link checking for inclusion of each of the s distinct
separators. Since both c and s can be O(n), the enumeration is an O(n2) algorithm in the
worst case. Other ways of finding the TS[i]

will in practice be faster. For example, we can
find TS[i]

by starting with a node that contains S[i] and searching outwards in J until we hit
nodes that don’t contain the separator. Thus, if TS[i]

is small it will be found very quickly.

While it is straightforward to construct examples where this approach is also O(n2), for
more typical graphs it will be considerably faster.

In summary, applying Broder and Mayr’s general method to the special case of enu-
merating junction trees is at best an O(n2.376) method, and more realistically O(n2.807). By
exploiting the junction property, our method improves this to a worst case of O(n2) which
in practice is a very conservative upper bound.

7 Possible MCMC samplers for junction trees

Given a distribution π(G) from which we want to sample decomposable graphs G, the
methods of Metropolis et al. (1953) and Hastings (1970) allow us to construct Markov
chains with π(G) as the ergodic distribution. For example, we can propose a new graph G′

by choosing two random vertices of G: if they are connected in G we disconnect them in G′

and vice versa. G′ is then accepted with probability max(1, π(G′)/π(G)), with the special
case that π(G′) is defined to be 0 if G′ is not a decomposable graph. Intuitively, it is easy
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to see that this can be very inefficient. If we consider choosing two random vertices of G,
it is quite likely that we pick two vertices that are not connected directly, but which are
connected by several paths through other vertices. Adding an edge between the vertices
is therefore likely to create cycles. Unless all the connecting paths are short, a cycle of
length 4 or more may well be formed which prevents G′ from being decomposable. Thomas
(2008) shows that for modelling linkage disequilibrium between genetic loci, the acceptance
rate decreases approximately as 1/n, making the method infeasible for large numbers of
variables.

The motivation for our enumeration method is that it may be possible to devise MCMC
schemes that work directly on the space of junction trees with perturbations that guarantee
that if J is a junction tree for G(J), the proposal J ′ will be junction tree for some G′ =
G(J ′), which ensures that G′ is decomposable. Such proposals might involve merging or
splitting the nodes of J . Given such proposals, it would be straightforward to construct a
Markov chain with ergodic distribution

ρ(J) =
π(G(J))

µ(G(J))
.

For each J from such a chain, we would derive a graph G(J) which would be sampled with
probability

P (G) =
∑

J :G(J)=G

π(G(J))

µ(G(J))

=
π(G)

µ(G)

∑

J :G(J)=G

1

= π(G)

as required. Since this would avoid proposing non-decomposable graphs the acceptance
rate should be greatly improved. This would, of course, require efficient enumeration, but
note that the acceptance probability depends only on µ(G(J ′))/µ(G(J)) which, given the
factorization in equation 4 above, might be computable from µ(G(J)) more simply than
direct enumeration of µ(G(J ′)).

For validity, any proposal scheme on junction trees has to define an irreducible Markov
chain in that space. With this in mind, moving freely between the set of junction trees for
any particular decomposable graph, as is made possible by the method described in section
5 above, could be crucial. Even if irreducibility is possible without it, such a randomization
would improve the mixing properties of the chain.

While some of this is speculative, and we have not yet defined a suitable perturbation
scheme on junction trees, we feel that this can open up a new area of opportunities for
estimating graphical models my MCMC methods. Although the space of junction trees is
larger than that of decomposable graphs, it may well be more tractable and more easily
traversible.
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Table 1: The computations that enumerate the distinct junction trees for the decomposable
graph given in Figure 1.

Separator S mS tS {fS} ν(S)
∅ 3 16 1, 1, 2, 12 6144

{13, 14} 1 2 1, 1 1
{3} 3 7 1, 1, 1, 4 196
{2, 3} 2 3 1, 1, 1 3
{3, 18} 1 2 1, 1 1
{9} 1 2 1, 1 1
{12} 1 2 1, 1 1
{17} 3 4 1, 1, 1, 1 16

µ(G) = 6144 × 1 × 196 × 3 × 1 × 1 × 1 × 16 = 57802752
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Figure 1: A decomposable graph containing 23 vertices in 4 disjoint components.
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Figure 2: One possible junction tree for the graph shown in Figure 1. The 16 cliques
are the vertices of the junction tree and are shown as ovals. The 15 clique separators are
represented by the edges of the graph and each edge is associated with the intersection of
its incident vertices. These intersections are shown as rectangles. Note that some of these
intersections are empty.
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Figure 3: T{3}, the connected subtree of the junction graph shown in Figure 2 induced by
the cliques that contain the separator {3}.

Figure 4: F{3}, the forest obtained by from the tree shown in Figure 3 by deleting edges
associated with the separator {3}.
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