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Why nonparametrics?

� “letting the data speak for themselves”

Why Bayesian?

� directness of inference, appealing to
non-statisticians

� integrating all sources of uncertainty

� modular: coherent introduction of
nonparametric components into structured
models

� sequential updating: invariance to permutation

� opportunity of using quantitative prior
information if it exists

� uncovering multiple explanations

� most practical and computational objections
have been eliminated

2



Bayesian interpretations of frequentist
nonparametric procedures

� smoothing splines

� state-space models

� wavelet thresholding

– not the real focus of contemporary research, but
perhaps useful in reminding us of “quasi-Bayesian”
character of prior assumptions such as smoothness
expressed by a roughness functional.
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Bayesian nonparametric modelling of
distributions

The basic problem: given observations
Y�� Y�� � � � � Yn from an unknown probability
distribution F on a space �, make inference about
F .

Parametric answer: restrict F to be F� for some
finite-dimensional parameter �, place a prior � on �

and use the posterior

���jY � � ����
nY

i��

f��Yi�

Nonparametric answer: only insist that F lies in a
bigger (infinite-dimensional?) space, place a prior �
on that space, and use the posterior

��F jY � � ��F �

nY

i��

f�Yi�
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Flexible priors on probability distributions

Are there classes of distributions on distributions
that are (a) flexible, and (b) permit tractable
posterior analysis? A basic ingredient of many of
them:

The Dirichlet process

Given a ’base’ or ’expectation’ probability measure
F� and a positive scalar parameter c, we write

F � D�cF��

if for every measurable partition �B�� B�� � � � � Bn� of
� we have

�F �B��� F �B��� � � � � F �Bn��

� Dirichlet�cF��B��� cF��B��� � � � � cF��Bn��
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Basic properties of the Dirichlet process

E�F �B�� � F��B�

var�F �B�� �
F��B���� F��B��

c� �

so c is a measure of concentration about the base
measure F�.

However, c is also a measure of discreteness. The
random F is discrete with probability 1.

If F� is continuous, and you draw F � D�cF��, and
then Y�� Y�� � � � � YnjF � F , independently, we find
P �Y� � Y�� � ���c� ��.

If c � �, then Y� � Y� � � � � � Yn � Y a.s., where
Y � F�!

If c ��, then F � F�, and Yi � F�, i.i.d.
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Prior to posterior

The beauty of the DP model is the conjugate update:

D�cF�� � data�Y�� Y�� � � � � Yn� � D�cF� � nFn�

where Fn is the empirical distribution of
�Y�� Y�� � � � � Yn�.

This is not only of practical benefit, but confers
some ’canonical’ status on the DP model.
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Relatives of the Dirichlet process

The so-called Mixture of Dirichlet Processes model
(more properly Dirichlet Process Mixture) gets round
the discreteness problem by introducing ’noise’:

Yij� � g��j�i�

where

��� ��� � � � � �njF � F independently

and F � D�cF��

The conjugacy still helps - Gibbs sampling for the �i
is trivial - but the inflexibility of the single
parameter c for variability remains severe.
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Applications of Dirichlet Process Mixtures

By choosing the underlying space �, base measure
F� and data-density g appropriately, an
astonishingly wide range of practical statistical
methodologies have been devised within this
framework - often by West and others, at Duke
University.

Often the DPM arises as one ingredient in a fully
Bayesian hierarchical model.

� mixture modelling

� nonparametric regression

� autoregression
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Connections with finite mixtures

Green and Richardson (SJS, 2001) showed and
explored a close connection between the MDP
model and the finite mixture model

Yij� �

kX

j��

wjg��j�j�

where k is random, �j � F�� independently,

and �w�� w�� � � � � wk� � Dirichlet��� �� � � � � ���

So far as modelling the Yi is concerned, the MDP
model is just the limit of this as k �� and k� � c

(and also according to other limiting regimes).
Hardly nonparametric!
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Other relatives of the Dirichlet process

� Other neutral-to-the-right processes

� Pólya trees

� Bernoulli trips

� Quantile pyramids

� Dirichlet diffusion trees

See for example Walker, et al., (JRSS(B), 1999), for
the 4th, Hjort (HSSS, 2002), and for the last, Neal
(2001).
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Bayesian measurement error modelling

with Sylvia Richardson, Laurent Leblond and
Isabelle Jaussent (INSERM, Paris)

Aim: to quantify the association between an
outcome Y and a set of covariates X
where covariates are imperfectly observed and only
measured through “surrogates”.

Ignoring measurement error and treating the
surrogate as the true covariate may produce biased
results.
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Why be Bayesian here?

� latent covariates with imprecisely specified
prior distributions

� combining information on measurement
process from several sources

� propagating uncertainty
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Model building – structural specifications

� Y known outcome

� X true (latent) covariate

� U observed surrogate for X

� C known covariates

Formulation of local submodels between
components using
– conditional independence assumptions
– prior information on the structure of the
measurement process

Submodels:

� p�Y jX�C� �� regression model
� p�U jX�	� measurement model
� p�Xj�� prior model
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Bayesian analysis using graphical models

Non differential measurement error assumption:
Y � U jX

i

Xi

U

Ci

Yiπ

β

λ

Joint distribution:

p���p�	�p���
Y

i

p�Xij��

	
Y

i

p�UijXi� 	�
Y

i

p�YijXi� Ci� ��
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Where does quantitative information on
measurement model come from ?

One possibility: design with a validation group:

reference method which can be used to get
information on X from a subgroup where both X

and U are recorded.
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Designs with a validation group

i

X Y

X Y

U C

U C

βπ
λ

i’ i’

i’i’

i i

i

� transfer of information on 	 from the validation
group to the main study

� strengthens inference about regression
parameters �
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Problems in specifying prior for p�Xj��

Some approaches

� pseudo-likelihood (Carroll, 1993) based on
plugging in an empirical estimate of p�Xj��
based on the validation subgroup

� non parametric modelling of p�Xj�� via NPML
(Roeder, Carroll, Lindsay, JASA 1996)

� joint modelling of p�X�U j	� as a Multivariate
normal where 	 specified in terms of a Dirichlet
Process (Müller and Roeder, Biometrika, 1997)

� semi-parametric model for p�Xj�� via a mixture
of gaussian distributions with an unknown
number of components
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Mixture model for p�Xj��

Xi �
kX

j��

wjf��j�j� independently for i � �� �� � � � � n

f��j�� is a given parametric family
f�jg� fwjg� k unknown

The model can be formulated using latent allocation
variables:

p�zi � j� � wj independently for i � �� �� � � � � n

Xijz � f��j�zi� independently for i � �� �� � � � � n
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Measurement error model with mixture prior

C

λ

β

θ

k

w

z X

U

Y

Of course, computing in such models would be
quite impossible by conventional methods.

With MCMC, most of the variables can be updated
singly or in small groups, by Gibbs or Metropolis
moves.

We update k (with consequent changes to w, z and
�) by reversible jump split/merge moves.
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Implementation in the case of a logistic regression
with validation group design

Prior for X : normal mixture model

X �
kX

j��

wj
��j�j� �
�

j �� k unknown

Measurement error: e.g., lognormal

logUi � N�
� � 
� logXi� 	
���

Regression model for disease status: logistic model

Y � Bernoulli�f� � exp	��T �X�C�
g���

z

k

i Xi

X

Yi

Y

Ui

U

Ci

C

θ λ β

i’ i’ i’

i’ i’w

z
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Illustration on a study of the risk of coronary heart
disease (CHD) as a function of blood cholesterol

Total cholesterol (TC) and Low density cholesterol
(LDL) on 256 subjects: 113 cases, 143 controls.

� can we use TC = U as a surrogate for LDL = X?
� a validation subgroup with 32 cases and 40
controls is chosen at random

Logistic regressions of CHD on cholesterol level:

� regression on X , complete data set �n � ����

�� � ���� ���
��

� regression on U , complete data set �n � ����

�� � ���� ���
��

� regression on X , validation group �n � ���

�� � ���
 ������

� Bayesian analysis (validation and main study)

�� � ���� ������
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Performance of mixture priors in measurement
error models

Simulation set up: 50 replications
270 subjects in main study, 30 in validation group.
X drawn from an asymmetric normal mixture :

���N������ �����������	N����
� ���	������	N������ ��������

Measurement model : U � N�X�	���

Logistic disease model :
logit P �Y � �jX� � �� � ��X

analysis

true mixture prior gaussian prior

	 3 2.82 (0.41) 2.37 (0.51)

�� ���� ����� (0.19) ����� (0.27)

�� 0.4 0.52 (0.25) 0.76 (0.32)

mse���� 0.053 0.092
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Bayesian nonparametric modelling of
dependence

Hjort (HSSS, 2002) discusses some Bayesian
variants on local polynomial regression methods.

Here, however, we focus on highly data-adaptive
methods for particular spatial and temporal
problems, built on flexible structured models.
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Hidden Markov models, spatial mixtures, and
disease mapping

(with Sylvia Richardson (INSERM � Imperial) and
Carmen Fernández (Bristol � St. Andrews))

Small area disease mapping

In regions indexed i � �� �� � � � � n:
yi � observed count of disease incidence
Ei � expected count based on population size,
adjusted for age and sex, etc.

yi�Ei � standardised mortality (morbidity) ratio
(SMR)

Standard assumption: yi � Poisson�	iEi�


 inference on relative risks f	ig
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Structure of prior for relative risks

Continuously distributed MRF’s for the joint
distribution of the f	i� i � �� �� � � � � ng:
Besag, York and Mollié (1991), Clayton and
Bernardinelli (1992), Best, et al (1999), Wakefield
and Morris (1999)

Parameters characterising spatial dependence are
constant across entire study region


 potential risk of over-smoothing and masking of
local discontinuities, due to global effect of the
parameters (concern borne out by empirical studies)
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Hidden discrete-valued random fields

Common feature of several attempts to address this:
replace continuously varying random field for f	ig
by an allocation/partition model of the form

	i � 	zi

f	j � j � �� �� � � � � kg characterise k components
fzi� i � �� �� � � � � ng are allocation variables taking
values in f�� �� � � � � kg

Moving spatial dependence one level higher in the
hierarchy, to the fzig has the potential for greater
spatial adaptivity (again seen empirically).

Discreteness in the prior is not imposed on
posterior inference. Under Bayesian model
averaging, the posterior mean risk surface can
provide a smooth estimate.
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Models in this framework

include

� clustering or segmentation models of
Knorr-Held and Raßer (2000) and Denison and
Holmes (2001)

� Green and Richardson (2000) – Potts model for
fzig, with the number of states and strength of
interaction unknown (we retain a Markovian
structure for the fzig)

� Fernández and Green (2000) – spatial mixture
models – spatial dependence is pushed yet one
level higher: the fzig are conditionally
independent given weights wij � P �zi � j�
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Hidden Markov model approach

Basic mixture set-up

yi �

kX

j��

wjf��j�j� independently

�

introduce latent allocation variables fzig with

yijz � f��j�zi�

p�zi � j� � wj

Temporal HMM set-up

As above, but i now represents (discrete) time.

Data are a time series �yi�, and �zi� is now a Markov
chain.
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Extension to spatial case for disease mapping

Write relative risk as 	zi in place of 	i.

yijz � Poisson�	ziEi�

where fzig is a spatially dependent random field
with zi � f�� �� � � � � kg.

More commonly we would have covariates xi and
use the model:

yijz � Poisson�	ziEie
x�

i
��
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Allocation models

In each case, spatial context determined by assumed
neighbourhood structure – we say ‘adjacent’ �
‘have common boundary’ (i � j). For rare diseases,
more complex dependence not justified.

The formulations we have implemented and
explored:

� Potts model: p�z� � exp��U�z�� �k���� where
U�z� � �fi � j � zi � zjg � number of
like-coloured neighbour pairs.

� multinomial allocation – p�zi � j� � wij – using
either

– logistic-normal weights:
wij � exp�xij��

P
j� exp�xij��

– grouped continuous weights:
wij � ��xi � �j����xi � �j���

where �xij� and �xi� are Gaussian random
fields.
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Interpretation and inference in HMRFs and
partition models

Do we really believe there are k groups of regions
with identical relative risks?

� model is being used in a ‘semi-parametric’
fashion, not to identify clusters

� inference on f	zig rather robust to details of
prior structure – ‘borrows strength’ between
regions in an adaptive way (by Bayesian model
averaging)

� avoid over-smoothing of relative risks

� interpret inference on k and z with caution
(diagnostic/exploratory)
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Some issues in model choice for spatial
epidemiology

� objectives of the model and of the choice

� statistical paradigm

� specific criteria

One key consideration is the extent to which it is
believed that all relevant covariates have been
measured and included appropriately in the model.

(We can accept that ’all models are wrong’ without
accepting that all models are equally useless!)
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Confounding between spatial structure of
covariates and random effects

A periodically-voiced concern is over whether
fitting flexible spatial models in addition to
covariates systematically ’dilutes’ estimates of
covariate effects (the implication being to be
deliberately modest in allowing for unmeasured
covariates in order not to eliminate the significance
of the measured ones).

This concern is probably unfounded. See the partial
report of an on-going simulation study by
Richardson (HSSS, 2002). If spatial correlation
between covariates and random effects is
generated, there will be confounding – positive or
negative bias, otherwise, not.
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Multiple change points in point processes

Example:
cyclones hitting the Bay of Bengal

141 cyclones over a period of 100 years
(a cyclone is a storm with winds � �� km h��).

time

0 20 40 60 80 100

.. .......... .................. ..................... ............ .......................... . ... ................................................
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Our model is that the intensity as a function of time
is a step function, with an unknown number of
steps.

The number of steps k is Poisson(	), with 	 � 
, the
step function positions are drawn from the joint
density � s��s� � s���s� � s�� � � � �sk � sk����L� sk�

and the step heights are independent Gamma(
,�),
with 
 � ���� �� and � � ���� n�L�.

37



time

in
te

ns
ity

0 20 40 60 80 100

0
1

2
3

38



Posterior for the number of change points k
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Zero change points is ruled out; k � � or � more
probable than under the prior.
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Posterior density estimates for change-point
positions
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Model-averaged estimate: E�x���jy�
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(the expectation of a random step function is not a
step function).
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Ordinary smoothing methods (in this case a kernel
smoother) can’t match that mean curve
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– fixed-bandwidth smoothers either over-smooth
the steps, or under-smooth the plateaux.
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components (with discussion) Journal of the Royal
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Green, P. J. and Richardson, S. (2001) Hidden
Markov models for disease mapping

Fernández, C. and Green, P. J. (2001) Modelling
spatially correlated data via mixtures: a Bayesian
approach

Richardson, S., Leblond, L., Jaussent, I. and Green,
P. J. (2000) Mixture models in measurement error
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(the unpublished papers here can be found on the
web page below)

My web page:

http://www.stats.bris.ac.uk/�peter

My email address:

P.J.Green@bristol.ac.uk
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