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Abstract

We propose a methodology for Bayesian model determination in decomposable graphical
gaussian models. To achieve this aim we consider a hyper inverse Wishart prior distribution
on the concentration matrix for each given graph. To ensure compatibility across models,
such prior distributions are obtained by marginalisation from the prior conditional on the
complete graph. We explore alternative structures for the hyperparameters of the latter,
and their consequences for the model. Model determination is carried out by implementing
a reversible jump MCMC sampler. In particular, the dimension-changing move we propose
involves adding or dropping an edge from the graph. We characterise the set of moves
which preserve the decomposability of the graph, giving a fast algorithm for maintaining
the junction tree representation of the graph at each sweep. As state variable, we propose
to use the incomplete variance-covariance matrix, containing only the elements for which
the corresponding element of the inverse is nonzero. This allows all computations to be
performed locally, at the clique level, which is a clear advantage for the analysis of large and
complex data-sets. Finally, the statistical and computational performance of the procedure
is illustrated by means of both artificial and real data-sets.

Keywords: Bayesian Model Selection; Hyper Markov distributions; Junction Tree; Inverse
Wishart Distribution; Reversible Jump MCMC.

1 Bayesian graphical models

This paper is concerned with model determination for a random vector X, and in particular
with inference about its conditional independence graph g. We focus on the case where ¢ is
decomposable, and X is multivariate gaussian (although some of our formulation and analysis
applies much more generally).

Our research is related to work in the area of Bayesian model determination for directed
graphical models and probabilistic expert systems, see for instance Geiger and Heckerman (1994)
and Spiegelhalter et al (1993). For undirected graphical gaussian models the main reference is
Dawid and Lauritzen (1993), who introduced hyper Markov priors allowing local computations
in Bayesian model determination. Applications of such priors include those of Madigan and
Raftery (1994) and Madigan and York (1995), who analyse discrete graphical models according
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to Occam’s razor and using MCMC over the graph space. Finally, Dellaportas and Foster (1996)
use reversible jump MCMC for model determination over undirected discrete graphical models.
All the above papers consider only non-hierarchical and, typically, conjugate priors, with the
advantage of allowing the derivation of closed-form expressions of the posterior probabilities.
Quantitative learning is, however, limited to quantities having an explicit posterior distribution.
Our motivation is that it is often the case that richer information is to be extracted from the
data and, furthermore, that more flexible priors may be better suited for this purpose. Our
main contributions are therefore the introduction of a hierarchical Bayesian graphical gaussian
model and the design of a reversible jump MCMC algorithm to perform both structural and
quantitative learning in a graphical gaussian model by means of local computations.

After some preliminaries on graphical models we present our proposed Bayesian graphical
models in Section 2. In Section 3 we provide a complete characterisation of the one-edge-at-a-
time incremental changes to a graph that preserve its decomposability, and then use this to define
our reversible jump MCMC scheme for performing Bayesian model determination in graphical
models. In Section 4 we examine the statistical performance of the proposed methodology, as
well as the performance of the MCMC sampler. Finally, Section 5 contains some concluding
remarks.

1.1 Background on graphical gaussian models

In this Subsection we briefly review the theory of graphical models relevant for our work following
the exposition in Dawid and Lauritzen (1993), hereafter DL, to which we refer for further details
and explanations. For an introduction to graphical models, see Lauritzen (1996).

Let ¢ = (V, E) be an undirected graph, where the vertex-set V has p elements. A graph
or subgraph is complete if all its vertices are joined by an edge. A complete subgraph that is
not contained within another complete subgraph is called a clique. An ordering of the cliques
of an undirected graph, (C1,...,Cy,), is said to be perfect if the vertices of each clique C; also

contained in any previous clique C1,...,C;_1 are all members of one previous clique, that is for
1=2,3,...,n,
i—1
S;i=C;N U C; CCy forsome h=h(i)e{l,2,...,i};
j=1

the sets S; are called separators. If an undirected graph admits a perfect ordering it is said to
be decomposable. A pair (A, B) of subsets of the vertex set V of an undirected graph g is said
to form a decomposition of ¢ if: (i) V = AU B; (ii) AN B is complete; (iii) A N B separates A
from B.

With each vertex v € V associate a random variable X, taking values in a sample space
Xy. For A CV we let X4 = (Xy)ypey indicate the collection of random variables (X, : v € A)
with values in X4 = X,caX,. To ease the notation, let X = Xy-. By a probability distribution
over A C V we mean a joint distribution for X 4 over X4. If P is a distribution over U C V/,
and A, B C U, then P4 will denote the marginal distribution of X4 and Pp)4 the conditional
distribution of Xp given X4 = z4. A distribution P over V is Markov with respect to g if for
any decomposition (A, B) of g, X4 Il Xp|X anp, where II means “is independent of”, using the
notation introduced by Dawid (1979). A graphical model is a family of probability distributions
which are Markov with respect to a graph. Henceforth P is a graphical model with respect
to some graph g, which is not fixed, and will be tacit in the notation. We assume that ¢ is
decomposable.



A graphical gaussian model, also known as a covariance selection model (Dempster, 1972)
is defined by a p-dimensional multivariate gaussian distribution, with expected value p and
covariance matrix X

P = Np(p,%).

Note that, in a graphical gaussian model, the mean parameter p is typically set to zero; we shall
assume so, and therefore, the multivariate data we analyse will be expressed as deviations from
the sample mean. The covariance matrix Y is positive definite and such that P is Markov over g.
We remark that, in a graphical gaussian model, the global, local and pairwise Markov properties
are identical (see Lauritzen, 1996). The latter is particularly useful for interpretability. Define
K = X! to be the precision matrix of X. The “pairwise Markov property” specifies that:

X I XXy i gy & kij =0, (1)

Thus, g constrains ¥ imposing a pattern of zeros onto K. The effect of this constraint on X
can be better specified using the notion of matrix completion with respect to a graph (see, for
instance, Roverato and Whittaker, 1998). Let I be a p x p matrix such that {v;; = o4;} if and
only if (7,7) € E, and otherwise unspecified. A completion of I with respect to g is a positive
definite matrix obtained from I' by fixing its unspecified elements so that its inverse D satisfies
{di; = 0,V(i,7) € E}. See Dempster (1972) and Grone et al. (1984) for a proof of the uniqueness
and existence of such a matrix. It turns out that 3 is the completion of I" with respect to g.

Conditionally on a graph, say g, consider a sample z of size n from P. Let S = zz' denote the
observed sum-of-products matrix. For a subset of vertices A C V, let ¥4 denote the variance-
covariance matrix of the variables in X 4, and similarly for S. When the graph is decomposable
the likelihood of the graphical gaussian model specified by P is:

_ leeer(zc|Ee)
plef%.g) = [Isesp(zs|Bs)’

where

p(zc|Se) = 2m) 72 (det(20) T2 exp{—5tx(Sc (Ec) )} (2)

and similarly for p(zg|Xg), with | - | denoting cardinality.

1.2 Prior distributions for graphical gaussian models

Two kind of uncertainties may affect a graphical model: (a) uncertainty about the probability
distributions P on X or about the quantities, say 6, which parameterise such distributions; (b)
uncertainty about the graphical structure g, describing the conditional independence relation-
ships among the random variables considered. Our objective is to deal with both the above
uncertainties simultaneously in a Bayesian fashion, using the data and the available expert in-
formation (expressed through the prior) to learn about 0 (quantitative learning) and/or about
g (qualitative or structural learning). To achieve such an objective, we need to consider formu-
lating a prior distribution on 6 and g. Concerning the latter, we shall assume throughout, for
simplicity, a uniform prior on the class of decomposable graphs under comparison:

plg) =d ",

with d the number of decomposable graphs with vertex-set V. Note that d is actually hard to
compute. We can indeed estimate its value, using the algorithm outlined in Section 3. However,
d is not needed in our approach. Note also that the above prior distribution is simple, but not



neutral, being concentrated around models that are “medium-sized” in terms of their number of
edges. We remark that, using importance sampling ideas, it is in principle possible to reweight
results to replace this assumption by any other desired prior on g.

Turning to the parameters, a very general class of priors are the hyper Markov laws intro-
duced in DL. Let 6 be a quantity parameterising a graphical model P, for a given undirected
decomposable graph g = (V, E). Similarly, for A, B C V let 64 parameterise the marginal dis-
tribution P4, Markov with respect to the subgraph g4 and 6p|4 parameterise the conditional
distribution Pp|a, with Payp Markov with respect to gaup. A hyper Markov law is then defined
by a property which mimics the global Markov property, at the parameter level: A law £ on @ is
hyper Markov over g if, for any decomposition (A, B) of g, 04 1105|0 snp. In order to construct
such laws, DL define two distributions M over 04 and N over 0p as hyperconsistent if they
induce the same prior law over 04np. Given the family of sets C and S, and a collection of
pairwise hyperconsistent distributions (Lo, C € C), DL show that there exists a unique hyper
Markov law L over g, with the assigned marginals, concentrated on the set of parameters such
that P is Markov with respect to g.

A hyper Markov prior for a graphical gaussian model is a prior on 3. We can take, as
dominating measure, the product of Lebesgue measures on the incomplete variance-covariance
matrix ['. Such elements are subject only to symmetry and positive definiteness of the submatri-
ces {I'c = ¥¢,C € C}, as consistency restrictions over the corresponding marginal distributions
are automatically satisfied. Let o and [g be the densities of a generic clique and separator, with
respect to the corresponding product of Lebesgue measures. A hyper Markov law on ¥ can then
be obtained from the clique-specific marginal densities as:

_ HC’eC lC(EC)
HSeS ZS(ES) '

A natural (although not necessary) choice for a prior distribution over each clique-specific co-
variance matrix (and, therefore, for each separator) is to take a prior conjugate to the likelihood
in (2), letting (X¢) to be distributed as an inverse Wishart distribution, with parameters o and
®Y. We employ the parametrisation in DL which implies that, for o > 2, E(Z¢) = (—2)~1 ®©.
The resulting distribution for ¥ has been named the hyper inverse Wishart by DL.

The construction previously described requires the specification of many hyperparameters,
namely: the precision parameter «, common to all cliques, and one prior matrix, ®, for each
clique (the separator-specific priors can be obtained by marginalisation). Furthermore, in order
to satisfy hyperconsistency of the clique-specific priors, it is necessary (and sufficient) that, for
each pair of cliques, say A, B, with intersection S = A N B, the submatrices of ®* and &P
corresponding to the elements in .S coincide. This requirement is rather stringent, particularly
when large graphs are considered.

A further complication in the practical specification of a hyper Markov law, which is indeed
common to all Bayesian model comparison problems, is that of compatibility. The simplest case
involves comparison between two graphs, say g and ¢’. Let ¥ and ¥’ be the corresponding
precision matrices and, finally, £ and £’ be two hyper Markov laws on them. It is quite natural
to require that £(X4) = £/(X4), for any clique A common to both ¢ and ¢’. This notion of
compatibility is the same as in DL and corresponds to requiring the two prior distributions to
be consistent on the common marginals. Given the difficulty of the above specification tasks,
especially in large graphs, it becomes desirable to have a “semi-automatic” method for assigning
compatible hyper Markov distributions. One possibility, suggested in DL, is to consider an
“embedding” graph, ¢g*, and derive the required marginal distributions, for each ¢ C ¢*, by
marginalisation from those of ¢*. Note that this use of an embedding graph is not without
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critics. See Cowell (1996) for an alternative approach.

In the remainder of this work we shall take g* as the complete graph, for which 3 is not
constrained, and assign a IW(a, ®) distribution to ¥. Marginalisation from this law will then
imply that, for each C' € C, Lo(2¢) = IW (o, ®©), with ®¢ = &, the submatrix of ® cor-
responding to the variables indexed by C. The graph ¢ thus determines which collection of
submatrices of ® are to be taken to form a hyper Markov law on ¥ with respect to g. Although
the specification task is now reduced, there remains the issue of specifying the matrix ®. One
possibility is to consider an assignment that is default or uninformative, yet leads to a proper
prior on Y. However, it is difficult to understand what a default setting really means in the
present context. A different strategy is to add one further layer of uncertainty, and consider «
and ® as random quantities, regulated by a few hyperparameters. This leads us to consider a
hierarchical hyper Markov law.

2 The proposed models

Our proposed statistical models differ in terms of the proposed prior on %, conditionally on g.
A first class of models considers ¥ to be hyper inverse Wishart with respect to g, with fixed
hyperparameters o and ®. A second class of models considers a and ® random quantities, giving
rise to a hierarchical hyper inverse Wishart.

2.1 A non-hierarchical model

Consider first the case of fixed hyperparameters. The model we assume specifies that:

X|Z,9 ~ Ny(0,%);
Ylg ~ HIWy(a,®);
plg) = d7',

where « is a fixed positive quantity; @ is a fixed p X p symmetric positive definite matrix, whose
elements satisfy ®¢ = ®°, for all C € C, and d is the number of decomposable graphs on the
vertex set V.

Notice that the complete prior specification of the dispersion matrix ® involves setting
p(p + 1)/2 prior quantities, and satisfying the positive definiteness condition, a clearly difficult
task, so that one would typically try to simplify the structure of ®. A reasonable default
specification for @ is to consider an intra-class correlation structure:

®=71(pJ+(1=p)l), (3)

where J is the p X p matrix of 1’s and I the identity matrix of order p. Notice that ® is positive
definite if and only if 7 > 0 and p € (=1/(p — 1),1).

However, the above parameterisation exhibits some drawbacks: for instance, it may not be
reasonable to assume (a priori) a common correlation among each pair of random variables. An
assumption of common covariance is inevitably asymmetric about zero correlation (the prior
correlation is constrained below by —1/(p — 1)), and this may lead, particularly in large graphs,
to an asymmetric evaluation of the association signs. Concerning 7, the assumption of a common
prior scale is clearly reasonable if the random variables are standardised or on a similar scale.



2.2 A hierarchical model

Given the difficulties of prior specification, outlined above, it is desirable to devise a more
automatic, yet flexible, method of assigning a prior distribution. A natural choice is letting «
and ® become random quantities, to be assigned a prior distribution. A reasonable assumption
is that o, ® and g are mutually independent.

First consider assigning a prior for a. Notice that a expresses the relative weight of the
prior. A reasonable prior for « is a Gamma distribution, with mean f and variance fs, namely:

rn—(a) X a(f/s)_le_a/s,

where f > 0 and s > 0 are positive quantities to be fixed. A rationale for choosing them is that
m(cr) be as uninformative as possible; sensitivity to the choice will be discussed in Section 4.
Consider now the assignment of a prior on ®. The representation adopted for ® determines
the set of random quantities which are to be assigned a prior distribution. We shall consider the
following two situations: (a) ® unstructured; (b) ® with an intra-class correlation structure.

Unstructured ®. An unstructured prior for ® involves the assignment of a prior on p(p+1)/2
elements, that is, of p variances and p(p—1)/2 covariances. To ease the calculations, one can take
a conjugate prior distribution. Notice that the prior on ¥ can be interpreted as a likelihood for @,
suggesting that a conjugate prior for ® is a Wishart distribution, with (fixed) hyperparameters
d > 0 and T positive definite. Note that, although still difficult, this prior specification is
considerably easier than the specification of a hyper inverse Wishart law in the non-hierarchical
case. For instance, since ® is already a prior opinion, a reasonable requirement on the second-
stage prior on ® is that it is not very informative, taking d = 1 and embodying a belief of a very
simple structure, such as T' = diag(r11,...,7pp), possibly with 7;; = 7. The diagonal elements
of T should be fixed coherently with the scale of the corresponding random variables. In the
absence of such information, they can be taken as equal.

Intra-class ®. In the intra-class case, as remarked in the last Subsection, all partial correlation
coefficients are assumed to be equal a priori. A prior on the random elements (7,p) which
characterise the intra-class correlation structure can be obtained by restriction from the W (d,T")
prior on the unstructured ®, as follows:

m(1,p) o< ma(7(pJ +(1=p)I))

_ (d—2)/2
x [ —p)P 1+ p(p — 1)}]
1 p
X expq =57 iz;tiri-P;tij : (4)

Note that the above kernel does not factorise as 7(7) x m(p). However, if 37, ,;t;; = 0 (for
example, if ¢;; = 0,7 # j), 7 and p become independent, as in the following Proposition.

Proposition. Let ® be a random symmetric matrix of form (3) with 7 and p distributed as
(4), with >_izj tij = 0. Suppose that d > 2 — 2/p and let tg = 3P, t;;. Then

(a) 7 and p are independent random variables;



(b) 7 has the Gamma distribution;

p(d—2)+2 t_0>
T Ga<72 '3 )
(c)
_ .

where v has the Beta distribution

d (p—l)(d—2)+2>
~ B — .
T e (2’ 2
Thus, the prior on 7 depends on two hyperparameters: the mean and variance are increasing
in d and decreasing in t;. On the other hand, the prior on p depends only on d, and E(p) is
1

non-increasing in d. Notice also that E(p) > 0,Vp and that, as p — oo, E(p) — 5. It follows

that d should be fixed to regulate the prior on p, with ¢y adjusting its effect on the prior on 7.

3 Modifying graphs to preserve decomposability, and MCMC
algorithms

Markov chain Monte Carlo methods have considerably enlarged the domain of application of
Bayesian inference (see for example Tierney, 1994). In particular, the reversible jump MCMC
described in Green (1995) is particularly suited to deal with problems where the dimension of
the parameter space changes. In our context, the dimension-changing aspect concerns proposing
a change in the current graphical structure (say g) to a new structure, say ¢’. An important
point is that, since we are considering only decomposable graphs, the proposed moves should
consider only members of the latter class as candidate graphical structures.

3.1 Incremental changes to decomposable graphs

It is well-known (see for instance Frydenberg and Lauritzen, 1989) that the space of all de-
composable graphs can be traversed by adding and deleting single edges at a time. Since such
changes are convenient for MCMC implementation (in terms of algebraic tractability and com-
putational efficiency) they will form the basis for the sampling algorithm we introduce in the
next Subsection. Here we characterise in graph-theoretic terms those incremental changes to a
graph’s edge-set that preserve decomposability, making particular use of a junction forest repre-
sentation of the graph. This characterisation may have application outside our MCMC context.
While “legal” deletion moves can be characterised using a standard result which will be now
quoted, “legal” addition moves still need to be characterised and we shall propose a Theorem
for this purpose.

Theorem 1 (see, for instance, Frydenberg and Lauritzen, 1989). Let g and ¢’ be two undirected
decomposable graphs, with the same vertex set V, and with E' C E, with g having ezactly one
more edge than g'. Such an edge must then be contained in exactly one clique of g.

A junction tree T representation of a connected undirected graph g is a graph whose vertex-
set is the set of cliques of g, and whose edge-set is such that 7 is a tree and satisfies the junction
property: for any two cliques Cj, C; € C, and any clique C' on the unique path between them in 7T,



CiNC; C C'. A junction forest representation of an undirected graph g is a collection of junction
trees 7;, each corresponding to a collection of cliques C;, with C = [JC; and C; N Cj = 0,4 # j.
Finally, for each v € V' let [v] indicate the connectivity component of V', that is, the set of all
vertices which are connected to v.

Theorem 2. Let g = (V, E) be an undirected decomposable graph in which vertices a and b
are not adjacent, and let g' denote the graph modified by the addition of edge (a,b). Then ¢’ is
decomposable if and only if either

(i) la] # [0], or

(i1) [a] = [b] and there exist R,T C V such that aUR and bUT are cliques, and S = RNT is
a separator on the path between a U R and bUT in a junction forest representation of the

graph g.

Proof of Theorem 2. The case (i) where the vertices a and b are in different connected
components is rather trivial: we can simply add a clique a U b to the junction forest, linked to
arbitrary existing cliques a U R and b UT. The junction property clearly continues to hold for
the modified junction forest.

Turning to the connected case (ii), we first prove the necessity of the condition. Suppose
for a contradiction that there are no R, T such that (ii) holds. Let ¢ U R, b U T be the cliques
containing a and b that have the shortest connecting path in the junction forest among all such
cliques; by assumption RN T is not a separator (it may be empty). We note that the connected
component containing ¢ and b will remain connected when any vertices in R N'T are deleted,

along with all incident edges. Let vg = r,v1,...,v4,v441 = t for some g > 0 be the shortest path
in g from an element of R\ T to one of T'\ R avoiding vertices in RN T. No two of the {v;}
are adjacent except for (vj,vi11), 7 =0,1,...,¢, since it is a shortest path, and a and b are only

adjacent to vy and vg41 respectively, by definition of R and T. Thus inserting the edge (a,b)
would create a cycle a — vg — v1 — -+ = vg41 — b — a of length ¢ + 4 > 4 that is chordless.
The graph ¢’ would thus not be decomposable, completing the contradiction.

Now we prove the sufficiency of the condition. Given (ii), we can suppose that the cliques
a U R and b U T are adjacent in the junction forest. For, if not, the forest can be manipulated
so that this is so, while remaining a valid representation of the graph. To see this, let Cy =
aUR,Cy,...,Cp,Cpy1 = bUT be the path between the cliques, with p > 1. By assumption,
C;NCipp = S for some ¢ = 0,1,...,p. We can delete the edge (C;,C;11) from the junction
forest, and insert (Cp,Cpy1) instead. The only pairs of cliques {C,C_} for which the path
connecting them has any additional cliques as a result of the modification are those for which
the original path included both C; and Cj;1; hence CL NC_ C C; N Ci41 = S. The additional
cliques in the modified paths must be some of {Cj,i = 0,1,...,p + 1}, all of which contain S.
Thus the junction property remains true for the junction forest as modified.

Thus without loss of generality, a U R and bU T are adjacent cliques. Let P = R\ S and
Q =T\ S. We distinguish 4 cases, according to which of P and @) are empty or non-empty. If
both are empty, then we simply amalgamate the cliques to form a new clique ¢ UbU S, adding
junction forest edges to those cliques adjacent to either of the original cliques. If P # () = Q,
we replace clique bUT = bU S by a UbU S, leaving adjacencies unchanged, and similarly by
symmetry if P = () # (. Finally, if neither is empty, we insert a new clique a Ub U S in the
junction forest, linked to ¢ U R and b U T. In all 4 cases, it is easy to see that the junction
property is maintained, so g’ is decomposable.



Example. Consider the graph in Figure 1: it is characterised by the cliques: (a,b, f),
(b’ c’ f)’ (c’ d’ f) a"nd (d’ e’ f)'

Figure 1 about here

The separators are (b, f), (¢, f) and (d, f). By Theorem 1, the edges (b, f), (¢, f) and (d, f)
cannot be deleted. On the other hand, the pairs (a,e), (a,d) and (b,e) cannot be joined in ¢'.
This is because, for all such pairs, RNT = {f}, but {f} is not a separator.

Remark. Theorems 1 and 2 can be employed to characterise completely the legitimate
incremental changes to the edge-set of a decomposable graph. An alternative possibility is to
reject such moves by running maximum cardinality search (MCS, see for instance Spiegelhalter et
al., 1993) after each graphical update proposal, to check if the proposed graph ¢’ is decomposable.
However, while MCS tests for decomposability by means of a global search through the whole
of the junction forest (without building the new clique organisation), our method only requires
searching through a section of the junction forest, corresponding to the shortest path between
cliques containing ¢ and b and, furthermore, it constructs the new junction forest, so that the
cliques are already constructed ready for use in probability calculations. Often, ¢ and b will be
adjacent so that the search will be very fast. In Section 4 we present empirical results that show
the better performance of our algorithm.

3.2 Reversible jump MCMC design

We now briefly summarise the main features of reversible jump MCMC methodology, referring to
Green (1995) for further details. Let y denote a state variable. For instance, in our hierarchical
Bayesian graphical gaussian model, y is the complete set of unknowns (g, 2, a, ®). Let 7(dy) be
the target probability measure of interest (the posterior distribution). When the current state is
y we propose a move of type m, that would take the chain to the destination ', with probability
am(y,dy"). Tt is then accepted with probability given by:

7(dy')gm (y', dy) }
" (dy)gm(y, dy') ]
which ensures that detailed balance is achieved within each move type.

For an “ordinary” move type, that is, a move which does not change the dimension of the
parameter vectorr expression (5) reduces to the usual Metropolis-Hastings acceptance proba-
bility, using an ordinary ratio of densities with respect to a measure on the underlying (fixed)
parameter subspace. For dimension-changing moves, Green (1995) shows that expression (5)
can be interpreted as a ratio of Radon-Nikodym derivatives with respect to a suitable chosen
common dominating measure. Suppose that a move from y to 3’ is proposed, with gy’ lying
in a higher dimensional space. Then the method can be implemented by drawing a vector of
continuous random variables u, independent of y, and setting y' = ¢'(y, u), with ¢/(-,-) an invert-
ible deterministic function. Correspondingly, the reverse move can be achieved by the inverse
transformation, in a deterministic fashion. Then expression(5) simplifies to:

) rmly) ‘ 0y’ } , (©)
m(y)  rm(y)a(u) — [0(y,u)
where r,,(-) is the probability density of a move of type m, evaluated at y and g(u) is the density
unction of u.

We now detail the reversible jump MCMC sampler we propose for the models specified in
Section 2. In the exposition we refer to the more general hierarchical model. An important issue

am(y.y/) = min {1 )

am(y,y') = min{l,



in the design of the algorithm is the choice of the state variables. In our context, an important
choice to be made is on how to represent . Considering the collection (X, C € C) would be
too computationally expensive: for instance, a change in g would require changing most of the
(possibly overlapping) clique-specific variances ¥¢. On the other hand, it seems that using the
precision matrix K is a good choice: because of (1), adding (deleting) an edge requires simply to
draw (set to zero) an element of K previously set to zero (unconstrained). However, notice that
the hyper inverse Wishart model considered means that several time-consuming operations have
to be performed: first K has to be inverted, to obtain ¥; second, the collection of submatrices
¢ is to be extracted from 3; finally, both the likelihood and the prior contribution to the
Metropolis-Hastings acceptance ratio for g’ requires inverting each Y. Notice also that the
inversion from K to Y prevents local computation of the ratio.

A more efficient representation for 3 is to consider as state variable the incomplete version
of 3, I'. This has the advantage of avoiding the effort of performing inversion of K into 3, thus
leading to local Metropolis-Hastings computations. Note that since it will be important to draw
inferences on functions of K (or ), such as the partial correlation coefficients, we may want to
occasionally complete I to obtain K and Y. An important result in this direction is contained,
for instance, in DL: it turns out that ¥ = K !, with

K =3 (5cH" =3 3H",
¢

S

where the exponent [0] means that the corresponding matrix is filled with zeros to match di-
mensions.

Thus, for our hierarchical Bayesian graphical model we shall consider a systematic scan over
the following move types:

(a) adding or deleting one edge from the graph ¢, ensuring that the proposed graph ¢’ is
decomposable. Notice that this move involves also making changes to I'.

(b) updating the incomplete covariance matrix I and, correspondingly, 3.
(c) updating the hyperparameter .
(d) updating the hyperparameter ®.

The only randomness in the above scanning is the choice between adding and deleting an edge
in (a). An update of the state variables (g, 2, o, @) is complete when all of the above moves are
completed.

Updating g. Consider first moves of type (a), which are the only ones involving a change in
the dimensionality of the parameter space. To accomplish this move we draw randomly a pair
of distinct vertices. If such pair, say (i,7) is in E' we propose deleting the edge (i, j); otherwise,
if (i,7) € E, we propose adding (i, 7) to the graph.

If (4, 7) is proposed for insertion, the dimensionality of the parameter space increases by one;
this is expressed by an extra free element of . This requires specifying a new element of T',
71{]-. This is done by drawing a random variable u from a N(0,0%) distribution, with o a scale
parameter to be properly chosen, and then letting 'ygj = u. This is a blind proposal, which does
not take into account the previous (constrained) state of o;;. As an alternative, with the extra
computational cost of completing [', the proposal can be centered at the previous state, as in:
’yl{j = 0;j +u. In our computations we prefer to perform only local computations and, therefore,
we employ the former proposal.
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Let R, indicate the Metropolis-Hastings ratio when the proposed move consists of adding
(i,7) to g, leading to ¢g’. Such ratio can be calculated as in (6). First note that the Jacobian
of the transformation is equal to 1, and this is not surprising, since we are making proposals
on the natural scale. The proposed move can be seen as a change in the appropriate section
of the junction tree (possibly after some permutations), as illustrated in the Proof of Theorem
2. According to the proposed model, and adopting the proposal just described, based on the T’
representation, it turns out that the posterior ratio localises to the four subsets S, SU4, SU j,
SUiUj (abbreviated below as S, Si, Sj and Sij):

R — W) _ MEA()
m(y)  h(Esi)h(Zs;)
where each of the above four terms is obtained as the product of the prior and the likelihood of
the appropriate submatrix of . For instance, for S:

h(Xs) = IW(Es; 0, ®g) X N(zs;Es).

When S = ), h(Xg) = 1. Notice that the requirement of positive definiteness of 3 constrains
vij: if X;; is not positive definite then h(Xy,;) = 0, 50 Rpost = 0 and the move is rejected.

Consider now the proposal ratio 7, (y")/(rm(y)g(u)). Since the graphs specified by y and ¢/’
differ in exactly one edge, 7, (y) and r,,, (y') are simply the probabilities of choosing that edge for
addition or deletion. Since all edges are chosen with equal probability, ry,(y) = rm(y') = 1/(5).
Finally, when (i,7) is added, 'yz’-j is drawn from a gaussian distribution, with zero mean and
standard deviation o, so that

(u) 1 1 u?

u) = expl —=—5 ¢ .

1 V2rog P12 o2

Thus the proposal ratio is 1/g(u). Putting together the different terms, we obtain that:
R, = Rpost X q(u)_l.

Notice that the calculation of R, completely localises to at most four cliques.

So far we have considered a move which involves adding an edge to g. When (4, j) is proposed
for deletion, we leave +;; unspecified (it is indeed of no use in the new model). We follow the
reverse of the analysis above, and the acceptance ratio Ry is finally obtained as Ry = 1/R,.

Updating Y. Our strategy consists of perturbing each element of the corresponding incom-
plete matrix I' with independent gaussian random walk proposal, centered around the current
value. More formally, for all (7, j) such that ¢ = j or 7 and j are adjacent in the current graph g:

where the o;;’s are spread parameters, to be chosen.

We remark that a more complicated strategy could have been taken, for example, updating
only one clique-specific block of ¥ at a time, and exploiting the junction tree representation
to construct Gibbs steps. However, the advantages of this do not seem to compensate for
the increased complexity of the sampler and the extra computational effort, which discourage
implementation.

We now calculate the acceptance probability for our proposed updating of > to a new co-
variance matrix, say ¥/, by means of a perturbation of its specified elements in I'. As in the
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ordinary Metropolis-Hastings algorithm, such a probability is equal to: min(1, Ry), where Ry
indicates the acceptance ratio of the move, and is the product of two terms: the posterior ratio
Rpost and the proposal ratio Rprop. The former can be calculated locally, through the junction
forest of the graph:

_ p(Ee, @,9) p(z]%, 9)
P p(Sla, @,9) p(a],g)’
that is, the ratio of two hyper inverse Wishart kernels. Note that if any of the X, C' € C is not
positive definite, the move is rejected, as otherwise we would obtain a non positive definite X.
Finally, since the proposal distribution is symmetric, Ry is equal to 1.

R

Updating a. We perturb a with a gaussian random walk proposal, centered around the
current value, namely: ¢(o/|a) = N(«, 04), where oy, is a spread parameter, to be appropriately
chosen. Consequently, the proposal ratio is equal to 1. On the other hand, the posterior ratio
is equal to:

p(Z|e/, @, g) p(a)
p(Ele, @,9) ple)

Rpost =

Updating ®. When @ is unstructured, it will be updated similarly to . That is, a proposal
for ® will be obtained by perturbing each element of ® with a random walk proposal, namely:

;-j = N(¢ij,vij), where the v;;’s are spread parameters, to be suitably chosen. The acceptance
probability of the move will be equal to min(1, Re), with Re = Rpost Rprop, as usual. Given the
symmetry of the adopted proposals, R,rop = 1. On the other hand:

p(X]a, @, g) p(P')
p(Bla, ®,9) p(®)

If @’ is not positive definite, the proposed move is rejected. Note the generality of the above
expression, which holds for all of the structures considered for ®, because of the conditional
derivation of the priors. Clearly, more complicated proposals for @ and ® can be considered but,
in our experience, such changes do not materially affect the performance of the method.

Rpost =

4 Statistical performance of the methodology

Notice first that the data x can be sufficiently summarised by the sample size n and the sample
variance-covariance matrix S = zz'. We have considered three data-sets, in order of increasing

difficulty.

(a) Fret’s heads data-set, with p = 4; there are 64 possible graphs, of which 3 are not de-
composable. This is a small but challenging data-set, since all variables appear highly
correlated marginally, and there is no evident pattern in the sample precision matrix,
resulting in a highly multimodal posterior distribution on the graphical structures.

(b) Fowl bones data-set, with p = 6; there are 32768 possible graphs, of which 80% are
decomposable. This is a more complex problem, but less multimodal than the previous
one.

(c) An artificial data-set, with p = 16; there are 2'® possible models, of which 45% are
decomposable. Data is actually simulated from a non decomposable model, namely a
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(first order) gaussian Markov process on a regular 4 x 4 spatial lattice. We have set equal
to 0.2 all the partial correlations not constrained to zero by the graph. This data-set
will illustrate, besides the process of learning the true simulated data, how a mixture of
non-decomposable models can approximate the true non-decomposable model.

The analysis of the three data-sets will be presented simultaneously, considering the follow-
ing aspects: (i) prior settings; (ii) posterior distributions of main quantities of interest; (iii)
sensitivity to prior specification; (iv) performance of the MCMC sampler.

Prior setting. For all data-sets we have considered both hierarchical and non-hierarchical
models, with several hyperparameter specifications. In the paper we shall report results for only
one such prior assessment, namely, a hierarchical prior with an intra-class correlation structure
for ®, with f =p+1, s =0.1, T = I, and d = 2. Concerning the parameter ¥, it is important
to understand see what such a prior specification corresponds to in terms of the prior expected
partial correlation coefficients. This can be done by MCMC simulation from the assumed mixture
of hyper inverse Wisharts prior. For instance, the empirical average of the output obtained from
n = 100, 000 reversible jump MCMC sweeps after 10,000 burn-in, with p = 4, gives essentially
an identity matrix.

Posterior distributions. We now present results on the three data-sets considered. Figure
2 reproduces the most plausible graphs, according to the posterior distribution of g, for Fret’s
data, obtained with a run of n = 100,000 sweeps and n = 10,000 of burn-in.

Figure 2 about here

Notice first that the posterior distribution of g is dispersed, as expected. For instance, the
most probable graph receives only about 15% of the posterior probability and, in order to obtain
80% of the posterior probability, at least 10 structures have to be considered. These results are
similar to those in Giudici (1996) who performed an exact non-informative Bayesian analysis on
the same data-set using a non-hierarchical model.

It is often of interest to evaluate not only if an edge is present, but the strength of the
association described by the edge itself. This can be done looking at the posterior distribution
of the partial correlation coefficients, which cannot be derived analytically, but can be easily
obtained from the MCMC output. Figure 3 reproduces the posterior distributions of the partial
correlation coefficients for Fret’s data.

Figure 8 about here

From Figure 3 notice that only the partial correlation between (1,2) and that between (3,4)
have a relatively small posterior probability around zero, so that the evidence supports strongly
the presence of such two edges.

Consider now analysis of the Fowl bones data-set, obtained with a run of n = 100,000
sweeps and n = 10,000 of burn-in. Compared to Fret’s data, the posterior distribution of
g turns out to be more concentrated, with just two graphs accounting for about 33% of the
posterior probability, with the others less important. The results can be compared with the
deviance-based analysis in Whittaker (1990): while the graph selected by Whittaker contains 8
edges and is not decomposable, our most probable graph contains all edges in Whittaker’s as
well as two more edges: (3,6) and (4,5), thus breaking the cycle between (1,3,4,6) in Whittaker’s.

13



We now finally comment on results on the spatial lattice data-set, obtained with a run of
100,000 sweeps after 10,000 burn-in. Our aim here is to show that, although the considered
model space is very large, and does not contain the true model, MCMC learning can still give
sensible answers. Figure 4 reproduces the trace and the corresponding histogram of two sampled
partial correlations: the left trace plots a partial correlation which is equal to 0.2 in the true
model; the right one a partial correlation which is zero in the true model.

Figure 4 about here

Notice how well the simulation acknowledges the difference between the two correlations,
although the simulation length is certainly short, compared to the number of candidate models.
We remark that this difference is general; for presentation purposes we have presented only two
representative edges.

We have also evaluated the number of edges which are misclassified by the simulation, using
a simple binary discriminant function, which signals edge presence if the proportion of times
that edge is in the simulated model is greater than .5 and edge absence otherwise. The total
number of misclassified edges is equal to 13, corresponding to a rate of 11%, and similar to the
number of edges require to make the graph decomposable. Our results seem to be maintained
with analysis of an even larger 5 x 5 spatial lattice, although longer runs are needed to achieve
the same stability of the output. For instance, the number of misclassifications we have obtained,
with a run of n = 1,000,000 iterations is equal to 42, corresponding to a rate of 14%.

On the other hand, we remark that Bayesian structural learning is a very difficult task for this
problem and, more generally, for large data-sets. Our results show that this is indeed possible
with MCMC, although slow and requiring a considerable amount of diagnostic checking, in order
to ascertain the validity of the results.

Sensitivity to the prior. Fret’s data-set is useful for evaluating the sensitivity of results
to the prior distribution, because of its highly correlated structure, leading to a multimodal
posterior distribution over the graph space. Let gy denote the graph with the maximum posterior
probability; each such graph will be described by a list of binary indicators for edge presence,
with edges ordered in lexicographic order of the two vertices. Finally, let ‘n.edges’ indicate the
number of edges of g.

When a non-hierarchical prior is used, the posterior over graphs depends on both « and p,
particularly on the latter (see Table 1). The support for more complex graphs is lower for larger
p. As expected, the influence of the prior grows with «.

Table 1 about here

Inference on partial correlation coefficients is quite robust, this seems an advantage of model
averaging. Table 2 shows such a robustness of the inference on the partial correlation coefficient
between X and X, with a non-hierarchical prior. From previous analyses of Fret’s data, it is
quite difficult to draw a conclusion on this. Similar results can be obtained with a hierarchical
prior.

Table 2 about here

The hierarchical prior has a smaller impact on the posterior over graphs (compare Table
3 with Table 1). On the other hand, the hierarchical model seem to select models with a
higher number of edges. These results are confirmed by the analysis of the two other data-sets
considered.
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Table & about here

Performance of the MCMC sampler. First of all we remark that the correctness of our
program implementing the sampler has been partially validated for all of our models by running
them without any data, and with the likelihood term omitted: that is, we have simulated from
the prior distribution. We have derived analytically the exact distribution of some marginal
quantities, such as g and the number of edges present, and checked whether the MCMC output
was in agreement with such theoretical results. Our algorithms gave very good agreement
between the exact and simulated prior marginals.

A requirement in designing any Metropolis-Hastings sampler is the appropriate choice of
the spread parameters of the proposal distribution, in order to ensure satisfactory mixing of
the chain. In our case, after a number of pilot runs, we have decided to take og = 0.5n/p;
oij = 0.1/p; 0o = 1.0; v;5 = 1.0/p. We remark that, concerning the proposal on g, the choice
of centering the proposal at o;; leads to better performances compared to a “blind” proposal
centered at 0. However, the completion of I' is computationally expensive. In a typical run
with p = 10 and a hierarchical model this takes about 40% of the CPU time. This percentage
increases with p and the number of edges present in the graph.

Table 4 reports the accept/reject rates on g, I'y, ® and « for the three previously described
simulations. We also report the corresponding total computation times obtained on a SPARC4
workstation.

Table 4 about here

In order to evaluate the computational times of our method relative to MCS, we conducted
a small trial with the two methods in parallel, timing just the graph manipulation part of the
procedures (testing for decomposability and constructing the new cliques and separators). For
uniformly random decomposable graphs on 6, 10 and 20 vertices, the times to run MCS for
these graph operations were respectively 0.63, 1.21 and 3.49 times those with our method. This
is a necessarily incomplete comparison, and it is difficult to be absolutely objective as times
depend on details of the coding. However, the comparisons are in one sense favourable to MCS,
since in applications with data, many graph moves are rejected, and our method then gains an
additional advantage through rejecting at an early stage.

The most challenging aspect of the simulation is mixing over ¢g. It can be monitored by
looking at an appropriate summary measure of g, such as the number of edges present, which
describes the graph complexity. For all data-sets trace and autocorrelation plots on the number
of edges show good performance. However, the number of iterations required to achieve such
stability increases with p: for both Fret’s and Fowl bones data-sets n = 100,000 iterations are
sufficient, whereas for the spatial lattice model a 10 times longer run is needed. We have also
assessed performance of the MCMC dimension-jumping move more formally: for each of the
three considered data-sets we have evaluated Gelman and Rubin’s convergence diagnostic for
the trace of the number of edges in the simulated graphs, according to the iterated graphical
approach suggested by Brooks and Gelman (1998). Our result indicate that each of the simulated
parallel chains is close to the target distribution.

We finally remark that the MCMC performance is not greatly affected by the choice of
hyperparameter values. However, mixing is sensitive to the strength of the observed interaction
effects between the variables in the graph: the higher this is, the slower the convergence.
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5 Discussion

We have proposed a methodology for Bayesian model determination in undirected decomposable
graphical models and, in particular, for graphical gaussian models. Our proposal is based on
hierarchical prior distributions. We believe hierarchical priors have two main advantages with
respect to non-hierarchical priors: on one hand, they are easier to specify, and can thus constitute
an “automatic” default choice, especially for highly complex problems; on the other hand, they
seem to lead to inferences less sensitive to the prior, as they allow “borrowing strength” of
sample information between different clique domains.

The second original contribution of our paper is the implementation of a reversible jump
MCMC algorithm for Bayesian model determination. This allows the extraction of posterior
inference on any quantity of interest, in both the hierarchical and the non-hierarchical model.
For instance, posterior estimates of the partial correlation coefficients, giving the strengths of
the associations, can be easily obtained.

Our algorithm is fully based on local computations: the adding/deleting characterisation
and the positive completion results have led to the construction of a fast algorithm to rearrange
the junction tree and the associated parameters as g varies. On the other hand, a possible
disadvantage is that we are restricted to decomposable graphical models. However, as we have
also shown in the application section, quantitative learning in non-decomposable models can be
reasonably well approximated by learning from mixtures of decomposable models.

Another important weakness of the methodology is that it becomes slow for very large
domains, as the dimension of the model space increases more than exponentially with the number
of vertices. Research is needed in the design of proposal moves which can improve the speed of
convergence as well as on the related issue of monitoring the convergence of the algorithm.

We finally remark that our proposed methodology is quite general, and can be extended to
other families of graphical models.
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Table 1: Sensitivity of structural learning with respect to the prior, for a non-hierarchical model.

a=p+1 a=2p
p=—3 p=0 p=9 |p=—-3 p=0 p=.9
90 100011 111001 100011 | 110001 111011 110001
p(g0|z) 1165 1267 .2645 1415 171 2142
E(n.edges|z) 3.63 4.16 3.13 3.52 4.21 3.04

Table 2: Sensitivity of model averaged inference on partial correlation coefficients with respect

to the prior, for a non-hierarchical model.

a=p +1 o = 2p
p=—3 p=0 p=9|p=-3 p=0 p=.9
E(pi2]z) | 0.204  0.207 0.241 0.204  0.208 0.239

Table 3: Sensitivity of structural learning with respect to the prior, for a hierarchical model.

f=p+1 f=2p
d=2 d=p d=2p | d=2 d=p d=2p
90 111011 110111 110111 | 111011 111011 111011
p(go|x) 1527 1304 1422 1317 1412 1517
E(n.edges|z) | 4.41 4.40 4.46 4.45 4.54 4.53
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Table 4: Performance of the MCMC samplers, for the data-sets considered: rejection fractions
and computation times (in minutes and seconds, for 100 000 sweeps).

Move type | Fret’s Fowl bones Spatial lattice
g .022 .001 .002
by .73 .016 379
o .b66 .b95 .642
Q@ .18 476 BT
Time 2:16 3:57 31:03

Figure 1: Graph illustrating the reversibility condition
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Figure 2: Most probable graphs for Fret’s data-set
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Figure 3: Posterior distribution of the partial correlation coefficients for Fret’s data-set
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Figure 4: Partial correlation plots for the simulated spatial lattice data
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