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Abstract

We propose a methodology for Bayesian model determination in decomposable graphical

gaussian models� To achieve this aim we consider a hyper inverse Wishart prior distribution

on the concentration matrix for each given graph� To ensure compatibility across models�

such prior distributions are obtained by marginalisation from the prior conditional on the

complete graph� We explore alternative structures for the hyperparameters of the latter�

and their consequences for the model� Model determination is carried out by implementing

a reversible jump MCMC sampler� In particular� the dimension�changing move we propose

involves adding or dropping an edge from the graph� We characterise the set of moves

which preserve the decomposability of the graph� giving a fast algorithm for maintaining

the junction tree representation of the graph at each sweep� As state variable� we propose

to use the incomplete variance�covariance matrix� containing only the elements for which

the corresponding element of the inverse is nonzero� This allows all computations to be

performed locally� at the clique level� which is a clear advantage for the analysis of large and

complex data�sets� Finally� the statistical and computational performance of the procedure

is illustrated by means of both arti�cial and real data�sets�

Keywords� Bayesian Model Selection� Hyper Markov distributions� Junction Tree� Inverse

Wishart Distribution� Reversible Jump MCMC�

� Bayesian graphical models

This paper is concerned with model determination for a random vector X� and in particular
with inference about its conditional independence graph g� We focus on the case where g is
decomposable� and X is multivariate gaussian �although some of our formulation and analysis
applies much more generally��

Our research is related to work in the area of Bayesian model determination for directed
graphical models and probabilistic expert systems� see for instance Geiger and Heckerman ������
and Spiegelhalter et al ����	�� For undirected graphical gaussian models the main reference is
Dawid and Lauritzen ����	�� who introduced hyper Markov priors allowing local computations
in Bayesian model determination� Applications of such priors include those of Madigan and
Raftery ������ and Madigan and York ����
�� who analyse discrete graphical models according
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to Occam�s razor and using MCMC over the graph space� Finally� Dellaportas and Foster ������
use reversible jump MCMC for model determination over undirected discrete graphical models�

All the above papers consider only non
hierarchical and� typically� conjugate priors� with the
advantage of allowing the derivation of closed
form expressions of the posterior probabilities�
Quantitative learning is� however� limited to quantities having an explicit posterior distribution�
Our motivation is that it is often the case that richer information is to be extracted from the
data and� furthermore� that more �exible priors may be better suited for this purpose� Our
main contributions are therefore the introduction of a hierarchical Bayesian graphical gaussian
model and the design of a reversible jump MCMC algorithm to perform both structural and
quantitative learning in a graphical gaussian model by means of local computations�

After some preliminaries on graphical models we present our proposed Bayesian graphical
models in Section �� In Section 	 we provide a complete characterisation of the one
edge
at
a

time incremental changes to a graph that preserve its decomposability� and then use this to de�ne
our reversible jump MCMC scheme for performing Bayesian model determination in graphical
models� In Section � we examine the statistical performance of the proposed methodology� as
well as the performance of the MCMC sampler� Finally� Section 
 contains some concluding
remarks�

��� Background on graphical gaussian models

In this Subsection we brie�y review the theory of graphical models relevant for our work following
the exposition in Dawid and Lauritzen ����	�� hereafter DL� to which we refer for further details
and explanations� For an introduction to graphical models� see Lauritzen �������

Let g � �V�E� be an undirected graph� where the vertex
set V has p elements� A graph
or subgraph is complete if all its vertices are joined by an edge� A complete subgraph that is
not contained within another complete subgraph is called a clique� An ordering of the cliques
of an undirected graph� �C�� � � � � Cn�� is said to be perfect if the vertices of each clique Ci also
contained in any previous clique C�� � � � � Ci�� are all members of one previous clique� that is for
i � �� 	� � � � � n�

Si � Ci �
i���
j��

Ci � Ch for some h � h�i� � f�� �� � � � � ig�

the sets Si are called separators� If an undirected graph admits a perfect ordering it is said to
be decomposable� A pair �A�B� of subsets of the vertex set V of an undirected graph g is said
to form a decomposition of g if� �i� V � A � B� �ii� A � B is complete� �iii� A � B separates A
from B�

With each vertex v � V associate a random variable Xv taking values in a sample space
Xv� For A � V we let XA � �Xv�v�V indicate the collection of random variables �Xv � v � A�
with values in XA � �v�AXv� To ease the notation� let X � XV � By a probability distribution
over A � V we mean a joint distribution for XA over XA� If P is a distribution over U � V �
and A�B � U � then PA will denote the marginal distribution of XA and PBjA the conditional
distribution of XB given XA � xA� A distribution P over V is Markov with respect to g if for
any decomposition �A�B� of g� XA qXB jXA�B � where q means �is independent of�� using the
notation introduced by Dawid ������� A graphical model is a family of probability distributions
which are Markov with respect to a graph� Henceforth P is a graphical model with respect
to some graph g� which is not �xed� and will be tacit in the notation� We assume that g is
decomposable�
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A graphical gaussian model� also known as a covariance selection model �Dempster� �����
is de�ned by a p
dimensional multivariate gaussian distribution� with expected value � and
covariance matrix ��

P � Np������

Note that� in a graphical gaussian model� the mean parameter � is typically set to zero� we shall
assume so� and therefore� the multivariate data we analyse will be expressed as deviations from
the sample mean� The covariance matrix � is positive de�nite and such that P is Markov over g�
We remark that� in a graphical gaussian model� the global� local and pairwise Markov properties
are identical �see Lauritzen� ������ The latter is particularly useful for interpretability� De�ne
K � ��� to be the precision matrix of X� The �pairwise Markov property� speci�es that�

Xi qXj jXV nfi�jg � kij � �� ���

Thus� g constrains � imposing a pattern of zeros onto K� The e�ect of this constraint on �
can be better speci�ed using the notion of matrix completion with respect to a graph �see� for
instance� Roverato and Whittaker� ������ Let � be a p� p matrix such that f�ij � �ijg if and
only if �i� j� � E� and otherwise unspeci�ed� A completion of � with respect to g is a positive
de�nite matrix obtained from � by �xing its unspeci�ed elements so that its inverse D satis�es
fdij � �� ��i� j� 	� Eg� See Dempster ������ and Grone et al� ������ for a proof of the uniqueness
and existence of such a matrix� It turns out that � is the completion of � with respect to g�

Conditionally on a graph� say g� consider a sample x of size n from P � Let S � xx� denote the
observed sum
of
products matrix� For a subset of vertices A 
 V � let �A denote the variance

covariance matrix of the variables in XA� and similarly for S� When the graph is decomposable
the likelihood of the graphical gaussian model speci�ed by P is�

p�xj�� g� �

Q
C�C p�xC j�C�Q
S�S p�xSj�S�

�

where
p�xC j�C� � �����njCj���det��C���n�� expf��

�tr�SC��C����g� ���

and similarly for p�xSj�S�� with j � j denoting cardinality�

��� Prior distributions for graphical gaussian models

Two kind of uncertainties may a�ect a graphical model� �a� uncertainty about the probability
distributions P on X or about the quantities� say �� which parameterise such distributions� �b�
uncertainty about the graphical structure g� describing the conditional independence relation

ships among the random variables considered� Our objective is to deal with both the above
uncertainties simultaneously in a Bayesian fashion� using the data and the available expert in

formation �expressed through the prior� to learn about � �quantitative learning� and�or about
g �qualitative or structural learning�� To achieve such an objective� we need to consider formu

lating a prior distribution on � and g� Concerning the latter� we shall assume throughout� for
simplicity� a uniform prior on the class of decomposable graphs under comparison�

p�g� � d���

with d the number of decomposable graphs with vertex
set V � Note that d is actually hard to
compute� We can indeed estimate its value� using the algorithm outlined in Section 	� However�
d is not needed in our approach� Note also that the above prior distribution is simple� but not

	



neutral� being concentrated around models that are �medium
sized� in terms of their number of
edges� We remark that� using importance sampling ideas� it is in principle possible to reweight
results to replace this assumption by any other desired prior on g�

Turning to the parameters� a very general class of priors are the hyper Markov laws intro

duced in DL� Let � be a quantity parameterising a graphical model P � for a given undirected
decomposable graph g � �V�E�� Similarly� for A�B � V let �A parameterise the marginal dis

tribution PA� Markov with respect to the subgraph gA and �BjA parameterise the conditional
distribution PBjA� with PA�B Markov with respect to gA�B � A hyper Markov law is then de�ned
by a property which mimics the global Markov property� at the parameter level� A law L on � is
hyper Markov over g if� for any decomposition �A�B� of g� �A q �B j�A�B� In order to construct
such laws� DL de�ne two distributions M over �A and N over �B as hyperconsistent if they
induce the same prior law over �A�B� Given the family of sets C and S� and a collection of
pairwise hyperconsistent distributions �LC � C � C�� DL show that there exists a unique hyper
Markov law L over g� with the assigned marginals� concentrated on the set of parameters such
that P is Markov with respect to g�

A hyper Markov prior for a graphical gaussian model is a prior on �� We can take� as
dominating measure� the product of Lebesgue measures on the incomplete variance
covariance
matrix �� Such elements are subject only to symmetry and positive de�niteness of the submatri

ces f�C � �C � C � Cg� as consistency restrictions over the corresponding marginal distributions
are automatically satis�ed� Let lC and lS be the densities of a generic clique and separator� with
respect to the corresponding product of Lebesgue measures� A hyper Markov law on � can then
be obtained from the clique
speci�c marginal densities as�

l��� �

Q
C�C lC��C�Q
S�S lS��S�

�

A natural �although not necessary� choice for a prior distribution over each clique
speci�c co

variance matrix �and� therefore� for each separator� is to take a prior conjugate to the likelihood
in ���� letting ��C� to be distributed as an inverse Wishart distribution� with parameters 	 and
�C � We employ the parametrisation in DL which implies that� for 	 
 �� E��C� � �	����� �C �
The resulting distribution for � has been named the hyper inverse Wishart by DL�

The construction previously described requires the speci�cation of many hyperparameters�
namely� the precision parameter 	� common to all cliques� and one prior matrix� �C � for each
clique �the separator
speci�c priors can be obtained by marginalisation�� Furthermore� in order
to satisfy hyperconsistency of the clique
speci�c priors� it is necessary �and su�cient� that� for
each pair of cliques� say A�B� with intersection S � A � B� the submatrices of �A and �B

corresponding to the elements in S coincide� This requirement is rather stringent� particularly
when large graphs are considered�

A further complication in the practical speci�cation of a hyper Markov law� which is indeed
common to all Bayesian model comparison problems� is that of compatibility� The simplest case
involves comparison between two graphs� say g and g�� Let � and �� be the corresponding
precision matrices and� �nally� L and L� be two hyper Markov laws on them� It is quite natural
to require that L��A� � L���A�� for any clique A common to both g and g�� This notion of
compatibility is the same as in DL and corresponds to requiring the two prior distributions to
be consistent on the common marginals� Given the di�culty of the above speci�cation tasks�
especially in large graphs� it becomes desirable to have a �semi
automatic� method for assigning
compatible hyper Markov distributions� One possibility� suggested in DL� is to consider an
�embedding� graph� g�� and derive the required marginal distributions� for each g 
 g�� by
marginalisation from those of g�� Note that this use of an embedding graph is not without
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critics� See Cowell ������ for an alternative approach�
In the remainder of this work we shall take g� as the complete graph� for which � is not

constrained� and assign a IW �	��� distribution to �� Marginalisation from this law will then
imply that� for each C � C� LC��C� � IW �	��C�� with �C � �C � the submatrix of � cor

responding to the variables indexed by C� The graph g thus determines which collection of
submatrices of � are to be taken to form a hyper Markov law on � with respect to g� Although
the speci�cation task is now reduced� there remains the issue of specifying the matrix �� One
possibility is to consider an assignment that is default or uninformative� yet leads to a proper
prior on �� However� it is di�cult to understand what a default setting really means in the
present context� A di�erent strategy is to add one further layer of uncertainty� and consider 	
and � as random quantities� regulated by a few hyperparameters� This leads us to consider a
hierarchical hyper Markov law�

� The proposed models

Our proposed statistical models di�er in terms of the proposed prior on �� conditionally on g�
A �rst class of models considers � to be hyper inverse Wishart with respect to g� with �xed
hyperparameters 	 and �� A second class of models considers 	 and � random quantities� giving
rise to a hierarchical hyper inverse Wishart�

��� A non�hierarchical model

Consider �rst the case of �xed hyperparameters� The model we assume speci�es that�

Xj�� g 
 Np������

�jg 
 HIWg�	����

p�g� � d���

where 	 is a �xed positive quantity� � is a �xed p� p symmetric positive de�nite matrix� whose
elements satisfy �C � �C � for all C � C� and d is the number of decomposable graphs on the
vertex set V �

Notice that the complete prior speci�cation of the dispersion matrix � involves setting
p�p � ���� prior quantities� and satisfying the positive de�niteness condition� a clearly di�cult
task� so that one would typically try to simplify the structure of �� A reasonable default
speci�cation for � is to consider an intra�class correlation structure�

� � � �
 J � ��� 
� I�� �	�

where J is the p� p matrix of ��s and I the identity matrix of order p� Notice that � is positive
de�nite if and only if � 
 � and 
 � �����p� ��� ���

However� the above parameterisation exhibits some drawbacks� for instance� it may not be
reasonable to assume �a priori� a common correlation among each pair of random variables� An
assumption of common covariance is inevitably asymmetric about zero correlation �the prior
correlation is constrained below by ����p� ���� and this may lead� particularly in large graphs�
to an asymmetric evaluation of the association signs� Concerning � � the assumption of a common
prior scale is clearly reasonable if the random variables are standardised or on a similar scale�






��� A hierarchical model

Given the di�culties of prior speci�cation� outlined above� it is desirable to devise a more
automatic� yet �exible� method of assigning a prior distribution� A natural choice is letting 	
and � become random quantities� to be assigned a prior distribution� A reasonable assumption
is that 	� � and g are mutually independent�

First consider assigning a prior for 	� Notice that 	 expresses the relative weight of the
prior� A reasonable prior for 	 is a Gamma distribution� with mean f and variance fs� namely�

��	� � 	�f�s���e���s�

where f 
 � and s 
 � are positive quantities to be �xed� A rationale for choosing them is that
��	� be as uninformative as possible� sensitivity to the choice will be discussed in Section ��

Consider now the assignment of a prior on �� The representation adopted for � determines
the set of random quantities which are to be assigned a prior distribution� We shall consider the
following two situations� �a� � unstructured� �b� � with an intra
class correlation structure�

Unstructured �� An unstructured prior for � involves the assignment of a prior on p�p�����
elements� that is� of p variances and p�p����� covariances� To ease the calculations� one can take
a conjugate prior distribution� Notice that the prior on � can be interpreted as a likelihood for ��
suggesting that a conjugate prior for � is a Wishart distribution� with ��xed� hyperparameters
d 
 � and T positive de�nite� Note that� although still di�cult� this prior speci�cation is
considerably easier than the speci�cation of a hyper inverse Wishart law in the non
hierarchical
case� For instance� since � is already a prior opinion� a reasonable requirement on the second

stage prior on � is that it is not very informative� taking d � � and embodying a belief of a very
simple structure� such as T � diag����� � � � � �pp�� possibly with �ii � � � The diagonal elements
of T should be �xed coherently with the scale of the corresponding random variables� In the
absence of such information� they can be taken as equal�

Intra�class �� In the intra
class case� as remarked in the last Subsection� all partial correlation
coe�cients are assumed to be equal a priori� A prior on the random elements ��� 
� which
characterise the intra
class correlation structure can be obtained by restriction from the W �d� T �
prior on the unstructured �� as follows�

���� 
� � ���� �
 J � ��� 
� I��

�
h
�p��� 
�p��f� � 
�p� ��g

i�d�����

� exp

��
���

�
�

�
� pX
i��

tii � 

X
i��j

tij

�
A
�	

 � ���

Note that the above kernel does not factorise as ���� � ��
�� However� if
P

i��j tij � � �for
example� if tij � �� i 	� j�� � and 
 become independent� as in the following Proposition�

Proposition� Let � be a random symmetric matrix of form �	� with � and 
 distributed as
���� with

P
i��j tij � �� Suppose that d 
 �� ��p and let t� �

Pp
i�� tii� Then

�a� � and 
 are independent random variables�
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�b� � has the Gamma distribution�

� 
 Ga

�
p�d� �� � �

�
�
t�
�

�
�

�c�


 � � �

p� �
�

p

p� �
��

where � has the Beta distribution

� 
 Be

�
d

�
�

�p� ���d � �� � �

�

�
�

Thus� the prior on � depends on two hyperparameters� the mean and variance are increasing
in d and decreasing in t�� On the other hand� the prior on 
 depends only on d� and E�
� is
non
increasing in d� Notice also that E�
� 
 ���p and that� as p � �� E�
� � �

� � It follows
that d should be �xed to regulate the prior on 
� with t� adjusting its e�ect on the prior on � �

� Modifying graphs to preserve decomposability� and MCMC

algorithms

Markov chain Monte Carlo methods have considerably enlarged the domain of application of
Bayesian inference �see for example Tierney� ������ In particular� the reversible jump MCMC
described in Green ����
� is particularly suited to deal with problems where the dimension of
the parameter space changes� In our context� the dimension
changing aspect concerns proposing
a change in the current graphical structure �say g� to a new structure� say g�� An important
point is that� since we are considering only decomposable graphs� the proposed moves should
consider only members of the latter class as candidate graphical structures�

��� Incremental changes to decomposable graphs

It is well
known �see for instance Frydenberg and Lauritzen� ����� that the space of all de

composable graphs can be traversed by adding and deleting single edges at a time� Since such
changes are convenient for MCMC implementation �in terms of algebraic tractability and com

putational e�ciency� they will form the basis for the sampling algorithm we introduce in the
next Subsection� Here we characterise in graph
theoretic terms those incremental changes to a
graph�s edge
set that preserve decomposability� making particular use of a junction forest repre

sentation of the graph� This characterisation may have application outside our MCMC context�
While �legal� deletion moves can be characterised using a standard result which will be now
quoted� �legal� addition moves still need to be characterised and we shall propose a Theorem
for this purpose�

Theorem � �see� for instance� Frydenberg and Lauritzen� ������ Let g and g� be two undirected
decomposable graphs� with the same vertex set V � and with E� � E� with g having exactly one

more edge than g�� Such an edge must then be contained in exactly one clique of g�

A junction tree T representation of a connected undirected graph g is a graph whose vertex

set is the set of cliques of g� and whose edge
set is such that T is a tree and satis�es the junction
property� for any two cliquesCi� Cj � C� and any clique C � on the unique path between them in T �

�



Ci�Cj 
 C �� A junction forest representation of an undirected graph g is a collection of junction
trees Ti� each corresponding to a collection of cliques Ci� with C �

S Ci and Ci � Cj � �� i 	� j�
Finally� for each v � V let  v! indicate the connectivity component of V � that is� the set of all
vertices which are connected to v�

Theorem �� Let g � �V�E� be an undirected decomposable graph in which vertices a and b
are not adjacent� and let g� denote the graph modi�ed by the addition of edge �a� b�� Then g� is
decomposable if and only if either

�i�  a! 	�  b!� or

�ii�  a! �  b! and there exist R�T 
 V such that a�R and b� T are cliques� and S � R� T is

a separator on the path between a �R and b � T in a junction forest representation of the

graph g�

Proof of Theorem �� The case �i� where the vertices a and b are in di�erent connected
components is rather trivial� we can simply add a clique a � b to the junction forest� linked to
arbitrary existing cliques a � R and b � T � The junction property clearly continues to hold for
the modi�ed junction forest�

Turning to the connected case �ii�� we �rst prove the necessity of the condition� Suppose
for a contradiction that there are no R�T such that �ii� holds� Let a � R� b � T be the cliques
containing a and b that have the shortest connecting path in the junction forest among all such
cliques� by assumption R�T is not a separator �it may be empty�� We note that the connected
component containing a and b will remain connected when any vertices in R � T are deleted�
along with all incident edges� Let v� � r� v�� � � � � vq� vq�� � t for some q � � be the shortest path
in g from an element of R n T to one of T n R avoiding vertices in R � T � No two of the fvig
are adjacent except for �vi� vi���� i � �� �� � � � � q� since it is a shortest path� and a and b are only
adjacent to v� and vq�� respectively� by de�nition of R and T � Thus inserting the edge �a� b�
would create a cycle a � v� � v� � � � � � vq�� � b� a of length q � � � � that is chordless�
The graph g� would thus not be decomposable� completing the contradiction�

Now we prove the su�ciency of the condition� Given �ii�� we can suppose that the cliques
a � R and b � T are adjacent in the junction forest� For� if not� the forest can be manipulated
so that this is so� while remaining a valid representation of the graph� To see this� let C� �
a � R�C�� � � � � Cp� Cp�� � b � T be the path between the cliques� with p � �� By assumption�
Ci � Ci�� � S for some i � �� �� � � � � p� We can delete the edge �Ci� Ci��� from the junction
forest� and insert �C�� Cp��� instead� The only pairs of cliques fC�� C�g for which the path
connecting them has any additional cliques as a result of the modi�cation are those for which
the original path included both Ci and Ci��� hence C� � C� 
 Ci � Ci�� � S� The additional
cliques in the modi�ed paths must be some of fCi� i � �� �� � � � � p � �g� all of which contain S�
Thus the junction property remains true for the junction forest as modi�ed�

Thus without loss of generality� a � R and b � T are adjacent cliques� Let P � R n S and
Q � T n S� We distinguish � cases� according to which of P and Q are empty or non
empty� If
both are empty� then we simply amalgamate the cliques to form a new clique a � b � S� adding
junction forest edges to those cliques adjacent to either of the original cliques� If P 	� � � Q�
we replace clique b � T � b � S by a � b � S� leaving adjacencies unchanged� and similarly by
symmetry if P � � 	� Q� Finally� if neither is empty� we insert a new clique a � b � S in the
junction forest� linked to a � R and b � T � In all � cases� it is easy to see that the junction
property is maintained� so g� is decomposable�
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Example� Consider the graph in Figure �� it is characterised by the cliques� �a� b� f��
�b� c� f�� �c� d� f� and �d� e� f��

Figure � about here

The separators are �b� f�� �c� f� and �d� f�� By Theorem �� the edges �b� f�� �c� f� and �d� f�
cannot be deleted� On the other hand� the pairs �a� e�� �a� d� and �b� e� cannot be joined in g��
This is because� for all such pairs� R � T � ffg� but ffg is not a separator�

Remark� Theorems � and � can be employed to characterise completely the legitimate
incremental changes to the edge
set of a decomposable graph� An alternative possibility is to
reject such moves by running maximum cardinality search �MCS� see for instance Spiegelhalter et
al�� ���	� after each graphical update proposal� to check if the proposed graph g� is decomposable�
However� while MCS tests for decomposability by means of a global search through the whole
of the junction forest �without building the new clique organisation�� our method only requires
searching through a section of the junction forest� corresponding to the shortest path between
cliques containing a and b and� furthermore� it constructs the new junction forest� so that the
cliques are already constructed ready for use in probability calculations� Often� a and b will be
adjacent so that the search will be very fast� In Section � we present empirical results that show
the better performance of our algorithm�

��� Reversible jump MCMC design

We now brie�y summarise the main features of reversible jump MCMC methodology� referring to
Green ����
� for further details� Let y denote a state variable� For instance� in our hierarchical
Bayesian graphical gaussian model� y is the complete set of unknowns �g��� 	���� Let ��dy� be
the target probability measure of interest �the posterior distribution�� When the current state is
y we propose a move of type m� that would take the chain to the destination y�� with probability
qm�y� dy��� It is then accepted with probability given by�

	m�y� y�� � min



��
��dy��qm�y�� dy�

��dy�qm�y� dy��

�
� �
�

which ensures that detailed balance is achieved within each move type�
For an �ordinary� move type� that is� a move which does not change the dimension of the

parameter vectorr expression �
� reduces to the usual Metropolis
Hastings acceptance proba

bility� using an ordinary ratio of densities with respect to a measure on the underlying ��xed�
parameter subspace� For dimension
changing moves� Green ����
� shows that expression �
�
can be interpreted as a ratio of Radon
Nikodym derivatives with respect to a suitable chosen
common dominating measure� Suppose that a move from y to y� is proposed� with y� lying
in a higher dimensional space� Then the method can be implemented by drawing a vector of
continuous random variables u� independent of y� and setting y� � y��y� u�� with y���� �� an invert

ible deterministic function� Correspondingly� the reverse move can be achieved by the inverse
transformation� in a deterministic fashion� Then expression�
� simpli�es to�

	m�y� y�� � min



��
��y��

��y�
� rm�y��

rm�y�q�u�
�
���� �y�

��y� u�

����
�
� ���

where rm��� is the probability density of a move of type m� evaluated at y and q�u� is the density
unction of u�

We now detail the reversible jump MCMC sampler we propose for the models speci�ed in
Section �� In the exposition we refer to the more general hierarchical model� An important issue

�



in the design of the algorithm is the choice of the state variables� In our context� an important
choice to be made is on how to represent �� Considering the collection ��C � C � C� would be
too computationally expensive� for instance� a change in g would require changing most of the
�possibly overlapping� clique
speci�c variances �C � On the other hand� it seems that using the
precision matrix K is a good choice� because of ���� adding �deleting� an edge requires simply to
draw �set to zero� an element of K previously set to zero �unconstrained�� However� notice that
the hyper inverse Wishart model considered means that several time
consuming operations have
to be performed� �rst K has to be inverted� to obtain �� second� the collection of submatrices
�C is to be extracted from �� �nally� both the likelihood and the prior contribution to the
Metropolis
Hastings acceptance ratio for g� requires inverting each �C � Notice also that the
inversion from K to � prevents local computation of the ratio�

A more e�cient representation for � is to consider as state variable the incomplete version
of �� �� This has the advantage of avoiding the e�ort of performing inversion of K into �� thus
leading to local Metropolis
Hastings computations� Note that since it will be important to draw
inferences on functions of K �or ��� such as the partial correlation coe�cients� we may want to
occasionally complete � to obtain K and �� An important result in this direction is contained�
for instance� in DL� it turns out that � � K��� with

K �
X
C

����
C �	�
 �

X
S

����
S �	�
�

where the exponent  �! means that the corresponding matrix is �lled with zeros to match di

mensions�

Thus� for our hierarchical Bayesian graphical model we shall consider a systematic scan over
the following move types�

�a� adding or deleting one edge from the graph g� ensuring that the proposed graph g� is
decomposable� Notice that this move involves also making changes to ��

�b� updating the incomplete covariance matrix � and� correspondingly� ��

�c� updating the hyperparameter 	�

�d� updating the hyperparameter ��

The only randomness in the above scanning is the choice between adding and deleting an edge
in �a�� An update of the state variables �g��� 	��� is complete when all of the above moves are
completed�

Updating g� Consider �rst moves of type �a�� which are the only ones involving a change in
the dimensionality of the parameter space� To accomplish this move we draw randomly a pair
of distinct vertices� If such pair� say �i� j� is in E we propose deleting the edge �i� j�� otherwise�
if �i� j� 	� E� we propose adding �i� j� to the graph�

If �i� j� is proposed for insertion� the dimensionality of the parameter space increases by one�
this is expressed by an extra free element of �� This requires specifying a new element of ��
��ij� This is done by drawing a random variable u from a N��� ��G� distribution� with �G a scale
parameter to be properly chosen� and then letting ��ij � u� This is a blind proposal� which does
not take into account the previous �constrained� state of �ij� As an alternative� with the extra
computational cost of completing �� the proposal can be centered at the previous state� as in�
��ij � �ij �u� In our computations we prefer to perform only local computations and� therefore�
we employ the former proposal�

��



Let Ra indicate the Metropolis
Hastings ratio when the proposed move consists of adding
�i� j� to g� leading to g�� Such ratio can be calculated as in ���� First note that the Jacobian
of the transformation is equal to �� and this is not surprising� since we are making proposals
on the natural scale� The proposed move can be seen as a change in the appropriate section
of the junction tree �possibly after some permutations�� as illustrated in the Proof of Theorem
�� According to the proposed model� and adopting the proposal just described� based on the �
representation� it turns out that the posterior ratio localises to the four subsets S� S � i� S � j�
S � i � j �abbreviated below as S� Si� Sj and Sij��

Rpost �
��y��

��y�
�

h��S�h���
Sij�

h��Si�h��Sj�
�

where each of the above four terms is obtained as the product of the prior and the likelihood of
the appropriate submatrix of �� For instance� for S�

h��S� � IW ��S�	��S��N�xS � �S��

When S � �� h��S� � �� Notice that the requirement of positive de�niteness of � constrains
��ij� if ��

Sij is not positive de�nite then h���
Sij� � �� so Rpost � � and the move is rejected�

Consider now the proposal ratio rm�y����rm�y�q�u��� Since the graphs speci�ed by y and y�

di�er in exactly one edge� rm�y� and rm�y�� are simply the probabilities of choosing that edge for
addition or deletion� Since all edges are chosen with equal probability� rm�y� � rm�y�� � ��

�n
�

�
�

Finally� when �i� j� is added� ��ij is drawn from a gaussian distribution� with zero mean and
standard deviation �G� so that

q�u� �
�p

���G
exp

�
��

�

u�

��G

�
�

Thus the proposal ratio is ��q�u�� Putting together the di�erent terms� we obtain that�

Ra � Rpost � q�u����

Notice that the calculation of Ra completely localises to at most four cliques�
So far we have considered a move which involves adding an edge to g� When �i� j� is proposed

for deletion� we leave �ij unspeci�ed �it is indeed of no use in the new model�� We follow the
reverse of the analysis above� and the acceptance ratio Rd is �nally obtained as Rd � ��Ra�

Updating �� Our strategy consists of perturbing each element of the corresponding incom

plete matrix � with independent gaussian random walk proposal� centered around the current
value� More formally� for all �i� j� such that i � j or i and j are adjacent in the current graph g�

��ij 
 N��ij � �ij��

where the �ij �s are spread parameters� to be chosen�
We remark that a more complicated strategy could have been taken� for example� updating

only one clique
speci�c block of � at a time� and exploiting the junction tree representation
to construct Gibbs steps� However� the advantages of this do not seem to compensate for
the increased complexity of the sampler and the extra computational e�ort� which discourage
implementation�

We now calculate the acceptance probability for our proposed updating of � to a new co

variance matrix� say ��� by means of a perturbation of its speci�ed elements in �� As in the

��



ordinary Metropolis
Hastings algorithm� such a probability is equal to� min��� R��� where R�

indicates the acceptance ratio of the move� and is the product of two terms� the posterior ratio
Rpost and the proposal ratio Rprop� The former can be calculated locally� through the junction
forest of the graph�

Rpost �
p���j	��� g�

p��j	��� g�

p�xj�� g�

p�xj�� g�
�

that is� the ratio of two hyper inverse Wishart kernels� Note that if any of the �C � C � C is not
positive de�nite� the move is rejected� as otherwise we would obtain a non positive de�nite ��
Finally� since the proposal distribution is symmetric� Rprop is equal to ��

Updating 	� We perturb 	 with a gaussian random walk proposal� centered around the
current value� namely� q�	�j	� � N�	� ���� where �� is a spread parameter� to be appropriately
chosen� Consequently� the proposal ratio is equal to �� On the other hand� the posterior ratio
is equal to�

Rpost �
p��j	���� g�

p��j	��� g�

p�	��

p�	�
�

Updating �� When � is unstructured� it will be updated similarly to �� That is� a proposal
for � will be obtained by perturbing each element of � with a random walk proposal� namely�
��ij � N��ij � �ij�� where the �ij �s are spread parameters� to be suitably chosen� The acceptance
probability of the move will be equal to min��� R��� with R� � RpostRprop� as usual� Given the
symmetry of the adopted proposals� Rprop � �� On the other hand�

Rpost �
p��j	���� g�

p��j	��� g�

p����

p���
�

If �� is not positive de�nite� the proposed move is rejected� Note the generality of the above
expression� which holds for all of the structures considered for �� because of the conditional
derivation of the priors� Clearly� more complicated proposals for 	 and � can be considered but�
in our experience� such changes do not materially a�ect the performance of the method�

� Statistical performance of the methodology

Notice �rst that the data x can be su�ciently summarised by the sample size n and the sample
variance
covariance matrix S � xx�� We have considered three data
sets� in order of increasing
di�culty�

�a� Fret�s heads data
set� with p � �� there are �� possible graphs� of which 	 are not de

composable� This is a small but challenging data
set� since all variables appear highly
correlated marginally� and there is no evident pattern in the sample precision matrix�
resulting in a highly multimodal posterior distribution on the graphical structures�

�b� Fowl bones data
set� with p � �� there are 	���� possible graphs� of which ��" are
decomposable� This is a more complex problem� but less multimodal than the previous
one�

�c� An arti�cial data
set� with p � ��� there are ��� possible models� of which �
" are
decomposable� Data is actually simulated from a non decomposable model� namely a

��



��rst order� gaussian Markov process on a regular �� � spatial lattice� We have set equal
to ��� all the partial correlations not constrained to zero by the graph� This data
set
will illustrate� besides the process of learning the true simulated data� how a mixture of
non
decomposable models can approximate the true non
decomposable model�

The analysis of the three data
sets will be presented simultaneously� considering the follow

ing aspects� �i� prior settings� �ii� posterior distributions of main quantities of interest� �iii�
sensitivity to prior speci�cation� �iv� performance of the MCMC sampler�

Prior setting� For all data
sets we have considered both hierarchical and non
hierarchical
models� with several hyperparameter speci�cations� In the paper we shall report results for only
one such prior assessment� namely� a hierarchical prior with an intra
class correlation structure
for �� with f � p � �� s � ���� T � I� and d � �� Concerning the parameter �� it is important
to understand see what such a prior speci�cation corresponds to in terms of the prior expected
partial correlation coe�cients� This can be done by MCMC simulation from the assumed mixture
of hyper inverse Wisharts prior� For instance� the empirical average of the output obtained from
n � ���� ��� reversible jump MCMC sweeps after ��� ��� burn
in� with p � �� gives essentially
an identity matrix�

Posterior distributions� We now present results on the three data
sets considered� Figure
� reproduces the most plausible graphs� according to the posterior distribution of g� for Fret�s
data� obtained with a run of n � ���� ��� sweeps and n � ��� ��� of burn
in�

Figure 	 about here

Notice �rst that the posterior distribution of g is dispersed� as expected� For instance� the
most probable graph receives only about �
" of the posterior probability and� in order to obtain
��" of the posterior probability� at least �� structures have to be considered� These results are
similar to those in Giudici ������ who performed an exact non
informative Bayesian analysis on
the same data
set using a non
hierarchical model�

It is often of interest to evaluate not only if an edge is present� but the strength of the
association described by the edge itself� This can be done looking at the posterior distribution
of the partial correlation coe�cients� which cannot be derived analytically� but can be easily
obtained from the MCMC output� Figure 	 reproduces the posterior distributions of the partial
correlation coe�cients for Fret�s data�

Figure 
 about here

From Figure 	 notice that only the partial correlation between ����� and that between �	���
have a relatively small posterior probability around zero� so that the evidence supports strongly
the presence of such two edges�

Consider now analysis of the Fowl bones data
set� obtained with a run of n � ���� ���
sweeps and n � ��� ��� of burn
in� Compared to Fret�s data� the posterior distribution of
g turns out to be more concentrated� with just two graphs accounting for about 		" of the
posterior probability� with the others less important� The results can be compared with the
deviance
based analysis in Whittaker ������� while the graph selected by Whittaker contains �
edges and is not decomposable� our most probable graph contains all edges in Whittaker�s as
well as two more edges� �	��� and ���
�� thus breaking the cycle between ���	����� in Whittaker�s�

�	



We now �nally comment on results on the spatial lattice data
set� obtained with a run of
���� ��� sweeps after ��� ��� burn
in� Our aim here is to show that� although the considered
model space is very large� and does not contain the true model� MCMC learning can still give
sensible answers� Figure � reproduces the trace and the corresponding histogram of two sampled
partial correlations� the left trace plots a partial correlation which is equal to ��� in the true
model� the right one a partial correlation which is zero in the true model�

Figure � about here

Notice how well the simulation acknowledges the di�erence between the two correlations�
although the simulation length is certainly short� compared to the number of candidate models�
We remark that this di�erence is general� for presentation purposes we have presented only two
representative edges�

We have also evaluated the number of edges which are misclassi�ed by the simulation� using
a simple binary discriminant function� which signals edge presence if the proportion of times
that edge is in the simulated model is greater than �
 and edge absence otherwise� The total
number of misclassi�ed edges is equal to �	� corresponding to a rate of ��"� and similar to the
number of edges require to make the graph decomposable� Our results seem to be maintained
with analysis of an even larger 
� 
 spatial lattice� although longer runs are needed to achieve
the same stability of the output� For instance� the number of misclassi�cations we have obtained�
with a run of n � �� ���� ��� iterations is equal to ��� corresponding to a rate of ��"�

On the other hand� we remark that Bayesian structural learning is a very di�cult task for this
problem and� more generally� for large data
sets� Our results show that this is indeed possible
with MCMC� although slow and requiring a considerable amount of diagnostic checking� in order
to ascertain the validity of the results�

Sensitivity to the prior� Fret�s data
set is useful for evaluating the sensitivity of results
to the prior distribution� because of its highly correlated structure� leading to a multimodal
posterior distribution over the graph space� Let g� denote the graph with the maximum posterior
probability� each such graph will be described by a list of binary indicators for edge presence�
with edges ordered in lexicographic order of the two vertices� Finally� let #n�edges� indicate the
number of edges of g�

When a non
hierarchical prior is used� the posterior over graphs depends on both 	 and 
�
particularly on the latter �see Table ��� The support for more complex graphs is lower for larger

� As expected� the in�uence of the prior grows with 	�

Table � about here

Inference on partial correlation coe�cients is quite robust� this seems an advantage of model
averaging� Table � shows such a robustness of the inference on the partial correlation coe�cient
between X� and X�� with a non
hierarchical prior� From previous analyses of Fret�s data� it is
quite di�cult to draw a conclusion on this� Similar results can be obtained with a hierarchical
prior�

Table 	 about here

The hierarchical prior has a smaller impact on the posterior over graphs �compare Table
	 with Table ��� On the other hand� the hierarchical model seem to select models with a
higher number of edges� These results are con�rmed by the analysis of the two other data
sets
considered�

��



Table 
 about here

Performance of the MCMC sampler� First of all we remark that the correctness of our
program implementing the sampler has been partially validated for all of our models by running
them without any data� and with the likelihood term omitted� that is� we have simulated from
the prior distribution� We have derived analytically the exact distribution of some marginal
quantities� such as g and the number of edges present� and checked whether the MCMC output
was in agreement with such theoretical results� Our algorithms gave very good agreement
between the exact and simulated prior marginals�

A requirement in designing any Metropolis
Hastings sampler is the appropriate choice of
the spread parameters of the proposal distribution� in order to ensure satisfactory mixing of
the chain� In our case� after a number of pilot runs� we have decided to take �G � ��
n�p�
�ij � ����p� �� � ���� �ij � ����p� We remark that� concerning the proposal on g� the choice
of centering the proposal at �ij leads to better performances compared to a �blind� proposal
centered at �� However� the completion of � is computationally expensive� In a typical run
with p � �� and a hierarchical model this takes about ��" of the CPU time� This percentage
increases with p and the number of edges present in the graph�

Table � reports the accept�reject rates on g� �g� � and 	 for the three previously described
simulations� We also report the corresponding total computation times obtained on a SPARC�
workstation�

Table � about here

In order to evaluate the computational times of our method relative to MCS� we conducted
a small trial with the two methods in parallel� timing just the graph manipulation part of the
procedures �testing for decomposability and constructing the new cliques and separators�� For
uniformly random decomposable graphs on �� �� and �� vertices� the times to run MCS for
these graph operations were respectively ���	� ���� and 	��� times those with our method� This
is a necessarily incomplete comparison� and it is di�cult to be absolutely objective as times
depend on details of the coding� However� the comparisons are in one sense favourable to MCS�
since in applications with data� many graph moves are rejected� and our method then gains an
additional advantage through rejecting at an early stage�

The most challenging aspect of the simulation is mixing over g� It can be monitored by
looking at an appropriate summary measure of g� such as the number of edges present� which
describes the graph complexity� For all data
sets trace and autocorrelation plots on the number
of edges show good performance� However� the number of iterations required to achieve such
stability increases with p� for both Fret�s and Fowl bones data
sets n � ���� ��� iterations are
su�cient� whereas for the spatial lattice model a �� times longer run is needed� We have also
assessed performance of the MCMC dimension
jumping move more formally� for each of the
three considered data
sets we have evaluated Gelman and Rubin�s convergence diagnostic for
the trace of the number of edges in the simulated graphs� according to the iterated graphical
approach suggested by Brooks and Gelman ������� Our result indicate that each of the simulated
parallel chains is close to the target distribution�

We �nally remark that the MCMC performance is not greatly a�ected by the choice of
hyperparameter values� However� mixing is sensitive to the strength of the observed interaction
e�ects between the variables in the graph� the higher this is� the slower the convergence�
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� Discussion

We have proposed a methodology for Bayesian model determination in undirected decomposable
graphical models and� in particular� for graphical gaussian models� Our proposal is based on
hierarchical prior distributions� We believe hierarchical priors have two main advantages with
respect to non
hierarchical priors� on one hand� they are easier to specify� and can thus constitute
an �automatic� default choice� especially for highly complex problems� on the other hand� they
seem to lead to inferences less sensitive to the prior� as they allow �borrowing strength� of
sample information between di�erent clique domains�

The second original contribution of our paper is the implementation of a reversible jump
MCMC algorithm for Bayesian model determination� This allows the extraction of posterior
inference on any quantity of interest� in both the hierarchical and the non
hierarchical model�
For instance� posterior estimates of the partial correlation coe�cients� giving the strengths of
the associations� can be easily obtained�

Our algorithm is fully based on local computations� the adding�deleting characterisation
and the positive completion results have led to the construction of a fast algorithm to rearrange
the junction tree and the associated parameters as g varies� On the other hand� a possible
disadvantage is that we are restricted to decomposable graphical models� However� as we have
also shown in the application section� quantitative learning in non
decomposable models can be
reasonably well approximated by learning from mixtures of decomposable models�

Another important weakness of the methodology is that it becomes slow for very large
domains� as the dimension of the model space increases more than exponentially with the number
of vertices� Research is needed in the design of proposal moves which can improve the speed of
convergence as well as on the related issue of monitoring the convergence of the algorithm�

We �nally remark that our proposed methodology is quite general� and can be extended to
other families of graphical models�
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Table �� Sensitivity of structural learning with respect to the prior� for a non
hierarchical model�

	 � p � � 	 � �p

 � ��	 
 � � 
 � �� 
 � ��	 
 � � 
 � ��

g� ������ ������ ������ ������ ������ ������

p�g�jx� ����
 ����� ����
 ����
 ����� �����

E�n�edgesjx� 	��	 ���� 	��	 	�
� ���� 	���

Table �� Sensitivity of model averaged inference on partial correlation coe�cients with respect
to the prior� for a non
hierarchical model�

	 � p � � 	 � �p

 � ��	 
 � � 
 � �� 
 � ��	 
 � � 
 � ��

E�
��jx� ����� ����� ����� ����� ����� ���	�

Table 	� Sensitivity of structural learning with respect to the prior� for a hierarchical model�

f � p � � f � �p
d � � d � p d � �p d � � d � p d � �p

g� ������ ������ ������ ������ ������ ������

p�g�jx� ��
�� ��	�� ����� ��	�� ����� ��
��

E�n�edgesjx� ���� ���� ���� ���
 ��
� ��
	

��



Table �� Performance of the MCMC samplers� for the data
sets considered� rejection fractions
and computation times �in minutes and seconds� for ��� ��� sweeps��

Move type Fret�s Fowl bones Spatial lattice

g ���� ���� ����
� �
�	 ���� �	��
� �
�� �
�
 ����
	 �
�� ���� �
��

Time ���� 	�
� 	���	

Figure �� Graph illustrating the reversibility condition
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Figure �� Most probable graphs for Fret�s data
set
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Figure 	� Posterior distribution of the partial correlation coe�cients for Fret�s data
set
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Figure �� Partial correlation plots for the simulated spatial lattice data
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