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Conditional independence graph

given a graph whose vertices index the components
of a random vector X, draw an (undirected) edge
between vertices a and b if X, and X, are not
conditionally independent given all other variables.
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— being an abbreviation for

Xc 1 Xf|X{a,b,d,e}



Conditional independence properties

The Markov property is familiar from temporal
stochastic processes, where we learn that it may be
expressed in several equivalent ways. For variables
located on an arbitrary graph, the situation is more
subtle: can distinguish 4 related properties, each
capturing an aspect of Markovness.

Pairwise Non-adjacent pairs of variables are
conditionally independent given the rest (see
definition of graph).

Local Conditional only on adjacent variables
(neighbours), each variable is independent of all
others (this simplifies full conditionals).

Global Any two subsets of variables separated by
a third are conditionally independent given the
values of the third subset.



Factorisation The joint distribution factorises as a
product of functions on cliques (=maximal
complete subgraphs).

Mathematically, the interesting thing is that these
are different, although F' = G = L = P always.

But for most statistical purposes, the important
thing is that they are often the same; a sufficient but
not necessary condition is that the joint distribution
has the positivity property (“any values realisable
individually are realisable jointly”).

This result includes the Hammersley-Clifford
theorem (Markov random field = Gibbs
distribution, L = F).

For directed acyclic graphs, the situation is simpler:
the directed local Markov property is always
equivalent to the directed graph factorisation
criterion: DL = DF.
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Example: using CI graphs to summarise
dependencies

Edwards and Havranek (Biometrics, 1985)
summarise their conclusions from a 2° contingency
table like this:
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blood pressure > 1407

smoking?

ratio of o and (3 lipoproteins > 3?
strenuous physical work?

strenuous mental work?

family history of coronary heart disease?
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Structural and quantitative learning

Given independent observations on a random
vector X, drawn from a parametric statistical
model, we wish to make inference

e about the parameters of its distribution
(quantitative learning), and in particular

e about its conditional independence graph
(structural learning).

In the Bayesian world, these will be done
simultaneously, based on the joint posterior for
parameters 6 and graph g, derived from an
appropriate prior and likelihood.

p(0,9|X) o< p(g)p(0]9)p(X|0, g)



Graphical preliminaries: decomposable graphs

g = (V, E) is an undirected graph with vertex set V,
#V = p,and edge set E.

A subgraph of g is complete if every pair of vertices
IS joined by an edge. A maximal complete subgraph
Is called a clique.

An ordering of the cliques (C1,Cs, ..., C,) is perfect
If, for each 7, all of the vertices of C; that are also
contained in any previous clique are all contained
In just one clique, that is,

i—1

S;=Cn| ] CCy

j=1
for some h = h(z) < i. The sets S; are called
separators. Write C = {C,Cs,...,C,},
S =1{52,53,...,5.}

A graph admitting a perfect ordering is said to be
decomposable; g Is decomposable if and only if it has
no chordless cycles of length greater than 3-1i.e. g is
triangulated.



A triangulated graph:

26 236
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A perfect ordering is given by:
Ch, =1{2,6,7}
C,=1{2,3,6} S, ={2,6}
Cs ={3,4,5,6} S5 ={3,6}
Cy =1{1,2} Sy = {2}
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Decompositions, and the Markov property

A pair (A, B) of subsets of V' is a decomposition of g
IfV =AU B, AN B iscomplete, and A N B separates
A from B (i.e. every path vy <> vy - -+ <> v, from a
vertexv; € Atoav, € Bhasav; € AN B.)

Let X = X be a random vector with components
Indexed by V. Forany A C V, X4 denotes the
correponding subvector.

The distribution of X is (globally) Markov with
respect to g, if for every decomposition (A, B) of g,
Xa L Xp|Xanp (L ="isindependent of’). For a
decomposable graph, this simpler test implies the
usual definition.
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The Gaussian case

Suppose that X; ~ N, (u, >), independently, for
¢ =1,2,...,n. We do not have anything special to
say about p; suppose i = 0.

In this Gaussian case, the global, local and pairwise
Markov properties are all equivalent. In fact,
writing K = ¥~1, we have

X,L' 1 Xj‘XV{i,j} = kij = 0,

that is the graph ¢ is determined by X, by joining ¢
and j by an edge if and only if the (7, j) element of
the inverse of X Is non-zero.

Let X4 = cov(X,) forany A C V. When g is
decomposable, it can be shown that the
multivariate Gaussian density can be factorised:

_ HC’EC p($0|20)
HSES p($5|25)

as a ratio of products of the marginal densities on
the cliques and separators.

p(z|%, g)
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Representing X

Need to store X forall C € C and X5 forall S € S,
where C and S change dynamically as g does.
Fortunately, these can all be held within a single
overall matrix X (¥; ; = cov(X;, X;) makes sense
iIrrespective of cliqgue membership of : and j).

= deal with partially-specified covariance matrices,
I', say, whereI'; ; =%, ; if (¢,5) € E, the edge set of
g, and is otherwise unspecified. The interpretation
of I' is clarified through the notion of matrix
completion (Dempster, 1972; Grone et al., 1984):

1. if a positive definite completion X of I' exists, it
IS the unique completion that satisfies

(71, =01if (i,5) ¢ E.

2. If g Is decomposable, and I'¢ is p.d. for all
C € C, then a p.d. completion exists.
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Prior modelling

Our prior belief is that there is some structure — the
conditional independence graph is not trivial. So
we do not simply want to model X by a continuous
probability model — X determines g, and a posteriori
g would be complete a.s.

Thus we build a more structured model through
p(g9)p(2|g), where of course the second factor
respects the conditional independence properties
specified by g.

The prior on g is trivial — uniform on all
decomposable graphs. Of course, we do not know
how many decomposable graphs there are (except
for very small p), but this does not matter — the
normalising constant is not needed. Importance
sampling allows us in principle to reweight MCMC
results to correspond to any other prior on g.
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The prior on X given g is taken to be hyper-Markov
(Dawid and Lauritzen, 1993): that is, for any
decomposition (A, B) of g,

Y4 L Y¥B|¥anB

This is constructed using the notion of
hyperconsistency — two laws on ¥4 and X are
hyperconsistent in they induce the same marginal
on X 4~ g. Given the cliques and separators, and a
pairwise hyperconsistent collection of laws on >,
there is a unique hyper-Markov law on X, that puts
all its probability on X respecting g.

We take ¢ to be inverse Wishart IW(a, ).
Denote the corresponding density by i (3¢ ); then
the distribution for X is given by

_ HCeC lC’(ZC)
HSes lS(ZS)

— perfectly matching the likelihood factorisation.

I(2)
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How to choose the hyperparameters?

We need to choose the hyperparameters {®*}. Both
to simplify this choice and to ensure compatibility —
we probably want to assign the same p(X¢|g) for
every g for which C'is a clique — it Is convenient to
simply take a single n.n.d. matrix ®, and set ®“ to
be the submatrix corresponding to variables in C,
for each C.

We take & to be one of

o fixed,=7(1—p)l + pJ
e random, as above with random (, p), or
e random, ~ W(d,T), T diagonal.
The hierarchical versions alleviate some of the

difficulties of prior specification, and provide
greater robustness to the prior.
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Why restrict to decomposable graphs?

If g Is decomposable, we have seen that both
likelihood and prior distribution factorise according
to the cligue—separator structure. This structure
allows localisation of computations on the
posterior, and in particular supports local updating
In a MCMC sampler.

The decomposable graph is represented, not
directly, but by means of its junction tree (or forest if
not connected). The junction tree has

e Vertices correponding to the cliques of g

e edges corresponding to the inclusions defining
the perfect ordering
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Recall
1—1

S;=Cn| ] CCy
j=1
for some h. In the junction tree for this ordering,
cligues C; and ('}, are connected by an edge, which
can be labelled by the separator .S;. The ordering is
not necessarily unique, so neither is the junction
tree.

Is it a big restriction?

In many settings, there are results showing
arbitrary graphical models are well-approximated
by decomposable ones.

17



Example of a junction tree

A graph on 7 vertices, with 4 cliques, and a junction
tree representation (one of two equivalent ones):

0“6"‘6

2

G

The sets of cliques and separators are unique.
Note the running intersection property: all cliques
containing any specified set of vertices are
connected.
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Modifying graphs to preserve decomposability

If we add or delete an edge to a decomposable
graph, the result may not be decomposable. Can we
check that decomposability Is not lost, without
doing a global computation?

Legal deletions. An edge can be deleted from g if
and only if it is contained in exactly one clique of g.
(Frydenberg and Lauritzen, 1989)

Legal additions. An edge (a,b) can be added to ¢
If and only if either a and b are in different connected
components of g, or there exist R, T" C V such that
aURand bUT arecliques,and S =RNTisa
separator on the path betweena U Rand bU T in a
junction forest corresponding to g.
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Example

The cliques are (a,b, f), (b, ¢, f), (¢, d, f), (d, e, f).

By the first result, edges (b, f), (¢, f), (d, f) cannot
be deleted.

By the second result, edges (a, €), (a,d), (b, e) cannot
be added (foreach, RNT = {f},and {f} isnot a
separator).
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Local changes to a junction tree

If we add an edge (1,7), it makes a simple change to
the junction tree (or forest):

127 Co12

but we may need to switch to a different equivalent
junction tree first.
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MCMC computation

Full posterior is computed by MCMC, involving a
collection of reversible moves:

e updating g by adding or deleting an edge (and
making minimal consequent changes to ) — a
‘dimension-changing’ move

e updating X for given g
e updating hyperparameter o

e updating hyperparameter ¢

All are Metropolis-Hastings updates, and
cligue-separator factorisation facilitates
computation of acceptance probabilities.
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Results on Fret’s data

Only 4 variables — 64 graphs, of which 61 are
decomposable. All pairs of variables highly
correlated marginally, no evident pattern in inverse
sample covariance matrix.

Most probable graphs a posteriori
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Posterior distributions of partial correlation
coefficients, for Fret’s data
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Convergence of ergodic averages, plotted every 200
sweeps:
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Table 1. Sensitivity of structural learning, with re-
spect to the prior, using Fret’s data, for a non-
hierarchical model.

a=p-+1
p=—-03 p=0 p=09
9o 100011 111001 100011
p(gol|T) 0.1165 0.1267 0.2645
FE(n.edges|z) 3.63 4.16 3.13
a = 2p
p=—-03 p=0 p=0.9
9o 110001 111011 110001
p(gol|x) 0.1415 0.1171 0.2142
E(n.edges|x) 3.52 4.21 3.04
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Table 2: Sensitivity of model averaged inference on
a partial correlation coefficient with respect to the
prior, for a non-hierarchical model, using Fret’s data.

a=p+1
p=—-03 p=09 p=09
E(p12|z) 0.204 0.207 0.241

a = 2p
p=—-03 p=0 p=0.9
E(p12|x) 0.204 0.208  0.239
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Table 3: Sensitivity of structural learning with re-
spect to the prior, for a hierarchical model, using
Fret’s data.

f=p+1
d=2 d=p d=2p
90 110111 111011 110111
p(gol|x) 0.1383 0.1304 0.1422
E(n.edges|x) | 4.41 4.40 4.46
f=2p
d=2 d=p d=2p
90 111011 111011 111011
p(go|x) 0.1317 0.1412 0.1517
E(n.edges|x) | 4.45 4.54 4.53
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Table 4. Performance of the Markov chain Monte
Carlo samplers: acceptance fractions and compu-
tation times, in minutes and seconds for 100 000
sweeps.

Move type | Fret’s Spatial lattice

g 0.022 0.002
> 0.573 0.379
o 0.566 0.642
a 0.518 0.577

Time 2:16 22:03
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Decomposable contingency tables — the
multinomial case

— work recently submitted, with Claudia Tarantola
and Paolo Giudici.

The Dawid & Lauritzen theory also applies to the
Dirichlet/Multinomial set-up.

Again, likelihood and prior can be represented as
ratios of products of terms indexed by cliques and
separators.
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Differences

A new problem, cf. the gaussian case: find a
parsimonious clique-based parameterisation.

Gausslan case: store covariance matrix for each
cligue: these can all be held as an ‘active subset’ of
the overall covariance matrix.

Multinomial case: need to store cell probability
matrix for each clique.

= new data structures are required.

Otherwise, the methodology is largely unchanged,
except that for within-graph MCMC updates, we (?)
use a Metropolis-Hastings update, propagated out
cumulatively along the junction tree.
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