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The need to explore model uncertainty in linear regression models with many predic-
tors has motivated improvements in Markov chain Monte Carlo sampling algorithms for
Bayesian variable selection. Currently used sampling algorithms for Bayesian variable se-
lection may perform poorly when there are severe multicollinearities among the predictors.
This article describes a new sampling method based on an analogy with the Swendsen-
Wang algorithm for the Ising model, and which can give substantial improvements over
alternative sampling schemes in the presence of multicollinearity. In linear regression with
a given set of potential predictors we can index possible models by a binary parameter vector
that indicates which of the predictors are included or excluded. By thinking of the posterior
distribution of this parameter as a binary spatial field, we can use auxiliary variable methods
inspired by the Swendsen-Wang algorithm for the Ising model to sample from the posterior
where dependence among parameters is reduced by conditioning on auxiliary variables.
Performance of the method is described for both simulated and real data.

Key Words: Auxiliary variables; Data augmentation; Ising model; Markov chain Monte
Carlo.

1. INTRODUCTION

Let y = (y1, . . . , yn)T be a vector of responses, X be an n × p design matrix, and
consider a linear model

y = Xβ + ε,

where β = (β1, . . . , βp)T is a vector of parameters and ε ∼ N(0, σ2I) is a vector of zero
mean errors. We consider Bayesian inference in this model with a hierarchical prior on β

which allows some components of β to be zero. If βi = 0, this excludes the ith predictor
from the model. The problem of variable selection is to decide which predictors should
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be included in a model for the mean of the responses; the Bayesian approach does this
coherently, integrating out all uncertainties.

Markov chain Monte Carlo sampling methods for exploring model uncertainty in
Bayesian variable selection problems have received a lot of recent attention: see George
and McCulloch (1997), Denison, Mallick, and Smith (1998) and Kohn, Smith, and Chan
(2001) for a discussion of different approaches and recent developments.

Currently used sampling schemes for exploring the posterior distribution may mix
slowly when there are severe multicollinearities among the predictors. We describe an
algorithm which offers improvements over alternative sampling schemes in this situation,
and which is based on an analogy with the Swendsen-Wang algorithm for the Ising model
(Swendsen and Wang 1987). We formulate our hierarchical prior for β in terms of a vector
of binary variables in which the components indicate whether a predictor is included in
the model or not. By thinking of this binary parameter vector as a spatial process, we are
motivated to use a sampling algorithm inspired by the Swendsen-Wang algorithm for the
Ising model, where dependence between parameters is reduced by conditioning on some
auxiliary variables. For a review of the Swendsen-Wang algorithm and some extensions to
general Bayesian inference see Higdon (1998).

We will be concerned with Bayesian methods for variable selection and accounting
for model uncertainty in linear models. However, similar ideas find application in many
other areas, such as generalized linear models (Raftery 1996), survival analysis (Volinsky,
Madigan, Raftery, and Kronmal 1997) and graphical models (Madigan and York 1995).

The structure of this article is as follows. Section 2 specifies the model and the priors.
Section 3 reviews the Swendsen-Wang algorithm, and Section 4 extends the algorithm to
the problem of Bayesian variable selection. Section 5 describes our method for defining the
auxiliary variables in our algorithm. Section 6 describes performance of the method for real
and simulated data, and Section 7 gives some discussion and conclusions.

2. BAYESIAN VARIABLE SELECTION

We consider the model and the prior specification given by Kohn et al. (2001) for
Bayesian variable selection problems, although the methods we describe are applicable
with other prior specifications. Following their notation, let γ = (γ1, . . . , γp)T be a binary
vector, and write qγ =

∑
i γi for the number of nonzero elements of γ. Let Xγ be the n×qγ

design matrix obtained by removing those columns i from X for which γi = 0. Similarly
let βγ be the subvector of β obtained by removing components βi of β for which γi = 0.

We assume that

y|γ,Xγ ,βγ , σ
2 ∼ N(Xγβγ , σ

2I).

For Bayesian inference on the model parameters we use a hierarchical prior. The prior for
βγ given γ and σ2 is normal

p(βγ |γ, σ2) ∼ N(0, nσ2(XT
γ Xγ)−1). (2.1)
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This prior was used by Smith and Kohn (1996), is related to the g-prior of Zellner (1986),
and has some attractive invariance properties under rescaling of X and y (see Kohn et al.
2001 for further discussion).

The prior on σ2 is p(σ2) ∝ σ−2, and for our prior on γ we use

p(γ|π) =
p∏

i=1

πγi(1 − π)1−γi = πqγ (1 − π)p−qγ ,

where π is a hyperparameter with a beta prior, π ∼ Beta(a, b). The prior on γ (integrating
out π) is

p(γ) =
B(qγ + a, p − qγ + b)

B(a, b)
,

where B(·, ·) denotes the beta function.
We are interested in the posterior distribution on γ with βγ and σ2 integrated out,

p(γ|y) ∝ p(γ)p(y|γ). (2.2)

We have that

p(y|γ) =
∫ ∫

p(y|βγ ,γ, σ
2)p(βγ |γ, σ2)p(σ2)dβγdσ

2

and Smith and Kohn (1996) observed that βγ can be integrated out as a normal integral,
and σ2 as an inverse gamma integral, to give

p(y|γ) ∝ (1 + n)−qγ/2

(
yT y − n

n + 1
yT Xγ(XT

γ Xγ)−1XT
γ y

)−n/2

.

For alternative prior specifications it may not be possible to integrate out βγ and σ2 analyt-
ically: if this is the case, then we can still approximate p(y|γ) via a Laplace approximation
and apply the methods described later. This may also be useful in developing sampling
schemes for other Bayesian model selection problems.

For p relatively small, we can compute the posterior p(γ|y) exactly, obtaining the
normalizing constant in (2.2) by summing over all possible values of γ. For large p, this is
not feasible due to the number of terms in the sum, and we use Markov chain Monte Carlo
algorithms to identify high posterior probability models.

When there are high posterior correlations between components of γ, the usual Markov
chain Monte Carlo methods for exploring the posterior, which update one component of γ

at a time, can mix slowly. High posterior correlations can occur, for instance, in the situation
where there is multicollinearity. Updating components of γ in blocks rather than one at a
time can alleviate problems of slow convergence, but it may be difficult to decide how to
choose blocks.

Although the focus of this article is on variable selection, also of interest is estimation
of the vector of regression coefficients β without conditioning on any single model, but by
averaging over different models (so-called model averaging, see Hoeting, Madigan, Raftery,
and Volinsky 1999). The sampling schemes we discuss are relevant for this objective also.
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3. SWENDSEN-WANG ALGORITHM

Let η = (η1, . . . , ηp) be a binary spatial process with joint distribution p(η) specified
by

p(η) ∝ exp


∑

i

αi(ηi) +
∑
i<j

ψijI(ηi = ηj)


 , (3.1)

where ψij ≥ 0, i < j, and I(A) is the indicator function which is one when A occurs
and zero otherwise. Ratios of the expression (3.1) are easy to compute for η vectors which
differ at a single site, and this allows a single site Metropolis-Hastings algorithm such as
the Gibbs sampler to be easily implemented. However, single-site updating schemes can
mix slowly when there is strong dependence between components of η.

An alternative to the usual single-site updating schemes is the Swendsen-Wang algo-
rithm, in which auxiliary variables are introduced which conditionally remove interactions
among components of η. We let u = {uij : 1 ≤ i < j ≤ p} be a set of auxiliary variables
and set up a joint distribution p(u,η) on u and η in which the marginal distribution for η

is given by (3.1). This joint distribution can be constructed so that p(u|η) and p(η|u) are
easy to sample from.

To give the joint distribution p(u,η) for u and η we specify p(u|η). Given η, the uij

are mutually independent with the distribution of uij uniform,

p(uij |η) =
1

exp(ψijI(ηi = ηj))
I(uij ∈ [0, exp(ψijI(ηi = ηj))]).

Then we have

p(u,η) = p(η)p(u|η)

∝ exp

{∑
i

αi(ηi)

}
I(uij ∈ [0, exp(ψijI(ηi = ηj))] ∀i, j)

and, of course, p(η|u) ∝ p(u,η).
If ψij > 0, then the condition uij < exp(ψijI(ηi = ηj)) is satisfied if uij < 1, or even

if uij ∈ [1, exp(ψij)] if ηi = ηj . So when uij ∈ [1, exp(ψij)], ηi and ηj are constrained
to be equal by p(η|u), and the auxiliary variables uij thus define clusters of sites with the
same value. Subject to these constraints, we see from the expression for p(η|u) that those
components of η not constrained to be equal are conditionally independent. Conditioning
on the auxiliary variables removes the interactions between the components of η. Hence
both p(u|η) and p(η|u) are easy to sample from.

Higdon (1998) introduced a modification of the ordinary Swendsen-Wang algorithm
which he calls partial decoupling. Applied to the Ising model, the idea of partial decoupling
is that it may be helpful in the Swendsen-Wang algorithm to define the auxiliary variables
as

p(uij |η) =
1

exp(ψ∗
ijI(ηi = ηj))

I(uij ∈ [0, exp(ψ∗
ijI(ηi = ηj))]),
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where the ψ∗
ij are obtained by scaling down the values ψij . The parameters ψ∗

ij defining the
auxiliary variables are a free choice in the algorithm and they need not be taken the same as
the model parameters ψij . It may be beneficial to scale down the ψij values when defining
the auxiliary variables to improve mixing in the algorithm. The reason for this is that if we
put ψij = ψ∗

ij , and if many of the ψij are large, then in general there will be large clusters
of the variables involved in constraints at each step of the sampling algorithm, and often
at least one of the ηi in a large cluster will have a value fixed by the likelihood, making it
difficult to change cluster values.

4. ANALOGY WITH BAYESIAN VARIABLE SELECTION

By thinking about the posterior distribution (2.2) as a binary spatial process we can
construct an MCMC algorithm analogous to the Swendsen-Wang algorithm which performs
better than single site updating schemes for exploring the posterior in the presence of strong
posterior correlations.

As in the Swendsen-Wang algorithm, let u = {uij : 1 ≤ i < j ≤ p} be a col-
lection of auxiliary variables, and define a joint distribution p(u,γ|y) as p(u,γ|y) =
p(γ|y)p(u|γ,y) where p(γ|y) is the posterior distribution (2.2) and p(u|γ,y) must be
chosen. We have a great deal of freedom in how we may choose p(u|γ,y).

We choose p(u|γ,y) as in the Swendsen-Wang algorithm,

p(u|γ,y) =
1

exp(
∑

i<j ψijI(γi = γj))
I(uij ∈ [0, exp(ψijI(γi = γj))] ∀i < j),

where ψij are some (possibly negative) interaction parameters. We discuss how these in-
teraction parameters are determined in the next section.

Then

p(γ|u,y) ∝ p(γ|y)p(u|γ,y)

=
p(γ|y)

exp(
∑

i<j ψijI(γi = γj))
I(uij ∈ [0, exp(ψijI(γi = γj))] ∀i < j).

Although p(γ|y) does not in general have the form (3.1), it is hoped that as in the
Swendsen-Wang algorithm the denominator in the above expression will serve to reduce
interactions among components of γ conditional on u for a suitable choice of the interaction
parameters. This is the key idea in our method.

If ψij > 0, the constraint uij < exp(ψijI(γi = γj)) is satisfied when uij < 1,
or even if uij ∈ [1, exp(ψij)] when γi = γj . So if ψij > 0, γi and γj are constrained
to be equal if uij ∈ [1, exp(ψij)]. On the other hand, if ψij < 0 then the constraint
uij < exp(ψijI(γi = γj)) is satisfied when uij < exp(ψij), or when uij ∈ [exp(ψij), 1]
if γi /= γj . So if ψij < 0 and uij ∈ [exp(ψij), 1], then γi and γj are constrained to be
different.

The auxiliary variables uij define clusters among the components of γ in much the
same way as in the Swendsen-Wang algorithm. Components of γ within the same cluster
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are linked by a set of constraints of the form γi = γj or γi /= γj . We note that the constraints
always have at least one feasible solution, since they are created based on the current value
for γ. Let C = C(u) be one cluster defined by the set of auxiliary variables u, and let
C denote the set of variables not in C. Let γ(C) be the subset of γ corresponding to the
variables in C, and γ(C) denote the remaining components of γ. Given the constraints,
note that there are only two possible values for the vector γ(C): from one possible value
we can obtain the other by “flipping” the ones to zeros and zeros to ones within the cluster
C.

In general, we can update γ(C) by a Metropolis-Hastings step. Write γnew for a pro-
posed value of γ in which γnew(C) is generated from the proposal distribution q(γ(C)|γ,u,
y) and γnew(C) = γ(C). The Metropolis-Hastings acceptance probability is

min


1,

q(γ(C)|γ,u,y)p(γnew|y)
q(γnew(C)|γ,u,y)p(γ|y)

exp


∑

i<j

ψij(I(γi = γj) − I(γnew
i = γnew

j )





 .

Because γnew(C) = γ(C) we can simplify this expression by noting that

exp


∑

i<j

ψij(I(γi = γj) − I(γnew
i = γnew

j ))




= exp


 ∑

(i,j)∈∂C

ψij(I(γi = γj) − I(γnew
i = γnew

j ))


 ,

where

∂C = {(i, j) : i < j and either i ∈ C, j /∈ C or i /∈ C, j ∈ C}.

This probability is inexpensive to compute provided that ψij is nonzero only for a fairly
small number of pairs (i, j) ∈ ∂C.

A special case of the general Metropolis-Hastings scheme is to take the cluster proposal
to be a Gibbs type proposal, namely the conditional distribution for γ(C)|γ(C),u,y, which
makes the Metropolis-Hastings acceptance probability equal to one. If we set ψij = 0 for
all i, j in this case, then we obtain the Gibbs sampler.

There is also an antithetic method for updating clusters which proposes a change to the
current state for a cluster more often than the Gibbs type proposal. Let

q = Pr(γ(C)|γ(C), u, y),

be the probability that γ(C) remains at its current value (given the current values for γ(C)
and u) with the Gibbs type proposal. Now, suppose that instead of using the Gibbs proposal
we flip to the opposite state for γ(C) rather than remaining with the current with probability

min

(
1,

1 − q

q

)
. (4.1)

It is easy to show that in this case detailed balance is maintained.
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There are theoretical reasons for always preferring the antithetic method for updating
clusters. With the antithetic approach the transition matrix of the chain has uniformly smaller
off diagonal entries which results in smaller asymptotic variance of ergodic averages (Peskun
1973, theorem 2.1.1). We consider only the antithetic approach in what follows.

5. OBTAINING THE INTERACTION PARAMETERS

To implement our algorithm for Bayesian variable selection, we need to specify the
interaction parameters ψij in p(u|γ,y). For computational reasons it is advisable to keep
the number of nonzero ψij as small as possible (so that the Metropolis-Hastings acceptance
probabilities are inexpensive to compute). Also, the nonzero ψij should not be too large in
magnitude, for the same reason that motivated Higdon’s partial decoupling modification of
the original Swendsen-Wang algorithm.

We first describe our specification of the interaction parameters and then discuss the
motivation for our choice. Let γ∗ be some fixed configuration for γ and define

ψU
ij = 0.5 ×


 ∑

γi=γj ,γk=γ∗
k
,k /=i,j

log p(y|γ) −
∑

γi /=γj ,γk=γ∗
k
,k /=i,j

log p(y|γ)


 , (5.1)

where p(y|γ) is the marginal likelihood of γ. Then letψS
ij = cψU

ij , where c is a scaling factor
chosen so that ψkl ∈ [−a, a] for all k < l, and finally set ψij = ψS

ijI(|ψS
ij | ≥ t), where

t is a truncation point and I(A) is the indicator function which is one when A occurs and
zero otherwise. So we have ψij = ψS

ij if |ψS
ij | ≥ t and ψij = 0 otherwise. The parameters

γ∗, a and t must be chosen to completely specify our approach to choosing interaction
parameters. In our examples we use γ∗ a vector of ones, a = 1 and t = 0.1.

We now describe the motivation for our choice of ψij . First, suppose that η =
(η1, . . . , ηp)T is a binary spatial process with joint distribution of the form (3.1). Let
η∗ = (η∗

1 , . . . , η
∗
p)T be some fixed configuration for the sites. Then the following formula

holds, regardless of the value chosen for η∗:

ψij = 0.5 ×

 ∑

ηi=ηj , ηk=η∗
k
,k /=i,j

log p(η) −
∑

ηi /=ηj , ηk=η∗
k
,k /=i,j

log p(η)


 . (5.2)

This is easily seen by direct substitution from Equation (3.1). Note that this formula can
still be applied even when log p(η) is only known up to an additive constant. By analogy
with the Swendsen-Wang algorithm, this encourages us to base the choice of ψij in our
sampling method on Equation (5.2) with p(η) replaced by p(γ|y). Replacing p(γ|y) with
the marginal likelihood p(y|γ) gives Equation (5.1). We discuss the reason for using the
marginal likelihood rather than the posterior distribution later. Scaling down the interaction
parameters from Equation (5.1) and setting to zero values smaller in magnitude than t gives
our method for choosing our algorithm parameters ψij .

We note that the value obtained for ψU
ij in (5.1) will in general depend on the value γ∗.

As mentioned earlier, we use γ∗ a vector of ones, a = 1 and t = 0.1. We have experimented
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with values of a in the range 0.5 to 2.5 and with different values of t, but performance of the
algorithm does not seem to be too sensitive to any reasonable choice for these parameters.
Choice of γ∗ is crucial, however. Intuitively, setting all components of γ∗ to 1 allows us to
capture the conditional relationship between γi and γj in a model in which all important
predictors are included. Also, we have found it beneficial to replace use p(y|γ) rather than
p(γ|y) in (5.1). Our reasoning for this is as follows.

Note that we can write p(γi, γj |y,γ /=i,j) ∝ p(γi, γj |γ /=i,j)p(y|γ), where γ /=i,j =
{γk : k /= i, j} so that we can rewrite (5.1) as

ψU
ij = 0.5 ×


 ∑

γi=γj

log p(γi, γj |γ /=i,j = γ∗
/=i,j) −

∑
γi /=γj

log p(γi, γj |γ /=i,j = γ∗
/=i,j)




+ 0.5 ×

 ∑

γi=γj ,γ /=i,j=γ∗
/=i,j

log p(y|γ) −
∑

γi /=γj ,γ /=i,j=γ∗
/=i,j

log p(y|γ)


 (5.3)

so we can separate out prior and likelihood contributions to ψU
ij . If we set γ∗

/=i,j to a vector
of ones, we have found that the relative contribution of the prior in the equation above is not
typical of that for models with appreciable posterior probability, since these models may
be much more parsimonious than the full model and hence it may be beneficial when using
priors which encourage model parsimony to ignore the prior contribution in (5.3) and base
calculation of ψU

ij only on the likelihood p(y|γ) with γ∗
/=i,j a vector of ones.

We investigate in the empirical studies of the next section three basic rules for de-
termining the interaction parameters. Our first rule is to simply set ψij = 0 for all pairs
of variables, hereafter referred to as method A. We use this as our baseline method for
comparison rather than the Gibbs sampler, since as mentioned in Section 3, this sampler is
provably better.

Our second rule for choosing interaction parameters, hereafter method B, chooses ψij

in the way described above with γ∗ a vector of ones, a = 1 and t = 0.1.
For our third rule, method C, we follow method B with the exception of allowing only

a much smaller number of the interaction parameters to be nonzero. Computing ψU
ij for all

i < j when there is a large number of predictors in method B can be very time consuming.
So if we can reduce the number of pairs i, j for which we must compute the interaction
parameter ψij then this can improve computational efficiency.

Our method for choosing which pairs i, j have an interaction parameter ψij /= 0
involves the use of a standard multicollinearity diagnostic, the variance proportions. For
further background see, for instance, Myers (1990). We try to identify severe linear depen-
dencies among columns of the design matrix using the variance proportions, and only allow
ψij /= 0 for those columns i, j involved in a severe linear dependence.

We now describe the method more precisely. Let Z be the n× p matrix obtained from
the design matrix X by centering and scaling each of the predictors (so that each column
of Z is a vector of length one with entries which have zero mean). If an intercept term
is fitted, then the corresponding column in the design matrix is scaled to have length one
but is not centered. Write ZT Z = VDVT for the eigenvalue decomposition of ZT Z,
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where V = [v1, . . . ,vp] is the orthogonal matrix with columns given by the eigenvectors
v1, . . . ,vp of ZT Z and D is the diagonal matrix of eigenvalues with diagonal entries
λ1, . . . , λp. The least squares estimate b of β = (β1, . . . , βp)T in the model y = Zβ + ε

where ε ∼ N(0, σ2I) has covariance matrix σ2(ZT Z)−1. We can write

(ZT Z)−1 = VD−1VT

and apart from the factor σ2, the variance of bi is

p∑
m=1

v2
im

λm

so that the proportion of this variance which can be attributed to the eigenvalue λk is

Pki =
v2

ik/λk∑p
m=1 v

2
im/λm

.

The quantities Pki are called the variance proportions.
Now, if the eigenvalue λk is small, this means that the corresponding eigenvector vk

describes a near linear dependence among the predictors (columns of Z) since

λk = vT
k (ZT Z)vk = (Zvk)T (Zvk)

and hence the vector formed by weighting the columns of Z by the elements of vk is nearly
the zero vector. The proportion of the variance of bi that can be attributed to the linear
dependence for a given eigenvalue λk is Pki. If for a given small λk both Pki and Pkj are
large, this suggests that variables i and j are involved in a near linear dependence among
the predictors. Our idea is to only have ψij /= 0 when both Pki and Pkj are bigger than
some cutoff value (0.25 say) for some eigenvalue λk. Once the ψU

ij are computed for pairs
i, j for which ψij /= 0, we then follow the rescaling and truncation procedure of method B.

We also compare with a method based on that described by Denison et al. (1998),
who used the reversible jump MCMC algorithm of Green (1995). We briefly describe our
adaptation of their algorithm, since Denison et al. were concerned with nonparametric
regression problems and adapting their method for general variable selection problems and
a different prior specification requires a few changes.

The method of Denison, Mallick, and Smith (1998; hereafter DMS) proceeds by choos-
ing between three different allowable move types at each step of the MCMC algorithm.
Writing γcur for the current value of γ, we generate a proposal γnew by either (a) randomly
choosing a component of γcur which is currently zero and making it one (birth step); (b)
randomly choosing a component of γnew which is currently one and making it zero (death
step); or (c) simultaneously randomly choosing a component of γcur which is currently one
and making it zero, and a component of γcur which is currently zero and making it one (flip
step). For a model including k terms, we write bk, dk, and fk for the probabilities of birth,
death, and a flip, respectively. Denison et al. suggested choosing for k = 1, 2, . . . , p − 1

bk = cmin

{
1,

p(k + 1)
p(k)

}
,
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and

dk = cmin

{
1,

p(k)
p(k + 1)

}
,

where c is a constant and p(k) denotes the prior probability of a model including k terms
(which in our case can be calculated from p(γ)). Of course, fk = 1 − bk − dk. Also, we
have b0 = 1, d0 = f0 = 0 and dp = 1, bp = fp = 0. The constant c must be chosen
positive and so that fk ≥ 0 for all k: Denison et al. suggested c = 0.4 and we have chosen
this value in our examples.

If a birth is proposed when there are k terms in the current model, then the acceptance
probability is

min

{
p(γnew|y)dk+1(n − k)
p(γcur|y)bk(k + 1)

}
.

For a death, the acceptance probability is

min

{
1,

p(γnew|y)bk−1k

dk(n − k + 1)

}

and for a flip the acceptance probability is simply

min

{
1,

p(γnew|y)
p(γcur|y)

}
.

The modified DMS method is of interest for comparison with our method here because it
allows a limited block move (through the “flip” step) which may offer improvements over
one at a time sampling schemes in the case of multicollinearity.

6. EXAMPLES

Our applications involving simulated data are based on an example described by George
and McCulloch (1997) and we have followed their approach to comparing sampling schemes
by computing Monte Carlo standard errors of estimated marginal probabilities of inclusion
for each of the predictors for the various sampling schemes. Write γi, i = 1, . . . , p for
the estimated marginal probabilities of inclusion. The Monte Carlo standard errors of these
values are

SE(γi) =


1
k

∑
|h|<k

(
1 − |h|

k

)
Ri(h)




1/2

,

where Ri(h) is the estimated autocovariance function of the sequence of iterates for γi

assuming stationarity and k is the number of iterates: in practice, the autocovariances will
be close to zero beyond some lag so that the sum can be truncated. In fact, truncation of the
sum is necessary when the autocovariance function is estimated rather than known to ensure
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consistency of the normalized estimator: see, for instance, Besag and Green (1993). Because
we run two chains for each method to check that the results obtained from different starting
points are the same, the Monte Carlo standard errors reported in our tables are averages of
the values from the two sequences.

It can be argued that the Monte Carlo standard errors should not be compared based on
an equal number of iterations for all methods, but rather on the basis of equal processing
time. In the following examples there was essentially no difference between time taken per
iteration for the four different methods, since the computationally intensive part of each of
the algorithms is the evaluation of the likelihood function, which occurs once per iteration
for each of the methods. However, in problems with a large number of predictors, such as
the example in Section 6.3, the time taken to obtain the initial estimate of the interaction
parameters ψij is substantial for method B. For methods C and D there are no substantial
initializing computations.

FORTRAN code for implementing our methods can be obtained by e-mailing the first
author.

6.1 A SIMULATED DATASET

Our first example was discussed by George and McCulloch (1997). They simulated
a dataset with 15 predictor variables as follows. Let Z1, . . . ,Z15,Z ∼ N180(0, I), where
Nm(0, I) denotes the m-dimensional normal distribution with mean vector zero and co-
variance matrix I. Then let Xi = Zi + 2Z, i = 1, 3, 5, 8, 9, 10, 12, 13, 14, 15 and set
X2 = X1+0.15Z2,X4 = X3+0.15Z4,X6 = X5+0.15Z6,X7 = X8+X9−X10+0.15Z7

and X11 = X14 + X15 − X12 − X13 + 0.15Z11. George and McCulloch pointed out that
this construction results in severe and complicated muticollinearity: there is a correla-
tion of about 0.998 between Xi and Xi+1, i = 1, 3, 5 and strong linear dependencies
among (X7,X8,X9,X10) and (X11,X12,X13,X14,X15). Let X be the design matrix with
columns Xi, i = 1, . . . , 15. Let

β = (1.5, 0, 1.5, 0, 1.5, 0, 1.5,−1.5, 0, 0, 1.5, 1.5, 1.5, 0, 0)T ,

and generate the responses Y as

Y = Xβ + ε,

where ε ∼ N180(0, 2.52I). This is the simulated data we have used to compare our sampling
schemes.

For this simulated dataset, we ran 50,000 iterations of our sampling schemes from two
starting points for the chain (the starting points were the model including all predictors and
the model including none of them) and for the four methods (A, B, C, and DMS) described
in the previous section. We discarded a burn-in period of 1,000 iterates for each sequence.

Table 1 shows Monte Carlo standard errors of estimated marginal probabilities of
inclusion for the 15 predictors in the model for the four sampling schemes. From the table,
it seems that methods B, C, and DMS all give an improvement over method A; recall that
method A is provably better than the Gibbs sampler. Methods B and C are most promising.



12 D. J. NOTT AND P. J. GREEN

Table 1. Monte Carlo Standard Errors for γ i for George and McCulloch Simulated Dataset for Methods
A, B, C, and DMS. Estimates are based on 50,000 iterations from two different starting points
for each sampling scheme with 1,000 iterations burn in. The columns labeled “Relative” for
methods B, C, and DMS give relative improvements of the Monte Carlo standard errors for
these methods compared to that for method A.

Method

A B C DMS

Predictor SE(γ i) SE(γ i) Relative SE(γ i) Relative SE(γ i) Relative

X1 0.0051 0.0031 1.65 0.0032 1.62 0.0050 1.01
X2 0.0101 0.0077 1.31 0.0074 1.38 0.0089 1.13
X3 0.0304 0.0075 4.05 0.0083 3.66 0.0217 1.40
X4 0.0282 0.0069 4.06 0.0072 3.94 0.0204 1.39
X5 0.0021 0.0017 1.24 0.0017 1.20 0.0027 0.76
X6 0.0092 0.0088 1.05 0.0093 0.99 0.0095 0.97
X7 0.0545 0.0078 6.94 0.0082 6.69 0.0418 1.31
X8 0.0537 0.0080 6.67 0.0080 6.71 0.0411 1.31
X9 0.0542 0.0070 7.74 0.0067 8.03 0.0412 1.31
X10 0.0543 0.0072 7.60 0.0069 7.82 0.0413 1.31
X11 0.0355 0.0080 4.44 0.0088 4.06 0.0295 1.20
X12 0.0365 0.0077 4.72 0.0074 4.97 0.0287 1.27
X13 0.0365 0.0075 4.83 0.0076 4.80 0.0297 1.23
X14 0.0343 0.0046 7.47 0.0052 6.67 0.0266 1.29
X15 0.0331 0.0046 7.29 0.0056 5.92 0.0263 1.26

Our method produces efficiency gains by encouraging “flips” between variables which are
involved in a multicollinearity which are currently different, and these kind of flips seem to
greatly improve mixing in this example.

6.2 TWO LARGER SIMULATED DATASETS

We have also experimented with two variations on the example of George and McCul-
loch (1997) discussed in the previous subsection where the number of potential predictors
is increased to 30. With 30 predictors, direct calculation of the normalizing constant in the
posterior is difficult, and unlike the previous example MCMC methods really do become
necessary for exploring the posterior distribution.

In the first variation of George and McCulloch’s example we generate design matrices
X1 and X2 as in the previous example, but now for a sample size of 300. Then we let
X = [X1 X2] so that X is a 300 by 30 design matrix. Also, let β1 and β2 be 15 by 1 vectors
both equal to the vector β used in the previous example, and let β = [βT

1 βT
2 ]T . Then we

consider a dataset generated as

y = Xβ + ε,

where ε ∼ N300(0, 2.52I). The efficiency of the sampling schemes is compared in the same
way as for the previous example, but now 200,000 iterations of each sampler were used for
each run. The results are shown for the first 15 predictor variables in Table 2. For brevity we
have reported the results for only the first 15 predictor variables because of the symmetry
in the way that the first and last 15 predictors and their coefficients are constructed. Again
methods B and C seem superior to methods A and DMS.
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Table 2. Monte Carlo Standard Errors for γ i for Simulated Example with 30 Predictors for Methods A,
B, C, and DMS. Estimates are based on 200,000 iterations from two different starting points
for each sampling scheme with 1,000 iterations burn in. The columns labeled “Relative” for
methods B, C, and DMS give relative improvements of the Monte Carlo standard errors for
these methods compared to that for method A.

Method

A B C DMS

Predictor SE(γ i) SE(γ i) Relative SE(γ i) Relative SE(γ i) Relative

X1 0.0251 0.0054 4.64 0.0039 6.51 0.0230 1.09
X2 0.0248 0.0057 4.30 0.0042 5.96 0.0223 1.11
X3 0.0207 0.0064 3.23 0.0060 3.41 0.0172 1.20
X4 0.0209 0.0066 3.19 0.0057 3.70 0.0176 1.19
X5 0.0197 0.0055 3.54 0.0057 3.48 0.0135 1.46
X6 0.0203 0.0071 2.88 0.0060 3.38 0.0143 1.42
X7 0.0561 0.0045 12.48 0.0045 12.48 0.0510 1.10
X8 0.0561 0.0040 14.01 0.0046 12.05 0.0519 1.08
X9 0.0559 0.0053 10.66 0.0049 11.30 0.0513 1.09
X10 0.0551 0.0037 14.68 0.0055 10.01 0.0512 1.08
X11 0.0811 0.0046 17.43 0.0049 16.71 0.0498 1.63
X12 0.0812 0.0050 16.08 0.0058 14.00 0.0485 1.67
X13 0.0813 0.0055 14.65 0.0055 14.78 0.0486 1.67
X14 0.0804 0.0039 20.62 0.0042 19.14 0.0472 1.70
X15 0.0817 0.0040 20.41 0.0042 19.67 0.0475 1.72

Table 3. Monte Carlo Standard Errors for γ i for Simulated Example with 30 Predictors for Methods A,
B, C, and DMS. Estimates are based on 200,000 iterations from two different starting points
for each sampling scheme with 1,000 iterations burn in. The columns labelled “Relative” for
methods B, C, and DMS give relative improvements of the Monte Carlo standard errors for
these methods compared to that for method A.

Method

A B C DMS

Predictor SE(γ i) SE(γ i) Relative SE(γ i) Relative SE(γ i) Relative

X1 0.0148 0.0047 3.12 0.0051 2.91 0.0112 1.33
X2 0.0159 0.0051 3.12 0.0055 2.89 0.0117 1.36
X3 0.0265 0.0071 3.73 0.0044 6.01 0.0173 1.53
X4 0.0278 0.0083 3.35 0.0049 5.63 0.0180 1.55
X5 0.0126 0.0030 4.20 0.0055 2.28 0.0087 1.45
X6 0.0139 0.0033 4.15 0.0065 2.15 0.0094 1.47
X7 0.0867 0.0059 14.82 0.0043 20.40 0.0556 1.56
X8 0.0871 0.0058 15.02 0.0049 17.95 0.0563 1.55
X9 0.0780 0.0064 12.19 0.0035 22.29 0.0504 1.55
X10 0.0786 0.0059 13.44 0.0057 13.91 0.0516 1.52
X11 0.0142 0.0037 3.79 0.0024 5.80 0.0162 0.88
X12 0.0152 0.0031 4.90 0.0034 4.46 0.0162 0.94
X13 0.0152 0.0027 5.53 0.0024 6.20 0.0163 0.93
X14 0.0125 0.0014 9.26 0.0013 9.54 0.0149 0.83
X15 0.0115 0.0013 9.20 0.0012 9.58 0.0151 0.76
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Table 4. Predictors for U.S. Crime Dataset

Predictor Description

M percentage of males aged 14–24
So indicator variable for a southern state
Ed mean years of schooling

Po1 police expenditure in 1960
Po2 police expenditure in 1959

LF labour force participation rate
M.F number of males per 1000 females
Pop state population
NW number of nonwhites per 1,000 people
U1 unemployment rate of urban males 14–24
U2 unemployment rate of urban males 35–39

GDP gross domestic product per head
Ineq income inequality
Prob probability of imprisonment
Time average time served in state prisons

We also looked at another example identical to the one just described but where the
last 15 components of β were set to zero (so that β has a fairly small number of nonzero
components). Comparison between methods is shown in Table 3. Again we report results
for the first 15 predictor variables: here the last 15 predictors have only small posterior
probabilities of inclusion. Again methods B and C seem greatly superior. As it stands, in
problems like this one where there are many useless predictors all the methods considered
here will spend a lot of computational effort attempting to update predictors which have
nearly zero probability of inclusion in the model. Kohn et al. (2001) proposed a sampling
scheme which is designed to deal with this situation of many useless predictors where
proposal values are sampled from the conditional prior. We note that we could modify our
algorithm to use a similar Metropolis-Hastings proposal for clusters.

These examples involve 30 potential predictors: we believe that if the size of the prob-
lem was scaled up further then similar benefits could be obtained through the use of our
algorithm, although this very much depends on the nature of the data.

6.3 U.S. CRIME RATES

As a second example we consider a dataset on U.S. crime rates discussed by Ehrlich
(1973). See also Raftery, Madigan, and Hoeting (1997). Interest in this example is in de-
scribing the relationship between the crime rate in 47 states of the U.S. and a set of predictors
including measures describing sentencing regimes. The response is the rate of crimes in
a particular category per head of population, and there are 15 predictors which are listed
in Table 4. The predictors police expenditure in 1960 and police expenditure in 1959 are
highly correlated, as are the predictors unemployment rate of urban males 14–24 and un-
employment rate of urban males 35–39.

Table 5 shows Monte Carlo standard errors of γi for the 15 predictors. Methods B, C,
and DMS all indicate an improvement over method A, although the gains are not as great
as in the previous simulated examples, perhaps because the multicollinearities are not as
severe.
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Table 5. Monte Carlo Standard Errors for γ i for U.S. Crime Example for methods A, B, C, and DMS.
Estimates are based on 50,000 iterations from two different starting points for each sam-
pling scheme with 1,000 iterations burn in. The columns labeled “Relative” for methods B, C,
and DMS give relative improvements of the Monte Carlo standard errors for these methods
compared to that for method A.

Method

A B C DMS

Predictor SE(γ i) SE(γ i) Relative SE(γ i) Relative SE(γ i) Relative

M 0.0120 0.0110 1.10 0.0118 1.03 0.0112 1.08
So 0.0074 0.0065 1.14 0.0070 1.06 0.0064 1.16
Ed 0.0120 0.0111 1.09 0.0142 0.85 0.0143 0.84
Po1 0.0197 0.0072 2.72 0.0079 2.49 0.0129 1.52
Po2 0.0222 0.0085 2.62 0.0092 2.43 0.0142 1.57
LF 0.0082 0.0065 1.26 0.0080 1.03 0.0060 1.38
M.F 0.0121 0.0093 1.30 0.0117 1.03 0.0109 1.12
Pop 0.0062 0.0072 0.85 0.0078 0.79 0.0058 1.06
NW 0.0065 0.0072 0.90 0.0072 0.90 0.0060 1.07
U1 0.0074 0.0058 1.28 0.0078 0.95 0.0055 1.35
U2 0.0082 0.0072 1.13 0.0087 0.94 0.0089 0.91

GDP 0.0074 0.0075 0.99 0.0089 0.84 0.0081 1.91
Ineq 0.0072 0.0060 1.18 0.0089 0.80 0.0087 0.82
Prob 0.0095 0.0117 0.82 0.0106 0.90 0.0102 0.94
Time 0.0079 0.0074 1.07 0.0076 1.05 0.0065 1.22

6.4 STATISTICAL CORRECTION OF A NUMERICAL WEATHER PREDICTION MODEL

Our third example concerns a regression model for statistical correction of a deter-
ministic numerical weather prediction model. The responses consist of 369 observations of
daily maximum temperatures at Sydney airport throughout August, September, and Octo-
ber 1993–1996. There are 62 predictors in our dataset which are averages of 24-hour and
36-hour forecasts of 62 meteorological fields obtained from a numerical weather predic-
tion model. Many of the numerical weather prediction model predictors are closely related
to each other and so this dataset is one that involves a very large number of predictors
and severe multicollinearity. For more background on the data see Nott, Dunsmuir, Kohn,
and Woodcock (2001). A similar procedure to the previous examples was followed for
comparing methods, but this time 200,000 iterations were obtained for each chain.

Table 6 shows Monte Carlo standard errors of γi for a number of the predictors Xi.
These predictors were the ones which had estimated marginal probability of inclusion
of between 0.15 and 0.85 based on the results of all sampling schemes. It appears that
methods C and DMS again outperform method A, although once more the advantage is
not as decisive as in the simulated examples. The DMS method appears best of the four
approaches here. The length of time taken to obtain the initial estimates of theψij in method
B is a disadvantage of this method: the time taken to compute the interaction parameters
is more than the time taken to compute the MCMC iterates! In comparison, for method C,
computing the ψij takes just a few seconds.
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Table 6. Monte Carlo Standard Errors for γ i for Numerical Weather Prediction Model Data for Methods
A, B, C, and DMS. Estimates are based on 200,000 iterations for each method from two dif-
ferent starting methods with 1,000 iterations burn in for each sequence. The columns labeled
“Relative” for methods B, C, and DMS give relative improvements of the Monte Carlo standard
errors for these methods compared to that for method A.

Method

A B C DMS

Predictor SE(γ i) SE(γ i) Relative SE(γ i) Relative SE(γ i) Relative

X6 0.0452 0.0508 0.89 0.0473 0.96 0.0229 1.98
X8 0.0608 0.0401 1.51 0.0321 1.90 0.0271 2.24
X26 0.0384 0.0466 0.82 0.0450 0.85 0.0155 2.48
X31 0.0192 0.0213 0.90 0.0092 2.07 0.0117 1.64
X50 0.0542 0.0221 2.46 0.0210 2.58 0.0219 2.48
X56 0.0251 0.0159 1.58 0.0172 1.46 0.0174 1.45

7. DISCUSSION AND CONCLUSIONS

This article describes a sampling scheme for Bayesian variable selection which is based
on the Swendsen-Wang algorithm for the Ising model and which can perform better than
currently used sampling schemes in problems where there are multicollinearities amongst
the predictors.

We mention briefly one potentially interesting extension of the present work. One com-
mon application of Bayesian variable selection methods with a large number of potential
predictors is to nonparametric regression using linear combinations of basis functions. Kohn
et al. (2001) developed sampling schemes more efficient than traditional sampling schemes
for this problem. When describing the mean response function in terms of a linear combi-
nation of a large number of basis functions and where most of the basis functions are not
needed we effectively have a variable selection problem with many useless predictors. Kohn
et al. (2001) suggested Metropolis-Hastings schemes for which the Metropolis-Hastings ac-
ceptance ratio will be fast to compute when updating components of γ corresponding to
useless predictors.

There is the potential to employ similar ideas in our sampling scheme in applications to
nonparametric regression. Furthermore, in some nonparametric regression problems there
would be a natural way of choosing which of the interaction parameters ψij are nonzero in
our algorithm. Consider the bivariate regression model

yi = f(xi, zi) + εi,

where yi is the ith response, xi and zi are values of two predictor variables, and the εi are
zero mean normal constant variance errors. There are many possible choices for a basis that
can flexibly approximate the function f . For instance, one choice is a thin plate spline basis:
writing t = (x, z) and t1, . . . , tr for a collection of knot points, the thin plate basis is

{1, x, z, ‖t − t1‖2 log(‖t − t1‖), . . . ‖t − tr‖2 log(‖t − tr‖)},
where ‖ · ‖ is the Euclidean norm (see, for instance, Green and Silverman 1994, chap. 7).
We can choose the knots as the observed predictor values, or we could do a cluster analysis
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of the predictor vectors to get a more parsimonious set of knots. In expanding the mean
function in terms of this basis, we have indicator variables γi associated with each of the
knot points and we can think very naturally of the γi’s as a spatial field with spatial indices
given by the knots. We could allow a nonzero ψij in our algorithm only for pairs γi, γj

corresponding to knot points which are close to each other. Basis functions corresponding to
nearby knot points are likely to be similar, leading to multicollinearity in the design matrix.
Hence our sampling scheme could be more efficient than currently used sampling schemes
for this problem.

[Received October 2001. Revised October 2002.]
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