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� finite mixture models, Bayesian formulation

� MCMC moves for variable numbers of
components

� illustration for normal mixtures

� Poisson mixtures

� connections with Dirichlet process models

� random effects in mixed models

� measurement error

� analysis of factorial experiments

� adaptation to spatial settings, disease mapping
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Bayesian analysis of finite mixtures

(with Sylvia Richardson (INSERM � Imperial))

yi �
Pk

j�� wjf��j�j� independently
f��j�� is a given parametric family
fyig observed, f�jg� fwjg� k unknown

Context 1: Heterogeneous population: Groups
j � �� �� � � � � k, sizes � wj . Observation yi drawn
from unknown group zi: latent allocation variable.

p�zi � j� � wj independently for i � �� �� � � � � n

yijz � f��j�zi� independently for i � �� �� � � � � n

Context 2: Semi-parametric density estimation:
(not prime focus here) use same representation, but
fzig now artificial.

N.B. There may be empty components!
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Hierarchical model

p�k� �� w� z� y� � p�k�p��jk�p�wjk�p�zjw� k�p�yj�� z�

y

z

w

k

θ

For flexibility, allow priors for k, � and w to depend
on hyperparameters, drawn from independent
hyperpriors.
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Univariate normal mixtures

�j � ��j � �j�

with independent priors:

�j � N��� ���� and ���
j � ��	� 
�

Labelling. Model is invariant to relabelling of
groups: for identifiability, work with set, or choose
unique labelling; we generally use

�� � �� � � � � � �k

Weights.
w � D��� �� � � � � ��

Prior on k. Results easily reweighted for any
prior, so we typically use

k � U ��� �� � � � � �	
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MCMC methodology

MCMC updating of �w� �� �� z� 
� (by Gibbs
sampling for the conjugate priors used here) routine
since � 1990 (Robert, Diebolt,. . . ).

The novelty here is that when k is altered, the
dimension of the whole parameter vector changes:
need MCMC moves that can jump between
parameter subspaces of different dimensionality
� reversible jump MCMC (PJG, Biometrika, 1995)
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Ordinary Metropolis-Hastings MCMC

Unknowns x, data y
Write �x� for p�xjy�
Construct MC kernel P with limiting distribution 

Detailed balance:

�x�P �x� x�� � �x��P �x�� x� �x� x�

When at x, propose move to x� with density q�x� x��

Accept with probability

	 � min

�
��
�x��q�x�� x�

�x�q�x� x��

�
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Reversible jump MCMC

Unknowns x 	 C� e.g. x � �k� w� �� �� z� 
�

Detailed balance:Z
A

Z
B

�dx�Pm�x� dx�� �

Z
B

Z
A

�dx��Pm�x�� dx�

for all A�B 
 C, for each move type m.
When at x, propose move of type m to dx� with
probability measure qm�x� dx��

Accept with probability

	 � min

�
��
�dx��qm�x�� dx�

�dx�qm�x� dx��

�

Providing proposal degrees of freedom are
matched, can make this ratio make sense
automatically.
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Moves between two simple subspaces

In most cases encountered, the matching of degrees
of freedom is attained by modelling the program itself.

When in state x, we generate random numbers u,
and set the proposed new state x� to a deterministic
function x��x� u�. Similarly in reverse: x � x�x�� u��.
For matching, �x� u�� �x�� u�� is a bijection, and the
acceptance probability is

	 � min

�
��
p�yjx��

p�yjx�

p�x��

p�x�

gm�u��

gm�u�

������x�� u����x� u�

����
�
�

that is, the product of likelihood, prior and proposal
ratios and a Jacobian.
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Application of reversible jumps to mixtures

We use two dimension-changing moves:

� splitting/combining components

� birth/death of empty components

(the former is essential, the latter is introduced
simply to improve mixing in some rather extreme
cases)
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Split/combine move

Propose to split a randomly chosen component
(k � k � �) or combine two adjacent randomly
chosen components (k � k � �), and reallocate
affected observations.

�k� w� �� �� z�� �k  �� w�� ��� ��� z��

Propose a parameter set in the new subspace that is
intuitively roughly as well supported by the
posterior as the old set. We preserve combined
weight, mean and variance:

wj� � wj� � wj�

wj��j� � wj��j� � wj��j�

wj���
�
j� � ��j�� � wj���

�
j�
� ��j�� � wj���

�
j�
� ��j��
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Illustration of split/combine proposal

+o++ + o+ o+ + • ••• • •• •• •
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Acceptance probability. For the split move the
probability is min��� A�, where A is

�likelihood ratio��
p�k � ��

p�k�
� �k � ��

�
w����l�
j�

w����l�
j�

w����l��l�
j� B��� k��

�

r
�

�

� exp

�
�
�

�
�f��j� � ��� � ��j� � ��� � ��j� � ���g

�

�

�

��	�

�
��j��

�
j�

��j�

�����

exp
	
�
����

j�
� ���

j�
� ���

j� �



�
dk��

bkPalloc
� fg����u��g����u��g����u��g

��

�
wj� j�j� � �j� j�

�
j�
��j�

u���� u���u���� u����j�
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Remarks on MCMC methodology

� generic character of moves, exploiting adjacency

– can be adapted to a variety of univariate
distributions

� selection of subspace-jumping moves

– performance comparisons?

� multivariate extensions: richer algebra of
moves?

� validation by comparison with

– analytic calculations on very small data sets
– prior model in the absence of data
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What do you get from the Bayesian
approach?

� Avoids unsatisfactory and difficult hypothesis
testing for number of components

� Exposes multiple explanations

� Averaging over models gives superior
predictions

� Natural basis for classification and prediction

� Allows use of real prior information if available

Generalisations

� Other distributions

� Other prior structures

� Skewness

� Structured data
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Bayesian analysis of factorial experiments
by mixture modelling

(with Agostino Nobile (Bristol � Glasgow))

Biometrika, 2000.

Approach applies to any factorial setting – here we
look at ‘2 way ANOVA with interaction’.

Sampling model: yijk � N��ij � �ij�

i � �� �� � � � � I� j � �� �� � � � � J � k � �� �� � � � � rij.

Factorial structure: �ij � �� 	i � 
j � �ij

Prior set up:

� � N��� ���

	i �
P

tw
�
t N���t � �

�
t �


j �
P

tw
�
t N���t � �

�
t �

�ij �
P

tw
�
t N���t � �

�
t �

���
ij � ��a� b� with b � ��q� h�

16



Hyperpriors

We want factor effect components to adapt to the
data.

w� � Dir��� �� � � � � ��

��t � N���t � ���
��

�� � ��a��� b���

���t �
�� � ��a�t � b

�
t �

and similarly for 
 and � parameters.
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Choosing hyperparameters

Set � � 	 and �� � �		�maxi�j y
�
ij . Also

�� � �� � �� � 	.

It appears to be completely hopeless to use generic,
uninformative priors. We need to control within
and between component variability, and this entails
a user-specified ‘caliper’ : two factor levels are
regarded as essentially identical if they differ by
less than  – and this is represented by their
coming from the same mixture component.

Choose a�t and b�t so that pr�j	i � 	j j � � � 	���.

Conversely, we wish there to be small probability of
two components’ means being closer than , and
this gives a method for specifying a�� and b��.

Finally, choose a � �, q � 	�� and h such that
E��ij� � E������.
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Some results on survival time dataset

Posterior distribution of partition of poison effects
(� 100 000)

 111 112 121 211 123

1 2 703 75 148 221 5 403 16 525

0.25 1 58 978 0 306 40 715

pr�	� � 	� �� 	�� � 	���

pr�	�� 	�� 	� all distinct� � 	���

pr�	� � 	� �� 	�� 
� � 
� �� 
� � 
�� � 	���
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Spatial mixtures of Poisson distributions,
with application to disease mapping

(with Sylvia Richardson (INSERM � Imperial) and
Carmen Fernández (Bristol � St. Andrews))

Small area disease mapping

In regions indexed i � �� �� � � � � n:
yi � observed count of disease incidence
Ei � expected count based on population size,
adjusted for age and sex, etc.

yi�Ei � standardised mortality (morbidity) ratio
(SMR)

Standard assumption: yi � Poisson��iEi�

� inference on relative risks f�ig
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Modelling spatially dependent Poisson
data

Some options:

� Direct modelling of dependence at count level –
‘auto-Poisson’ Markov random field (Besag,
1974) – inflexible, only negative dependence,
covariates awkward

� Continuously-distributed (usually Gaussian)
MRF for log �i – e.g. Besag, York and Mollié
(1989) – popular and successful, but some
problems in identifiability, specification and
interpretation (and over-smoothing?)

� Variations – e.g. Stern and Cressie (1999)

� Hidden Gamma random field model – Wolpert
and Ickstadt (1998)
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Mixture modelling approach

Basic mixture set-up

yi �
kX

j��

wjf��j�j� independently

�

introduce latent allocation variables fzig with

yijz � f��j�zi�

p�zi � j� � wj

Extension to spatial case

Write relative risk as �zi in place of �i.

yijz � Poisson��ziEi�

where fzig is a spatially dependent random field
with zi 	 f�� �� � � � � kg
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Our model formulations

y

λ Ez

α β
ψ

k

� yi � Poisson��ziEi� independently

� �j � ��	� 
� independently and then ordered

� k � Uniform��� �� � � � � kmax�

� 	� 
 usually fixed

� various alternatives for p�z�, z 	 f�� �� � � � � kgn
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Allocation models

In each case, spatial context determined by assumed
neighbourhood structure – we say ‘adjacent’ �
‘have common boundary’ (i � j). For rare diseases,
more complex dependence not justified.

The formulations we have implemented and
explored:

� Potts model: p�z� � exp��U�z�� �k���� where
U�z� � �fi � j � zi � zjg � number of
like-coloured neighbour pairs.

� multinomial allocation – p�zi � j� � wij – using
either

– logistic-normal weights:
wij � exp�xij��

P
j� exp�xij��

– grouped continuous weights:
wij � ��xi � �j����xi � �j���

where �xij� and �xi� are Gaussian random
fields.
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MCMC moves for Potts model formulation

1. allocation variables z updated one-by-one by
Gibbs

2. interaction parameter �: full conditional
� p��� exp��U�z�� �k���� – use Metropolis

3. component parameters �j – simultaneous
update by Metropolis, with multiplicative
perturbation followed by ordering

4. split/merge move to create or remove
components
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Detail of move (3) – simultaneous update of �j

Make simultaneous zero-mean normal
perturbations to all log �j – the modified � values
are then ordered to give proposed updates ��j .

Proposal density is sum of k� terms, but after
re-arrangement, the terms in numerator and
denominator of Metropolis-Hastings ratio are in
proportion - acceptance probability reduces to
minf�� Rg where R �

kY
j��

�
���j

�j

���
P

i�zi�j
yi

expf����j � �j��
 �
X
i�zi�j

Ei�g

�
� �
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Detail of move (4) – split/merge

As in independent random sample case, number of
components changes only by �, by splitting and
merging components.

The proposal simultaneously changes k, amends
the vector �, and reallocates regions.

Steps:

1. choose between split and merge

2. (if split) choose component j at random

3. propose new values �j� � �j � �j�

4. reject if whole � vector out of order

5. scan through regions allocated to j,
re-allocating between j� and j� randomly but
not independently accumulating allocation
probability

6. compute acceptance probability and
accept/reject
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Illustrating split/merge allocation proposal

?

j

j

j+

*
*

**

*

*

j+

Allocation of ? to j- or j+ according to a Potts model
on the f?, j-, j+g sites – in this case it will be j+ with
odds of exp���� to 1.
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Acceptance probability for this complete split
proposal is minf�� Rg where

R �
Y

i�z�
i
��

e��	��	j	Ei


��
�j

�yi

�
Y

i�z�
i
��

e��	��	j	Ei


��
�j

�yi

�

�

��	�


����
�j

����

e���	��	��	j	�k � ��
pk��

pk

� expf��U�z��� U�z�� � �k���� �k�����g

�
dk��

bkPalloc
�

�c

u
�
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Potts model normalising constants

The normalising constant

�k��� � log

�
� X
z�f����


�kgn

exp��U�z��

�
�

is intractable, but accessible by Monte Carlo
methods; for example the identity (exponential
families!)

�k��� � n log k �

Z �




E�U j��� k�d��

can be used.
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Interpretation and inference in spatial mixtures

Do we really believe there are k groups of regions
with identical relative risks?

� model is being used in a ‘semi-parametric’
fashion, not to identify clusters

� inference on f�zig rather robust to details of
prior structure – ‘borrows strength’ between
regions in an adaptive way (by Bayesian model
averaging)

� avoid over-smoothing of relative risks

� interpret inference on k and z with caution
(diagnostic/exploratory)
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