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Summary

Markov chain Monte Carlo methods for Bayesian computation have until re�

cently been restricted to problems where the joint distribution of all variables

has a density with respect to some �xed standard underlying measure� They

have therefore not been available for application to Bayesian model deter�

mination� where the dimensionality of the parameter vector is typically not

�xed� This article proposes a new framework for the construction of reversible

Markov chain samplers that jump between parameter subspaces of di�ering

dimensionality� which is �exible and entirely constructive� It should therefore

have wide applicability in model determination problems� The methodology

is illustrated with applications to multiple change�point analysis in one and

two dimensions� and to a Bayesian comparison of binomial experiments�

Some key words� Change�point analysis� Image segmentation� Jump di�usion� Markov chain Monte

Carlo� Multiple binomial experiments� Multiple shrinkage� Step function� Voronoi tessellation�
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� Introduction

There are a number of challenging statistical problems� often involving inference about

curves� surfaces or images� where the dimension of the object of inference is not �xed� One

example discussed in detail later in this article concerns the multiple change�point problem

for Poisson processes� where it is assumed that the rate is piecewise constant� but changes

an unknown number of times� The times of change and the di�erent rates are unknown�

The object of inference is therefore a step function�

There are many problems of broadly similar vein� with the same general ingredients	 a

discrete choice between a set of models� a parameter vector with an interpretation depending

on the model in question� and data� in�uenced by the model and parameter values� to be

used as a basis for inference� Some examples are	

a� factorial experiments� with a prior allowing factor e�ects to tie


b� variable selection in regression


c� non�nested regression models


d� mixture deconvolution� with an unknown number of components


e� Bayesian choice between models with di�erent numbers of parameters


f� multiple change�point problems


g� image segmentation� the two�dimensional analogue of the change�point problem


h� object recognition� approached via marked spatial point processes�

Model criticism� model choice� model selection� model averaging� etc�� all require the

same basic computational tasks� and it is a technology for these tasks that is the focus

here� The aim of this article is to add further weight to the assertions �a� that a Bayesian

approach is attractive for such problems� and �b� that the computations for such inference

can be handled by Markov chain Monte Carlo methods� In particular� in Section 
 we

introduce a novel class of such methods capable of jumping between subspaces of di�ering

dimensionality� This considerably extends the scope of Metropolis�Hastings methods� and

applies to very many varying�dimension problems�
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� Bayesian model choice as a hierarchical model

Suppose that we have a countable collection of candidate models fMk� k � Kg� Model

Mk has a vector ��k� of unknown parameters� assumed to lie in Rnk � where the dimension

nk may vary from model to model� With obvious changes� our methods would apply to

an arbitrary collection of parameter subspaces� We observe data y� There is a natural

hierarchical structure expressed by modelling the joint distribution of �k� ��k�� y� as

p�k� ��k�� y� � p�k�p���k�jk�p�yjk� ��k���

that is� the product of model probability� prior and likelihood� It will be convenient to

abbreviate the pair �k� ��k�� by x� For given k� x lies in Ck � fkg � Rnk 
 generally� x varies

over C � �k�KCk�

As a concrete example� consider a change�point problem in which there is an unknown

number of change�points in a piecewise constant regression function on the interval ��� L�� For

k � K � f�� �� �� � � �g� model Mk says that there are exactly k change�points� To parametrise

the resulting step function� we need to specify the position of each change�point� and the

value of the function on each of the �k � �� subintervals into which ��� L� is divided� Thus

��k� is a vector of length nk � �k � ��

Bayesian inference about k and ��k� will be based on the joint posterior p�k� ��k�jy�� which

is the target of the Markov chain Monte Carlo computations described below� It will often

be appropriate to factorise this as

p�k� ��k�jy� � p�kjy�p���k�jk� y��

and to interpret the two terms separately� thus avoiding any �model averaging�� Inference

about the model indicator may sometimes be phrased in terms� not of p�kjy�� but of the

Bayes factor for one model relative to another	

p�k�jy�

p�k�jy�
�

p�k��

p�k��
�

which does not depend on the hyperprior p�k�� All these quantities are readily estimated

from the Markov chain Monte Carlo sample obtained by the methods below
 if Bayes factors

are all that are required� p�k� must nevertheless be speci�ed to implement the computation�






but it can be chosen on grounds of convenience� Note that regarding the posterior p�k� ��k��

as the objective of the computation does not preclude model selection or prediction being

ultimately based on a non�coherent principle such as that advocated by Madigan and Raftery

������
 thus the methods of the present paper would be applicable to their analysis�

Recent work on Markov chain Monte Carlo computation with application to aspects

of Bayesian model determination includes Phillips and Smith ������� based on the jump�

di�usion samplers of Grenander and Miller ������� Carlin and Chib ������ who e�ectively

work with the product space
Q
k�K Ck� and unpublished work of Piccioni and Jona�Lasinio�

who devise an embedding method in which the fCkg are mapped onto subsets of a single

parameter space� Each of these approaches has its merits and its disadvantages� In jump�

di�usion� there is a con�ict between minimising the distortion caused by using a positive

time increment� and improving Monte Carlo e�ciency� Further� although the jump�di�usion

principle is really rather general� the range of jump transitions discussed by Grenander

and Miller� and used by Phillips and Smith� is somewhat limited� amounting to conditional

versions of Gibbs kernels� and Hastings kernels based on proposals generated from the prior�

While these moves seem adequate for Grenander and Miller�s applications� they are perhaps

too restricted for general Bayesian computation� The product space approach of Carlin and

Chib requires that irrelevant parameters� the ��k
�� for k� di�erent from the current k� need to

be continually updated� which apparently limits the approach to a small set of models K� In

recent unpublished work� A� O�Hagan and the author have pointed out that there is no need

to update the irrelevant parameters to ensure the proper limiting distribution of the chain�

but performance of the modi�ed method is not very encouraging� The embedding method

seems cumbersome and inexplicit in use�

� Markov chain Monte Carlo using reversible jumps

��� Introduction

Let ��dx� denote a target distribution of interest� In Bayesian inference� this is the posterior

distribution for the parameters given the data� and in the present context of model determi�

nation� �parameters� include the indicator k for the model itself� as well as the parameter
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vector ��k� speci�c to that model� In Markov chain Monte Carlo computation� we construct

a Markov transition kernel P �x� dx�� that is aperiodic and irreducible� and satis�es detailed

balance	 Z
A

Z
B
��dx�P �x� dx�� �

Z
B

Z
A
��dx��P �x�� dx�� ���

for all appropriate A�B� and then simulate this chain to obtain a dependent� approximate�

sample from ��dx�� Although detailed balance is more than is needed for ergodicity and the

correct limiting distribution� in practical design of samplers it is a convenient restriction to

impose�

In straightforward cases� ��dx� is either a discrete probability distribution� or has a

joint density with respect to some simple measure� usually Lebesgue
 then methods for

constructing suitable transition kernels are familiar� The two most popular methods are the

Gibbs sampler �Geman and Geman� ������ and the Metropolis�Hastings method �Metropolis�

et al�� ���

 Hastings� ������ A full description and some comparisons can be found in

Tierney ������� Besag et al� ������� and elsewhere� Brie�y� each method proceeds by

sweeping around all the variables x � �x�� x�� � � � � xn�� visiting subsets of the indices in turn�

either randomly or systematically� When a subset T of f�� �� � � � � ng is visited� the variables

xT 	� fxi 	 i � Tg are updated� In the Gibbs sampler� the new values are drawn from

the full conditional distributions ��xT jx�T �� where x�T 	� fxi 	 i �� Tg� In the Hastings

method� proposed new values x�T for these variables are drawn from an essentially arbitrary

distribution qT �x�T 
 x�� Then� with probability

��x� x�� � min

�
��
��x�T jx�T �qT �xT 
 x��

��xT jx�T �qT �x�T 
 x�

�

the proposed values are accepted
 otherwise� the existing values are retained�

The Gibbs sampler hardly even makes sense when x has a length that is not �xed�

and elements which need not have a �xed interpretation across all models
 to resample

some components conditional on the remainder would rarely be meaningful� We therefore

concentrate on adapting the wider class of Hastings algorithms to the present situation�

following the approach outlined by Green ������� in discussion of Grenander and Miller

������� This gives a framework for dealing with the case where there is no simple underlying

measure�
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��� The general case

In a typical application with multiple parameter subspaces fCkg of di�erent dimensionality�

it will be necessary to devise di�erent types of move between the subspaces� These will be

combined to form what Tierney ������ calls a hybrid sampler� by random choice between

available moves at each transition� in order to traverse freely across the combined parameter

space C� We restrict attention to Markov chains in which detailed balance is attained within

each move type�

When the current state is x� we propose a move of type m� that would take the state

to dx�� with probability qm�x� dx��� For the moment� this is an arbitrary sub�probability

measure on m and x�� Thus
P

m qm�x� C� � �� and with probability � �
P

m qm�x� C�� no

change to the present state is proposed� Not all moves m will be available from all starting

states x� so for each x� qm�x� C� � � for some� perhaps many� m�

As usual with Hastings algorithms� the proposal is not automatically accepted� The

probability of acceptance will be denoted by �m�x� x��� and is left unde�ned at present
 the

objective of the following analysis is to derive an expression for �m�x� x�� which achieves the

stated aim of attaining detailed balance within each move type�

The transition kernel we have de�ned can be written

P �x�B� �
X
m

Z
B
qm�x� dx���m�x� x�� � s�x�I�x � B� ���

for Borel sets B in C� where I��� denotes the indicator function� and

s�x� 	�
X
m

Z
C

qm�x� dx��f�� �m�x� x��g� ��
X
m

qm�x� C�

is the probability of not moving from x� either through a proposed move being rejected� or

because no move is attempted�

The detailed balance relation ��� requires the equilibrium probability of moving from A

to B to equal that from B to A� for all Borel sets A�B in C� Substituting ���� we need

X
m

Z
A
��dx�

Z
B
qm�x� dx���m�x� x�� �

Z
A�B

��dx�s�x�

�
X
m

Z
B
��dx��

Z
A
qm�x�� dx��m�x�� x� �

Z
B�A

��dx��s�x��� �
�
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For this to hold� it is su�cient that

Z
A
��dx�

Z
B
qm�x� dx���m�x� x�� �

Z
B
��dx��

Z
A
qm�x�� dx��m�x�� x�

for each m�A�B� and to achieve this we choose �m�x� x�� as follows�

Suppose that

��dx�qm�x� dx�� has a �nite density fm�x� x�� with respect to a

symmetric measure �m on C � C�
���

Then

Z
A
��dx�

Z
B
qm�x� dx���m�x� x�� �

Z
A

Z
B
�m�dx� dx��fm�x� x���m�x� x��

�
Z
B

Z
A
�m�dx�� dx�fm�x�� x��m�x�� x�

�
Z
B
��dx��

Z
A
qm�x�� dx��m�x�� x��

as required� with the middle equality holding� by the assumed symmetry of �m� provided

that

�m�x� x��fm�x� x�� � �m�x�� x�fm�x�� x�� ���

As shown by Peskun����
� with a proof only for the �nite state space case� it is optimal� in

the sense of reducing autocorrelation in the realised chain� to make the acceptance probability

as large as possible subject to retaining detailed balance� Thus we take

�m�x� x�� � min

�
��
fm�x�� x�

fm�x� x��

�
���

which satis�es ���� The possibility that the denominator of the ratio above is zero is not

of concern� since for such x� dx�� there is zero probability of proposing such a move� by

de�nition of f 
 the ratio can therefore safely be set to an arbitrary value� Less formally� but

more transparently� we could write this expression using a ratio of measures

�m�x� x�� � min

�
��
��dx��qm�x�� dx�

��dx�qm�x� dx��

�
� ���

For straightforward cases� the dimension�matching requirement can be imposed fairly

simply� by following a standard �template�� We give further details in the following subsec�

tion� but in the meantime add a few remarks�
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Remark �� The de�nition of the sampling method is entirely constructive� No integration�

by simulation or otherwise� is needed to set up the transition mechanism�

Remark �� The method allows great �exibility to the algorithm designer to exploit the

structure of the problem at hand� Intuition can be used to choose moves that plausibly

induce good mixing behaviour� while not imposing a heavy burden of algebraic and analytic

work to establish validity�

Remark �� Although as usual with Hastings methods� the distribution � need not be nor�

malised� relative normalising constants between di�erent subspaces are needed� Speci�cally�

while it is not necessary that the prior distributions p���k�jk� are properly normalised� there

must be only one unknown multiplicative constant among all such priors� unless only pos�

teriors conditional on k are needed� Detailed balance between di�erent subspaces could not

be achieved otherwise� a point apparently missed by Grenander and Miller �������

Remark �� Our general framework includes various familiar special cases� When there is

only one parameter subspace� with a single dominating measure� it is just the random scan

Hastings method� Our framework provides a natural generalisation of Hastings methods to

general parameter spaces� In the case of point processes� the method is closely related to

the spatial birth and death process studied by Preston ������� Recently� Geyer and M�ller

������ have developed a Hastings sampler for point processes� which is a special case of our

construction
 they derive likelihood inference procedures for point patterns based on this�

and prove results on convergence� The jump�di�usion processes of Grenander and Miller

������� proposed for Bayesian computation in certain computer vision problems� also pro�

vide a special case of our method� but one in which within�parameter�subspace moves are

made by a continuous�time di�usion process� which� when discretised temporally for com�

putational purposes� only approximately maintains detailed balance� The range of jump

transitions presented by Grenander and Miller is also somewhat restricted�

��� Switching between two simple subspaces

The rather obscure �dimension�matching� assumption ��� above deserves interpretation in

more intuitive terms� Suppose �rst that there are just two subspaces C� � f�g � R and

C� � f�g � R�� with � having proper densities on each subspace conditional on k � � and
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�� The context might suggest� for example� that from a point ��� ��� ��� � C�� a good move

might be to f�� �
�
��� � ���g� For this move type� the equilibrium joint proposal probabilityZ

B
��dx�

Z
A
qm�x� dx���

where A � C� and B � C�� must have a density with respect to a singular measure on R�R�

placing all of its mass on f��� ��� ��� 	 � � �
�
��� � ���g� instead of Lebesgue measure on R��

For detailed balance to be attainable� therefore� it is necessary that the reverse move from

A to B should be de�ned via a proposal distribution qm�x� dx�� that for each x � ��� �� is

singular� with all its probability on f��� ��� ��� 	 � � �
�
��� � ���g� For example� we might

draw a random variable u from some distribution� independently of the current state �� and

set �� � � � u� �� � �� u� All that ��� does is to ensure that singularities of the sort arising

above are self�consistent�

To describe in detail how to implement the dimension�matching requirement in many

standard cases� we consider a setup a little more general than the example just described�

Suppose there are two subspaces� given by k � � and �� and that p�����jk � �� and p�����jk �

�� are proper densities in Rn� and Rn� � Consider just one move type� which always switches

subspaces� so that q�x� C�� � � for x � C�� and q�x� C�� � � for x � C�
 the subscript m is

being suppressed� The probability of choosing this move will be denoted by j�x�� A typical

way of accomplishing a transition from C� to C� will be by generating a vector of continuous

random variables u��� of length m�� independently of ����� and then setting ���� to be some

deterministic function of ���� and u���� Similarly� to switch back� u��� of length m� will be

generated and ���� set to some function of ���� and u���� For dimension�matching� there must

be a bijection between ������ u���� and ������ u����� In particular� the lengths of u��� and u���

must satisfy n� � m� � n� � m�� The proposal distribution q�x� dx�� can now be de�ned by

the distributions of u��� and u���� which we suppose given by proper densities q� and q� with

respect to Lebesgue measure in Rm� and Rm� � respectively�

We can now be explicit about the condition ��� in this context� For A � C� and B � C��

set

��A� B� � ��B � A� � �f������ u���� 	 ���� � A� ���������� u���� � Bg

where � denotes �n� � m���dimensional Lebesgue measure� For general A�B � C� put

��A�B� � �f�A 	 C��� �B 	 C��g� �f�A 	 C��� �B 	 C��g�

�



This is symmetric� as required� Then for x � ��� ����� � C� and x� � ��� ����� � C�� let

f�x� x�� � p��� ����jy�j��� �����q��u
�����

f�x�� x� � p��� ����jy�j��� �����q��u
����

�����	������ u����

	������ u����

����� �
and otherwise set f�x� x�� � �� Then for all x� x� � C� f�x� x�� is the density with respect to

� of the equilibrium joint proposal distribution ��dx�q�x� dx���

According to ���� the appropriate acceptance probability for the proposed transition from

x � ��� ����� to x� � ��� ����� is

min

�
��
p��� ����jy�j��� �����q��u

����

p��� ����jy�j��� �����q��u����

�����	������ u����

	������ u����

�����
�
� ���

which restores the anti�symmetry that was lost in the particular representation of � used

above�

In practice� such moves will often be set up so that m� or m� is zero� In one direction� then�

there is no need to generate the corresponding u�i�� and the expression for the acceptance

probability simpli�es� For example� with m� � �� it becomes

min

�
��

p��� ����jy�j��� �����

p��� ����jy�j��� �����q��u����

����� 	������

	������ u����

�����
�
� ���

Finally� this example is somewhat simpli�ed compared with many real applications� and

appropriate modi�cations may need to be made� For example� u��� may be generated depen�

dently on ����� in which case q��u
���� is replaced by the conditional density� If other discrete

variables are generated in making the proposals� the probability functions of their realised

values are multiplied into the move probabilities j�x�� With this latter change� ��� is used

repeatedly in the applications later in this article�

� Application to one�dimensional multiple change�point

problems

��� Coal mining disasters

As our �rst application of the general construction of the previous section� we present a new

Bayesian model for multiple change�point analysis� and develop a reversible jump Markov

chain Monte Carlo sampler to compute the posterior distribution�
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A data set that has been frequently used in illustrating new methods for change�point

analysis is the point process of dates of serious coal�mining disasters between ���� and �����

given by Raftery and Akman ������� In contrast to some other previous analyses of these

data� we will work in continuous time� with the points recorded in days rather than years�

Figure � displays the dates of the ��� disasters in these ��� years � ����� days as a jittered

dot plot� together with the cumulative counting process� shown as a dotted line� For data

points fyi� i � �� �� � � � � ng � ��� L� from a Poisson process with rate given by the function

x�t�� the log�likelihood is
nX
i��

logfx�yi�g �
Z L

�
x�t�dt� ���

time (days)
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Coal mining disasters, 1851-1962

Figure �	 Coal mining disaster data	 dates of disasters� cumulative counting process �dotted

curve� and posterior mean rate of occurrence �solid curve�

��� A prior model for step functions

We develop a Bayesian multiple change�point analysis of point process data� by assuming

that the rate function x��� on ��� L� is a step function� In this section� we formulate a prior

distribution for x�
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Suppose that there are k steps� at positions � 
 s� 
 s� 
 � � � 
 sk 
 L� and that

the step function takes the value hj� which we call its height� on the subinterval �sj� sj����

j � �� �� �� � � � � k �writing s� � �� sk�� � L for convenience�� The prior model is speci�ed by

supposing that k is drawn from the Poisson distribution

p�k� � e��
�k

k 
�

but conditioned on k � kmax� Given k� the step positions s�� s�� � � � � sk are distributed as the

even�numbered order statistics from �k � � points uniformly distributed on ��� L�� and the

heights h�� h�� � � � � hk are independently drawn from the !��� �� density

��h���e��h�!��� for h � ��

This prior model for step functions is intended to be close to �uninformative�� It is not

appropriate to select an improper gamma distribution !��� �� for the heights� because that

causes insurmountable di�culties with normalisation across di�ering numbers of steps
 all of

the probability in the posterior would be assigned to the simplest model� It would perhaps

have been more natural to take the step positions independently uniformly distributed on

��� L� before sorting� However� this allows too many �short� steps� with sj���sj small� Since

there may be no data in the interval �sj� sj���� such short intervals are barely penalised by

the likelihood and so survive in the posterior� giving a more complicated picture of the true

step function than is really justi�ed by the data� The modi�cation used here has the e�ect

of probabilistically spacing out the step positions�

��� Using reversible jumps for step functions

In developing a reversible jump Monte Carlo sampler for the change�point problem� we are

guided by intuition in designing appropriate moves� coupled with the requirements that the

dimensions can be balanced properly� that the moves can be simulated conveniently� and

that the acceptance ratio can be computed economically� As always with Hastings methods�

there is �exibility in this process� and we are not constrained by �ne details of the model in

question� We make no claim of optimality for the particular choices made�

When the object x is a step function on ��� L�� some possible transitions are	 �a� a change

to the height of a randomly chosen step� �b� a change to the position of a randomly chosen
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step� �c� �birth� of a new step at a randomly chosen location in ��� L�� and �d� �death�

of a randomly chosen step� Note that �c� and �d� involve changing the dimension of x� so

that standard Markov chain Monte Carlo theory does not apply� In the general framework of

Section 
 these transitions can be attained with a countable set of moves� which we denote by

fH�P� �� �� �� � � �g� Here H means a height change� P a position change� and m � �� �� �� � � �

denotes the birth�death pair that increases the number of steps from m to m � � steps� or

reduces it from m � � to m�

In some applications� the number of steps would be �xed in advance
 often� change�point

analysis assumes exactly one step� Nevertheless� there are clear advantages for e�cient Monte

Carlo computation in allowing k to vary� but to condition on k when drawing information

from the realisation� This will allow much better mixing�

We now describe these transitions in more detail� At each transition� an independent

random choice is made between attempting each of the at most four available move types

�H�P� k� k� ��� signifying height change� position change� birth or death respectively� These

have probabilities 
k for H� �k for P � bk for k and dk for k � �� depending only on the

current number of steps k� and satisfying 
k � �k � bk � dk � �� Naturally� d� � �� � ��

and bkmax � � to impose the preassigned upper limit kmax on the number of steps� Apart

from these constraints� these probabilities were chosen so that bk � cminf�� p�k � ���p�k�g

and dk�� � cminf�� p�k��p�k � ��g with the constant c as large as possible subject to

bk �dk � ��� for all k � �� �� � � � � kmax� This choice ensures that bkp�k� � dk��p�k���� which

is the condition on bk and dk that would guarantee certain acceptance in the corresponding�

but much simpler� Hastings sampler for the number of steps alone� Finally for k 
� �� we

took 
k � �k�

If a move of type H or P is chosen� the remaining details are straightforward� A change

to a height is attempted by �rst choosing one of h�� h�� � � � � hk at random� obtaining hj say�

then proposing a change to h�j such that log�h�j�hj� is uniformly distributed on the interval

���
� ��

�
� �
 this choice is made from convenience� the proposal density ratio taking a simple

form� The acceptance probability for this move is found to be

min
h
�� �likelihood ratio�� �h�j�hj�

� expf���h�j � hj�g
i

in the usual way� Here and later� �likelihood ratio� means p�yjx���p�yjx�� where x and x�

�




stand for the current and proposed new values of all parameters� For a position change move�

one of s�� s�� � � � � sk is drawn at random� obtaining say sj� The proposed replacement value

is s�j� drawn uniformly on �sj��� sj���� and the acceptance probability turns out to be

min

�
�� �likelihood ratio��

�sj�� � s�j��s
�
j � sj���

�sj�� � sj��sj � sj���

�
�

The details for a birth of a step are more complicated� and follow the prescription in

Section 
�
� We �rst choose a position s� for the proposed new step� uniformly distributed

on ��� L�� This must lie� with probability �� within an existing interval �sj� sj���� say� If

accepted� s�j�� will be set to s�� and sj��� sj��� � � � � sk will be relabelled as s�j��� s
�
j��� � � � � s

�
k���

with corresponding changes to the labelling of step heights� We wish to propose new heights

h�j� h
�
j�� for the step function on the subintervals �sj� s

�� and �s�� sj��� which recognise that

the current height hj on the union of these two intervals is typically well�supported in the

posterior distribution� and should therefore not be completely discarded� Thus the new

heights h�j� h
�
j�� should be perturbed in either direction from hj in such a way that hj is a

compromise between them� To preserve positivity and maintain simplicity in the acceptance

ratio calculations� we use a weighted geometric mean for this compromise� so that

�s� � sj� log�h�j� � �sj�� � s�� log�h�j��� � �sj�� � sj� log�hj��

and de�ne the perturbation to be such that

h�j��
h�j

�
�� u

u

with u drawn uniformly from ��� ���

Following the analysis of Section 
�
� the acceptance probability for this proposal has to

be calculated to achieve detailed balance with the corresponding death move� which we must

therefore �rst specify� Dimension�matching is achieved by reversing the above calculation�

so that if sj�� is removed� the new height over the interval �s�j� s
�
j��� � �sj� sj��� is h�j� the

weighted geometric mean satisfying

�sj�� � sj� log�hj� � �sj�� � sj��� log�hj��� � �s�j�� � s�j� log�h�j��

The sj�� that is proposed for removal is simply drawn at random from s�� s�� � � � � sk�

The pair of birth and death moves thus de�ned satis�es the dimension�matching require�

ment� The birth increases the dimensionality from �k � � to �k � 
� the di�erence being

��



accounted for by two continuous variables� the new position s� and the u used to separate

h�j and h�j���

In deriving an expression for the acceptance probability of the birth proposal� it is helpful

to re�write ��� in the form

min f�� �likelihood ratio�� �prior ratio�� �proposal ratio�� �Jacobian�g �

noting that p�xjy� � p�yjx�p�x��p�y�� In the present context� the likelihood ratio is straight�

forward� using ���
 the prior ratio� which was previously p��� ������p��� ������ becomes

p�k � ��

p�k�

��k � ����k � 
�

L�

�s� � sj��sj�� � s��

sj�� � sj

�
��

!���

�
h�jh

�
j��

hj

����
expf���h�j � h�j�� � hj�g


the proposal ratio� which was j��� ������j��� �����q��u
����� becomes

dk��L

bk�k � ��
�

and the Jacobian is
�h�j � h�j���

�

hj
�

The acceptance probability for the corresponding death step has the same form with the

appropriate change of labelling of the variables� and the ratio terms inverted�

There have been at least two previous proposals for dealing with step functions with a

variable number of steps by Markov chain Monte Carlo methods� Newton� Guttorp and

Abkowitz ������ build a model for a biological process using a hidden continuous�time

Markov chain� and Arjas and Gasbarra ������ develop a nonparametric approach to survival

analysis assuming a step function form for the hazard rate� In both of these applications�

the step function is not tied down at the right hand end of the observation interval� so that

it can be encoded in a way that side�steps the varying dimensionality problem�

��� Analysis of the coal mining disaster data

Presentation of conclusions from Bayesian inference about any reasonably complicated object

such as a function has to be partial� The displays given here should not be taken as examples

��
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of the last word� either about this particular data set� or about how to present inference for

step functions in general� Figures � to � show di�erent aspects of one particular analysis�

in which the hyperparameters are �xed as � � 
� kmax � 
�� � � � and � � ���� The

Monte Carlo simulation was run for ����� updates� after a burn�in period of ���� updates�

A pilot run established that one could have con�dence that convergence had taken place

by this point� The computation took �� seconds on a Sun Sparc � workstation� In Figure

�� the solid curve shows the estimated posterior mean curve Efx�t�jyg� which is not a step

function� Figure � shows the posterior distribution of k� the number of steps� In Figure


� we show the posterior densities of the step positions� conditional on values k � �� � and



 the graphs become confusing to interpret with more than this many superimposed� The

density estimates are obtained using a Gaussian kernel with standard deviation ��� days�

Similarly� Figure � shows the corresponding conditional posterior density estimates of step

height� using kernel standard deviation �����
 days���

Some comparisons and contrasts with previous analyses of these data can be made�

Raftery and Akman ������ assume a single change�point� with location � assumed a priori

to be uniform on the interval ��� L�� The step heights are drawn independently from the

improper Gamma distribution !��� � �� � They use the point process likelihood� and calculate

the posterior density of � and of the relative change in step height� and the Bayes factor for

comparing the hypothesis of a change versus no change� all by numerical integration� The

Bayes factor turns out to be over ����� overwhelming evidence for a change� The posterior

mode of the time of change is �� March ���� � day ��
�
 and a ��" credible interval is ���

May ����� 
 August ����� � ��
��
������� in days� which compare with a mode of �� June

���� � day ����� and an interval of ��� May ����� � May ����� � ��
��������
� for our

analysis� conditional on k � �� Raftery and Akman also give a substantive interpretation

of their inference in the context of the historical circumstances underlying the data� Carlin�

Gelfand and Smith ������ develop a hierarchical Bayesian approach for the single change�

point problem for regression� They apply this to Poisson process data such as the coal

mining disaster data by discretising into counts in annual intervals� The position of change

is taken as a discrete variable
 the step heights are drawn independently from the Gamma

distribution !��� �� in our notation� with � � ��� and ��� drawn from the third stage prior

!��� ��� They produce posterior densities of step heights and of the position of change� all

��



based on Gibbs sampling� The posterior modal year for change is ����� Barry and Hartigan

������ ���
� analyse change�point problems using product�partition models
 again Markov

chain Monte Carlo methods are used� but the change�points are coded discretely� so that

they can be handled using a �xed set of indicator variables� Stephens ������ and Phillips and

Smith ������ develop Bayesian analyses for the multiple change�point regression problem�

with the positions of change taken as discrete variables� and computations performed by

Gibbs sampling and jump�di�usion sampling respectively
 however� they do not adapt these

methodologies for the point process problem� None of these approaches treats the multiple

change�point problem in genuinely continuous time� as does our proposed methodology� We

see no di�culty with introducing a hierarchical structure into our modelling� if desired�

� Image segmentation via Voronoi Tessellation

There are various two�dimensional analogues of change�point analysis� The problem dis�

cussed brie�y in this section is intended to give an idea of one possibility�

Image segmentation is the process of subdividing a digital image into homogeneous re�

gions� generally as a prelude to further analysis
 see Sonka� Hlavac and Boyle ����
�� What

should be regarded as �homogeneous� depends on context
 often� for example� it involves

texture more than intensity� However� here we consider only the simplest version of the prob�

lem� in which we wish to subdivide a noisy image� i�e� observations arranged on a regular

rectangular grid� into regions of homogeneous mean intensity� With additive noise� occurring

independently and without blur at each pixel� it is natural to specify a regression model with

a piecewise constant mean function� a form of two�dimensional step function�

For computational tractability� we consider here only step functions of this form in which

the regions of constancy are polygonal� and we are thus concerned with a polygonal tessel�

lation of that part of the plane that is within the �eld of view� For a �exible and convenient

tessellation� we use the Voronoi� or Dirichlet� tessellation� in which each individual polygon�

or tile� is de�ned to be that region of the plane nearer to that tile�s generating point than

to any other� The tessellation is thus speci�ed by the coordinates �ui� vi�� i � �� �� � � � � k of

the k generating points� and the entire step function by these points and the heights hi of

��



the function within the ith tile� The step function x therefore satis�es

x�u� v� � hi where i � argminf�u� ui�
� � �v � vi�

�g�

For a general discussion of the Voronoi tessellation� and an algorithm for its computation�

see Green and Sibson ������� The basic algorithm described there� and its subsequent

development in the TILE� package by Sibson and co�workers at the University of Bath are

ideally suited to the birth�death Markov chain Monte Carlo simulation methodology used in

Section � for the one�dimensional change�point problem� appropriately modi�ed�

In our general notation� the candidate models are indexed by k � K � �� �� � � �� and the

parameter vector for model k is ��k� � �ui� vi� hi�
k
i��� with dimension nk � 
k� The likelihood

assumed here will be that based on independent Gaussian noise	

p�yjk� ��k�� � exp��
�

���
X
fy�u� v�� x�u� v�g���

where y�u� v� denotes the observed intensity in the pixel centred at �u� v�� and the sum is

over all pixels�

The prior model used in the illustration below is again an uninformative one� The

number of tiles k is modelled to have a Poisson distribution with parameter �� truncated to

k � �� �� � � � � kmax� Given k� the locations �ui� vi� of the generating points are independently

and uniformly distributed over the unit square representing the �eld of view� and the heights

hi are drawn independently from the !��� �� distribution�

The move types used in this problem correspond closely to H� and m � �� �� �� � � � of

Section ��

 it is not computationally convenient to perform the analogue of P � to move a

generating point� However� the TILE� package includes routines for adding and deleting

generating points� corresponding to birth and death of a step� and changing the height hi

in one tile under detailed balance is entirely straightforward� To explain the birth and

death transitions in more detail� some further notation is needed� Let the probabilities

of proposing a birth or death when the current number of steps� viz� tiles� is k be bk�dk

respectively� Consider a proposed birth which would increase the number of steps from k

to k � �� and suppose that the new generating point is labelled k�� Its location �uk�� vk�� is

drawn uniformly from the unit square� and the tessellation modi�ed by the addition of this

point
 this modi�cation is done on a trial basis� as this birth may not be accepted� In the

��



updated tessellation the new point has �neighbours� �Green and Sibson� ������ which we

label as i � I� We compute the old and new areas of these tiles� and denote them by si � ti

and ti respectively� The total reduction
P

i�I si gives the area of the tile of the new point k��

The height assigned to the new point is given by h� � #hv� where #h is the weighted geometric

mean of the original heights for the neighbouring tiles	

#h �

�Y
i�I

hsii

���P
i
si




and v is drawn independently with density function f�v� � �v	��� � v
��� so that log�v� has

a distribution symmetric about �� Finally� the new heights for those tiles modi�ed by the

addition are given by

h�i �
n
hsi�tii �h���si

o��ti
�

The motivation for making these particular assignments is that the integral of log�h� over

the whole unit square is thereby left unchanged� while the height assigned to the new tile

is a compromise between the heights previously assigned to points in that tile� modi�ed by

a small multiplicative perturbation� For the death transition corresponding to this birth�

a randomly chosen generating point is deleted� and the points in its tile re�assigned to

neighbours� Using ti and si � ti to denote the old and new areas for neighbouring tile i� its

height is changed to n
htii �h��si

o���si�ti�
�

which has the e�ect of reversing the birth move exactly�

With this pair of proposal mechanisms� it turns out after some straightforward algebra

that the acceptance ratio for the birth is min��� R�� and for the death min��� R��� where

R � �likelihood ratio�� �
��

!���
�h�����

Y
i�I

�
h�i
hi

����
exp���fh� �

X
i�I

�h�i � hi�g�

�
dk��

bk�k � ��f�v�
� #h

Y
i�I

�
�si � ti�h

�
i

tihi

�
�

using ����

Figure � displays results from one simple example testing this methodology� based on

synthetic data� A �true� image consisting of a disc of intensity ��� against a background of

a lower intensity ��� was degraded with additive Gaussian noise� independently at each pixel

��
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Figure �	 Synthetic segmentation problem	 on the left� noisy data
 on the right� estimated

posterior mean� Upper plots show perspective views of the same surfaces displayed as images

below�

on a �� � �� grid� with standard deviation � � ���� Note that a disc cannot be perfectly

�tted by a �nite union of Voronoi polygons� The hyperparameters in the prior were �xed at

� � ��� kmax � 
�� � � ��� and � � ���� The Figure shows� on the left� the data y�u� v� and�

on the right� the posterior mean surface Efx�u� v�jyg� estimated from a run of the sampling

method described above� using ����� sweeps after a burn�in period of ���� sweeps�

Notwithstanding the apparent complexity of the geometrical calculations to maintain

the tessellation and its modi�cations� and of the computations described in the paragraphs

above� the entire sampler runs quite quickly� On a Sun Sparc � workstation� the run described

above takes approximately ��� seconds�

��



� Partition models

��� A hierarchical model for binomial probabilities

Several of the contexts listed in the introduction� viz� factorial experiments� variable selection

in regression and mixture deconvolution� have the common feature that the discrete model�

choice problem is equivalent to determining a partition� either of the original data units or

of some other labels applying to the data� for example factor levels� Here we describe a

general partition sampler� and its application to an ANOVA�like problem for binomial data

discussed by Consonni and Veronese �������

A partition of a set I � f�� �� � � � � ng is a collection g � fS�� S�� � � � � Sdg of subsets of

I� which we call groups� where the Sj are disjoint with union I� The number d of groups

into which I is divided by g will be called the degree of g� and written d�g�� To emphasise

dependence on g� we also write Sj�g�� etc�

Suppose we have n responses y�� y�� � � � � yn� assumed drawn independently from bino�

mial distributions	 yi � Bin�wi� �i�� where the index parameters fwig are known� and the

probabilities f�ig unknown� We construct a prior distribution for f�ig that acknowledges

that these parameters may have similar values within groups de�ned by a partition g of

I � f�� �� � � � � ng� Within each group Sj�g�� the �i are drawn independently from Beta

distributions	

�i � Betafq�j� q��� �j�g for i � Sj�g�� j � �� �� � � � � d�g��

The group mean parameters f�jg are in turn drawn independently from the uniform dis�

tribution U������ while the group precision parameter q is either �xed at a known value�

or drawn from a hyperdensity p�q�� This is essentially the model proposed by Consonni

and Veronese� except that they took a more general Beta distribution than U����� for the

�j� and allowed separate qj in each group� but took these to be �xed constants only� It

would be routine to modify what follows to deal with this situation� Consonni and Veronese

used conventional numerical techniques to �t their model� and so were constrained to use

conjugate distributions� for which these techniques were practicable� With reversible jump

Markov chain Monte Carlo computation� such constraints need not have been imposed�

�




Following Consonni and Veronese� the prior distribution for g is taken as

p�g� �
d�g���

$fg� 	 d�g�� � d�g�g
�

giving equal probability to all partitions of the same degree� and placing probability � d��

on the set of g with degree d� Calculation with this prior is straightforward� It is necessary

to count the number of partitions of degree d of a set of n items	 this count c�n� d� is the

solution of the recurrence relation c�n� d� � dc�n��� d��c�n��� d���� Such counts become

very large with n� and some care is needed to avoid over�ow� An alternative model for the

partitions that could have been used is Hartigan�s product�partition model �see Barry and

Hartigan� �����
 for given d�g�� this favours a more unequal distribution of the items into

groups�

The joint distribution of all variables is now determined as

p�g� �� q� �� y� � p�g�p��� qjg�p��jg� �� q�p�yjg� �� q� ��

� p�g�p��jg�p�q�p��jg� �� q�p�yj��

� p�g��
d�g�Y
j��

�� p�q��
d�g�Y
j��

�
� Y
i�Sj�g�

�
q�j��
i ��� �i�

q����j���

Bfq�j� q��� �j�g

	



�
nY
i��

�
B� wi

yi



CA �yii ��� �i�

wi�yi�

where B��� �� is the Beta function� In the general notation of Section �� the model indicator

k is g� while the parameter vector ��k� is ���� � � � � �d�g�� q� ��� � � � � �n�� of dimension ng �

n � d�g� � ��

��� Reversible jumpMarkov chain Monte Carlo for partition prob�

lems

Much of the following discussion would apply� with few changes� to other partition problems�

First we deal with updating the elements of ��k�� The full conditionals for �i� i � �� �� � � � � n

are independent Beta distributions

�ij 
 
 
 � Betafq�j � yi� q��� �j� � wi � yi�g for i � Sj�g��

��



where� here and below� we use �
 
 
� to denote all other variables among fg� ��� � � � � �d�g�� q�

��� � � � � �ng� Therefore each �i can be updated with a Gibbs kernel� For q� we �nd

p�qj 
 
 
� � p�q��
d�g�Y
j��

��
�

Y
i�Sj�g�

�
q�j��
i ��� �i�

q����j���

��
� �

which is not a standard distribution but is easily evaluated� and so we use it in a Hastings

step� with a proposal that� on the log scale� is uniformly distributed about the current value�

The group mean parameters are also conditionally independent	

p��jj 
 
 
� �

Q
i�Sj�g� �

q�j��
i ��� �i�

q����j���

Bfq�j� q��� �j�g�Sj�g�
�

Application of Stirling�s formula shows that this full conditional has a normal approximation�

for large q	

�jj 
 
 
 � N

�
��

���� ��

q$Sj�g�

�
�

where � is such that ���� � �� is the geometric mean of �i��� � �i�� i � Sj�g�� This

approximation could have been used explicitly in an approximate Gibbs sampler� but we

choose to use it as a proposal distribution for a Hastings step�

Turning now to the step updating the partition g to g�� say� we note that with the prior

p�g� speci�ed above all partitions have positive probability� and so a process that jumps

between partitions making only the modest changes of splitting a group� a �birth�� and

combining two groups� a �death�� will be irreducible� It would have been quite natural

to have included a move that changed the partition by reallocation of items while �xing

the number of groups� but that was not implemented here� We have found the following

mechanisms for the partition moves e�ective in practice� applied to partitions of up to a few

dozen objects�

For a birth� which is attempted with probability bg when the current partition is g� we �rst

choose a group to split� uniformly among those with at least two items� This group is then

split at random �binomially�� i�e� each item is assigned to one of the two daughter subgroups

independently� with probability one�half for each� but conditional on neither subgroup being

empty� For a death� attempted with probability dg� we simply choose two groups at random

to be combined into one�

Jumping to a new partition necessitates a change also to the vector �� since its length

has to increase or decrease by �� Our proposal for the additional component is gaussian on

��



a logit scale� and takes account of the numbers of binary responses in�uenced by each of the

relevant �j� Speci�cally� suppose that a proposed birth splits Sj into subgroups Sj� and Sj��

Let �j be the current value� and �j�� �j� the new values for the two subgroups� Then we set

�j� �
�je

�z�W�

�� �j � �je�z�W�

and �j� �
�je

��z�W�

�� �j � �je��z�W�

where Wr �
P

i�Sjr wi� r � �� �� z is an independent standard gaussian random variable� and

� is a spread parameter to be chosen later� For the corresponding death move� �j� and �j�

are merged to form the �j that solves these simultaneous equations�

This completes the speci�cation of the jump proposal
 its acceptance probability is nec�

essarily somewhat complicated in form� but is calculated as usual from ���� For the birth

and death� the probabilities are respectively min��� R� and min��� R���� where

R �
Bfq�j� q��� �j�g

�Sj

Bfq�j�� q��� �j��g�Sj�Bfq�j�� q��� �j��g�Sj�

�
Y
i�Sj�

�
�i

�� �i

�q��j���j� Y
i�Sj�

�
�i

�� �i

�q��j���j�

�
p�g��

p�g�

�
dg�

bg
$fj 	 $Sj�g� � �g

�

d�g�fd�g� � �g
���Sj�� � ��

�
�j���� �j���j���� �j��

�j��� �j�
��W��

� � W��
� �� �����

�
� exp���

�z
���

��� Application to pine seedling mortality data

We apply the methodology described above to a small data set� one of those analysed by

Consonni and Veronese ������� This concerns � binomial responses y � ���� ��� ��� ���� each

based on wi � ��� trials� The data arise from a �� � factorial experiment� comparing two

treatments �H	 planting too high
 D	 planting too deep� on two varieties of pine seedling �L	

longleaf
 S	 slash�� The responses are indexed in the order �LH� LD� SH� SD�� Consonni and

Veronese compare various statistical methods for analysing these data� including a Bayesian

method based on their model described above� which has an �adaptive multiple shrinkage�

property
 see also George ������� The data determine a partition of the � responses into

groups that are similar� and estimates of probabilities �i within such a group Sj borrow

strength by shrinking towards a common value �j� Alternative estimators considered in�

clude the maximum likelihood estimators for both a saturated model and for an additive

��



Table �	 Mortality of pine seedlings	 posterior means and standard deviations� in parenthe�

ses� of f�ig

Consonni � Veronese Reversible jump MCMC

Experiment yi q � ��� q � ��� q � ��� q � ��� q � ��� q � ��� random q

LH �	 �
��	 �
��� �
��� �
��� �
��� �
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logistic regression� a parametric empirical Bayes estimator which shrinks all �i together� and

a nonparametric empirical Bayes estimator� which again has the multiple shrinkage property�

We refer the reader to Consonni and Veronese for further background� including discussion

of some of the philosophical issues that arise in the modelling�

Our analysis has been con�ned to repeating that of Consonni and Veronese� but obtained

using reversible jump Markov chain Monte Carlo instead of their analytic approximations�

We extended their results very slightly by allowing q to be random� as well as �xed at each

of the values they use ����� ��� and 
���� This adaptation made use of a prior p�q� under

which log q is uniform on the interval �log ���� log 
���
 the proposal for updating q described

in the previous section was interpreted as wrapped periodically onto this interval� There

were no other unspeci�ed hyperparameters in the model de�ned above�

The samplers were also completely speci�ed above� except for the scale factor �� which

we took as ��� after a little experimentation� and the probabilities assigned to each move

type� We took the birth and death rates bg and dg each to be ��
 for all g� except for the

extreme partitions where d�g� � � or n�� ��� where bg and dg were taken as ����� �� and

��� ����� At each transition� � was updated with probability ���� and similarly for the pair

��� q��

Results are presented in Table �� based on run lengths of ����� attempted updates� after
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Figure �	 Posterior density estimates of f�ig for the pine seedling mortality data� together

with raw data plotted as tick marks

burn�in periods of ����
 such runs took 
� seconds on a Sun Sparc �� Posterior expectations

of f�ig are close to those obtained by Consonni and Veronese� For the case where q was taken

as random� with the hyperprior speci�ed above� its posterior mean and standard deviation

were estimated as ��� and ��� The sampling�based computation permits other information

to be extracted and displayed� In Figure �� we show posterior density estimates for the f�ig�

under the random q version of the model� together with the raw data� plotted with tick

marks at the points yi�wi� The adaptive multiple shrinkage is evident here	 note that the

estimates for factor combinations �LD� SH� SD� are shrunk together� and correspondingly

have smaller posterior variance� The data suggest that treatment H increases mortality�

but only on seedlings of type L	 a more subtle conclusion than from the logistic regression

analysis� which simply concludes that both treatment and variety factors have signi�cant

e�ects�

��



� Discussion

The theory and applications presented in this article have demonstrated that the advantages

of Markov chain Monte Carlo computation can be extended to new classes of problems�

where the object of inference has a dimension that is not �xed� including di�cult Bayesian

model�determination problems�

We have presented three applications of a new Markov chain Monte Carlo methodology


other implementations have also been developed� For example� jointly with Dr S� Richard�

son� the author is investigating Bayesian mixture estimation� with an unknown number of

components� Ph� D� students at Bristol are applying the methods to various image analysis

problems� and in his Ph� D� thesis at Cambridge University Dr R� Morris has developed a

new method of removal of scratches from movie �lm�

There remain a number of questions about the methodology� to be resolved in future work�

One concerns the development of understanding about moves that are likely to be e�ective

generically� to aid intuition about the design of moves� Secondly� in situations where the

collection of candidate models is restricted by practical or statistical considerations� there is

the question of whether inventing additional models and corresponding parameter subspaces

may facilitate mixing� and if so� how to do it e�ectively� In problems involving partitions of

larger sets of items than those arising in Section �� we need new jump proposal mechanisms�

The proposals used in the pine seedling mortality study were completely �blind� in that they

made no reference to the current values of any of the other variables� It might be anticipated

that taking account of the f�jg would allow the construction of much more e�cient proposals�

and indeed this is borne out in our recent experience with mixture estimation� Finally� the

complications of multiple parameter subspaces of di�ering dimensionality make the problems

of assessing convergence yet more di�cult� and there is an urgent need for research on

e�ective diagnostics of broad applicability�
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