
CHAPTER �

A primer on
Markov chain Monte Carlo

Peter J� Green� University of Bristol

��� Introduction

Markov chain Monte Carlo is probably about �� years old� and has been
both developed and extensively used in physics for the last four decades�
However� the most spectacular increase in its impact and in�uence in statis�
tics and probability has come since the late �	��s�

It has now come to be an all�pervading technique in statistical com�
putation� in particular for Bayesian inference� and especially in complex
stochastic systems� A huge research e
ort is being expended� in devising
new generic techniques� in extending the application of existing techniques�
and in investigating the mathematical properties of the methods�

The target audience for the S�emstat lectures is European post�doctoral
researchers in probability and statistics� and the present chapter is both
the written version of these lectures and a primer for others seeking to get
started in some aspect of MCMC research� By �MCMC research� I mean
both research into the mathematical properties of MCMC algorithms� and
research that aims to develop new classes of algorithm for new and chal�
lenging problems� in both cases� I am thinking primarily but not quite
exclusively of ultimate application in Bayesian statistics� Thus the chap�
ter is not primarily intended for those who wish to make use of standard
MCMC methods as implemented in a package� and to make sense of the
output� however� it should be of some use to those wishing to apply stan�
dard methods to some new application by means of their own code� The
focus is on understanding the principles underlying the methods� and the
main ideas in evaluating their performance� With that objective� I will
begin with some very basic examples� covered in detail� which are aimed
at those who are complete novices� Those with a basic understanding of
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Bayesian analysis and the Gibbs sampler may not need this motivation�
and can skip Section ���
The selection of material is necessarily a personal one � the subject is

by now too big for the � or � hours allocated to the lectures� and indeed
I would not claim expertise over all of the potential coverage of a lecture
series of this kind� To save space� some sections have been reduced to just
a few key references�
I have decided not to try to cover any very substantial applications�

although plenty of reference is made to such work� I do make use of a
running example � on point processes with change points� exempli�ed by
a Bayesian analysis of some data on cyclones � that is intended to provide
continuity as I cover the main topics�

��� Getting started� Bayesian inference and the Gibbs sampler

����� Bayes theorem and inference

The recent great impetus to research in MCMC has been the widespread
realisation of its important application in Bayesian inference� following the
work of Besag and York ��	�� and Gelfand and Smith ������ building
on the �Gibbs sampler� �popularly ascribed to Geman and Geman ��	����
The book of Gilks� Richardson and Spiegelhalter ������ comprising articles
contributed by �� authors� provides an excellent introduction and overview
to the theory� implementation and application of Bayesian MCMC�
Let us start with the simplest basic set�up� a model relating data Y and

parameters � � ���� ��� � � � � �p�� We need two probabilistic models� a data
model specifying the likelihood� p�Y j��� and a prior model� specifying the
prior distribution p����
In the Bayesian approach� inference is based on the joint posterior

p��jY � �
p���p�Y j��R
p���p�Y j��d�

� p���p�Y j��
i�e� Posterior � Prior � Likelihood

For a proper account of Bayesian theory� the reader is referred to Bernardo
and Smith ����� or O�Hagan ������

����� Cyclones example� point processes and change points

We are going to illustrate the ideas of MCMC with a running example�
the observations are a point process of events at times y�� y�� � � � � yN in an
observation interval ��� L�� For simplicity� we suppose the events occur at
random � that is� as a Poisson process � but at a possibly non�uniform
rate� say rate x�t� per unit time� at time t� The objective is to make inference
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Figure ��� Cyclones data� as a jittered dot plot� and their cumulative counting
process�

about x�t�� We will work up through a series of models� ultimately allowing
an unknown number of change points� unknown hyperparameters� and a
parametric periodic component�

The models and the respective algorithms and inferences will be illus�
trated by an analysis of a data set of the times of cyclones hitting the
Bay of Bengal� there were � cyclones over a period of � years �Mooley�
�	�� The data are plotted� both as a jittered dot plot� and by means of
their cumulative counting process� in Figure ��

Model �� constant rate

First suppose that x�t� � x for all t�

Then the times of the events are immaterial� we observe N events in a
time interval of length L� the obvious estimate of x is

bx �
N

L
�

This is the maximum likelihood estimator of x under the assumption
�implied by the �randomness� assumption above�� that N has a Poisson
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distribution� with mean xL�

p�N jx� � e�xL
�xL�N

N �
�

Model �� constant rate� the Bayesian way

rate x
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Figure ��� Cyclones data� posterior for x in model ��

To take a Bayesian approach to this example� suppose that we have prior
information about x �from previous studies� for example�� Let us suppose
we can model this by saying

x � ���� ���

a Gamma distribution �with mean ��� and variance ������
Then since

p�xjN� � p�x�p�N jx��
we �nd that

p�xjN� � ��x���e��x

����
e�xL

�xL�N

N �

� x��N�� exp���� � L�x�

or in other words
xjN � ����N� � � L��
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So x has a Gamma distribution with mean ���N�����L�� or approxi�
mately N�L if N and L are large compared with � and �� Thus with a lot
of data� the Bayesian posterior mean is close to the maximum likelihood
estimator� The posterior distribution of x for model � �tted to the cyclones
data is shown in Figure ��� we used � � � �  here�
There is no need for MCMC in this model� you can calculate the posterior

exactly� and recognise it as a standard distribution� It would not have
worked out like this for any other prior� this choice is called conjugate�

����� The Gibbs sampler for a Normal random sample

Before we elaborate the cyclones example to a point where exact calculation
is no longer practicable� let alone formally introduce Markov chain Monte
Carlo methods� let us consider an even simpler� and completely familiar�
example� but following an elementary Bayesian approach�
Our data are a random sample of size n from N��� 	��� We place inde�

pendent priors on � and 	�

� � N�
� ����

	�� � ���� ���

and it is easy to see that the resulting joint posterior is

p��� 	��jY � � �	�����n����

� exp

�
� �

	�
� ���� 
��

�
�
P

�Yi � ���

�	�

�
� ���

This is somewhat awkward to handle� the parameters are dependent a
posteriori� although they were independent a priori� However� the full con	
ditionals � the conditional distributions of each parameter given the other
parameter�s� and the data � are easily found�

�j	� Y � N

�
	��

P
Yi � �


	��n� �
�



	��n� �

�
	��j�� Y � ���� n��� � �

P
�Yi � �������

What happens if we generate a sample of ��� 	� pairs by alternately draw�
ing � and 	�� from these distributions� The beginning of this process is
illustrated in Figure ��� using the �improper� uninformative prior setting

 � � � � � � � ��
This is a simple example of a Gibbs sampler� The alternating updates

of one variable conditioned on the other induces Markov dependence� the
successively sampled pairs form a Markov chain �on the uncountable state
space R�R��� and it is readily shown that the joint posterior ��� is the
�unique� invariant distribution of the chain� Standard theorems� quoted in
Section ��� below� imply that the chain converges to this invariant distri�
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Figure ��� First �� samples from a Gibbs sampler of ��� �� from Normal random
sample with n � �	� Y � �
� s�Y � �� Uninformative prior�
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Figure ��� Posterior sample of ��� �� from Normal random sample with n � �	�
Y � �
� s�Y � �� Uninformative prior�
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Figure ��
 Posterior distributions of � and � from Normal random sample with
n � �	� Y � �
� s�Y � �� Uninformative prior�

bution in several useful senses� so that we can treat the realised values as a
sample from the posterior� A sample of ��� pairs is shown in Figure ���
and the shape of the joint distribution can now be discerned� Examples of
possible outputs of interest are the marginal distributions shown in Figure
���

However� we need not be con�ned to pictorial displays of marginal poste�
riors� One of the great liberating in�uences of MCMC in Bayesian inference
has been the �exibility of inference a
orded by sample�based computation�
For example� consider prediction� we can calculate PfYn�� � �g by aver�
aging � ��f�� �g�	��



N

NX
t��

h
� ��f�� ��t�g�	�t��

i
� �����

for the sample of Figure ��� Incidentally� it is interesting that this is more
than twice the value ������� that a frequentist would obtain by plugging
the maximum likelihood estimates into ���f���g�	�� �Of course� this�
like any other inference based on this model� is in�uenced by the prior
setting used��
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Figure ��� First few moves of the Gibbs sampler for the cyclones data� model ��

����
 Cyclones example� continued

For a more interesting and substantial application� let us return to the
cyclones example� and consider some elaborations of the basic model ��

Model �� constant rate� with hyperparameter

Suppose you are reluctant to specify your prior fully� you are happy to say

x � ���� ��

and can specify � but not �� and want to state only

� � ��e� f�

for �xed e and f � �This formulation actually makes rather more sense in
our next formulation� model ���
Now p�xjN��� e� f� is no longer available� it does not have an explicit

form� But p�xjN��� �� e� f� and p��jx�N� �� e� f� are simple�

xjN��� �� e� f � ����N� � � L�

as before� and
�jx�N� �� e� f � ��e� �� f � x��

So we can use the Gibbs sampler� and sample from these distributions in
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turn� updating x and � alternately� This creates a Markov chain with states
�x� ��� the unknown parameters in this model�
Figure �� shows the �rst few moves of a Gibbs sampler applied to model

� on the cyclones data� we took e �  and f � N�L � ����� and kept
� � � The marginal distributions for x and �� as accumulated from the
�rst ��� sweeps of this Gibbs sampler are displayed in Figures �� and
�	�

Model 
� constant rate� with change point

Now let us allow x�t� to vary� but in a particular way�
Suppose x�t� is piecewise constant� that is� a step function� This might

be a suitable model if we postulate one or more change points� the process
is completely random� but the rate switches between levels� perhaps as part
of an underlying process� perhaps due to the recording mechanism�
Let us �rst take one change point� at known time T � ��� L�� so that

x�t� �

�
x� if � 	 t  T
x� if T 	 t  L

�

Suppose that x� and x� are a priori independently drawn from Gamma
distributions� as before�

xj � ���� ���

Then if N� and N� are the numbers of events before and after T � the above
method extends to sampling in turn from

x�j 
 
 
 � ����N�� � � T ��

x�j 
 
 
 � ����N�� � � �L� T ���

and
�j 
 
 
 � ��e� ��� f � x� � x���

forming a Markov chain with a three�dimensional state space f�x�� x�� ��g�
Note that for the sake of clarity and compactness we write �j 
 
 
� to mean
�given all other variables� � including the data�
The hierarchical model using random � makes more sense now� the e
ect

is to �borrow strength� in estimation from both halves of the data together�
x� and x� are conditionally independent given �� but are unconditionally
dependent� In inference their values will be shrunk together�

Model �� multiple change points

If there are k change points T�� T�� � � � � Tk with

x�t� �

����	
x� if � 	 t  T�
x� if T� 	 t  T�

 
 
 
 
 

xk if Tk 	 t  L

�
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then everything is extended in a very similar way� giving a Markov chain
with states �x�� x�� � � � � xk� ���

����� Other approaches to Bayesian computation

Do we have to resort to Gibbs sampling for this application� and exam�
ples like it� Under the posterior distribution in a Bayesian formulation� the
parameters � are generally dependent� so we have to compute with a multi�
variate distribution� often in a high number of dimensions� with arbitrarily
complex patterns of dependence� Here�  compute with! could mean almost
anything� examples would be to calculate a marginal �posterior� density
or make a probabilistic prediction� See Bernardo and Smith ����� and
O�Hagan ������
There are various possible approaches to Bayesian computation�

� Exact analytic integration� this is usually only available when we make
use of conjugate priors� which is in itself often an unreasonable restric�
tion� and in any case is usually restricted to very simple formulations�

� Asymptotic analytic approximations �e�g� Laplace� see� for example�
Kass et al�� �		�� these are somewhat awkward to set up� and can
be unreliable�

� Conventional numerical methods� these require expertise and careful de�
sign to set up� and are only e"cient in a low number of dimensions�

� Ordinary � static!� simulation� this is always available in principle� since
any posterior distribution can be factorised as

p��jY � � p���� ��� � � � � �pjY �

� p���jY �p���j��� Y � � � � p��pj��� � � � � �p��� Y �

but the univariate distributions on the right hand side are rarely all
available for simulation purposes �even after re�ordering��

Markov chain Monte Carlo �MCMC� also sometimes known as iterative
or dynamic simulation� works even where static simulation does not� es�
sentially because

� All simulation methods rely on the Law of Large Numbers� and this re�
mains true �in the guise of the Ergodic theorem� when you have a Markov
chain instead of an independent� identically distributed sequence�

� If you can tolerate Markov dependence� then you can update the param�
eters ��� ��� � � � � �p one�by�one �or in small groups��

The result of combining these two simple points is very far�reaching indeed�
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��� MCMC � the general idea and the main limit theorems

Having motivated the idea of MCMC by use of the Gibbs sampler in two
very basic problems� we are now in a position to discuss the subject from
a rather more general perspective�
Our object of interest is the target distribution � of a random quantity

x � X � In Bayesian statistics� x are the unknowns �parameters� latent
variables� missing values� future data� in a statistical experiment� and � is
the posterior distribution of these variables given the data Y �

��A� � p�x � AjY �

Henceforth in this chapter� we shall use x� � in this generic way� and reserve
the p�
j
� notation for discussion of speci�c models� One of many advan�
tages of the generic notation is that it helps us not lose sight of other�
non�Bayesian� applications of MCMC� �Although by far the greatest im�
pact of MCMC in statistics has been in Bayesian analysis� because of the
ubiquitous need there for integration� it has also found application in other
contexts where variables are integrated out� for example in latent variables
models� contingency tables and in models with complicated conditional
likelihoods��
The objective now is to construct a time�homogeneous discrete time

Markov chain whose state space is X �the parameter space in Bayesian
statistics�� and whose limiting distribution is the speci�ed target� That is�
we want a transition kernel P such that

Pfx�t� � Ajx���g � ��A� as t��� x����
Having constructed such a Markov chain� in the sense of devising a tran�

sition kernel with this limiting property� we then construct it in another
sense � we form a realisation of the chain fx����x���� � � � �x�N�g and treat
this as if it was a random sample from ��
Of course� in fact we should not be so naive as to ignore completely the

fact that this is not a simple random sample� However� in practice we will
routinely make displays �histograms� density estimates� of the empirical
distribution as estimating the target� estimate moments of the target from
those of the sample

E��g� �

Z
g�x���dx� � 

N

NX
t��

g�x�t�� ����

�for suitable functions g�� and compute probabilities under the target dis�
tribution by empirical frequencies

��A� � 

N

NX
t��

I �x�t� � A#� ����

All such computations are justi�ed by the limit theory of Markov chains�
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in order to handle the countless real applications where the space X is not
discrete� we need these limit theorems for chains in a general state space�

����� The basic limit theorems

Our treatment of the limit theory for Markov chains given here is not at
all complete� but will at least review the main concepts and results that
are important to MCMC� A fuller treatment with the same objective can
be found in Tierney ����� and Tierney ������ and the complete story is
in Meyn and Tweedie ������ This treatment borrows heavily from these
sources�
The most important theorem in practice concerns convergence of sam�

ple means� and justi�es ���� and ���� above� It requires the concepts
of invariance and irreducibility� A probability distribution � is invariant
for a transition kernel P if

R
P �x� A���dx� � ��A�� The kernel P is ir	

reducible if there exists a probability distribution� � say� on X such that
��A� � �� P ��A jx��� � x� �  for all ��almost all x � X � where �A
is the hitting time minft � x�t� � Ag� Any such � is called an irreducibility
distribution for P �
If fx�t�g is an irreducible Markov chain with transition kernel P and in�

variant distribution �� and g is a real valued function with
R jg�x�j��dx� 

� then



N

NX
t��

g�x�t���
Z

g�x���dx� ����

almost surely� for ��almost all x����
Sometimes� it is useful to say a little more � that the distribution of x�t�

converges to �� As in the simple discrete case� this requires the additional
assumption that the chain is not periodic�
Anm�cycle for an irreducible chain with kernel P is a collection of subsets

fE�� E�� � � � � Em��g such that P �x�Ei��mod m� �  for all x � Ei and all
i� the period d is the largest m for which an m�cycle exists� and the chain
is aperiodic if d � �
If the chain is aperiodic� the t�step transition kernel converges�

jjP t�x���� 
�� ��
�jj � � ����

as t � � for ��almost all x���� Here� the norm is the total variation
distance between two probability measures� de�ned by jj�� � ��jj �
� supA j���A�� ���A�j�

����� Harris recurrence

The assumptions of invariance and irreducibility are usually rather easy to
check for a given transition kernel� so the results of the previous subsection
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are then available� However� when used to justify a simulation computation�
they are subject to a crucial caveat� Both of these limit theorems apply only
to ��almost all starting values x���� For routine purposes� this restriction
is of little concern� but in simulation� we really need to know that we were
not unlucky enough to be running our chain from an initial state in the
probability�zero exceptional set�

We say that an irreducible kernel P is Harris recurrent if� for any irre�
ducibility distribution � and any A such that ��A� � �� we have Pfx�t� �
A i�o�jx��� � xg �  for all x �where �i�o�� means �in�nitely often���

If the chain is Harris recurrent� then ���� holds for all x���� as does ����
if it is also aperiodic�

����� Rates of convergence

Knowing that the chain converges is not the same as knowing that it con�
verges quickly enough to be useful� It is therefore important to try to study
rates of convergence� This is a challenge for practically useful chains in gen�
eral state spaces�

Only in very rare cases can numerical bounds be found for rates of con�
vergence� and when they can� they are often very discouraging� However�
there have been several successful approaches to the qualitative study of
convergence�

The chain is geometrically ergodic if

jjP t�x���� 
�� ��
�jj 	M�x�����t

for �nite M�x�� �  �

It is uniformly ergodic if for all x����

jjP t�x���� 
�� ��
�jj 	M�t�

Various conditions are known to imply uniform ergodicity� for example
Doeblin�s condition� there exists a probability measure � and constants
�  � � � �� t such that

��A� � �� P t�x� A� � � for all x�

There are both positive and negative results about uniform or geo�
metric ergodicity of popular MCMC recipes� For example� see Mengersen
and Tweedie ������ Roberts and Tweedie ������ Roberts and Rosenthal
������ and Mira� M$ller and Roberts ������

A rather di
erent approach to assessing speed of convergence is via com�
putational complexity� for example� there are recent interesting results by
Frigessi� Martinelli and Stander ������
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P(x, y )

P(y, x )

x
y

Figure ��� Illustrating the idea of detailed balance� The transitions described by
P are neutral with respect to the contours of probability of ��

��� Recipes for constructing MCMC methods

One might think initially that to construct a Markov chain with a speci�ed
target as its limiting distribution would be a complicated matter� Fortu�
nately� several standard �recipes� are available to automate this task�

In this section� introducing the main recipes for MCMC methods� we
assume the state space of our chain is countable� and work with a notation
in which the target distribution � and the transition kernel P are expressed
as densities with respect to counting measure� that is� as probability mass
functions� Modi�cations to deal with other dominating measures� such as
Lebesgue measure� are straightforward�

The key idea in most practical approaches to constructing MCMC meth�
ods is reversibility or detailed balance� The target � is invariant for P if we
have detailed balance �time�reversibility��

��x�P �x�y� � ��y�P �y�x�

for all x�y � X � Detailed balance is su"cient but not necessary for invari�
ance� however it is far easier to work with� You can think of reversibility
as requiring a balance in the �ow of probability� see Figure ���

We will ignore the issues of irreducibility and aperiodicity for the mo�
ment�

��
�� The Gibbs sampler

In the Gibbs sampler� the basic step is simple� discard the current value
of a single component xi� and replace it by a value yi drawn from the full
conditional distribution induced by ��

��xijx�i��
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keeping the current values of other variables� y�i � x�i �where  �i! stands
for fj � j �� ig�� Then we are using the kernel

P �x�y� � ��yijx�i�I �x�i � y�i#�

and detailed balance holds because given x�i� xi and yi are independent�
and identically distributed as ��xijx�i��
This recipe was named the Gibbs sampler by Geman and Geman ��	���

whose work brought the idea to the attention of spatial statisticians� How�
ever� it is earlier than that� it was well known as the �heat bath� by statisti�
cal physicists� see for example� Creutz ������ but the earliest appearance
I know of is in statistics� in a Finnish Ph�D� thesis by Suomela ������

��
�� The Metropolis method

In the Metropolis method� we �nd a candidate new value �or  proposal!� y
by drawing yi from an arbitrary density qi�yi�x� parameterised by x� and
setting y�i � x�i� We write qi�yi�x� � qi�x�y�� and impose the symmetry
requirement qi�x�y� � qi�y�x�� �Note the deliberate reversal of the order
of arguments� qi�yi�x� is a density in yi parameterised by x� while qi�x�y�
is a transition kernel� and so the arguments are used in the conventional
time�oriented order��
This proposal is accepted as the next state of the chain with probability

��x�y� � min

�
�
��y�

��x�

�
� min

�
�
��yijx�i�
��xijx�i�

�
� ����

and otherwise x is left unchanged�
This recipe is due to Metropolis� et al� ������ Note that the target

density � is only needed up to proportionality� and then only at two values�
the current and proposed next states�

��
�� The Metropolis	Hastings sampler

In a paper astonishingly overlooked by statisticians for nearly �� years�
Hastings ����� introduced an important generalisation of Metropolis� in
which symmetry of q is not needed� the acceptance probability becomes�

��x�y� � min

�
�
��y�qi�y�x�

��x�qi�x�y�

�
� min

�
�
��yijy�i�qi�xi�y�
��xijx�i�qi�yi�x�

�
� ����

The optimality in some senses of this particular choice of ��x�y� over
any other choice preserving detailed balance is demonstrated by Peskun
������
Note that Metropolis is the special case where q is symmetric� and Gibbs

the special case where the proposal density qi�yi�x� is just the full condi�
tional ��yijx�i� � ��yijy�i�� so that the acceptance probability is �
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��
�
 Proof of detailed balance

The proof of correctness of each is the same� the choice of acceptance prob�
ability simply ensures that detailed balance is satis�ed�
For x �� y�

��x�P �x�y� � ��x�i���xijx�i�qi�yi�x���x�y�
� ��x�i�minfR�x�y�� R�y�x�g�

from ����� where R�x�y� � ��xijx�i�qi�yi�x�� The term R and hence the
whole expression above is symmetric in x and y �recall that x�i � y�i��
So detailed balance holds� �Note that we have only used the fact that

��x�y�

��y�x�
�

��y�

��x�

qi�y�x�

qi�x�y�
�

The argument for the particular choice of ��x�y� in ���� will be made in
Section ������
This argument for the Hastings method obviously covers Gibbs and

Metropolis a fortiori�

��
�� Updating several variables at once

Each of the Gibbs� Metropolis and Hastings methods is equally valid if a
group of variables xA � fxj � j � Ag is updated simultaneously� each uses
the full conditional ��xAjx�A�� You could update all variables at once in
Metropolis or Hastings� �It is a subtle question whether it is a good idea
to update many variables��
An important special case arises where the variables in xA are condition	

ally independent �under the full conditional�� They can then be updated in
parallel�

��
�� The role of the full conditionals

All of the basic methods use the full conditionals ��xAjx�A�� where A
indexes the variables being updated� In Gibbs� you have to draw from this
distribution� in Metropolis and Hastings� you only have to evaluate it �up
to a multiplicative constant� at the old and new values�

��
� Combining kernels to make an ergodic sampler

All of the methods above satisfy detailed balance� and hence preserve the
equilibrium distribution� if

x � �

before the transition� then so it will afterwards�
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To ensure that this is also the limiting distribution of the chain �ergod�
icity�� we must combine such kernels to make a Markov chain transition
mechanism that is irreducible �and aperiodic��
To do that� scan over the available kernels �indexed by i or A� either sys�

tematically or randomly� or in various other ways that are valid� provided
you visit each variable often enough� You can use di
erent recipes �Gibbs�
Metropolis����� for di
erent A� The most common strategies for combin�
ing kernels P�� P�� � � � � Pm are the systematic cyclic combination giving an
overall kernel

P � P�P� 
 
 
Pm
or the equally�weighted random or mixture kernel

P �


m

mX
i��

Pi�

Time in a MCMC simulation is usually measured in sweeps� the small�
est period such that the chain is time�homogeneous� for example� after m
individual transitions if the cyclic kernel is being used�
Note that the mixture kernel preserves detailed balance� while the cyclic

one does not� so that reversibility at the sweep time scale is lost� of course
� remains invariant for both combinations�

��
�� Common choices for proposal distribution

The user has a completely free choice of proposal distribution� there is no
need even to worry about dividing by zero in ����� since yi with qi�yi�x� �
� will �almost surely� not get proposed� Nevertheless� typically� one of a
small number of standard speci�cations is very often used�

Independence Metropolis	Hastings� If the proposed new state y is inde�
pendent of the current x �so in particular we are proposing to update all
components of the state simultaneously�� then q�x�y� � q�y�� say� and the
acceptance probability simpli�es to

��x�y� � min

�
�
w�y�

w�x�

�
�

where w�x� � ��x��q�x��
This choice is of little use in practical terms �except perhaps in split�

ting� see Section ����� but often yields kernels amenable to theoretical
investigation�

Random walk Metropolis� If qi�x�y� � qi�yi�xi� where qi�
� is a density
function symmetric about �� then

qi�y�x�

qi�x�y�
� 
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so the acceptance probability simpli�es� the proposal amounts to adding a
random walk increment � qi to the current xi�

Random walk Metropolis on the log scale� When a component xi of the
state vector is necessarily positive� it may be convenient to only propose
changes to its value that leave it positive� in which case a multiplicative
rather than additive update is suggested� If the proposed increment to
logxi has any distribution symmetric about �� then we �nd

qi�y�x�

qi�x�y�
�
yi
xi
�

��
�� Comparing Metropolis	Hastings to rejection sampling

There is a super�cial resemblance of Metropolis�Hastings to ordinary re�
jection sampling� which may cause confusion� Recall that in rejection sam�
pling� to sample from �� we �rst draw y from a density q� and then accept
this value with probability ��y���Mq�y��� where M is any constant such
that M � supy ��y��q�y�� If the generated y is not accepted� this proce�
dure is repeated until it is� As with Metropolis�Hastings� � and q are needed
only up to proportionality� The crucial di
erences are that in Metropolis�
Hastings� �a� ��q need not be bounded� �b� you do not repeat if the proposal
is rejected� and �c� you end up with a Markov chain� not an independent
sequence�

��
��� Example� Weibull�Gamma experiment

Let us consider a di
erent but still very simple example� where Gibbs sam�
pling would not be straightforward� Our data will be a random sample�
possibly censored� from the Weibull��� �� distribution�

p�Y j�� �� � �m�m�Q
UY

���
i exp ����PY �

i �

where m and
Q

U are the number of and product over uncensored observa�
tions� We place independent Gamma priors on � and ��

p��� �� � ����e�������e�	�

The resulting posterior is

p��� �jY � � �m�m�Q
UY

���
i exp ����PY �

i �

����e�������e�	�

which is not a standard distribution�
Let us de�ne a Markov chain with states x � ��� �� and limiting dis�

tribution ��x� � p��� �jY �� The full conditionals for the two parameters
are

p��j�� � �m� exp ����PY �
i � �

���e���
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p��j�� � �m�m�Q
UY

���
i exp ����PY �

i ��
���e�	��

This is hardly of standard form� so Gibbs is problematical� but the full
conditionals are easily evaluated for a Metropolis or Hastings algorithm�
An easily implemented Metropolis method for this setting would consist

of the following ingredients�

� alternate between updating � and ��

�� propose a new value for the parameter from a distribution symmetric
about its present value�

�� reject the update if the result is negative�

�� otherwise� accept it with probability �e�g�� minf� p���j���p��j��g�

��
��� Cyclones example� continued

Model �� another hyperparameter

Let�s now suppose � is also unknown� with� a priori�

� � ��c� d�

for �xed constants c and d� �In our analysis of the cyclones data� we took
c � d � ��� This last change means that Gibbs sampling is not enough�
In a Markov chain with states x � �x�� x�� � � � � xk� �� ��� we can update �
using a random walk Metropolis move� on the log��� scale� the acceptance
ratio is

min

�
�
p�log��j 
 
 
�
p�log�j 
 
 
�

�
which simpli�es to

min



�

�
����

�����

�k���
��

�

�c �
e�d�k��

Y
xj

�����

Model � unknown change points

If x�� x�� � � � � xk are unknown� so probably are the times of the change points
T�  T�  
 
 
  Tk� The state vector is now x � �x�� x�� � � � � xk� T�� T�� � � � �
Tk� �� ���
Let us assume a priori

p�T�� T�� � � � � Tk� � T��T� � T�� � � � �Tk � Tk����L� Tk��

a joint density providing a gentle preference against two changes occurring
too closely in succession �this is actually the joint distribution of the even�
numbered order statistics for a sample of size �k �  from U��� L���
The posterior marginal or joint conditional distributions are quite com�

plex� for this or any prior� so Metropolis�Hastings is needed� The details
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Figure ���	 Posterior sample of step functions x�t� for model 	 with k � ��
applied to cyclones data�

are a little messy but straightforward� For a proposal drawing T �j uniformly
from �Tj��� Tj��#� the acceptance probability is

min

�
� �likelihood ratio�

�T �j � Tj����Tj�� � T �j�

�Tj � Tj����Tj�� � Tj�

�
�

A sample of step functions drawn from the resulting MCMC sample is
shown in Figure ���

��� The role of graphical models

Graphical modelling provides a powerful language for specifying and un�
derstanding statistical models�
Graphs consist of vertices representing variables� and edges �directed

or otherwise� that express conditional dependence properties� For a full
treatment of the theory� see Lauritzen ������

����� Directed acyclic graphs

The DAG �directed acyclic graph� � a graph in which all edges are di�
rected� and there are no directed loops � expresses the natural factorisa�
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c

a b

d

Figure ���� A simple directed acyclic graph on four variables�

tion of a joint distribution into factors each giving the joint distribution of
a variable xv given the values of its parents xpa�v�� for example� in Figure
��

��a� b� c� d� � ��a���b���cja� b���djc�
In general� we can write

��x� �
Y
v�V

��xv jxpa�v�� ��	�

�see Figure ���� which in turn implies a Markov property� that variables
are conditionally independent of their non�descendants� given their parents�
From the perspective of setting up MCMC methods� the graphical struc�

ture assists in identifying which terms need be included in a full conditional�
Equation ��	� implies

��xv jx�v� � ��xvjxpa�v��
Y

w�v�pa�w�

��xwjxpa�w��

where the right hand side has one term for the variable of interest itself�
and one for each of its children�
Graphical modelling� the construction of MCMC methods through full

conditional distributions� and good practice in statistical model building
all exploit the same modular structure�
A concrete example of this modularity has already been seen implicitly�

in Section ����� we discussed how an ergodic kernel might be assembled
�by cycling or mixing� from a collection of kernels P�� P�� � � � that were
individually in detailed balance but not irreducible�
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Figure ���� A larger directed acyclic graph� the vertices labelled fuig are the
parents of v� and fwig are its children�

����� Undirected graphs� and spatial modelling

Directed acyclic graphs are a natural representation of the way we usu�
ally specify a statistical model �directionally� disease � symptom� past �
future� parameters � data�� but

� sometimes �e�g� spatial models� there is no natural direction�

� in understanding associations between variables implied by a model�
however speci�ed� directions can confuse� and

� these associations represent the full conditionals needed in setting up
MCMC methods�

To form the conditional independence graph for a multivariate distribu�
tion� draw an �undirected� edge between variables � and � if they are not
conditionally independent given all other variables�

Markov properties

The Markov property is familiar from temporal stochastic processes� where
we learn that it may be expressed in several equivalent ways� For variables
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located on an arbitrary graph� the situation is more subtle� we can distin�
guish four related properties� each capturing an aspect of Markovness�

P� Pairwise Non�adjacent pairs of variables are conditionally independent
given the rest �see de�nition of graph��

L� Local Conditional only on adjacent variables �neighbours�� each vari�
able is independent of all others �so that full conditionals are simpli�ed��

G� Global Any two subsets of variables separated by a third are condi�
tionally independent given the values of the third subset�

F� Factorisation The joint distribution factorises as a product of functions
on cliques �that is� maximal complete subgraphs��
The four properties are illustrated in Figures �� and ���

a

c

d

e

f

b

Figure ���� Illustrating the pairwise� local and factorisation Markov proper

ties� P � c � f j�a� b� d� e�� L � d � �a� b� f�j�c� e� and F � ��a� b� c� d� e� f� �
���a� b� c����b� c� e����c� d� e����e� f��

A
B

C

Figure ���� Illustrating the global Markov property� G � A � CjB�

It is always true that F � G� L� P � but these four Markov proper�
ties are in general di
erent �there are easy counter�examples for each of the
reverse implications�� However� in many statistical contexts� the four prop�
erties are the same� a su"cient but not necessary condition is that the joint
distribution has the positivity property � any values realisable individually
are realisable jointly!�� This result includes the Cli
ord�Hammersley theo�
rem �Markov random �eld � Gibbs distribution� L � F �� See� for example�
Besag ������ Cli
ord ������ A typical context in which the Markov prop�
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erties may not coincide is where there are logical implications between some
subsets of variables�
For directed acyclic graphs� the situation is simpler� the directed local

Markov property is always equivalent to the directed graph factorisation
criterion� DL � DF �subject to existence of a dominating product mea�
sure��

Modelling directly with an undirected graph

With a DAG� because of the acyclicity� any set of conditional distributions
��xv jxpa�v�� combine to form a consistent joint distribution�
In an undirected graph� however� we need consistency conditions on the

full conditionals ��xvjx�v� �using L� this is equal to ��xv jx
v�� where �v
denotes the neighbours of v�� The only safe strategy is to use property F �
to model the joint distribution as a product of functions on cliques

��x� �
Y
C

�C�xC�

We can then use property L� the local Markov property� to read o
 the full
conditionals needed to set up MCMC�

��xvjx�v� �
Y

C�v�C

�C�xC� � ��xvjx
v��

Most of the applications in Besag� et al� ����� have a spatial �avour�
and provide illustrations of this style of modelling�

����� Chain graphs

In hierarchical spatial models� we need a hybrid modelling strategy� there
will be some directed and some undirected edges� If there are no one�way
cycles� the graph can be arranged to form a DAG with composite nodes
called chain components %t� that are the connected subgraphs remaining
when all directed edges are removed� we call this a chain graph�
Model speci�cation uses an appropriate combination of the two approaches�

this builds a joint distribution

��x� �
Y
t

��x	t
jxpa�	t��

�
Y
t

Y
C�Ct

�C�xC�

where Ct are the cliques in an undirected graph with nodes �%t� pa�%t��
and undirected edges consisting of �a� those already in %t� �b� the links
between %t and parents� with directions dropped� and �c� links between all
members of pa�%t��
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��	 Performance of MCMC methods

There are two main issues to consider when evaluating the performance of
a Markov chain used for Monte Carlo calculations� for example in choos�
ing between alternative chains for a particular target� or in assessing if a
particular run of a particular chain is adequate for its purpose�

� Convergence �how quickly does the distribution of x�t� approach ��x����

� E"ciency �how well are functionals of ��x� estimated from fx�t�g�� �
In both cases� performance will be measured in relation to the computing
e
ort expended� and of course this e
ort should be measured in seconds�
not sweeps� although this does beg questions about whether for example�
two rival methods have been coded comparably e"ciently�
In this section� we will review some of the issues involved in these assess�

ments� and some of the methods proposed� However� we should not lose
sight of a third factor�

� Simplicity �how convenient is the method to code reliably and to use��

We return to some issues of implementation in Section ��
Contrary to a popular misconception� it should not be supposed that

Gibbs is necessarily superior to other methods on any of these three criteria�
so it does not provide a gold standard for comparison�

����� Monitoring convergence

An active and important sub�eld of MCMC research has aimed at investi�
gating and developing methods for analysis of a Markov chain realisation�
to determine empirically whether the chain can safely be said to �have con�
verged�� and to provide a reliable basis for estimation of aspects of the
target distribution�
It is undoubtedly important in practice to obtain some reassurance on

these issues� and grossly irresponsible� for example� to accept at face value a
statistical analysis of an important real�world problem� where this analysis
is computed by a MCMC sampler whose performance on the model in
question is unknown� However� there is a limit to the degree of reassurance
that can be obtained from an empirical analysis� and this should always
be supplemented by a sound understanding of the qualitative form of the
target distribution� with an eye to the possible presence of features that
the chosen MCMC sampler may have di"culty with�
Attempts to place the activity of convergence monitoring on a �rm logical

footing seem unconvincing� Apart from some contrived exceptional cases�
no �nite segments of Markov chain path are truly in equilibrium� so the
question is not a deterministic decision problem� But it is also wrong to
regard the issue as one of hypothesis testing� We know the sample is not �in
equilibrium�� so the logic of testing that is aimed at detection of departures
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from the null hypothesis is not relevant� Whether the sample is large enough
to enable such detection is inevitably bound up with the quantity & the
closeness of the approximation to equilibrium & that is being measured�
Finally� of course� there can never be any protection based on an empiri�

cal analysis alone against the possibility that immediately after monitoring
ceases� the chain jumps into a part of the parameter space that it has not
previously visited�
Notwithstanding all these caveats� diagnostic techniques� intelligently

used� are valuable� and the reader is referred to Brooks and Gelman ���	�
for a thorough guide to the topic�
Some researchers have expressed optimism in the last year or two that

perfect �or exact� simulation & the organisation of a MCMC simulation so
that it delivers a sample guaranteed to be an exact draw from the target &
will make reliance on diagnostics redundant� This may or may not happen�
but it is still in the future� For an introduction to the role of coupling from
the past in perfect simulation� see Section ���

����� Monte Carlo standard errors

Since any Monte Carlo method is used to provide numerical estimates of
deterministic quantities� even if these quantities arise in a stochastic model�
it is important to be aware of� and in general to evaluate� the Monte Carlo
standard error� of estimated quantities� which should not of course be con�
fused with the standard deviation of the posterior�
Because of Markov dependence� this is not quite straightforward� even

though we �mostly� just use empirical averages as estimates�
Consider a Markov chain in equilibrium� EstimatingE��g� �

R
g�x���dx�

by N��
PN

t�� g�x
�t�� � 'gN � we �nd

var�'gN � � N��
N��X

t��N��

�N � jtj��t

� N��
�X

t���

�t

where �t � cov��P fg�x�s��� g�x�s�t��g �note that unlike the equilibrium
mean and variance� which depend only on �� the autocovariances depend
also on the kernel P �� This quantity is equivalently written

N��var��g�

�X
t���

�t � N��var��g���g� � N��v�g� �� P �

where �t is the corresponding autocorrelation at lag t� The factor ��g�
by which the variance of the sample mean exceeds the value obtained in
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independent sampling is sometimes called the integrated autocorrelation
time� it depends on �� g and the transition kernel P �
Several possibilities for estimating var�'gN �� ��g� or v�g� �� P � have been

proposed� most of which are in common use�

� Blocking �also known as batching� �Hastings� ����

� Time�series methods �e�g� Sokal� �	��

� Initial series estimates �Geyer� ����

� Regeneration �Mykland� Tierney and Yu� ����

There are also Central Limit theorems for Markov chain averages� of the
form p

N �'gN �E��g��
D� N��� v�g� �� P ���

The theorems take various forms� but broadly speaking� we need ergodicity
of the Markov chain� a �nite variance of g and su"ciently good mixing that
v�g� �� P � is �nite� Kipnis and Varadhan ��	�� give such a result assuming
reversibility� while Gordon and Lif(sic ���	� do not need this condition�
but make stronger assumptions elsewhere�
There are results comparing v�g� �� P � for di
erent kernels P � The best

known is due to Peskun ������ proved for a general state space setting
by Tierney ���	�� this states that if P and Q are two kernels with the
same invariant distribution �� with P dominating Q o
 the diagonal �
that is� P �x�B� � Q�x�B� for all B not containing x � then v�g� �� P � 	
v�g� ��Q� for all g � L����� so that P is preferable� In particular� among
all Metropolis�Hastings methods for a given � and proposal mechanism�
that maximising the acceptance probability ��x�y� is best� this explains
the almost universal use of the acceptance probability formula ����� There
are other recent interesting results on ordering Markov chains in Mira and
Geyer ������

Blocking �or batching�

After satisfying ourselves that our Markov chain is in equilibrium� we divide
a run of length N into b blocks of k consecutive samples� Then if k is large�
so that block means are approximately independent� and b is also large� so
that between�block variability can be estimated adequately� we have

var�'gN � � fb�b� �g��
bX

i��

f'gk�i � 'gN��g�

where

'gk�i � k��
ikX

j��i���k��

g�x�j��

is the mean of the ith block of length k�
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This extends to nonlinear functionals of expectations� see Aykroyd and
Green �����

Using empirical covariances

As is well�known from the time�series literature� we cannot estimate
P�

�� �t
consistently by

P�
�� b�t� where b�t is the lag�t product�moment autocovari�

ance of g�x�t��� we should� for example� use some kind of windowed estimateP�
�� w�t�b�t instead� SinceP�

�� �t is proportional to the spectral density
function evaluated at �� this is a well�studied problem� See� for example�
Priestley ��	� p� ����� A convenient estimator of ��g� in practice is the

truncated periodogram estimator of Sokal ��	��� b� �
PM

t��M b�t�b��� where
M is the smallest integer � �b� �
Initial series estimators

Geyer ����� observes that� for a reversible ergodic chain� ��t � ��t�� is
non�negative� decreasing and convex in t� This suggests a class of estimators
obtained by truncating

P
t�jtj�M b�t when one or other of these properties

is �rst violated�

Regeneration

Regeneration points in the Markov chain path are times f�i� i � � �� � � �g
such that the tours �x�i������x�i������ � � � �x�i�� are independent and
identically distributed for i � � �� � � �� If we can �nd such times� then re�
newal theory and ratio estimation give estimates of posterior expectations�
and simulation standard errors that are valid without quantifying Markov
dependence�
More speci�cally� let

Li � ��i � �i���� Gi �

iX
t�i����

g�x�t��

be the length of the ith tour� and the total of a function g evaluated at the
states visited in the tour� then �Li� Gi� are i�i�d� pairs� andPn

i��GiPn
i�� Li

a�s�� E��g� as n�

by the renewal theorem�
Finding such regeneration times is easy in a discrete state space chain�

since the chain regenerates at visits to any speci�ed state� For general state
space chains� the process of �nding regeneration points is facilitated by use
of Nummelin�s splitting technique�
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Regeneration using Nummelin�s splitting

Suppose the transition kernel P �x� A� satis�es

P �x� A� � s�x���A�

where � is a probability measure� and s is a non�negative function such
that

R
s�x���dx� � ��

Let r�x�y� denote the Radon�Nikodym derivative

r�x�y� �
s�x���dy�

P �x� dy�
	 �

Now� given a realisation x����x���� � � � from P � construct conditionally
independent �) random variables S���� S���� � � � with

P �S�t� � j � � �� � r�x�t��x�t����

Then by simple probability calculus we �nd

P �S�t� � jx��t�� S��t�� � s�x�t��

and
P �x�t��� � Ajx��t�� S��t�� S�t� � � � ��A�

that is� we can post�process the chain stochastically to generate binary
�splitting variables�� Whenever S�t� � � the next state x�t��� is drawn
from �� independently of the past� The chain regenerates�
The problem with using the technique in practice is that in the Markov

chains we tend to create for Bayesian computation� P �x� A� is di"cult to
handle algebraically� and)or impossible to bound below by s�x���A� as
required� Mykland� Tierney and Yu ����� examine the possibilities of ex�
ploiting splitting in practical MCMC� Their perspective introduces another
role for naive MCMC methods such as Independence Metropolis�Hastings
�see Section ���	�� which although of limited e"ciency may be amenable
to algebraic manipulation to discover the required bounds�

��
 Reversible jump methods� Metropolis�Hastings in a more
general setting

The formulation of Metropolis�Hastings given in Subsection ���� is the
standard one� and close to the original speci�cation of Hastings ������ It
is already fairly general in that the densities ��x� and q�x�y� appearing
there may be with respect to an arbitrary measure on X � so that both
discrete and continuous distributions in any �nite number of dimensions
are covered� However� the formulation is a little restrictive when we come
to consider MCMC samplers for certain new tasks� most notably problems
where the dimension of the parameter varies� so that there is no elementary
dominating measure for the target distribution�
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The more general Metropolis�Hastings method we de�ne here addresses
this wider range of problems� but also o
ers a new perspective on the
standard formulation� one that has certain pedagogical merits� and also
may sometimes be more straightforward to implement� This reversible jump
approach is based on Green ������ see also Tierney ���	��
The detailed balance condition for a general transition kernel P and its

invariant distribution � is written in integral form asZ
�x�y��A�B

��dx�P �x� dy� �

Z
�x�y��A�B

��dy�P �y� dx� ����

for all Borel sets A�B � X � If P is constructed in two steps� according to
the Metropolis�Hastings paradigm� we make a transition by �rst drawing a
proposed new state y from the proposal measure q�x� dy� and then accept�
ing it with probability ��x�y�� If we reject� we stay in the current state�
so that P �x� dy� has an atom at x� This makes an equal contribution to
each side of equation����� so can be neglected� and we are left with the
requirementZ

�x�y��A�B
��dx���x�y�q�x� dy� �

Z
�x�y��A�B

��dy���y�x�q�y� dx��

����
When can we �solve� this collection of equations of measures to give an

explicit equation for the function ��x�y�� Suppose that ��dx�q�x� dy� is
dominated by a symmetric measure � on X �X � and has density �Radon�
Nikodym density� f with respect to this �� Then ���� becomesZ
�x�y��A�B

��x�y�f�x�y���x� dy� �

Z
�x�y��A�B

��y�x�f�y�x���y� dx��

and� using the symmetry of �� this is clearly satis�ed for all appropriate
A�B if

��x�y�f�x�y� � ��y�x�f�y�x��

As with the standard Metropolis�Hastings method� we usually take the
acceptance probabilities as large as possible subject to detailed balance� so

��x�y� � min

�
�
f�y�x�

f�x�y�

�
� ���

If we wrote this rather more informally as

��x�y� � min

�
�
��dy�q�y� dx�

��dx�q�x� dy�

�
����

then the similarity with the usual expression using densities ���� is ap�
parent� but we must not forget that the meaning of the ratio of measures
derives from equation ���� and assumes the existence and symmetry of
��
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The formulation in this section applies to a completely general state space
Markov chain� For the particular context of spatial point processes� a very
similar development was given by Geyer and M$ller ������ providing an
alternative to the usual spatial birth�and�death process approach� In this
setting� although the dominating measure for the target distribution is not
as familiar as Lebesgue� it is perfectly explicit� models are expressed via
their densities with respect to a unit rate Poisson process� Detailed balance
can therefore be established directly� In other situations� the dominating
measure is much less explicit� and the constructions of the following two
subsections very often prove useful�

���� Explicit representation using random numbers

The general Metropolis�Hastings method of the preceding subsection hardly
lives up to the claim that it o
ers advantages in implementation� as it seems
rather abstract� Fortunately� in many cases the dominating measure and
Radon�Nikodym derivatives can be generated almost automatically�

To see this� imagine how the transition will actually be implemented�
Take the case where X � Rd� and suppose � has a density �also denoted
�� with respect to d�dimensional Lebesgue measure �d� At the current state
x� the program�writer will generate� say� r random numbers u from a known
density g� and then form the proposed new state as some suitable determin�
istic function of the current state and the random numbers� y � y�x�u��
The left�hand side of ���� becomes�Z

�x�y��A�B
��x�g�u���x�y��d�dx��r�du�

Now consider how the reverse transition from y to x would be made� with
the aid of random numbers u� � g giving x � x�y�u��� If the transforma�
tion from �x�u� to �y�u�� is a bijection� and if both it and its inverse are
di
erentiable� then by the standard change�of�variable formula� the �d�r��
dimensional integral equality ���� holds if

��x�g�u���x�y� � ��y�g�u����y�x�

������y�u����x�u�

���� �
whence a valid choice for � is

��x�y� � min

�
�
��y�g�u��

��x�g�u�

������y�u����x�u�

����� � ����

It is often easier to work with this expression than the usual one� equation
�����
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���� MCMC for variable dimension problems

What if the number of things you don�t know is one of the things you don�t
know�
There is a huge variety of statistical problems of this kind� where the

parameter dimension is not �xed� and itself subject to inference� Exam�
ples range from classical statistical tasks such as variable selection� mix�
ture estimation� change�point analysis� and model determination in general�
through to the kinds of problem raised in modern applications of stochastic
modelling to gene�mapping� analysis of ion channel data� image segmenta�
tion and object recognition�
For a fully Bayesian analysis based on a single simulation run� we need

a MCMC sampler that jumps between parameter subspaces of di
ering
dimensions� given the reversible jump framework of the previous subsection�
this is now a fairly modest generalisation� Our state variable x now lives
in a union of spaces of di
ering dimension� X � �kXk�
We will use a range of move types m� each providing a transition kernel

Pm� and insist on detailed balance for each�Z
x�A

��dx�Pm�x� B� �

Z
y�B

��dy�Pm�y� A�

for all Borel sets A�B � X � The idea of a family of move types is implicit
even in the simplest formulation of Metropolis�Hastings� where we have a
di
erent proposal density qi for each component i� but compute the ac�
ceptance probability using the joint target distribution �equation ������
In the present more elaborate context� there may be a richer variety of
move types� recognising that di
erent approaches may be needed to enable
transitions between di
erent pairs of spaces Xk�Xk� �
The Metropolis�Hastings idea still works� but you need to work a bit

harder to make the acceptance ratio make sense� The proposal measure q
is now the joint distribution of move type m and proposed destination y�
so for each x � X �

P
m

R
y�X qm�x� dy� 	  �allowing a positive probability

of not attempting a move� if required�� The detailed balance condition �see
����� becomesZ
�x�y��A�B

��dx��m�x�y�qm�x� dy� �

Z
�x�y��A�B

��dy��m�y�x�qm�y� dx��

for all m�A�B� This leads to the formal solution

�m�x�y� � min

�
�
��dy�qm�y� dx�

��dx�qm�x� dy�

�
as in �����
Apart from the addition of the subscript m� this is just a special case of

the earlier general Metropolis�Hastings method� and the ratio of measures
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makes sense subject to the existence of a symmetric dominating measure
�m for ��dy�qm�y� dx��

Again� this is most easily understood in the concrete terms of the preced�
ing subsection� we need a di
erentiable bijection between �x�u� and �y�u���
where u�u� are the vectors of random numbers used to go between x and y
in each direction� Suppose these have densities gm�u�x� and gm�u��y�� In
the variable dimension context� move typem might use transitions between
Xk� and Xk� � if these spaces have dimensions d� and d�� and � is absolutely
continuous with respect to �d� and �d� in the respective spaces� then the
dimensions of u and u�� r� and r� say� must satisfy the dimension�balancing
condition

d� � r� � d� � r��

We can then write

�m�x�y� � min

�
�
��y�gm�u��y�

��x�gm�u�x�

������y�u����x�u�

���� �� ����

The ratio is of joint densities with the same degrees of freedom� together
with the Jacobian needed to account for the change of variable�

Apart from the illustrative applications in Green ������ this method�
ology has been widely implemented for problems with a variable�dimension
parameter� for example Richardson and Green ������ Uimari and Hoeschele
������ Denison� Mallick and Smith ���	�� Heikkinen and Arjas ���	��
Holmes andMallick ���	�� Pievatolo and Green ���	�� Green and Richard�
son ������ Hodgson ������ Hodgson and Green ������ and Rue and Hurn
������

���� Example� step functions

Let us illustrate the methods of the preceding subsection in what is almost
the simplest setting possible� by studying the situation where the state vari�
able x represents a step function� as might be part of the parameterisation
of a model for change�point analysis in regression or point processes� We
can readily evaluate each of the factors in ����� and end up with a useful
sampler that � with a little modi�cation � will �nd application in the
next subsection�

A simple prior model for a step function on ��� L� would parameterise
the function in terms of its number of steps k� the positions fs�  s� 

 
 
  skg of those steps� and the heights fh�� h�� � � � � hkg� hj being the value
of the function on the interval �sj��� sj�� For illustration here� we assume
that the number of steps is drawn from an arbitrary p�k�� and that given
k� the step heights are i�i�d� from some density fH�
�� and that the step
positions are drawn as the order statistics from a uniform distribution on
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Figure ���
 Split and merge of a step�

the observation interval�

p�s�� s�� � � � � sk� �
k� I ��s�s� 
 
 
skL#

Lk
�

As with ordinary Metropolis�Hastings� you have freedom to use intuition
in designing proposals� validity is ensured by using the correct acceptance
probability �����
Consider a move which allows the number of steps to change� by �birth�

and �death�� When x has k steps� we propose birth with probability bk�
draw two random numbers u� and u� from g�u�� u��� and use them to split
an existing step interval into two� Let the new step position be s� � u��
located between sj��� and sj� say� and use u� to divide the current step
height hj� into two values with weighted average hj� � hj� � hj� � u��w�
and hj� � hj��u��w�� where w� � s��sj��� and w� � sj��s�� Turning
now to death of a step� this is proposed with probability dk� and we choose
a step at random to delete� if step jy is deleted� then the new step height
for the interval �sjy��� sjy��� is the weighted average f�sjy � sjy���hjy �
�sjy���sjy�hjy��g��sjy���sjy���� This precisely reverses the e
ect of the
birth just described�
Note that this formulation has the dimension balance we require� when

there are k steps� there are k positions and k� heights� making d� � �k�
variables in all� With a birth� we are proposing a move to d� � �k��� The
dimensions of the random numbers u�u� are r� � � and r� � � respectively�
and indeed d��r� � d��r�� �An alternative choice� equally valid� would be



�� A PRIMER ON MARKOV CHAIN MONTE CARLO

r� � �� r� � � which would be obtained if we had dropped the requirement
of preserving the weighted average on birth and death� and generating new
random heights as needed� for example independently of the current state��
Suppose we let x�y denote the states of the chain before the split is

proposed� and the state as modi�ed by the birth proposal� Then

��x� � p�Y jx�p�k�
kY

j��

fH�hj�
k� I ��s�s� 
 
 
skL#

Lk

��y� � p�Y jy�p�k � �
Y
j ��j�

fH�hj�fH�hj��fH�hj��

�k � �� I ��s�s� 
 
 
sj���s�sj� 
 
 
skL#

Lk��
�

the constant of proportionality being the same in each case� The proposal
terms are

gm�u�x� � bkg�u�� u��

gm�u
��y� �

dk��
k � 

�

re�ecting the described mechanism for choosing to propose birth or death�
the drawing of �u�� u��� and the random choice of a step to delete� Finally�
the Jacobian we need is an order �k�� determinant� but with many of the
components of the state vector unaltered by the transformation� it reduces
to ������hj�� hj�� s����hj� � u�� u��

���� � w� � w�

w�w�
�

We can now compute the acceptance probability for a birth from �����

� � min

�
�*

p�k � �

p�k�

�k � �

L

fH�hj��fH�hj��

fH�hj��

dk����k � �

bkg�u�� u��

w� � w�

w�w�

�
where * is the likelihood ratio p�Y jy��p�Y jx��

���
 Cyclones example� continued

Model �� unknown number of change points

What if the number of change points� k� is also unknown� We might place
a prior on k� say Poisson����

p�k� � e��
�k

k�
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Figure ���� Posterior sample of step functions x�t� for model �� applied to cy

clones data�

and then make Bayesian inference about all unknowns� x � �k� �� �� T�� � � � �
Tk� x�� � � � � xk�� There are �k�� parameters� the number of things you don�t
know is one of the things you don�t know�
For a MCMC solution� the only additional ingredient we need over model

� is a birth)death move to allow a variable number of steps� This follows
closely the setup of the preceding subsection� except that since the step
function represents an intensity and is necessarily non�negative� we ar�
ranged to preserve the weighted geometric mean�

h
w�

j� h
w�
j� � h

w��w�
j� �

Also the joint density of the step positions is now �Qj�sj � sj��� with a
corresponding change to the acceptance ratio� The moves for this sampler
are described in detail in Green ������ except that here we have slightly
extended the model to include variable hyperparameters � and �� as seen
in Sections ���� and ����
We applied this model to the cyclones data� using � � �� a small sample

from the posterior distribution of the step function x�
� is shown in Figure
��� Various aspects of the posterior distribution can be summarised by
appropriate analysis and display of much larger MCMC samples� see� for
example� Figures ��� �	 and ���
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Figure ��� Posterior mean of step function x�t� for model � �solid line and
kernel estimate of x�t� �broken line� for cyclones data�

Model �� with a cyclic component

Finally� here� as further illustration of the �exibility in modelling allowed
by the approach� we include another ingredient� that will be justi�ed in
many real time�series point process problems� periodicity�

This could be handled in various ways � parametric� nonparametric�
with known and unknown period�s� � but the simplest is to take a simple
sinusoid� and assume that the data are generated from a Poisson process
with instantaneous rate

x�t� f � � cos���ft� � � sin���ft�g �

where x�t� is the step function de�ned above� and f denotes the assumed
�known� frequency��

If a priori ��� �� are taken uniform on the unit disc� then a simultaneous
Metropolis update is easily implemented�

A small sample from the posterior for the cyclic component is shown in
Figure ����
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Figure ���� Posterior distribution of number of change points k for model ��
applied to cyclones data�

���� Bayesian model determination

It is wrong to behave as if the statistical model for our data was not subject
to question�

Suppose we have a �countable� collection of models that we wish to
entertain� M��M�� � � � �Mk� � � �� A priori� we assign probabilities to these�
p�k��

For each model� there is a parameter vector � � �k � Rnk say� with a
prior� p��kjk�� and a likelihood for the observed data Y � p�Y jk� �k�� The
joint distribution of all variables is

p�k� �k� Y � � p�k�p��kjk�p�Y jk� �k��
�Note that in this section� the subscript k on � indicates the model to which
�k belongs� not the kth element of a vector ���

Observing Y provides information about both the model indicator k and
the corresponding parameter vector �k� through their posterior distribu�
tions�

p�kjY � �

R
p�k� �k� Y �d�kP

k

R
p�k� �k� Y �d�k
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Figure ���� Estimates of posterior density for change point positions for model
�� applied to cyclones data� k � � �solid line� k � � �dotted lines and k � �
�broken lines�

and

p��kjY� k� � p�k� �k� Y �R
p�k� �k� Y �d�k

involving integrals that as usual seem to need MCMC� There are two main
approaches� within�model and across�model simulation�

Within	model simulation

Here we treat each model Mk separately�
The posterior for the parameters �k is in any case a within�model notion�

p��kjY� k� � p��kjk�p�Y jk� �k�R
p��kjk�p�Y jk� �k�d�k

As for the posterior model probabilities� since

p�k�jY �

p�k�jY �
�

p�k��

p�k��

p�Y jk��
p�Y jk��

�the Bayes factor for model Mk� vs� Mk��� it is su"cient to estimate the
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Figure ���	 Posterior samples from the harmonic component� model �� applied
to cyclones data�

marginal likelihoods

p�Y jk� �
Z

p��k� Y jk�d�k
separately for each k� using individual MCMC runs�

Estimating the marginal likelihood

There are many possible estimates based on importance sampling� some of
which are well�studied� for example

bp��Y jk� � N

�
NX
t��

n
p�Y jk� ��t�k �

o��
based on a MCMC sample �

���
k � �

���
k � � � � from the posterior p��kjY� k�� or

bp��Y jk� � N��
NX
t��

p�Y jk� ��t�k �

based on a sample from the prior p��kjk�� Both of these has its faults� and
composite estimates can perform better� See� for example� Newton and
Raftery ������
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Across	model simulation

Here we conduct a single simulation that traverses the entire �k� �k� space�
Since the dimension nk of �k typically varies with k� this requires a MCMC
sampler that works in more general spaces than Rd� The reversible jump
sampler of Section ���� is an obvious candidate� Applications of this ap�
proach include Giudici and Green ������ and Nobile and Green �������

See also Madigan and Raftery ������ Carlin and Chib ������ Phillips
and Smith ����� and George and McCulloch ����� for other recent ap�
proaches to Bayesian computation for model determination�

��� Some tools for improving performance

����� Tuning a MCMC simulation

Having implemented an MCMC sampler� there are various quite simple
techniques available to amend the algorithm to try to improve performance�

Most Metropolis�Hastings methods involve proposal distributions with
freely chosen parameters & the spread of the perturbation distribution in a
random�walk Metropolis method� for example� As the parameter is varied�
di
erent acceptance rates will be obtained� Of course� ��+ acceptance is
not necessarily desirable� in random�walk Metropolis it is only achieved in
the limit as the spread goes to �� As this is approached� the sample path
will exhibit increasingly high autocorrelation� In the �bold� opposite to this
�timid� strategy� the steps taken will be large� but they will be taken rarely�
The right balance� where convergence may be faster and autocorrelation
less� will be in the middle�

There is an interesting theoretical study of optimal acceptance rates for
random walk Metropolis in Gelman� Roberts and Gilks ������ based on
the arti�cial case of multivariate normal target and proposal distributions�
this has been quite in�uential in establishing a �rule of thumb� advising
aiming for �����+ acceptance generally� but this study is perhaps a rather
narrow basis for such a sweeping conclusion�

Metropolis�Hastings methods can be designed for updating single vari�
ables� or groups of any size� Larger groups o
er the possibility of allow�
ing the sampler to beat the restrictions on performance imposed by high
correlations between variables in the target distribution� but may carry a
burden in cumbersome tuning of a multivariate proposal distribution� A
careful study of the merits of grouping variables is one of the themes of
Roberts and Sahu ������ see also Besag et al ����� p� ���
Another opportunity for reducing correlation between variables is to con�

sider re�parameterisation� a hierarchical centring formalism in the linear
mixed models context is introduced by Gelfand� Sahu and Carlin ������
and there is a broader discussion in Gilks and Roberts ������
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����� Antithetic variables and over	relaxation

The essential idea of antithetic variables in ordinary static Monte Carlo
is one of the classic ideas for variance reduction� to aim to introduce neg�
ative correlation among some of the summands in an empirical average
N��

PN
� g�x�t�� by using coupled pairs �u� �u� of uniform random num�

bers in generating pairs of state vectors x� Of course� the success of the
method requires some monotonicity in both the mapping from u to x� and
in the function g�
As applied to MCMC� the aim would be to choose an update of x�t�

that has detailed balance� as usual� but also introduces negative serial
autocorrelation in the process g�x�t��� or at least reduces the value of a
positive autocorrelation�
Barone and Frigessi ��	�� studied the e
ect of antithetic variables on

the convergence of samplers for Gaussian processes� The full conditional
for a single variable xi in a multivariate Gaussian distribution is of course
a normal distribution� N��i� 	

�
i �� say� It is easy to check that drawing the

updated variable x�i from N������i��xi� �����	�i � is in detailed balance
for any � � ��� �� � � � gives the Gibbs sampler� and if � � � then xi
and x�i are conditionally negatively correlated� They show that in the case
of entirely positive association between the variables� the spectral radius
of the corresponding Markov chain is a decreasing function of � at � � ��
thus convergence is improved by using the dynamic version of antithetic
variables� � � ��
Green and Han ����� �see also Besag and Green� ���� examine the

e
ect of this antithetic modi�cation on the autocorrelation time� and show
that it is reduced by a factor � � ���� � ��� They also propose using
antithetically�modi�ed Gaussian approximations to full conditionals as pro�
posal distributions for Metropolis�Hastings for non�Gaussian targets� al�
though the empirical evidence assessing this idea suggests that convergence
is not always improved� Barone� Sebastiani and Stander ���	� have devel�
oped the idea further� Neal ���	� has proposed a related method� based
on order statistics� that seems much more widely applicable�
This whole topic has close parallels with the theory of over�relaxation in

the iterative solution of simultaneous equations in numerical analysis�

����� Augmenting the state space

Perhaps counter�intuitively� it is sometimes possible to improve MCMC
performance by augmenting the state vector to include additional compo�
nents� Two particularly successful recipes are those in which the original
model appears as a conditional distribution in an augmented model �simu�
lated tempering� and in which it appears as amarginal �auxiliary variables��
these approaches are described in the next two subsections�
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Two other devices might also be bracketed under the heading of aug�
mentation� In multigrid methods� spatial problems are treated on a variety
of spatial scales� sometimes by coupling together several di
erent models�
sometimes merely by using a family of MCMC samplers that update groups
of variables together� the sizes of the groups varying with sweep� In hybrid
MCMC� additional variables are introduced� bearing a relationship to the
original ones analogous to that between momentum and position variables
in dynamics� The MCMC updates maintain this physical analogy�

����
 Simulated tempering

The approach here is to combat slow mixing by embedding the desired
model in a family of models� indexed say by �� and treat � now as an addi�
tional dynamic variable� Thus the target is changed from ��x� to ���x� ����
The family f���x� ��g is designed so that for some �� a much better�mixing
chain can be found than for the original target� We run MCMC on ���x� ���
and condition on � � �� by selecting from the output�

This �serial� approach can be compared with the �parallel� one of Metropolis�
coupled MCMC �Geyer� ��� see also Gilks and Roberts� �����

Simulated tempering� by changing the temperature

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Figure ���� The e�ect of tempering on a univariate full conditional� the beta mix

ture density 	�Be��� � � 	��Be��� ��� and the results after raising to the powers
	 � 	�
� 	��
� 	���
 and renormalising�
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This was the original idea of Marinari and Parisi ������ independently
derived by Geyer and Thompson ������ we set

����� �� � f����g�

where � � �� �  corresponds to the original model� and � � � makes
the probability surface ��atter�� or in physical terms� �warmer�� A graphical
illustration of the e
ect of the � power on a univariate density can be seen
in Figure ���
The full conditionals change in the same way as the joint distribution�

����ij��i� �� � f���ij��i�g�

so implementation is very easy�
We normally place a �discrete� arti�cial prior on � so that the marginal

for � is approximately uniform�

Simulated tempering� by inventing models
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Figure ���� Better mixing with variable dimensions� illustrated by a mixture anal

ysis application �from Richardson and Green ����	�

A more general perspective on what tempering achieves and how it works
can be obtained by envisaging it as embedding the target into a bigger
model space� and there may be many ways to do that� For example� a
model indicator k may be allowed to vary� although in truth its value is
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known� or at least �xed� An example from mixture analysis is shown in
Figure ���� The left hand panels show the sample paths for one compo�
nent of the parameter vector� which has a strongly bimodal distribution
under the target� two samplers are compared� one �bottom� in which the
model indicator k �in this case the number of mixture components� is held
�xed� the other �top� in which it varies but we condition on its value by
selecting from the output� In the right hand side panels we see �top� the
resulting estimates of the marginal density of this parameter and �bottom�
the evolution of the ergodic average estimating the probability that the pa�
rameter is positive� from the symmetry of the setup of the experiment� this
is known to be ���� Results for the variable�k sampler are shown in solid
lines� those for �xed k are dotted� Allowing the number of components to
vary can give much better mixing� See Richardson and Green ����� for
details�

����� Auxiliary variables

θ
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(  ,u)(  ’,u) θθ

Figure ���� The slice sampler�

Edwards and Sokal ��		� proposed a way to improve mixing by augment�
ing the state space so that the original target appears as the marginal
equilibrium distribution� The following interpretation of their approach in
statistical language can be found in Besag and Green ������
Starting from ��x�� introduce some additional variables u� with ��ujx�

arbitrarily chosen� Then the joint is ��x� u� � ��x���ujx�� for which ��x�
is certainly the marginal for x�
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We could now run a MCMC method for the joint target ��x� u� �usually a
method that updates x and u alternately�� and simply ignore the u variables
in extracting information from the simulation�

When might this idea be useful� Suppose ��x� factorises as�

��x� � ���x�b�x�

where ���x� is a �possibly unnormalised� distribution that is easy to sim�
ulate from� and b�x� is the awkward part� often representing the �interac�
tions� between variables that are slowing down the chain�

Then take a one�dimensional u with ujx � U ��� b�x�#� we �nd

��x� u� � ��x���ujx� � ���x�b�x�
I �� 	 u 	 b�x�#

b�x�

so that

��xju� � ���x�

restricted to �conditional on� the event fx � b�x� � ug� At least when this
��xju� can be sampled without rejection� we can easily implement a Gibbs
sampler� drawing u and x in turn�

This method has recently been popularised under the name of the �slice
sampler�� a picturesque but otherwise unnecessary name� re�ecting the fact
that if ���x� � constant� ��xju� is a uniform distribution� corresponding
to a horizontal slice through the graph of ��x�� For statistical applications
of the idea� see Neal ����� and Damien� Wake�eld and Walker ������ and
for a detailed analysis of the method� see Roberts and Rosenthal ������

The original applications of auxiliary variable methods were to statistical
physics problems� where in particular the Swendsen�Wang method �Swend�
sen and Wang� �	�� has had a profound in�uence� see also Edwards and
Sokal ��		� and Sokal ��	���
The Swendsen�Wang method is a MCMC method for the Potts model

on an arbitrary graph �V�E�� the target distribution

��x� � exp

��	�� X
�v�w��E

I �xv �� xw#

��� �
Y
e�E

be�x��

say� We de�ne one auxiliary variable ue for each edge e� conditionally in�
dependent given x� with uejx � U��� be�x��� If ue � e�� we say the edge
e is �on�� otherwise �o
�� It is easy to see that in drawing u given x� edges
are on with probability  � e�� if xv � xw� always o
 if xv �� xw� Sim�
ple manipulation shows that ��xju� is a random uniform colouring on the
clusters determined by the on bonds�
Figure ��� illustrates one sweep of the Swendsen�Wang algorithm� ap�

plied to the Potts model on a small graph�
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Figure ���� Illustrating the Swendsen
Wang algorithm� �a bond variables be

tween like
coloured nodes are �on� with probability � � e��� always �o�� between
unlike
coloured ones� �b clusters formed by �on� bonds are re
coloured uniformly
at random� �c the new colouring�

�� Coupling from the Past �CFTP�

Coupling from the Past �CFTP� is a beautiful idea due to Propp andWilson
������ it provides a way of organising a Markov chain simulation so that
after a �nite but random amount of work� it exactly delivers a sample from
the target distribution� �Another such protocol� based on an elaborate form
of rejection sampling was given by Fill ���	���
Since the CFTP idea �rst appeared in preprint form� it has generated

much excitement among MCMC researchers� keen both to understand and
generalise the basic formulation� and to discover the practical potential for
computation in stochastic processes and statistical applications�
For an example of Propp and Wilson�s construction� consider the partial

simulation of a symmetric random walk with re�ecting barriers shown in
Figure ���� To appreciate the message of this �gure� it is not necessary to
know anything about the order in which the displayed steps were generated�
nor anything at all about any steps not displayed� All that we need is that
the successive steps along each partially�drawn path are independent� and
have the correct law� equally probably �� except where steps attempting
to go outside the interval �� �# are suppressed�
One can see that for the random numbers used to make this simulation�
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Figure ���
 Monotone CFTP for a simple random walk�

and regarding the �gure as part of a conceptual simulation of paths from
all initial states at all initial times  �� all paths of the chain starting at
time � have the same state �viz�� �� at time �� This state� x���� must be
drawn from ��

Generally� imagine multiple coupled paths of a Markov chain run from all
initial states in the inde�nite past� and look at the state at time �� x���� If
this is unique� then x��� � �� For this to be of any practical consequence in
computing� we must be able to conduct this conceptually in�nite amount
of simulation in a �nite time� But� we can that Figure ��� was indeed
constructed with a �nite amount of work � fewer than �� steps are shown�

Generalising from this example� if there exists a �random� initial time
�T such that for all initial states x�T � x

��� is the same� then x��� � ��
We do not even need to �nd T exactly� since coalescence occurs from all
initial times  �T � So we can just try a decreasing sequence of initial times
���������	� � � � until we discover coalescence�

����� Is CFTP of any use in statistics�

There have been some spectacular successes in �nding CFTP implementa�
tions for certain models in statistical physics and spatial processes possess�
ing a lot of symmetry� even with huge numbers of variables �� million in
one case��

But it seems much harder to make it work for even quite low�dimensional
continuous distributions without symmetry�
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����� The Rejection Coupler
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Figure ���� Example realisation of rejection coupler for f�yjx� � �
 �
��min�fy�xg�� f��� y����� x�g�� with 
 � ��

Here is a simple approach to CFTP for a continuous state space� namely
the unit interval� from Murdoch and Green ���	�� It is more of a �proof of
existence� �of a CFTP method in a continuous state space� than a practical
method� for we have to suppose we know f�yjx�� where

PfXt�� 	 yjXt � xg �
Z y

��

f�ujx�du�

and that the �not necessarily normalised� densities f�yjx� are bounded
above by an integrable h�y�� We cannot expect the transition density to be
available for a practically�useful MCMC method�
Recall the familiar rejection sampler� expressed in geometrical terms� To

sample from the �not necessarily normalised� f�
jx�� we repeatedly draw
�Y� Z� uniformly under the graph of h until Z  f�Y jx�� The rejection
coupler generalises this scheme� To sample from f�
jx� for all x� again we
repeatedly draw �Yi� Zi� uniformly under the graph of h� Let Ai � fx �
Zi  f�Yijx�g� then Yi is a valid update for all x � Ai� We continue until
�iAi � �� obtaining a random�length list fYig�
When incorporated into the CFTP protocol� this procedure gives partial

realisations of a continuum of coupled paths exempli�ed by the simulation
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shown in Figure ���� This shows a single realisation of CFTP using re�
jection coupling� for the kernel density f�yjx� � � � ��min�fy�xg	� f��
y����x�g	� with � � �� which is bounded above by the envelope function
h�y� �  � � for �  y  � The solid lines indicate the paths ultimately
followed by all realisations starting from the inde�nite past�

����� Towards generic methods for Bayesian statistics

In contrast to the rejection coupler� a practical technique for Bayesian
CFTP should be based only on the target distribution� and created by
some generic recipe� just as is the case for standard MCMC�
Evidence that this will become possible is still quite unconvincing� al�

though this is an extremely active research area� and success may be
obtained soon� Some experiments in this direction are the random walk
Metropolis coupler of Green and Murdoch ���	�� the methods using Gibbs
sampling and �anti�� monotonicity of M$ller ������ perfect slice sampling
�Mira� M$ller and Roberts� ���� and the perfect simulated tempering ap�
proach of M$ller and Nicholls ������
One general reason for pessimism about the future of CFTP in Bayesian

statistics is found by noting that much of the success of ordinary MCMC in
this �eld is based on its modularity� as a model is elaborated� the parame�
ter vector is augmented� and the current sampler is supplemented by new
moves for the new components� Existing methods for perfect simulation are
not modular�

���� Miscellaneous topics

������ Di�usion methods

A number of MCMC methods have been developed recently� inspired by
the Langevin stochastic di
erential equation

dxt � dBt �


�
r log��xt�dt

where Bt denotes Brownian motion on X � Here we describe only the case
where X � R� This di
usion has invariant distribution �� and suggests use
of the discrete�time chain

x�t���jx��t� � N

�
x�t� �



�
�r log��x�t��� �

�
� ����

where the time increment is �� not �
Unfortunately� this simple discretisation is too crude� not only does it

only� at best� deliver an approximation to � as its invariant distribution� it
can actually create a transient chain�
However� that can be �xed by using the Metropolis	adjusted Langevin
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algorithm �Besag� ����� in which ���� is used simply as a proposal dis�
tribution� with acceptance determined as usual by �����
Among examples of practical methodology using di
usion�based MCMC

are the jump�di
usion methods of Grenander and Miller ������ combining
�unadjusted� Langevin di
usion with dimension�jumping moves to address
variable�dimension problems� and the work of Phillips and Smith �����
applying this approach in various statistical settings�
The Metropolis�adjusted Langevin method is known to fail to be geomet�

rically ergodic for heavy�tailed targets� a problem addressed by the richer
class of �self	targetting� Metropolis�adjusted Langevin algorithms due to
Stramer and Tweedie ���	�� in which the proposal distribution is

x�t���jx��t� � N
�
x�t� � ���x�t��� �	��x�t��

�
where

��x� �


�
	��x�r log��x� � 	�x�r	�x��

This is derived from the di
usion generated by

dxt � 	�xt�dBt � ��xt�dt�

Stramer and Tweedie ���	� discuss the extent to which their theory for
these methods can be extended to the practically important cases where
X � Rd� d � �

������ Sensitivity analysis via MCMC

In responsible Bayesian inference� it is important to assess the e
ect on the
posterior of changes to the model� especially variations in the prior� Suppose
that� having completed a MCMC�based analysis using a prior ����� and
likelihood f�Y j��� we wish to entertain an alternative model built from
������ and f��Y j���
We could just repeat MCMC computation on the new model� note that

even where the base model is rather tractable �for example� ����� conjugate
to f�Y j���� we should consider alternatives that are not� Thus MCMC
may be needed in sensitivity analysis even where exact analytic calculation
handles the standard model� or we may need Metropolis where Gibbs was
su"cient in the standard case�
As an alternative to treating the revised model as a completely fresh

problem� we may be able to make use of importance sampling to assess
sensitivity using only the original simulation� This uses the importance
sampling identity

E���g� � E�

�
��

�
g

�
showing that expectations under �� can be estimated from an MCMC run
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aimed at �� by PN
t�� w�x

�t��g�x�t��PN
t�� w�x

�t��

where

w�x� � ���x�

��x�
�

There are several practical examples of MCMC�based sensitivity analysis
in Besag� et al� ������
One problem of the importance sampling approach is that� except in very

low dimensional problems or where � and �� are very similar� w�x�t���
P

t w�
�
is e
ectively concentrated on very few samples� implying very poor e"�
ciency� This can sometimes be mitigated by considering in�nitesimal per�
turbations instead� ���x� � ���x�����������x���� or� of course� by running
another chain�

������ Bayes with a loss function

We have seen the tremendous advantages that MCMC o
ers to the prac�
tising Bayesian through the opportunities it gives for computing posterior
distributions� However� the complete Bayesian agenda for statistical anal�
ysis does not stop at computing posteriors � in the full decision theoretic
framework� a loss function is introduced� and optimal Bayes estimates and
decisions determined by minimising the expectation of the loss under the
posterior distribution�
Writing the posterior p�x � 
jY � in the generic ��
� notation� we wish to

choose an action z to minimise

E�L�x� z�jY � �

Z
L�x� z���dx��

where L�x� z� is the loss incurred through taking action z when the true
state of nature is x�
When the posterior is computed using MCMC� the expectation is re�

placed by an empirical average over the realisation x����x���� � � ��

E�L�x� z�jY � � 

N

NX
t��

L�x�t�� z��

The di"culty with this approach lies in the interplay between the averaging
and the optimisation with respect to z�
One class of loss functions that can be easily handled is that of �nite

sums of separable loss functions� where

L�x� z� �
X
r

ar�x�br�z�� ����
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Then the MCMC computation and the optimisation separate� since

E�L�x� z�jY � �
X
r

Arbr�z� where Ar �


N

NX
t��

ar�x
�t���

The optimisation can even sometimes be done analytically� as for exam�
ple in the elementary case of squared�error loss for some functional g�x��
L�x� z� � �g�x��z��� Then Ar� r � �� � � are the �th� st and �nd empirical
moments of g� and br�z� � z����z�  for r � �� � �� leading of course to
the optimal z � A��A�� the MCMC estimate of the posterior mean�

More commonly� numerical optimisation is necessary� Several research
papers recently �for example� Rue and Hurn ������ Rue and Syversveen
���	�� have used simulated annealing� and have exploited the represen�
tation ����� The Ar are �rst computed by MCMC� and then a second�
annealing� simulation� set up for the arti�cial probability distributions

pT �z� � exp

�
�
T

X
r

Arbr�z�

�
�

where the temperature T is sent to � on some suitable schedule�

���� Some notes on programming MCMC

������ The Bugs software

The only software I am aware of that provides MCMC computation for
a wide range of statistical models� without requiring the user to code the
sampling algorithms is Bugs �Gilks� Thomas and Spiegelhalter� ����� The
model is speci�ed in a high�level speci�cation language & or� if using the
WinBugs version� a graphical interface & a few options controlling the sim�
ulation are entered� and the system does the rest� Particularly for rather
well�understood standard models� hierarchical versions of generalised linear
models� for example� the facilities are easy to use� and the system extremely
e
ective� The suite of implemented and documented examples distributed
as part of the software release demonstrates the remarkable �exibility of
the system� and some very complex models can be handled� However� facil�
ities for using anything other than single�variable Gibbs sampling are very
limited� so for some models� Bugs may be ine"cient or even completely
incapable� The authors are careful to stress that setting up a MCMC sam�
pler and interpreting the output� even with Bugs� requires knowledge of
the user beyond appreciation of the statistical model itself�

Bugs is very useful for many practitioners� but may be too limited for
most MCMC researchers�
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������ Your own code

Programming your own MCMC method from scratch is much less daunting
than it might �rst appear� and provides �exibility and �run�time� e"ciency
that cannot really be matched by package software� The basic recipes are
simple in structure� and may be coded following the algebraic notation
almost exactly� I do not usually bother with Gibbs sampling unless the full
conditionals are entirely standard distributions for which I have a random
number generator� �The adaptive rejection sampling method of Gilks and
Wild ����� provides a means of extending Gibbs sampling to a wider range
of full conditionals�� In Metropolis�Hastings algorithms� it is necessary to
take some care with �oating point arithmetic� as in complex models� there
may be many multiplicative factors entering the acceptance ratio� with
a wide numerical range� I �nd it convenient to accumulate the sum of
the logarithms of the factors� and then truncate onto a safe range before
exponentiating�

High and low level languages

The poor performance of looping code in most high�level statistical lan�
guages such as S precludes their use in coding all but the smallest prob�
lems� I always use Fortran or C� On the other hand� the �exibility of control
and the availability of a wide range of statistical and graphical procedures
in S� and similar systems� is absolutely invaluable in analysis of MCMC in
a research environment� My usual strategy is to dump large quantities of
raw MCMC output into a collection of �les� with structured �lenames� and
then employ a suite of S functions to read� display and analyse these�

Validating your code

It is absolutely essential to check and double�check MCMC code� The very
nature of the output of the computation � simulation results in a con�
text where other numerical methods are not available for cross�checking �
makes this problematical� especially in Bayesian statistical contexts� where
problems are one�o
� and data subject to sampling variation� Testing on
simulated data�sets with known parameter values does not tell you very
much�
I �nd two particular tricks extremely useful� First� I always use restartable

random number streams� so that I can conveniently and reliably duplicate
a run� with additional diagnostic output� if I suspect a bug� This is also
often useful to compare results before and after a minor edit� Second� in
programs implementing posterior simulation for a Bayesian model in which
the variables are organised as a directed acyclic graph� and in which the
observed data have no �children�� I always include a �prior� option� which ig�
nores the data and the likelihood terms� The posterior simulation program�
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largely unaltered� is then actually simulating from the prior distribution�
and typically many marginal and conditional aspects thereof may be di�
rectly checked as the true distributions are known�

Many useful hints on the practical details of algorithm design� including
matters such as thinning and burn�in� will be found in Geyer ����� and
Gilks and Roberts ������

���� Conclusions

������ Some strengths of MCMC

MCMC is evidently a very powerful and �exible tool for computation with
complex multivariate distributions� Its availability has transformed prac�
tical Bayesian statistics� and it is making an important if less dramatic
impact on other areas of computational statistics�

In the Bayesian context� its power derives from the two kinds of �exibility
it o
ers� First there is �exibility in modelling� permitting the analyst to get
much closer to his or her understanding of the reality of the process gener�
ating the data� and liberating the modelling process from the constraints
only imposed for the sake of tractability� A desirable by�product is the en�
couragement to model builders to think in graphical terms� as MCMC is
particularly well�adapted for models de�ned on sparse graphs�

Secondly� there is freedom in inference� in principle� there are no limits
to what features of the target distribution may be estimated by MCMC�
although one needs always to be aware of the Monte Carlo errors unavoid�
able in such estimates� some features of the target can be computed much
more reliably than others� MCMC addresses questions only posed after sim�
ulation completed �e�g� ranking and selection� and o
ers opportunities for
simultaneous inference� It allows and even facilitates sensitivity analysis�
and addresses questions of model comparison� criticism and choice�

������ Some weaknesses and dangers

MCMC is not a panacea� In the end it is only a numerical method� and
does not displace the need for careful thought about modelling� and about
the probable reliability of numerical results obtained in the given context�
When other methods are available� MCMC can be relatively extremely
expensive� hence the common preference in �elds with large data�sets such
as signal and image processing for approximations to the full Bayesian
paradigm that are amenable to fast numerical calculations for particular
outputs of interest�

In qualitative terms� a problem that is insurmountable �at least in es�
timating expectations and probabilities� is the order

p
N precision of any
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simulation method� and for MCMC� the possibility of slow convergence�
especially when it is not diagnosable�
Use of MCMC imposes serious responsibilities on the careful researcher�

for there is the risk that �tting technology runs ahead of statistical science�
so that models are �tted that are not understood� and the risk of over�
using the �exibility allowed in inference� leading to undisciplined� selective
presentation of posterior information�

������ Some important lines of continuing research

MCMC remains an important� exciting and challenging �eld for further
research� It is impossible to predict how the �eld will develop over the next
few years� but I believe that the most interesting questions for exploration
at present include�

a� Adaptive methods� and other possibilities for automation�

b� Perfect simulation� will these become useful in statistical practice�

c� Getting quantitative results from theoretical analysis�

d� Learning even more from physics�
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