CHAPTER 1

A primer on
Markov chain Monte Carlo

Peter J. Green, University of Bristol

1.1 Introduction

Markov chain Monte Carlo is probably about 50 years old, and has been
both developed and extensively used in physics for the last four decades.
However, the most spectacular increase in its impact and influence in statis-
tics and probability has come since the late ’80’s.

It has now come to be an all-pervading technique in statistical com-
putation, in particular for Bayesian inference, and especially in complex
stochastic systems. A huge research effort is being expended, in devising
new generic techniques, in extending the application of existing techniques,
and in investigating the mathematical properties of the methods.

The target audience for the Sémstat lectures is European post-doctoral
researchers in probability and statistics, and the present chapter is both
the written version of these lectures and a primer for others seeking to get
started in some aspect of MCMC research. By ‘MCMC research’ I mean
both research into the mathematical properties of MCMC algorithms, and
research that aims to develop new classes of algorithm for new and chal-
lenging problems; in both cases, I am thinking primarily but not quite
exclusively of ultimate application in Bayesian statistics. Thus the chap-
ter is not primarily intended for those who wish to make use of standard
MCMC methods as implemented in a package, and to make sense of the
output; however, it should be of some use to those wishing to apply stan-
dard methods to some new application by means of their own code. The
focus is on understanding the principles underlying the methods, and the
main ideas in evaluating their performance. With that objective, I will
begin with some very basic examples, covered in detail, which are aimed
at those who are complete novices. Those with a basic understanding of



2 A PRIMER ON MARKOV CHAIN MONTE CARLO

Bayesian analysis and the Gibbs sampler may not need this motivation,
and can skip Section 1.2.

The selection of material is necessarily a personal one — the subject is
by now too big for the 4 or 5 hours allocated to the lectures, and indeed
I would not claim expertise over all of the potential coverage of a lecture
series of this kind. To save space, some sections have been reduced to just
a few key references.

I have decided not to try to cover any very substantial applications,
although plenty of reference is made to such work. I do make use of a
running example — on point processes with change points, exemplified by
a Bayesian analysis of some data on cyclones — that is intended to provide
continuity as I cover the main topics.

1.2 Getting started: Bayesian inference and the Gibbs sampler
1.2.1 Bayes theorem and inference

The recent great impetus to research in MCMC has been the widespread
realisation of its important application in Bayesian inference, following the
work of Besag and York (1989) and Gelfand and Smith (1990), building
on the ‘Gibbs sampler’ (popularly ascribed to Geman and Geman (1984)).
The book of Gilks, Richardson and Spiegelhalter (1996), comprising articles
contributed by 32 authors, provides an excellent introduction and overview
to the theory, implementation and application of Bayesian MCMC.

Let us start with the simplest basic set-up, a model relating data Y and
parameters 6 = (01,6, ...,6,). We need two probabilistic models: a data
model specifying the likelihood: p(Y'|@), and a prior model, specifying the
prior distribution p(@).

In the Bayesian approach, inference is based on the joint posterior

p(@)p(Y|6)

p@Y) = —i——7r-—"—

) = Tuewriee
o< p(@)p(Y6)

i.e. Posterior o< Prior x Likelihood

For a proper account of Bayesian theory, the reader is referred to Bernardo
and Smith (1994) or O’Hagan (1994).

1.2.2 Cyclones example: point processes and change points

We are going to illustrate the ideas of MCMC with a running example:
the observations are a point process of events at times y1,y2,...,yn in an
observation interval [0, L). For simplicity, we suppose the events occur at
random — that is, as a Poisson process — but at a possibly non-uniform
rate: say rate x(t) per unit time, at time ¢. The objective is to make inference
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Figure 1.1 Cyclones data, as a jittered dot plot, and their cumulative counting
Process.

about z(t). We will work up through a series of models, ultimately allowing
an unknown number of change points, unknown hyperparameters, and a
parametric periodic component.

The models and the respective algorithms and inferences will be illus-
trated by an analysis of a data set of the times of cyclones hitting the
Bay of Bengal; there were 141 cyclones over a period of 101 years (Mooley,
1981). The data are plotted, both as a jittered dot plot, and by means of
their cumulative counting process, in Figure 1.1.

Model 1: constant rate

First suppose that z(t) = z for all ¢.
Then the times of the events are immaterial: we observe N events in a
time interval of length L; the obvious estimate of z is
. N
r=—.
L
This is the mazimum likelihood estimator of r under the assumption
(implied by the ‘randomness’ assumption above), that N has a Poisson
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distribution, with mean xL:
zL (xL)N

p(N|z) =e~ T

Model 2: constant rate, the Bayesian way
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Figure 1.2 Cyclones data: posterior for x in model 2.

To take a Bayesian approach to this example, suppose that we have prior
information about z (from previous studies, for example). Let us suppose
we can model this by saying

T~ F(O{?ﬂ)?

a Gamma distribution (with mean «/3 and variance a/3?).
Then since

p(z|N) o p(z)p(N|z),
we find that
ﬂama—le—ﬁz L (.TL)N
Tla) - NI
o« "N lexp(—(8 + L)x)

p(z|N) o

or in other words
z|N ~T(a+ N,B+ L).
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So z has a Gamma distribution with mean (e + N)/(8+ L), or approxi-
mately N/L if N and L are large compared with o and 3. Thus with a lot
of data, the Bayesian posterior mean is close to the maximum likelihood
estimator. The posterior distribution of x for model 2 fitted to the cyclones
data is shown in Figure 1.2; we used a = 8 = 1 here.

There is no need for MCMC in this model: you can calculate the posterior
exactly, and recognise it as a standard distribution. It would not have
worked out like this for any other prior; this choice is called conjugate.

1.2.8 The Gibbs sampler for a Normal random sample

Before we elaborate the cyclones example to a point where exact calculation
is no longer practicable, let alone formally introduce Markov chain Monte
Carlo methods, let us consider an even simpler, and completely familiar,
example, but following an elementary Bayesian approach.

Our data are a random sample of size n from N(u,c?). We place inde-
pendent priors on p and o:

po~ N(ERTY
o ? ~ TI(a,p),
and it is easy to see that the resulting joint posterior is
Pl oY) o (o)t

e {_ 5 _ n(u;f)Q U u)2}_ W)

This is somewhat awkward to handle; the parameters are dependent a
posteriori, although they were independent a priori. However, the full con-
ditionals — the conditional distributions of each parameter given the other
parameter(s) and the data — are easily found:

—23Y; 1
Woy ~ N[t
c2n+k o7 2n+k

oY~ Tla+n/2,8+ (Y - n)?/2).

What happens if we generate a sample of (u,0) pairs by alternately draw-
ing p and o2 from these distributions? The beginning of this process is
illustrated in Figure 1.3, using the (improper) uninformative prior setting
E=k=a=p=0.

This is a simple example of a Gibbs sampler. The alternating updates
of one variable conditioned on the other induces Markov dependence: the
successively sampled pairs form a Markov chain (on the uncountable state
space R x RT), and it is readily shown that the joint posterior (1.1) is the
(unique) invariant distribution of the chain. Standard theorems, quoted in
Section 1.3.1 below, imply that the chain converges to this invariant distri-
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Figure 1.3 First 10 samples from a Gibbs sampler of (n, o) from Normal random
sample with n =10, Y = 15, s2 = 4. Uninformative prior.
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Figure 1.4 Posterior sample of (1, ) from Normal random sample with n = 10,
Y = 15, s3 = 4. Uninformative prior.
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Figure 1.5 Posterior distributions of p and o from Normal random sample with
n=10,Y =15, s} = 4. Uninformative prior.

bution in several useful senses, so that we can treat the realised values as a
sample from the posterior. A sample of 1000 pairs is shown in Figure 1.4,
and the shape of the joint distribution can now be discerned. Examples of
possible outputs of interest are the marginal distributions shown in Figure
1.5.

However, we need not be confined to pictorial displays of marginal poste-
riors. One of the great liberating influences of MCMC in Bayesian inference
has been the flexibility of inference afforded by sample-based computation.
For example, consider prediction: we can calculate P{Y,,+; > 19} by aver-

aging 1 — ({19 — u}/o):
1 N
> [1 ~@({19 - u®}/o®)| ~0.045

for the sample of Figure 1.4. Incidentally, it is interesting that this is more
than twice the value (0.0175) that a frequentist would obtain by plugging
the maximum likelihood estimates into 1 — ®({19— u}/0). (Of course, this,
like any other inference based on this model, is influenced by the prior
setting used.)
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Figure 1.6 First few moves of the Gibbs sampler for the cyclones data, model 3.

1.2.4 Cyclones example, continued

For a more interesting and substantial application, let us return to the
cyclones example, and consider some elaborations of the basic model 2.

Model 3: constant rate, with hyperparameter

Suppose you are reluctant to specify your prior fully: you are happy to say
2~ T(a,4)

and can specify a but not 3, and want to state only
B~T(ef)

for fixed e and f. (This formulation actually makes rather more sense in
our next formulation, model 4).

Now p(z|N,a,e, f) is no longer available: it does not have an explicit
form. But p(z|N, «, 8, e, f) and p(B|z, N, o, e, f) are simple:

m|N7a7ﬁ7e7fNF(a+N7ﬁ+L)

as before, and
ﬂ|"r7N7a7e7f Nr(e+a7f+x)'

So we can use the Gibbs sampler, and sample from these distributions in
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Figure 1.7 Marginal distribution for x for the cyclones data, model 3.
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Figure 1.8 Marginal distribution for B for the cyclones data, model 3.
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turn, updating z and g alternately. This creates a Markov chain with states
(z, ), the unknown parameters in this model.

Figure 1.6 shows the first few moves of a Gibbs sampler applied to model
3 on the cyclones data; we took e = 1 and f = N/L = 1.396, and kept
a = 1. The marginal distributions for z and (3, as accumulated from the
first 1000 sweeps of this Gibbs sampler are displayed in Figures 1.7 and
1.8.

Model j: constant rate, with change point

Now let us allow z(¢) to vary, but in a particular way.

Suppose z(t) is piecewise constant, that is, a step function. This might
be a suitable model if we postulate one or more change points; the process
is completely random, but the rate switches between levels, perhaps as part
of an underlying process, perhaps due to the recording mechanism.

Let us first take one change point, at known time T' € (0, L), so that

_ To 1f0§t<T
m(t)_{ml fT<t<L’

Suppose that zg and z; are a priori independently drawn from Gamma
distributions, as before:
zj ~I'(a, B).
Then if Ng and N, are the numbers of events before and after T, the above
method extends to sampling in turn from
zol -+ ~D(a+ No, 8+T),

NF(Q+N175+(L_T)))

xry|---

and
Bl ~T(e+2a,f+xo+x1),

forming a Markov chain with a three-dimensional state space {(zo, z1, 3)}.
Note that for the sake of clarity and compactness we write ‘| -- - to mean
‘given all other variables” — including the data.

The hierarchical model using random 3 makes more sense now: the effect
is to ‘borrow strength’ in estimation from both halves of the data together:
zp and x; are conditionally independent given (3, but are unconditionally
dependent. In inference their values will be shrunk together.

Model 5: multiple change points

If there are k change points 711,715, ..., T with
o if 0 S t < T1
.’If(t): I ifT1St<T2

z, T, <t<L
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then everything is extended in a very similar way, giving a Markov chain
with states (zo,x1,...,Zk, 3)-

1.2.5 Other approaches to Bayesian computation

Do we have to resort to Gibbs sampling for this application, and exam-
ples like it? Under the posterior distribution in a Bayesian formulation, the
parameters 0 are generally dependent, so we have to compute with a multi-
variate distribution, often in a high number of dimensions, with arbitrarily
complex patterns of dependence. Here, “compute with” could mean almost
anything; examples would be to calculate a marginal (posterior) density
or make a probabilistic prediction. See Bernardo and Smith (1994) and
O’Hagan (1994).
There are various possible approaches to Bayesian computation:

e Exact analytic integration: this is usually only available when we make

use of conjugate priors, which is in itself often an unreasonable restric-
tion, and in any case is usually restricted to very simple formulations.

e Asymptotic analytic approximations (e.g. Laplace; see, for example,
Kass et al., 1988): these are somewhat awkward to set up, and can
be unreliable.

e Conventional numerical methods: these require expertise and careful de-
sign to set up, and are only efficient in a low number of dimensions.

e Ordinary (“static”) simulation: this is always available in principle, since
any posterior distribution can be factorised as

p(0|Y) :p(617027 s 70P|Y)

=p(61|Y)p(02101,Y) ... p(0pl01,...,0p-1,Y)

but the univariate distributions on the right hand side are rarely all
available for simulation purposes (even after re-ordering).

Markov chain Monte Carlo (MCMC, also sometimes known as iterative
or dynamic simulation) works even where static simulation does not, es-
sentially because

e All simulation methods rely on the Law of Large Numbers, and this re-
mains true (in the guise of the Ergodic theorem) when you have a Markov
chain instead of an independent, identically distributed sequence.

e If you can tolerate Markov dependence, then you can update the param-
eters 01,6, . ..,0, one-by-one (or in small groups).

The result of combining these two simple points is very far-reaching indeed!



12 A PRIMER ON MARKOV CHAIN MONTE CARLO
1.3 MCMC — the general idea and the main limit theorems

Having motivated the idea of MCMC by use of the Gibbs sampler in two
very basic problems, we are now in a position to discuss the subject from
a rather more general perspective.

Our object of interest is the target distribution 7 of a random quantity
x € X. In Bayesian statistics,  are the unknowns (parameters, latent
variables, missing values, future data) in a statistical experiment, and 7 is
the posterior distribution of these variables given the data Y:

m(A) = p(x € AlY)

Henceforth in this chapter, we shall use @, 7 in this generic way, and reserve
the p(:|-) notation for discussion of specific models. One of many advan-
tages of the generic notation is that it helps us not lose sight of other,
non-Bayesian, applications of MCMC. (Although by far the greatest im-
pact of MCMC in statistics has been in Bayesian analysis, because of the
ubiquitous need there for integration, it has also found application in other
contexts where variables are integrated out, for example in latent variables
models, contingency tables and in models with complicated conditional
likelihoods.)

The objective now is to construct a time-homogeneous discrete time
Markov chain whose state space is X (the parameter space in Bayesian
statistics), and whose limiting distribution is the specified target. That is,
we want a transition kernel P such that

P{x® e Az} - w(A) ast — oo,V .

Having constructed such a Markov chain, in the sense of devising a tran-
sition kernel with this limiting property, we then construct it in another
sense — we form a realisation of the chain {:L‘(l) G I m(N)} and treat
this as if it was a random sample from 7.

Of course, in fact we should not be so naive as to ignore completely the
fact that this is not a simple random sample! However, in practice we will
routinely make displays (histograms, density estimates) of the empirical
distribution as estimating the target, estimate moments of the target from
those of the sample

1 N
Edlo) = [ sl@)mtdn) = 5 3 g(al?) (12)

(for suitable functions g), and compute probabilities under the target dis-
tribution by empirical frequencies
1N
Ar =Y Iz e A 1.3
")~ 3T € 4] (13)

All such computations are justified by the limit theory of Markov chains;
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in order to handle the countless real applications where the space X is not
discrete, we need these limit theorems for chains in a general state space.

1.3.1 The basic limit theorems

Our treatment of the limit theory for Markov chains given here is not at
all complete, but will at least review the main concepts and results that
are important to MCMC. A fuller treatment with the same objective can
be found in Tierney (1994) and Tierney (1996), and the complete story is
in Meyn and Tweedie (1993). This treatment borrows heavily from these
sources.

The most important theorem in practice concerns convergence of sam-
ple means, and justifies (1.2) and (1.3) above. It requires the concepts
of invariance and irreducibility. A probability distribution 7 is invariant
for a transition kernel P if [ P(x, A)w(dx) = m(A). The kernel P is ir-
reducible if there exists a probability distribution, ¢ say, on X’ such that
Y(A) > 0= P(r4 < oo|z(® = z) = 1 for all m-almost all = € X', where 74
is the hitting time min{t : (® € A}. Any such ) is called an irreducibility
distribution for P.

If {zV} is an irreducible Markov chain with transition kernel P and in-
variant distribution 7, and g is a real valued function with [ |g(z)|r(dz) <
00, then

N
3296 = [ g@ntdn) (14)

almost surely, for m-almost all 2(®).

Sometimes, it is useful to say a little more — that the distribution of ®)
converges to 7. As in the simple discrete case, this requires the additional
assumption that the chain is not periodic.

An m-cycle for an irreducible chain with kernel P is a collection of subsets
{Ev, E1,...,E,_1} such that P(z, E;i11moa m) = 1 for all z € E; and all
i; the period d is the largest m for which an m-cycle exists, and the chain
is aperiodic if d = 1.

If the chain is aperiodic, the ¢-step transition kernel converges:

1P (@, ) =7 ()] =0 (1.5)

as t — oo, for m-almost all (®). Here, the norm is the total variation

distance between two probability measures, defined by ||v1 — va|| =
25up 4 |11 (4) — v2(A)].

1.8.2 Harris recurrence

The assumptions of invariance and irreducibility are usually rather easy to
check for a given transition kernel, so the results of the previous subsection
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are then available. However, when used to justify a simulation computation,
they are subject to a crucial caveat. Both of these limit theorems apply only
to m-almost all starting values (?). For routine purposes, this restriction
is of little concern, but in simulation, we really need to know that we were
not unlucky enough to be running our chain from an initial state in the
probability-zero exceptional set!

We say that an irreducible kernel P is Harris recurrent if, for any irre-
ducibility distribution 1) and any A such that ¢)(A) > 0, we have P{z® ¢
Aoz =} =1 for all £ (where 4.0.” means ‘infinitely often’).

If the chain is Harris recurrent, then (1.4) holds for all 2(?), as does (1.5)
if it is also aperiodic.

1.8.3 Rates of convergence

Knowing that the chain converges is not the same as knowing that it con-
verges quickly enough to be useful. It is therefore important to try to study
rates of convergence. This is a challenge for practically useful chains in gen-
eral state spaces.

Only in very rare cases can numerical bounds be found for rates of con-
vergence, and when they can, they are often very discouraging. However,
there have been several successful approaches to the qualitative study of
convergence.

The chain is geometrically ergodic if

1P (@), ) —x ()] < M(z)pf

for finite M (x), p < 1.
It is uniformly ergodic if for all z(©),

1P (@), ) == ()l] < Mp".

Various conditions are known to imply uniform ergodicity, for example
Doeblin’s condition: there exists a probability measure ¢ and constants
e <1,6 >0, tsuch that

p(A) > e = P'(xz,A) > forall .

There are both positive and negative results about uniform or geo-
metric ergodicity of popular MCMC recipes. For example, see Mengersen
and Tweedie (1996), Roberts and Tweedie (1996), Roberts and Rosenthal
(1999), and Mira, Mgller and Roberts (1999).

A rather different approach to assessing speed of convergence is via com-
putational complexity; for example, there are recent interesting results by
Frigessi, Martinelli and Stander (1997).
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Figure 1.9 Illustrating the idea of detailed balance. The transitions described by
P are neutral with respect to the contours of probability of .

1.4 Recipes for constructing MCMC methods

One might think initially that to construct a Markov chain with a specified
target as its limiting distribution would be a complicated matter. Fortu-
nately, several standard ‘recipes’ are available to automate this task.

In this section, introducing the main recipes for MCMC methods, we
assume the state space of our chain is countable, and work with a notation
in which the target distribution 7 and the transition kernel P are expressed
as densities with respect to counting measure, that is, as probability mass
functions. Modifications to deal with other dominating measures, such as
Lebesgue measure, are straightforward.

The key idea in most practical approaches to constructing MCMC meth-
ods is reversibility or detailed balance. The target 7 is invariant for P if we
have detailed balance (time-reversibility):

m(x)P(x,y) = (y)P(y,z)

for all ,y € X. Detailed balance is sufficient but not necessary for invari-
ance; however it is far easier to work with. You can think of reversibility
as requiring a balance in the flow of probability; see Figure 1.9.

We will ignore the issues of irreducibility and aperiodicity for the mo-
ment.

1.4.1 The Gibbs sampler

In the Gibbs sampler, the basic step is simple: discard the current value
of a single component x;, and replace it by a value y; drawn from the full
conditional distribution induced by 7:

,’T(mi|m*i)7
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keeping the current values of other variables: y_; = x_; (where “—i” stands
for {j : 7 #i}). Then we are using the kernel

P(mvy) = W(yz|m*z)]’[m*l = yfi])

and detailed balance holds because given x_;, x; and y,; are independent,
and identically distributed as w(x;|z_;).

This recipe was named the Gibbs sampler by Geman and Geman (1984),
whose work brought the idea to the attention of spatial statisticians. How-
ever, it is earlier than that: it was well known as the ‘heat bath’ by statisti-
cal physicists, see for example, Creutz (1979), but the earliest appearance
I know of is in statistics, in a Finnish Ph.D. thesis by Suomela (1976).

1.4.2 The Metropolis method

In the Metropolis method, we find a candidate new value (or “proposal”) y
by drawing y; from an arbitrary density ¢;(y;; ) parameterised by x, and
setting y_; = x_;. We write ¢;(y;; €) = ¢;(x,y), and impose the symmetry
requirement g;(x,y) = ¢;(y,x). (Note the deliberate reversal of the order
of arguments: ¢;(y;; x) is a density in y,; parameterised by x, while g;(x, y)
is a transition kernel, and so the arguments are used in the conventional
time-oriented order.)

This proposal is accepted as the next state of the chain with probability

alz,y) :min{l,w} :min{l,w}, (1.6)
m(x) w(x;|x_;)
and otherwise « is left unchanged.
This recipe is due to Metropolis, et al. (1953). Note that the target
density 7 is only needed up to proportionality, and then only at two values,
the current and proposed next states.

1.4.8 The Metropolis-Hastings sampler

In a paper astonishingly overlooked by statisticians for nearly 20 years,
Hastings (1970) introduced an important generalisation of Metropolis, in
which symmetry of ¢ is not needed; the acceptance probability becomes:

Aly) = {1’ (@)0:(@,y) } {1’ ST P A } ey

The optimality in some senses of this particular choice of a(z,y) over
any other choice preserving detailed balance is demonstrated by Peskun
(1973).

Note that Metropolis is the special case where ¢ is symmetric, and Gibbs
the special case where the proposal density g;(y;;x) is just the full condi-
tional 7(y;|x—_;) = 7(y;ly_;), so that the acceptance probability is 1.




RECIPES FOR CONSTRUCTING MCMC METHODS 17

1.4.4 Proof of detailed balance

The proof of correctness of each is the same: the choice of acceptance prob-
ability simply ensures that detailed balance is satisfied.
For x # vy,

m(@)P(x,y) = w(@_)r(@z_i)e(y;z)a(,y)
= m(z—) min{R(z,y), R(y, )},

from (1.7), where R(x,y) = m(x;|x_;)¢;(y;; ). The term R and hence the

whole expression above is symmetric in & and y (recall that z_; = y_;).

So detailed balance holds. (Note that we have only used the fact that
afx,y) _ 7(y) ¢y, )

aly,x) (@) g(x,y)
The argument for the particular choice of a(x,y) in (1.7) will be made in
Section 1.6.2.)
This argument for the Hastings method obviously covers Gibbs and
Metropolis a fortiori.

1.4.5 Updating several variables at once

Each of the Gibbs, Metropolis and Hastings methods is equally valid if a
group of variables x4 = {x; : j € A} is updated simultaneously; each uses
the full conditional w(x4|x_4). You could update all variables at once in
Metropolis or Hastings. (It is a subtle question whether it is a good idea
to update many variables.)

An important special case arises where the variables in @ 4 are condition-
ally independent (under the full conditional). They can then be updated in
parallel.

1.4.6 The role of the full conditionals

All of the basic methods use the full conditionals m(xa|x_4), where A
indexes the variables being updated. In Gibbs, you have to draw from this
distribution; in Metropolis and Hastings, you only have to evaluate it (up
to a multiplicative constant) at the old and new values.

1.4.7 Combining kernels to make an ergodic sampler
All of the methods above satisfy detailed balance, and hence preserve the
equilibrium distribution: if

T~T

before the transition, then so it will afterwards.
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To ensure that this is also the limiting distribution of the chain (ergod-
icity), we must combine such kernels to make a Markov chain transition
mechanism that is irreducible (and aperiodic).

To do that, scan over the available kernels (indexed by i or A) either sys-
tematically or randomly, or in various other ways that are valid, provided
you visit each variable often enough. You can use different recipes (Gibbs,
Metropolis,...) for different A. The most common strategies for combin-
ing kernels Py, Ps, ..., P, are the systematic cyclic combination giving an
overall kernel

P=PP---P,

or the equally-weighted random or mixture kernel

1 m
P= E;P,».

Time in a MCMC simulation is usually measured in sweeps, the small-
est period such that the chain is time-homogeneous, for example, after m
individual transitions if the cyclic kernel is being used.

Note that the mixture kernel preserves detailed balance, while the cyclic
one does not, so that reversibility at the sweep time scale is lost; of course
7 remains invariant for both combinations.

1.4.8 Common choices for proposal distribution

The user has a completely free choice of proposal distribution; there is no
need even to worry about dividing by zero in (1.7), since y; with ¢;(y;; ) =
0 will (almost surely) not get proposed! Nevertheless, typically, one of a
small number of standard specifications is very often used.

Independence Metropolis-Hastings. If the proposed new state y is inde-
pendent of the current & (so in particular we are proposing to update all
components of the state simultaneously), then ¢(x,y) = ¢(y), say, and the
acceptance probability simplifies to

a(z,y) = min{l, %},

where w(z) = w(x)/q(x).

This choice is of little use in practical terms (except perhaps in split-
ting, see Section 1.6.2) but often yields kernels amenable to theoretical
investigation.

Random walk Metropolis. 1f ¢;(x,y) = ¢;(y; — x;) where ¢;(-) is a density
function symmetric about 0, then

7i(z,y)
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so the acceptance probability simplifies; the proposal amounts to adding a
random walk increment ~ ¢; to the current x;.

Random walk Metropolis on the log scale. When a component x; of the
state vector is necessarily positive, it may be convenient to only propose
changes to its value that leave it positive, in which case a multiplicative
rather than additive update is suggested. If the proposed increment to
log z; has any distribution symmetric about 0, then we find

%(yax)__ yi

G(x,y) T

1.4.9 Comparing Metropolis-Hastings to rejection sampling

There is a superficial resemblance of Metropolis-Hastings to ordinary re-
jection sampling, which may cause confusion. Recall that in rejection sam-
pling, to sample from 7, we first draw y from a density ¢, and then accept
this value with probability 7(y)/(Mq(y)), where M is any constant such
that M > supy, m(y)/q(y). If the generated y is not accepted, this proce-
dure is repeated until it is. As with Metropolis-Hastings, 7 and ¢ are needed
only up to proportionality. The crucial differences are that in Metropolis-
Hastings: (a) 7/q need not be bounded, (b) you do not repeat if the proposal
is rejected, and (c) you end up with a Markov chain, not an independent
sequence.

1.4.10 Ezample: Weibull/Gamma experiment

Let us consider a different but still very simple example, where Gibbs sam-
pling would not be straightforward. Our data will be a random sample,
possibly censored, from the Weibull(p, k) distribution:

p(Y1p, ) = 67 p™ I Y exp (—p" YY)
where m and [, are the number of and product over uncensored observa-
tions. We place independent Gamma priors on p and &:
p(p, k) ox p* e PP Le0n
The resulting posterior is

plp,klY) oc K™ p™ [V exp (—p YY)
paflefﬁpﬁwflefdn

which is not a standard distribution.

Let us define a Markov chain with states € = (p, k) and limiting dis-
tribution w(x) = p(p, k|Y). The full conditionals for the two parameters
are

plplr) o P exp (—p V) p* e P
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plrlp) o< K™ LY exp (—pt V) KT Re 0N,

This is hardly of standard form, so Gibbs is problematical, but the full
conditionals are easily evaluated for a Metropolis or Hastings algorithm.

An easily implemented Metropolis method for this setting would consist
of the following ingredients:

1. alternate between updating p and &,

2. propose a new value for the parameter from a distribution symmetric
about its present value,

3. reject the update if the result is negative,

4. otherwise, accept it with probability (e.g.) min{1, p(p'|x)/p(p|&)}.

1.4.11 Cyclones example, continued

Model 6: another hyperparameter

Let’s now suppose « is also unknown, with, a priori,
a ~T(cd)

for fixed constants ¢ and d. (In our analysis of the cyclones data, we took
¢ = d = 2.) This last change means that Gibbs sampling is not enough.
In a Markov chain with states = (zo, 1, .- ., Tk, a,3), we can update a
using a random walk Metropolis move, on the log(a) scale: the acceptance

ratio is .
1 ..
uin 1, 200871 )
p(logal---)
which simplifies to

e () () € )

Model 7: unknown change points

Ifzg,x1, ...,z are unknown, so probably are the times of the change points
Ty < Ty < -+ < Ty. The state vector is now & = (zg, Z1, ..., 2k, 11,T>, ...,
Tk; Q, ﬁ)

Let us assume a priori
p(Tl,TQ, - .,Tk) X Tl(TQ - Tl) .. (Tk - Tk_l)(L - Tk),

a joint density providing a gentle preference against two changes occurring
too closely in succession (this is actually the joint distribution of the even-
numbered order statistics for a sample of size 2k + 1 from U(0, L)).

The posterior marginal or joint conditional distributions are quite com-
plex, for this or any prior, so Metropolis-Hastings is needed. The details
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Figure 1.10 Posterior sample of step functions x(t) for model 7 with k = 2,
applied to cyclones data.

are a little messy but straightforward. For a proposal drawing T]f uniformly
from [Tj_1,Tj4+1], the acceptance probability is
(T; = Tj-1)(Tj41 — T5) }
(T = Tj-1)(Tjr — Ty)
A sample of step functions drawn from the resulting MCMC sample is
shown in Figure 1.10.

min {1, (likelihood ratio)

1.5 The role of graphical models

Graphical modelling provides a powerful language for specifying and un-
derstanding statistical models.

Graphs consist of vertices representing variables, and edges (directed
or otherwise) that express conditional dependence properties. For a full
treatment of the theory, see Lauritzen (1996).

1.5.1 Directed acyclic graphs

The DAG (directed acyclic graph) — a graph in which all edges are di-
rected, and there are no directed loops — expresses the natural factorisa-
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@

Figure 1.11 A simple directed acyclic graph on four variables.

tion of a joint distribution into factors each giving the joint distribution of
a variable x, given the values of its parents Tp,(,); for example, in Figure
1.11,

m(a,b,c,d) = w(a)w(b)m(c|a, b)w(d|c)

In general, we can write

(@) = [ n(@ol2paw) (1.8)

veV

(see Figure 1.12), which in turn implies a Markov property, that variables
are conditionally independent of their non-descendants, given their parents.

From the perspective of setting up MCMC methods, the graphical struc-
ture assists in identifying which terms need be included in a full conditional.
Equation (1.8) implies

m(@y|T_y) o 71”(mv|mpa(v)) H ”(mw|mpa(w))
w:vEpa(w)

where the right hand side has one term for the variable of interest itself,
and one for each of its children.

Graphical modelling, the construction of MCMC methods through full
conditional distributions, and good practice in statistical model building
all exploit the same modular structure.

A concrete example of this modularity has already been seen implicitly;
in Section 1.4.7, we discussed how an ergodic kernel might be assembled
(by cycling or mixing) from a collection of kernels Py, P,,... that were
individually in detailed balance but not irreducible.
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Figure 1.12 A larger directed acyclic graph: the vertices labelled {u;} are the
parents of v, and {w;} are its children.

1.5.2 Undirected graphs, and spatial modelling

Directed acyclic graphs are a natural representation of the way we usu-
ally specify a statistical model (directionally, disease — symptom, past —
future, parameters — data), but

e sometimes (e.g. spatial models) there is no natural direction;

e in understanding associations between variables implied by a model,
however specified, directions can confuse; and

e these associations represent the full conditionals needed in setting up
MCMC methods.

To form the conditional independence graph for a multivariate distribu-
tion, draw an (undirected) edge between variables a and 3 if they are not
conditionally independent given all other variables.

Markov properties

The Markov property is familiar from temporal stochastic processes, where
we learn that it may be expressed in several equivalent ways. For variables
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located on an arbitrary graph, the situation is more subtle: we can distin-
guish four related properties, each capturing an aspect of Markovness.

P: Pairwise Non-adjacent pairs of variables are conditionally independent
given the rest (see definition of graph).

L: Local Conditional only on adjacent variables (neighbours), each vari-
able is independent of all others (so that full conditionals are simplified).

G: Global Any two subsets of variables separated by a third are condi-
tionally independent given the values of the third subset.

F': Factorisation The joint distribution factorises as a product of functions
on cliques (that is, maximal complete subgraphs).
The four properties are illustrated in Figures 1.13 and 1.14.

a
d

\C f
AN

Figure 1.13 Illustrating the pairwise, local and factorisation Markov proper-
ties: P : ¢ L fl(a,b,d,e), L : d L (a,b, f)|(c,e) and F : 7w(a,b,c,d,e, f) =
¢1 (aa b7 C)¢2 (b7 C, 6)1/}3(67 d: €)¢4(€; f)

. ;'\.
,,,,,,,,,, N e
A .
B

Figure 1.14 Illustrating the global Markov property: G : A L C|B.

It is always true that F' = G = L = P, but these four Markov proper-
ties are in general different (there are easy counter-examples for each of the
reverse implications). However, in many statistical contexts, the four prop-
erties are the same; a sufficient but not necessary condition is that the joint
distribution has the positivity property (“any values realisable individually
are realisable jointly”). This result includes the Clifford-Hammersley theo-
rem (Markov random field = Gibbs distribution, L = F'). See, for example,
Besag (1974), Clifford (1990). A typical context in which the Markov prop-
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erties may not coincide is where there are logical implications between some
subsets of variables.

For directed acyclic graphs, the situation is simpler: the directed local
Markov property is always equivalent to the directed graph factorisation
criterion: DL = DF (subject to existence of a dominating product mea-
sure).

Modelling directly with an undirected graph

With a DAG, because of the acyclicity, any set of conditional distributions
T(Zy|Tpa(y)) combine to form a consistent joint distribution.

In an undirected graph, however, we need consistency conditions on the
full conditionals m(x,|x—,) (using L, this is equal to m(xy|zsy), where dv
denotes the neighbours of v). The only safe strategy is to use property F,
to model the joint distribution as a product of functions on cliques

(z) = [[vo(zo)
c

We can then use property L, the local Markov property, to read off the full
conditionals needed to set up MCMC:

T(Ty|lx_y) = H Yo(xe) = m(Ty|Toy)-

Cwel

Most of the applications in Besag, et al. (1995) have a spatial flavour,
and provide illustrations of this style of modelling.

1.5.8 Chain graphs

In hierarchical spatial models, we need a hybrid modelling strategy: there
will be some directed and some undirected edges. If there are no one-way
cycles, the graph can be arranged to form a DAG with composite nodes
called chain components Ag, that are the connected subgraphs remaining
when all directed edges are removed: we call this a chain graph.

Model specification uses an appropriate combination of the two approaches;
this builds a joint distribution

m(x) = HW(QTAJ%a(At))
= II II ¢c(@o)

t CeCy

where C; are the cliques in an undirected graph with nodes (A, pa(A¢))
and undirected edges consisting of (a) those already in A¢, (b) the links
between A; and parents, with directions dropped, and (c) links between all
members of pa(A).
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1.6 Performance of MCMC methods

There are two main issues to consider when evaluating the performance of
a Markov chain used for Monte Carlo calculations, for example in choos-
ing between alternative chains for a particular target, or in assessing if a
particular run of a particular chain is adequate for its purpose:

e Convergence (how quickly does the distribution of 2 approach 7 (z)?);
e Efficiency (how well are functionals of 7(x) estimated from {x(®1}?) .

In both cases, performance will be measured in relation to the computing
effort expended, and of course this effort should be measured in seconds,
not sweeps, although this does beg questions about whether for example,
two rival methods have been coded comparably efficiently.

In this section, we will review some of the issues involved in these assess-
ments, and some of the methods proposed. However, we should not lose
sight of a third factor:

e Simplicity (how convenient is the method to code reliably and to use?)

We return to some issues of implementation in Section 1.11.

Contrary to a popular misconception, it should not be supposed that
Gibbs is necessarily superior to other methods on any of these three criteria,
so it does not provide a gold standard for comparison.

1.6.1 Monitoring convergence

An active and important subfield of MCMC research has aimed at investi-
gating and developing methods for analysis of a Markov chain realisation,
to determine empirically whether the chain can safely be said to ‘have con-
verged’, and to provide a reliable basis for estimation of aspects of the
target distribution.

It is undoubtedly important in practice to obtain some reassurance on
these issues, and grossly irresponsible, for example, to accept at face value a
statistical analysis of an important real-world problem, where this analysis
is computed by a MCMC sampler whose performance on the model in
question is unknown. However, there is a limit to the degree of reassurance
that can be obtained from an empirical analysis, and this should always
be supplemented by a sound understanding of the qualitative form of the
target distribution, with an eye to the possible presence of features that
the chosen MCMC sampler may have difficulty with.

Attempts to place the activity of convergence monitoring on a firm logical
footing seem unconvincing. Apart from some contrived exceptional cases,
no finite segments of Markov chain path are truly in equilibrium, so the
question is not a deterministic decision problem. But it is also wrong to
regard the issue as one of hypothesis testing. We know the sample is not ‘in
equilibrium’, so the logic of testing that is aimed at detection of departures
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from the null hypothesis is not relevant. Whether the sample is large enough
to enable such detection is inevitably bound up with the quantity — the
closeness of the approximation to equilibrium — that is being measured.

Finally, of course, there can never be any protection based on an empiri-
cal analysis alone against the possibility that immediately after monitoring
ceases, the chain jumps into a part of the parameter space that it has not
previously visited!

Notwithstanding all these caveats, diagnostic techniques, intelligently
used, are valuable, and the reader is referred to Brooks and Gelman (1998)
for a thorough guide to the topic.

Some researchers have expressed optimism in the last year or two that
perfect (or exact) simulation — the organisation of a MCMC simulation so
that it delivers a sample guaranteed to be an exact draw from the target —
will make reliance on diagnostics redundant. This may or may not happen,
but it is still in the future! For an introduction to the role of coupling from
the past in perfect simulation, see Section 1.9.

1.6.2 Monte Carlo standard errors

Since any Monte Carlo method is used to provide numerical estimates of
deterministic quantities, even if these quantities arise in a stochastic model,
it is important to be aware of, and in general to evaluate, the Monte Carlo
standard error, of estimated quantities, which should not of course be con-
fused with the standard deviation of the posterior!

Because of Markov dependence, this is not quite straightforward, even
though we (mostly) just use empirical averages as estimates.

Consider a Markov chain in equilibrium. Estimating E,(g) = [ g(z)n(dx)

by N~! Zivzl g(x®) = gn, we find

N-—-1

var(gny) = N2 Y (N =t
t=—N+1

~ N1 Z Ve

t=—o0

where v; = covy p{g(x®),g(x**")} (note that unlike the equilibrium
mean and variance, which depend only on 7, the autocovariances depend
also on the kernel P). This quantity is equivalently written

N~Yarr(g) 3 p = N tvars(g)7(g) = N 'u(g, 7, P)

t=—o0

where p; is the corresponding autocorrelation at lag ¢. The factor 7(g)
by which the variance of the sample mean exceeds the value obtained in
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independent sampling is sometimes called the integrated autocorrelation
time; it depends on 7, g and the transition kernel P.

Several possibilities for estimating var(gn), 7(g) or v(g, =, P) have been
proposed, most of which are in common use:

e Blocking (also known as batching) (Hastings, 1970)
e Time-series methods (e.g. Sokal, 1989)

e Initial series estimates (Geyer, 1992)

e Regeneration (Mykland, Tierney and Yu, 1995)

There are also Central Limit theorems for Markov chain averages, of the
form

VN (gn — Ex(g)) 3 N(0,v(g, 7, P)).

The theorems take various forms, but broadly speaking, we need ergodicity
of the Markov chain, a finite variance of ¢ and sufficiently good mixing that
v(g, m, P) is finite. Kipnis and Varadhan (1986) give such a result assuming
reversibility, while Gordon and Lifsic (1978) do not need this condition,
but make stronger assumptions elsewhere.

There are results comparing v(g, 7, P) for different kernels P. The best
known is due to Peskun (1973), proved for a general state space setting
by Tierney (1998); this states that if P and ) are two kernels with the
same invariant distribution 7, with P dominating ) off the diagonal —
that is, P(z, B) > Q(x, B) for all B not containing x — then v(g, 7, P) <
v(g,m, Q) for all g € La(w), so that P is preferable. In particular, among
all Metropolis-Hastings methods for a given 7w and proposal mechanism,
that maximising the acceptance probability a(x,y) is best: this explains
the almost universal use of the acceptance probability formula (1.7). There

are other recent interesting results on ordering Markov chains in Mira and
Geyer (1999).

Blocking (or batching)

After satisfying ourselves that our Markov chain is in equilibrium, we divide
a run of length NV into b blocks of k£ consecutive samples. Then if k is large,
so that block means are approximately independent, and b is also large, so
that between-block variability can be estimated adequately, we have

b
var(gn) & {b(b— D} 1> {gri — gva}?

i=1

where
ik

Gri=k! Z g(z)
j=(i—1)k+1
is the mean of the i*® block of length k.
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This extends to nonlinear functionals of expectations; see Aykroyd and
Green (1991).

Using empirical covariances

Asis well-known from the time-series literature, we cannot estimate Eiooo Ve
consistently by Y% 74;, where ¥, is the lag-t product-moment autocovari-
ance of g(z*)): we should, for example, use some kind of windowed estimate
> w(t)7: instead. Since Y™+ is proportional to the spectral density
function evaluated at 0, this is a well-studied problem. See, for example,
Priestley (1981, p. 225). A convenient estimator of 7(g) in practice is the
truncated periodogram estimator of Sokal (1989): 7 = Zt]\i_M At /Ao, where
M is the smallest integer > 37.

Initial series estimators

Geyer (1992) observes that, for a reversible ergodic chain, vot 4+ Yat4+1 is
non-negative, decreasing and convex in ¢. This suggests a class of estimators
obtained by truncating }_,. ;7 when one or other of these properties
is first violated.

Regeneration

Regeneration points in the Markov chain path are times {r;,7 = 1,2,...}
such that the tours (a(Ti-1+D g(mi-1+2)  2(7)) are independent and
identically distributed for ¢ = 1,2,.... If we can find such times, then re-
newal theory and ratio estimation give estimates of posterior expectations,
and simulation standard errors that are valid without quantifying Markov
dependence.

More specifically, let

Li=(ri-mi1), Gi= > g&)

t=1;_1+1

be the length of the i*? tour, and the total of a function g evaluated at the
states visited in the tour, then (L;, G;) are i.i.d. pairs, and

E :T'L—l Gz a.s.
== _ 3 FE.(9) asn— o0
E?:l L;

by the renewal theorem.

Finding such regeneration times is easy in a discrete state space chain,
since the chain regenerates at visits to any specified state. For general state
space chains, the process of finding regeneration points is facilitated by use
of Nummelin’s splitting technique.
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Regeneration using Nummelin’s splitting
Suppose the transition kernel P(x, A) satisfies

P(x,A) > s(x)v(A)

where v is a probability measure, and s is a non-negative function such
that [ s(z)m(dx) > 0.
Let r(x,y) denote the Radon-Nikodym derivative

s@ldy) _ |

T P,y =

Now, given a realisation (®), () ... from P, construct conditionally
independent 0/1 random variables S(®, S . with

P(SW =1]...) = r(z®, D)
Then by simple probability calculus we find
P(S(t) - 1|m(§t),5(<t)) - S(m(t))

and

Pzt ¢ Alz(sD (<t 51 = 1) = »(4)
that is, we can post-process the chain stochastically to generate binary
‘splitting variables’. Whenever S*) = 1, the next state z!*1) is drawn
from v, independently of the past! The chain regenerates.

The problem with using the technique in practice is that in the Markov
chains we tend to create for Bayesian computation, P(x, A) is difficult to
handle algebraically, and/or impossible to bound below by s(z)v(A) as
required. Mykland, Tierney and Yu (1995) examine the possibilities of ex-
ploiting splitting in practical MCMC. Their perspective introduces another
role for naive MCMC methods such as Independence Metropolis-Hastings
(see Section 1.4.8), which although of limited efficiency may be amenable
to algebraic manipulation to discover the required bounds.

1.7 Reversible jump methods: Metropolis-Hastings in a more
general setting

The formulation of Metropolis-Hastings given in Subsection 1.4.3 is the
standard one, and close to the original specification of Hastings (1970). It
is already fairly general in that the densities w(x) and ¢(x,y) appearing
there may be with respect to an arbitrary measure on X, so that both
discrete and continuous distributions in any finite number of dimensions
are covered. However, the formulation is a little restrictive when we come
to consider MCMC samplers for certain new tasks, most notably problems
where the dimension of the parameter varies, so that there is no elementary
dominating measure for the target distribution.
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The more general Metropolis-Hastings method we define here addresses
this wider range of problems, but also offers a new perspective on the
standard formulation, one that has certain pedagogical merits, and also
may sometimes be more straightforward to implement. This reversible jump
approach is based on Green (1995); see also Tierney (1998).

The detailed balance condition for a general transition kernel P and its
invariant distribution 7 is written in integral form as

/ 7(de)P(e, dy) = / r(dy)Ply,dz) (L9
(T,Y)cAxB (T,Y)cAxB

for all Borel sets A, B C X. If P is constructed in two steps, according to
the Metropolis-Hastings paradigm, we make a transition by first drawing a
proposed new state y from the proposal measure ¢(x, dy) and then accept-
ing it with probability a(x,y). If we reject, we stay in the current state,
so that P(x,dy) has an atom at x. This makes an equal contribution to
each side of equation(1.9), so can be neglected, and we are left with the
requirement,

/ r(de)a(e, y)q(e, dy) = / r(dy)aly, )qly, dz).
(T, Yy)cAxB (r,Y)cAxB (1 10)

When can we ‘solve’ this collection of equations of measures to give an
explicit equation for the function «a(x,y)? Suppose that 7 (dx)q(x,dy) is
dominated by a symmetric measure u on X X X, and has density (Radon-
Nikodym density) f with respect to this g. Then (1.10) becomes

/ o(@, y)f (@, y)u(e, dy) = / oy, ) (y, ®)uly, do),
(T,Y)eAxB (T,Y)eAXB

and, using the symmetry of p, this is clearly satisfied for all appropriate
A, B if

a(z,y)f(z,y) = aly,2)f(y,z).
As with the standard Metropolis-Hastings method, we usually take the
acceptance probabilities as large as possible subject to detailed balance, so

— mind 1 W)
oley) = {1’ 7(z,9) } (L11)

If we wrote this rather more informally as

= min w
o) = {1 S

then the similarity with the usual expression using densities (1.7) is ap-
parent, but we must not forget that the meaning of the ratio of measures
derives from equation (1.11), and assumes the existence and symmetry of

1.

(1.12)
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The formulation in this section applies to a completely general state space
Markov chain. For the particular context of spatial point processes, a very
similar development was given by Geyer and Mgller (1994), providing an
alternative to the usual spatial birth-and-death process approach. In this
setting, although the dominating measure for the target distribution is not
as familiar as Lebesgue, it is perfectly explicit: models are expressed via
their densities with respect to a unit rate Poisson process. Detailed balance
can therefore be established directly. In other situations, the dominating
measure is much less explicit, and the constructions of the following two
subsections very often prove useful.

1.7.1 Ezplicit representation using random numbers

The general Metropolis-Hastings method of the preceding subsection hardly
lives up to the claim that it offers advantages in implementation, as it seems
rather abstract. Fortunately, in many cases the dominating measure and
Radon-Nikodym derivatives can be generated almost automatically.

To see this, imagine how the transition will actually be implemented.
Take the case where X C R?, and suppose 7 has a density (also denoted
7) with respect to d-dimensional Lebesgue measure v,4. At the current state
x, the program-writer will generate, say, r random numbers u from a known
density g, and then form the proposed new state as some suitable determin-
istic function of the current state and the random numbers: y = y(z, u).
The left-hand side of (1.10) becomes:

/ r(@)g(w)a(@, y)va(dz), (du)
(T, Yy)cAxB

Now consider how the reverse transition from y to @ would be made, with
the aid of random numbers u' ~ g giving * = x(y,u'). If the transforma-
tion from (x,u) to (y,u’) is a bijection, and if both it and its inverse are
differentiable, then by the standard change-of-variable formula, the (d+r)-
dimensional integral equality (1.10) holds if

m(z)g(u)a(z,y) = (y)g(u)a(y, x)

whence a valid choice for « is

a(z,y) = min {1, T
™

}. (1.13)

It is often easier to work with this expression than the usual one, equation

(1.7).
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1.7.2 MCMC for variable dimension problems

What if the number of things you don’t know is one of the things you don’t
know?

There is a huge variety of statistical problems of this kind, where the
parameter dimension is not fixed, and itself subject to inference. Exam-
ples range from classical statistical tasks such as variable selection, mix-
ture estimation, change-point analysis, and model determination in general,
through to the kinds of problem raised in modern applications of stochastic
modelling to gene-mapping, analysis of ion channel data, image segmenta-
tion and object recognition.

For a fully Bayesian analysis based on a single simulation run, we need
a MCMC sampler that jumps between parameter subspaces of differing
dimensions: given the reversible jump framework of the previous subsection,
this is now a fairly modest generalisation. Our state variable  now lives
in a union of spaces of differing dimension: X = Ui X}.

We will use a range of move types m, each providing a transition kernel
P,,, and insist on detailed balance for each:

| wdnPa@B) = [ xlay)Paty.A)

TeA YeB

for all Borel sets A, B C X. The idea of a family of move types is implicit
even in the simplest formulation of Metropolis-Hastings, where we have a
different proposal density ¢; for each component ¢, but compute the ac-
ceptance probability using the joint target distribution (equation (1.7)).
In the present more elaborate context, there may be a richer variety of
move types, recognising that different approaches may be needed to enable
transitions between different pairs of spaces X}, X .

The Metropolis-Hastings idea still works, but you need to work a bit
harder to make the acceptance ratio make sense. The proposal measure ¢
is now the joint distribution of move type m and proposed destination y,
soforeachx € X, %" fyeX gm(z,dy) < 1 (allowing a positive probability
of not attempting a move, if required). The detailed balance condition (see
(1.10)) becomes

/ r(de)am (@, y) g (@, dy) = / 7(dy)m (y, @) g (y, d2).
(T,Y)eAxB (T.Y)eAxB

for all m, A, B. This leads to the formal solution

d d
(1) = mm{L (dy)am (y, w)}
7(dz) g (z, dy)
as in (1.12).
Apart from the addition of the subscript m, this is just a special case of
the earlier general Metropolis-Hastings method, and the ratio of measures
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makes sense subject to the existence of a symmetric dominating measure
fm for m(dy)gm (y, dz).

Again, this is most easily understood in the concrete terms of the preced-
ing subsection: we need a differentiable bijection between (x, ) and (y, u’),
where u,u' are the vectors of random numbers used to go between x and y
in each direction. Suppose these have densities g, (u; ) and g, (u';y). In
the variable dimension context, move type m might use transitions between
Xy, and A}, ; if these spaces have dimensions d; and da, and 7 is absolutely
continuous with respect to v4, and vg4, in the respective spaces, then the
dimensions of w and u', ; and ry say, must satisfy the dimension-balancing
condition

d1+T1:d2+T‘2.

We can then write

7(Y)gm(u';y) ‘a(y,U’)
7(x)gm (u; ) | O(z,u)

ap(,y) = min {1, , } (1.14)

The ratio is of joint densities with the same degrees of freedom, together
with the Jacobian needed to account for the change of variable.

Apart from the illustrative applications in Green (1995), this method-
ology has been widely implemented for problems with a variable-dimension
parameter, for example Richardson and Green (1997), Uimari and Hoeschele
(1997), Denison, Mallick and Smith (1998), Heikkinen and Arjas (1998),
Holmes and Mallick (1998), Pievatolo and Green (1998), Green and Richard-
son (1999), Hodgson (1999), Hodgson and Green (1999), and Rue and Hurn
(1999).

1.7.3 Ezxample: step functions

Let us illustrate the methods of the preceding subsection in what is almost
the simplest setting possible, by studying the situation where the state vari-
able x represents a step function, as might be part of the parameterisation
of a model for change-point analysis in regression or point processes. We
can readily evaluate each of the factors in (1.14), and end up with a useful
sampler that — with a little modification — will find application in the
next subsection.

A simple prior model for a step function on [0, L) would parameterise
the function in terms of its number of steps k, the positions {s; < s2 <
.-+ < sy} of those steps, and the heights {ho, h1, ..., hi}, h; being the value
of the function on the interval [s;j_1,s;). For illustration here, we assume
that the number of steps is drawn from an arbitrary p(k), and that given
k, the step heights are i.i.d. from some density fy(-), and that the step
positions are drawn as the order statistics from a uniform distribution on
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Figure 1.15 Split and merge of a step.

the observation interval:

_KT[0<s1 <8y < <5 <L
= I i

As with ordinary Metropolis-Hastings, you have freedom to use intuition
in designing proposals; validity is ensured by using the correct acceptance
probability (1.14).

Consider a move which allows the number of steps to change, by ‘birth’
and ‘death’. When x has k steps, we propose birth with probability by,
draw two random numbers u; and us from g(u, us), and use them to split
an existing step interval into two. Let the new step position be s* = u;,
located between sj«_; and s;j« say, and use us to divide the current step
height hj- into two values with weighted average hj«: hj— = hj+ + uz/w_
and hj+ = hj« —us/wy, where w_ = s* —s;+_1 and wy = sj+ —s*. Turning
now to death of a step: this is proposed with probability dj, and we choose
a step at random to delete; if step j' is deleted, then the new step height
for the interval [s;i _1,s;111) is the weighted average {(s;i — s;1_1)h;i +
(85t 41 —8j1)hjt 11}/ (55141 —sji_1). This precisely reverses the effect of the
birth just described.

Note that this formulation has the dimension balance we require: when
there are k steps, there are k positions and k+ 1 heights, making d; = 2k+1
variables in all. With a birth, we are proposing a move to d» = 2k + 3. The
dimensions of the random numbers u, w’ are r; = 2 and ry = 0 respectively,
and indeed d; +71 = d2+72. (An alternative choice, equally valid, would be

p(Sl,SQ,...,Sk)
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r1 = 3,72 = 1, which would be obtained if we had dropped the requirement
of preserving the weighted average on birth and death, and generating new
random heights as needed, for example independently of the current state.)
Suppose we let &,y denote the states of the chain before the split is
proposed, and the state as modified by the birth proposal. Then

k'I [0<s1<s2<---<sp<L]
Lk

k
m(@) o p(Y|@)p(k) [] fu(h;
7j=0

w(y) o p(Y|yp(k+1) [[ fulhy)fuh;)fulhjy)
%3
(k+DIT[0<s1<852< < 8jr1 <S*<sjr <+ <5, < L]
TF+1 ’

the constant of proportionality being the same in each case. The proposal
terms are

gm(usx) = brg(ui,us)
A1
I, _
gm(u'sy) = 1

reflecting the described mechanism for choosing to propose birth or death,
the drawing of (u1,us2), and the random choice of a step to delete. Finally,
the Jacobian we need is an order 2k + 3 determinant, but with many of the
components of the state vector unaltered by the transformation, it reduces
to

‘awj,hﬂ,s*) ‘ oty
8(hj*,U1,U2) - )

We can now compute the acceptance probability for a birth from (1.14):
(k+1) (k+1) fu(hj—)fu(hji)

p(k) L fH( J* «)

dit1/(k+ 1) w_ +wy }

w_w4

a = min{l,Ap

brg(ui,us)  w_wy
where A is the likelihood ratio p(Y|y)/p(Y|x).

1.7.4 Cyclones example, continued
Model 8: unknown number of change points

What if the number of change points, k, is also unknown? We might place
a prior on k, say Poisson(\):
A

pk) =e" 4
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Figure 1.16 Posterior sample of step functions x(t) for model 8, applied to cy-
clones data.

and then make Bayesian inference about all unknowns: = (k,«a, 8,71, . ..,
Tk, To, - - -, x)). There are 2k+4 parameters: the number of things you don’t
know is one of the things you don’t know!

For a MCMC solution, the only additional ingredient we need over model
7 is a birth/death move to allow a variable number of steps. This follows
closely the setup of the preceding subsection, except that since the step
function represents an intensity and is necessarily non-negative, we ar-
ranged to preserve the weighted geometric mean:

w — w w_ +w
WY hYE = Ry
Also the joint density of the step positions is now o Hj (sj —sj—1) with a
corresponding change to the acceptance ratio. The moves for this sampler
are described in detail in Green (1995), except that here we have slightly
extended the model to include variable hyperparameters a and (3, as seen
in Sections 1.2.4 and 1.4.11.

We applied this model to the cyclones data, using A = 3; a small sample
from the posterior distribution of the step function z(-) is shown in Figure
1.16. Various aspects of the posterior distribution can be summarised by
appropriate analysis and display of much larger MCMC samples; see, for
example, Figures 1.17, 1.18 and 1.19.
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Figure 1.17 Posterior mean of step function xz(t) for model 8 (solid line) and
kernel estimate of x(t) (broken line), for cyclones data.

Model 9: with a cyclic component

Finally, here, as further illustration of the flexibility in modelling allowed
by the approach, we include another ingredient, that will be justified in
many real time-series point process problems: periodicity.

This could be handled in various ways — parametric, nonparametric,
with known and unknown period(s) — but the simplest is to take a simple
sinusoid, and assume that the data are generated from a Poisson process
with instantaneous rate

z(t) {1 + v cos(2n ft) + dsin(2w ft)},

where z(t) is the step function defined above, and f denotes the assumed
(known) frequency).

If a priori (7, 0) are taken uniform on the unit disc, then a simultaneous
Metropolis update is easily implemented.

A small sample from the posterior for the cyclic component is shown in
Figure 1.20.



REVERSIBLE JUMP METHODS 39

RN
0
o
N -
o
2 0
% |
0
o)
o
S 9 | AN
o 0\
) o
N
S | O—0-—9g_0_ o o
© T T T T
0 2 4 6 8 10 12
k

Figure 1.18 Posterior distribution of number of change points k for model 8,
applied to cyclones data.

1.7.5 Bayesian model determination

It is wrong to behave as if the statistical model for our data was not subject
to question.

Suppose we have a (countable) collection of models that we wish to
entertain: My, My, ..., My,.... A priori, we assign probabilities to these:
p(k).

For each model, there is a parameter vector § = 8, € R™ say, with a
prior: p(6x|k), and a likelihood for the observed data Y: p(Y|k,6). The
joint distribution of all variables is

p(k, 0k, Y) = p(k)p(0k |k)p(Y|k, Or).

(Note that in this section, the subscript & on € indicates the model to which
61, belongs, not the k*® element of a vector 6.)

Observing Y provides information about both the model indicator k£ and
the corresponding parameter vector 6, through their posterior distribu-
tions:

[ ok, 60, V)8
PEY) = 5= (k. 61, 1) 0




40 A PRIMER ON MARKOV CHAIN MONTE CARLO

n
— 4
o
2 9 |
@ o
(]
©
[Te)
Q -
o
o | L
© T
0 20 40 60 80 100
time

Figure 1.19 Estimates of posterior density for change point positions for model
8, applied to cyclones data: k = 1 (solid line), k = 2 (dotted lines) and k = 3
(broken lines).

and

p(kvekvy)
0.1V k)= ———— 1
PO ) = e 60, 7) 0

involving integrals that as usual seem to need MCMC! There are two main
approaches: within-model and across-model simulation.

Within-model simulation

Here we treat each model M, separately.
The posterior for the parameters 6}, is in any case a within-model notion:

__ pBk|k)p(Y |k, br)
PO K) = T TR T, Br)

As for the posterior model probabilities, since

p(k1|Y) p(k1) p(Y|k1)

p(kolY)  p(ko) p(Y|ko)
(the Bayes factor for model My, vs. My,), it is sufficient to estimate the
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Figure 1.20 Posterior samples from the harmonic component, model 9, applied
to cyclones data.

marginal likelihoods
p(V1R) = [ pl6e. VI
separately for each k, using individual MCMC runs.

Estimating the marginal likelihood

There are many possible estimates based on importance sampling, some of
which are well-studied, for example

1
Y |k) = Z{ (V1]k,6) }
based on a MCMC sample 9(1), 0(2), ... from the posterior p(6x|Y, k), or
Pa(Y|k)=N"1 Z p(Y|k, 0"

based on a sample from the prior p(6y|k). Both of these has its faults, and
composite estimates can perform better. See, for example, Newton and
Raftery (1994).
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Across-model simulation

Here we conduct a single simulation that traverses the entire (k,8) space.
Since the dimension ny, of 8}, typically varies with &, this requires a MCMC
sampler that works in more general spaces than R?. The reversible jump
sampler of Section 1.7.2 is an obvious candidate. Applications of this ap-
proach include Giudici and Green (1999), and Nobile and Green (2000).

See also Madigan and Raftery (1994), Carlin and Chib (1995), Phillips
and Smith (1996) and George and McCulloch (1997) for other recent ap-
proaches to Bayesian computation for model determination.

1.8 Some tools for improving performance
1.8.1 Tuning a MCMC simulation

Having implemented an MCMC sampler, there are various quite simple
techniques available to amend the algorithm to try to improve performance.

Most Metropolis-Hastings methods involve proposal distributions with
freely chosen parameters — the spread of the perturbation distribution in a
random-walk Metropolis method, for example. As the parameter is varied,
different acceptance rates will be obtained. Of course, 100% acceptance is
not necessarily desirable; in random-walk Metropolis it is only achieved in
the limit as the spread goes to 0. As this is approached, the sample path
will exhibit increasingly high autocorrelation. In the ‘bold’ opposite to this
‘timid’ strategy, the steps taken will be large, but they will be taken rarely.
The right balance, where convergence may be faster and autocorrelation
less, will be in the middle.

There is an interesting theoretical study of optimal acceptance rates for
random walk Metropolis in Gelman, Roberts and Gilks (1996), based on
the artificial case of multivariate normal target and proposal distributions;
this has been quite influential in establishing a ‘rule of thumb’ advising
aiming for 20-40% acceptance generally, but this study is perhaps a rather
narrow basis for such a sweeping conclusion.

Metropolis-Hastings methods can be designed for updating single vari-
ables, or groups of any size. Larger groups offer the possibility of allow-
ing the sampler to beat the restrictions on performance imposed by high
correlations between variables in the target distribution, but may carry a
burden in cumbersome tuning of a multivariate proposal distribution. A
careful study of the merits of grouping variables is one of the themes of
Roberts and Sahu (1997); see also Besag et al (1995, p. 10).

Another opportunity for reducing correlation between variables is to con-
sider re-parameterisation; a hierarchical centring formalism in the linear
mixed models context is introduced by Gelfand, Sahu and Carlin (1995),
and there is a broader discussion in Gilks and Roberts (1996).
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1.8.2 Antithetic variables and over-relazation

The essential idea of antithetic variables in ordinary static Monte Carlo
is one of the classic ideas for variance reduction: to aim to introduce neg-
ative correlation among some of the summands in an empirical average
Nt Eiv g(z) by using coupled pairs (u, 1 — u) of uniform random num-
bers in generating pairs of state vectors x. Of course, the success of the
method requires some monotonicity in both the mapping from u to x, and
in the function g.

As applied to MCMC, the aim would be to choose an update of z*)
that has detailed balance, as usual, but also introduces negative serial
autocorrelation in the process g(m(t)), or at least reduces the value of a
positive autocorrelation.

Barone and Frigessi (1989) studied the effect of antithetic variables on
the convergence of samplers for Gaussian processes. The full conditional
for a single variable z; in a multivariate Gaussian distribution is of course
a normal distribution, N (u;,c?), say. It is easy to check that drawing the
updated variable z! from N ((1+6)u; —0x;, (1—6?)0?) is in detailed balance
for any 6 € (—1,1); 6§ = 0 gives the Gibbs sampler, and if # > 0 then z;
and z are conditionally negatively correlated. They show that in the case
of entirely positive association between the variables, the spectral radius
of the corresponding Markov chain is a decreasing function of 6 at 8 = 0;
thus convergence is improved by using the dynamic version of antithetic
variables, 6 > 0.

Green and Han (1992) (see also Besag and Green, 1993) examine the
effect of this antithetic modification on the autocorrelation time, and show
that it is reduced by a factor (1 — 6)/(1 + €). They also propose using
antithetically-modified Gaussian approximations to full conditionals as pro-
posal distributions for Metropolis-Hastings for non-Gaussian targets, al-
though the empirical evidence assessing this idea suggests that convergence
is not always improved. Barone, Sebastiani and Stander (1998) have devel-
oped the idea further. Neal (1998) has proposed a related method, based
on order statistics, that seems much more widely applicable.

This whole topic has close parallels with the theory of over-relaxation in
the iterative solution of simultaneous equations in numerical analysis.

1.8.3 Augmenting the state space

Perhaps counter-intuitively, it is sometimes possible to improve MCMC
performance by augmenting the state vector to include additional compo-
nents. Two particularly successful recipes are those in which the original
model appears as a conditional distribution in an augmented model (simu-
lated tempering) and in which it appears as a marginal (auxiliary variables);
these approaches are described in the next two subsections.
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Two other devices might also be bracketed under the heading of aug-
mentation. In multigrid methods, spatial problems are treated on a variety
of spatial scales, sometimes by coupling together several different models,
sometimes merely by using a family of MCMC samplers that update groups
of variables together, the sizes of the groups varying with sweep. In hybrid
MCMC, additional variables are introduced, bearing a relationship to the
original ones analogous to that between momentum and position variables
in dynamics. The MCMC updates maintain this physical analogy.

1.8.4 Simulated tempering

The approach here is to combat slow mixing by embedding the desired
model in a family of models, indexed say by «, and treat a now as an addi-
tional dynamic variable. Thus the target is changed from 7 (x) to 7*(x, ap).
The family {7*(x,a)} is designed so that for some «, a much better-mixing
chain can be found than for the original target. We run MCMC on 7*(z, @),
and condition on a = ag by selecting from the output.
This ‘serial’ approach can be compared with the ‘parallel’ one of Metropolis-

coupled MCMC (Geyer, 1991; see also Gilks and Roberts, 1996).

Simulated tempering, by changing the temperature

15 2.0

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.21 The effect of tempering on a univariate full conditional: the beta miz-
ture density 0.7Be(3,7) + 0.3Be(8,2), and the results after raising to the powers
a = 0.5,0.25,0.125 and renormalising.
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This was the original idea of Marinari and Parisi (1992), independently
derived by Geyer and Thompson (1995); we set

7 (6, ) oc {m ()}

where a = ap = 1 corresponds to the original model, and & — 0 makes
the probability surface ‘flatter’, or in physical terms, ‘warmer’. A graphical
illustration of the effect of the a power on a univariate density can be seen
in Figure 1.21.

The full conditionals change in the same way as the joint distribution:

T (0il6 i, @) oc {m(0:]6 i)}

so implementation is very easy.
We normally place a (discrete) artificial prior on « so that the marginal
for « is approximately uniform.

Simulated tempering, by inventing models

Variable k sampler

[Te)
P
=
N o
g a«g
Y 2
g° £
£ T o
N —
' o
" o AN
: R : =
0 200 400 600 800 1000 1200 1400 4 2 0 2 4
sweep mean(2)
Fixed k sampler
. fed na .;",,"_ Fy
“ T -
— Yo ot ’ s ©
© © Q<
] . o
€ . a©°
o~ & N
oyl TR o
o
0 200 400 600 800 1000 1200 1400 0200 600 1000 1400

sweep sweep

Figure 1.22 Better mizing with variable dimensions, illustrated by a mizture anal-
ysis application (from Richardson and Green (1997)).

A more general perspective on what tempering achieves and how it works
can be obtained by envisaging it as embedding the target into a bigger
model space, and there may be many ways to do that. For example, a
model indicator k£ may be allowed to vary, although in truth its value is
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known, or at least fixed. An example from mixture analysis is shown in
Figure 1.22. The left hand panels show the sample paths for one compo-
nent of the parameter vector, which has a strongly bimodal distribution
under the target; two samplers are compared, one (bottom) in which the
model indicator k (in this case the number of mixture components) is held
fixed, the other (top) in which it varies but we condition on its value by
selecting from the output. In the right hand side panels we see (top) the
resulting estimates of the marginal density of this parameter and (bottom)
the evolution of the ergodic average estimating the probability that the pa-
rameter is positive; from the symmetry of the setup of the experiment, this
is known to be 0.5. Results for the variable-k sampler are shown in solid
lines, those for fixed k are dotted. Allowing the number of components to
vary can give much better mixing. See Richardson and Green (1997) for
details.

1.8.5 Auziliary variables

m(0)
0.3 0.4 0.5

0.2

(0",u) (6,u)

0.1

Figure 1.23 The slice sampler.

Edwards and Sokal (1988) proposed a way to improve mixing by augment-
ing the state space so that the original target appears as the marginal
equilibrium distribution. The following interpretation of their approach in
statistical language can be found in Besag and Green (1993).

Starting from 7 (), introduce some additional variables u, with 7(u|z)
arbitrarily chosen. Then the joint is 7(x,u) = w(x)n(u|x), for which 7(x)
is certainly the marginal for .
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We could now run a MCMC method for the joint target (x, u) (usually a
method that updates & and u alternately), and simply ignore the u variables
in extracting information from the simulation.

When might this idea be useful? Suppose 7(x) factorises as:

(z) = mo(z)b(x)

where mo(x) is a (possibly unnormalised) distribution that is easy to sim-
ulate from, and b(x) is the awkward part, often representing the ‘interac-
tions’ between variables that are slowing down the chain.

Then take a one-dimensional u with u|z ~ U0, b(x)]: we find

I0 < u < b(x)]

w(x,u) = w(x)r(ulx) = mo(x)b(x) b(x)

so that
m(x|u) o mo(x)

restricted to (conditional on) the event {x : b(x) > u}. At least when this
7(x|u) can be sampled without rejection, we can easily implement a Gibbs
sampler, drawing u and « in turn.

This method has recently been popularised under the name of the ‘slice
sampler’; a picturesque but otherwise unnecessary name, reflecting the fact
that if mo(a) = constant, w(x|u) is a uniform distribution, corresponding
to a horizontal slice through the graph of 7(x). For statistical applications
of the idea, see Neal (1997) and Damien, Wakefield and Walker (1999), and
for a detailed analysis of the method, see Roberts and Rosenthal (1999).

The original applications of auxiliary variable methods were to statistical
physics problems, where in particular the Swendsen-Wang method (Swend-
sen and Wang, 1987) has had a profound influence; see also Edwards and
Sokal (1988) and Sokal (1989).

The Swendsen-Wang method is a MCMC method for the Potts model
on an arbitrary graph (V, E), the target distribution

7r(m) ocexpq —f3 Z I[mv # mw] = H be(m)a

(v,w)EE eckE

say. We define one auxiliary variable u, for each edge e, conditionally in-
dependent given @, with u.|z ~ U(0,b.(x)). If u. > e we say the edge
e is ‘on’, otherwise ‘off’. It is easy to see that in drawing u given x, edges
are on with probability 1 — e~? if &, = x,,, always off if &, # x,,. Sim-
ple manipulation shows that m(x|u) is a random uniform colouring on the
clusters determined by the on bonds.

Figure 1.24 illustrates one sweep of the Swendsen-Wang algorithm, ap-
plied to the Potts model on a small graph.
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Figure 1.24 Illustrating the Swendsen-Wang algorithm: (a) bond variables be-
tween like-coloured nodes are ‘on’ with probability 1 — e™?, always ‘off’ between
unlike-coloured ones; (b) clusters formed by ‘on’ bonds are re-coloured uniformly
at random; (c) the new colouring.

1.9 Coupling from the Past (CFTP)

Coupling from the Past (CFTP) is a beautiful idea due to Propp and Wilson
(1996): it provides a way of organising a Markov chain simulation so that
after a finite but random amount of work, it ezactly delivers a sample from
the target distribution! (Another such protocol, based on an elaborate form
of rejection sampling was given by Fill (1998).)

Since the CFTP idea first appeared in preprint form, it has generated
much excitement among MCMC researchers, keen both to understand and
generalise the basic formulation, and to discover the practical potential for
computation in stochastic processes and statistical applications.

For an example of Propp and Wilson’s construction, consider the partial
simulation of a symmetric random walk with reflecting barriers shown in
Figure 1.25. To appreciate the message of this figure, it is not necessary to
know anything about the order in which the displayed steps were generated,
nor anything at all about any steps not displayed. All that we need is that
the successive steps along each partially-drawn path are independent, and
have the correct law: equally probably £1, except where steps attempting
to go outside the interval [1, 5] are suppressed.

One can see that for the random numbers used to make this simulation,
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Figure 1.25 Monotone CFTP for a simple random walk.

and regarding the figure as part of a conceptual simulation of paths from
all initial states at all initial times < 0, all paths of the chain starting at
time —oo have the same state (viz., 3) at time 0. This state, () must be
drawn from !

Generally, imagine multiple coupled paths of a Markov chain run from all
initial states in the indefinite past, and look at the state at time 0, (®. If
this is unique, then 2(9) ~ 7. For this to be of any practical consequence in
computing, we must be able to conduct this conceptually infinite amount
of simulation in a finite time. But, we can that Figure 1.25 was indeed
constructed with a finite amount of work — fewer than 60 steps are shown.

Generalising from this example, if there exists a (random) initial time
—T such that for all initial states x_p, £(® is the same, then z(® ~ 7.
We do not even need to find T exactly, since coalescence occurs from all
initial times < —T'. So we can just try a decreasing sequence of initial times
—1,—-2,—4, -8, ... until we discover coalescence.

1.9.1 Is CFTP of any use in statistics?

There have been some spectacular successes in finding CFTP implementa-
tions for certain models in statistical physics and spatial processes possess-
ing a lot of symmetry, even with huge numbers of variables (4 million in
one case).

But it seems much harder to make it work for even quite low-dimensional
continuous distributions without symmetry.
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1.9.2 The Rejection Coupler
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Figure 1.26 Ezample realisation of rejection coupler for f(ylz) = (6 +

1) min({y/}’, {(1 - y)/(1 - 2)}°) with 5 = 6.

Here is a simple approach to CFTP for a continuous state space, namely
the unit interval, from Murdoch and Green (1998). It is more of a ‘proof of
existence’ (of a CFTP method in a continuous state space) than a practical
method, for we have to suppose we know f(y|z), where

y
P{Xi41 <y|Xi ==} o / fulz)du,

and that the (not necessarily normalised) densities f(y|z) are bounded
above by an integrable h(y). We cannot expect the transition density to be
available for a practically-useful MCMC method.

Recall the familiar rejection sampler, expressed in geometrical terms. To
sample from the (not necessarily normalised) f(-|z), we repeatedly draw
(Y, Z) uniformly under the graph of h until Z < f(Y|z). The rejection
coupler generalises this scheme. To sample from f(-|z) for all z, again we
repeatedly draw (Y;, Z;) uniformly under the graph of h. Let 4; = {x :
Z; < f(Yi|z)}; then Y; is a valid update for all z € A;. We continue until
U;A; = x, obtaining a random-length list {Y;}.

When incorporated into the CEFTP protocol, this procedure gives partial
realisations of a continuum of coupled paths exemplified by the simulation
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shown in Figure 1.26. This shows a single realisation of CFTP using re-
jection coupling, for the kernel density f(y|z) = (1 + §) min({y/z}%,{(1 —
y)/(1—z)}°) with § = 6, which is bounded above by the envelope function
h(y) =1+ 6 for 0 < y < 1. The solid lines indicate the paths ultimately
followed by all realisations starting from the indefinite past.

1.9.3 Towards generic methods for Bayesian statistics

In contrast to the rejection coupler, a practical technique for Bayesian
CFTP should be based only on the target distribution, and created by
some generic recipe, just as is the case for standard MCMC.

Evidence that this will become possible is still quite unconvincing, al-
though this is an extremely active research area, and success may be
obtained soon. Some experiments in this direction are the random walk
Metropolis coupler of Green and Murdoch (1998), the methods using Gibbs
sampling and (anti-) monotonicity of Mgller (1999), perfect slice sampling
(Mira, Mgller and Roberts, 1999) and the perfect simulated tempering ap-
proach of Mgller and Nicholls (1999).

One general reason for pessimism about the future of CFTP in Bayesian
statistics is found by noting that much of the success of ordinary MCMC in
this field is based on its modularity: as a model is elaborated, the parame-
ter vector is augmented, and the current sampler is supplemented by new
moves for the new components. Existing methods for perfect simulation are
not modular.

1.10 Miscellaneous topics
1.10.1 Diffusion methods

A number of MCMC methods have been developed recently, inspired by
the Langevin stochastic differential equation

1
dx; = dB; + §Vlog7r(a:t)dt

where B; denotes Brownian motion on X'. Here we describe only the case
where X = R. This diffusion has invariant distribution 7, and suggests use
of the discrete-time chain

1
2+ (<) o N <$(t) + 5‘5V10g7r(:13(1t)),5> , (1.15)

where the time increment is €, not 1.

Unfortunately, this simple discretisation is too crude: not only does it
only, at best, deliver an approximation to 7 as its invariant distribution, it
can actually create a transient chain!

However, that can be fixed by using the Metropolis-adjusted Langevin
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algorithm (Besag, 1994), in which (1.15) is used simply as a proposal dis-
tribution, with acceptance determined as usual by (1.7).

Among examples of practical methodology using diffusion-based MCMC
are the jump-diffusion methods of Grenander and Miller (1994), combining
(unadjusted) Langevin diffusion with dimension-jumping moves to address
variable-dimension problems, and the work of Phillips and Smith (1996)
applying this approach in various statistical settings.

The Metropolis-adjusted Langevin method is known to fail to be geomet-
rically ergodic for heavy-tailed targets, a problem addressed by the richer
class of ‘self-targetting’ Metropolis-adjusted Langevin algorithms due to
Stramer and Tweedie (1998), in which the proposal distribution is

2+ |50 o N (:B(t) + gu(:,;(t)),gg(a,(t)))

where
pulx) = %Uz(m)Vlogw(m) +o(x)Vo(x).
This is derived from the diffusion generated by
dxy = o(xs)dBy + pu(xt)dt.

Stramer and Tweedie (1998) discuss the extent to which their theory for
these methods can be extended to the practically important cases where
X =R%d>1.

1.10.2 Sensitivity analysis via MCMC

In responsible Bayesian inference, it is important to assess the effect on the
posterior of changes to the model, especially variations in the prior. Suppose
that, having completed a MCMC-based analysis using a prior my(0) and
likelihood f(Y'|@), we wish to entertain an alternative model built from
7o (0) and f*(Y']0).

We could just repeat MCMC computation on the new model: note that
even where the base model is rather tractable (for example, mo(8) conjugate
to f(Y']0)), we should consider alternatives that are not. Thus MCMC
may be needed in sensitivity analysis even where exact analytic calculation
handles the standard model, or we may need Metropolis where Gibbs was
sufficient in the standard case.

As an alternative to treating the revised model as a completely fresh
problem, we may be able to make use of importance sampling to assess
sensitivity using only the original simulation. This uses the importance
sampling identity

Er-(9) = Ex <%*g>

showing that expectations under 7* can be estimated from an MCMC run
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aimed at m, by
Y w(@®)g(@®)
Yo w(@®)

™ (x)

(@)

where

w(x) o

There are several practical examples of MCMC-based sensitivity analysis
in Besag, et al. (1995).

One problem of the importance sampling approach is that, except in very
low dimensional problems or where 7 and 7* are very similar, w(z®)/ 3", w(-)
is effectively concentrated on very few samples, implying very poor effi-
ciency. This can sometimes be mitigated by considering infinitesimal per-
turbations instead: 7. (z) o (7(x)) =) (7*(a))¢, or, of course, by running
another chain.

1.10.83 Bayes with a loss function

We have seen the tremendous advantages that MCMC offers to the prac-
tising Bayesian through the opportunities it gives for computing posterior
distributions. However, the complete Bayesian agenda for statistical anal-
ysis does not stop at computing posteriors — in the full decision theoretic
framework, a loss function is introduced, and optimal Bayes estimates and
decisions determined by minimising the expectation of the loss under the
posterior distribution.

Writing the posterior p(x € -|Y") in the generic 7(-) notation, we wish to
choose an action z to minimise

E(L(z,2)|Y) = /L(m,z)n(dm),

where L(z, z) is the loss incurred through taking action z when the true
state of nature is x.

When the posterior is computed using MCMC, the expectation is re-
placed by an empirical average over the realisation (1), 23, . ..

1 N
E(L(z,2)|Y) ~ + > Lx®, 2).

The difficulty with this approach lies in the interplay between the averaging
and the optimisation with respect to z.

One class of loss functions that can be easily handled is that of finite
sums of separable loss functions, where

L(xz,2) = Zar(w)br(z). (1.16)
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Then the MCMC computation and the optimisation separate, since

N
1
E(L(z,2)|[Y) ~ Y Asb(2z) where A, = ~ > ap (@)
r t=1

The optimisation can even sometimes be done analytically, as for exam-
ple in the elementary case of squared-error loss for some functional g(x):
L(z,z) = (g(x) —2)%. Then A,,r = 0,1,2 are the 0*", 15¢ and 2"¢ empirical
moments of g, and b.(z) = 22,-22,1 for r = 0, 1,2, leading of course to
the optimal z = A;/Ag, the MCMC estimate of the posterior mean.

More commonly, numerical optimisation is necessary. Several research
papers recently (for example, Rue and Hurn (1999), Rue and Syversveen
(1998)) have used simulated annealing, and have exploited the represen-
tation (1.16). The A, are first computed by MCMC, and then a second,
annealing, simulation, set up for the artificial probability distributions

pr(z) o« exp (%1 ZArbT(z)> ,

where the temperature T is sent to 0 on some suitable schedule.

1.11 Some notes on programming MCMC
1.11.1 The BuGs software

The only software I am aware of that provides MCMC computation for
a wide range of statistical models, without requiring the user to code the
sampling algorithms is Buas (Gilks, Thomas and Spiegelhalter, 1994). The
model is specified in a high-level specification language — or, if using the
WINBUGS version, a graphical interface — a few options controlling the sim-
ulation are entered, and the system does the rest. Particularly for rather
well-understood standard models, hierarchical versions of generalised linear
models, for example, the facilities are easy to use, and the system extremely
effective. The suite of implemented and documented examples distributed
as part of the software release demonstrates the remarkable flexibility of
the system, and some very complex models can be handled. However, facil-
ities for using anything other than single-variable Gibbs sampling are very
limited, so for some models, BUGS may be inefficient or even completely
incapable. The authors are careful to stress that setting up a MCMC sam-
pler and interpreting the output, even with BuaGs, requires knowledge of
the user beyond appreciation of the statistical model itself.

Buas is very useful for many practitioners, but may be too limited for
most MCMC researchers.
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1.11.2 Your own code

Programming your own MCMC method from scratch is much less daunting
than it might first appear, and provides flexibility and (run-time) efficiency
that cannot really be matched by package software. The basic recipes are
simple in structure, and may be coded following the algebraic notation
almost exactly. I do not usually bother with Gibbs sampling unless the full
conditionals are entirely standard distributions for which I have a random
number generator. (The adaptive rejection sampling method of Gilks and
Wild (1992) provides a means of extending Gibbs sampling to a wider range
of full conditionals.) In Metropolis-Hastings algorithms, it is necessary to
take some care with floating point arithmetic, as in complex models, there
may be many multiplicative factors entering the acceptance ratio, with
a wide numerical range. I find it convenient to accumulate the sum of
the logarithms of the factors, and then truncate onto a safe range before
exponentiating.

High and low level languages

The poor performance of looping code in most high-level statistical lan-
guages such as S precludes their use in coding all but the smallest prob-
lems. I always use Fortran or C. On the other hand, the flexibility of control
and the availability of a wide range of statistical and graphical procedures
in S, and similar systems, is absolutely invaluable in analysis of MCMC in
a research environment. My usual strategy is to dump large quantities of
raw MCMC output into a collection of files, with structured filenames, and
then employ a suite of S functions to read, display and analyse these.

Validating your code

It is absolutely essential to check and double-check MCMC code. The very
nature of the output of the computation — simulation results in a con-
text where other numerical methods are not available for cross-checking —
makes this problematical, especially in Bayesian statistical contexts, where
problems are one-off, and data subject to sampling variation. Testing on
simulated data-sets with known parameter values does not tell you very
much.

I find two particular tricks extremely useful. First, I always use restartable
random number streams, so that I can conveniently and reliably duplicate
a run, with additional diagnostic output, if I suspect a bug. This is also
often useful to compare results before and after a minor edit. Second, in
programs implementing posterior simulation for a Bayesian model in which
the variables are organised as a directed acyclic graph, and in which the
observed data have no ‘children’, I always include a ‘prior’ option, which ig-
nores the data and the likelihood terms. The posterior simulation program,
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largely unaltered, is then actually simulating from the prior distribution,
and typically many marginal and conditional aspects thereof may be di-
rectly checked as the true distributions are known.

Many useful hints on the practical details of algorithm design, including
matters such as thinning and burn-in, will be found in Geyer (1992) and
Gilks and Roberts (1996).

1.12 Conclusions
1.12.1 Some strengths of MCMC

MCMC is evidently a very powerful and flexible tool for computation with
complex multivariate distributions. Its availability has transformed prac-
tical Bayesian statistics, and it is making an important if less dramatic
impact on other areas of computational statistics.

In the Bayesian context, its power derives from the two kinds of flexibility
it offers. First there is flexibility in modelling, permitting the analyst to get
much closer to his or her understanding of the reality of the process gener-
ating the data, and liberating the modelling process from the constraints
only imposed for the sake of tractability. A desirable by-product is the en-
couragement to model builders to think in graphical terms, as MCMC is
particularly well-adapted for models defined on sparse graphs.

Secondly, there is freedom in inference; in principle, there are no limits
to what features of the target distribution may be estimated by MCMC,
although one needs always to be aware of the Monte Carlo errors unavoid-
able in such estimates: some features of the target can be computed much
more reliably than others. MCMC addresses questions only posed after sim-
ulation completed (e.g. ranking and selection) and offers opportunities for
simultaneous inference. It allows and even facilitates sensitivity analysis,
and addresses questions of model comparison, criticism and choice.

1.12.2 Some weaknesses and dangers

MCMC is not a panacea. In the end it is only a numerical method, and
does not displace the need for careful thought about modelling, and about
the probable reliability of numerical results obtained in the given context.
When other methods are available, MCMC can be relatively extremely
expensive; hence the common preference in fields with large data-sets such
as signal and image processing for approximations to the full Bayesian
paradigm that are amenable to fast numerical calculations for particular
outputs of interest.

In qualitative terms, a problem that is insurmountable (at least in es-
timating expectations and probabilities) is the order V/N precision of any
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simulation method, and for MCMC, the possibility of slow convergence,
especially when it is not diagnosable.

Use of MCMC imposes serious responsibilities on the careful researcher,
for there is the risk that fitting technology runs ahead of statistical science,
so that models are fitted that are not understood, and the risk of over-
using the flexibility allowed in inference, leading to undisciplined, selective
presentation of posterior information.

1.12.3 Some important lines of continuing research

MCMC remains an important, exciting and challenging field for further
research. It is impossible to predict how the field will develop over the next
few years, but I believe that the most interesting questions for exploration
at present include:

a. Adaptive methods, and other possibilities for automation;

b. Perfect simulation: will these become useful in statistical practice?

o

. Getting quantitative results from theoretical analysis;

o,

. Learning even more from physics.
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