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Bayesian Reconstructions From Emission 
Tomography Data Using a Modified 

EM Algorithm 
PETER J. GREEN 

Abstract-A new method of reconstruction from SPECT data is pro- 
posed, which builds on the EM approach to maximum likelihood re- 
construction from emission tomography data, but aims instead at max- 
imum posterior probability estimation, that takes account of prior 
belief about “smoothness” in the isotope concentration. A novel mod- 
ification to the EM algorithm yields a practical method. The method is 
illustrated by an application to data from brain scans. 

I. INTRODUCTION 
N single-photon emission computerized tomography I (SPECT), the patient is injected with, or inhales, a 

pharmaceutical tagged with a radioactive isotope (a radio- 
pharmaceutical). The pharmaceutical is chosen as being 
known to concentrate in the organ of interest, in a manner 
related to the phenomenon under study, for example met- 
abolic rate or blood flow. Some of the photons emitted by 
the radiopharmaceutical are collected in a system of de- 
tectors located around the patient, and the objective is to 
form a three-dimensional reconstruction of the pattern of 
isotope concentration from the resulting array of photon 
counts. 

A relatively inexpensive and convenient device for re- 
cording the emitted photons is the gamma camera, which 
is rotated about an axis through the patient, to collect a 
sequence of projections. The physical details of the 
gamma camera and its use in tomography are described in 
detail in Jaszczak, Coleman, and Lim [l 11 and in the ex- 
cellent monograph by Larsson [ 161 and so will not be cov- 
ered here. 

Because of the random nature of radioactive disintegra- 
tion, the tomographic data are noisy, and it is appropriate 
to regard reconstruction as a statistical estimation prob- 
lem; since the views of the patient that are obtained are 
indirect-the coordinates with respect to which the data 
are collected are not those in which the reconstruction is 
required-this estimation is not entirely straightforward. 
The calculations required are far from trivial because of 
the amount of information involved: the minimum scale 
in practical use for 3-D tomography requires reconstruc- 
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tion of the isotope concentration on a 64 x 64 x 64 grid, 
based on 64 projections, each consisting of a 64 X 64 
array of counts. 

The standard algorithms in use today are adapted from 
those successfully used in transmission tomography, and 
involve Jiltered back-projection. These are fast and inex- 
pensive as they operate entirely linearly on the data. How- 
ever, the resulting reconstructions do suffer from well- 
documented deficiencies. Attempts to overcome these de- 
ficiencies have chiefly centered on more careful modeling 
of the process generating the projection data, and that is 
the approach taken here. We also take the view that more 
fundamental than the algorithm for reconstruction is the 
principle underlying that algorithm: what is being esti- 
mated, what is the logical basis for that estimation, and 
what is the performance of the algorithm with respect to 
that basis? 

We follow the paradigm of Bayesian image analysis, 
introduced by Besag [l], [2] and Geman and Geman [ 5 ] .  
This involves the construction of two probability models. 
The first describes the manner in which the detected counts 
are generated by the tomographic transformation and other 
physical circumstances from the true isotope concentra- 
tion. In particular, this will account for the Poisson vari- 
ation in the counts arising from the random nature of ra- 
dioactive disintegration. The second model is a probability 
distribution on the space of true patterns of isotope con- 
centration and provides a means of quantitatively coding 
prior information or beliefs about such patterns available 
before the data are collected. This aspect of the modeling 
is crucial in the context of emission tomographic data: it 
is indeed hard to imagine knowing nothing about the true 
pattern (although coding one’s knowledge numerically 
might not be straightforward). Reconstruction of the iso- 
tope concentration will be accomplished by considering 
the posterior distribution that follows by Bayes’ theorem 
from the two model components: thus the probability dis- 
tribution of isotope patterns will be treated as a Bayes prior 
distribution. 

If the reader finds this Bayesian paradigm unappealing, 
an alternative approach which yields exactly the same al- 
gorithms follows from the principle of penalized likeli- 
hood. Because of the high dimension of the “parameter” 
space (the space of true isotope patterns), it is natural to 
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treat the tomography problem statistically as (Poisson) 
nonparametric regression. It is well known that in such 
contexts the maximum likelihood principle is either in- 
appropriate or ill-defined (see, for example, [SI), and a 
common way of modifying the principle so that it does 
give sensible and efficient estimates is by penalizing the 
(log-) likelihood so that implausible isotope patterns (for 
example, those that are too “rough”) are disfavored, even 
though they q a y  have high likelihood for the given data. 
The reconstructions that we aim to compute can thus be 
viewed either as posterior modes (maximum a posteriori 
estimates) or as maximum penalized likelihood estimates. 
In practice, we shall have to be content with approxi- 
mately achieving this goal. 

It will be clear in what follows that our approach to the 
SPECT problem makes considerable use of the highly 
original contributions to the subject by Shepp and Vardi 
[24] and Geman and McClure [ 6 ] .  

Here, we are using an informal notation in which the 
symbol p is used to denote a generic probability density. 
The remainder of this section will be concerned with 1); 
consideration of 2) will be postponed until Section IV. 

Assuming only that emissions from pixel s are com- 
pletely random, with rate constant in time, and that “dead- 
time” effects in the counting can be neglected, the stream 
of photons from s arriving and detected at bin t forms a 
Poisson process homogeneous in time, and since each 
photon is detected in at most one bin and the emissions 
are independent, these Poisson processes are independent 
for all s and t .  From elementary superposition properties 
of Poisson processes, therefore, the observable counts y 
are independent Poisson distributed random variables, 
with 

y,  - Poisson ( a,,x,) 

11. MODELING THE PHOTON COUNTS and this defines p ( y I x )  to be 
In this section, we introduce some basic notation and 

derive the first of our two probability models: that for the exp (- a,,xs) (E a l s x s ) ~ ~  

. (2 )  
Y l !  

P ( Y l X )  = I]I detected photon counts, given the isotope concentration. 
From the outset, we shall suppose that the 3-D space 

over which the reconstruction is required, the body space, 
is finely subdivided into rectangular pixels or voxels. We 
are thus recognizing that spatially discrete data only allow 
a spatially discrete reconstruction, and that we cannot ex- 
pect an arbitrarily fine spatial resolution in our result. This 
issue is explored from a theoretical point of view in John- 
stone and Silverman [ 121. There is nothing inherently nat- 
ural about a rectangular pixelization, and there may be 
merit in other regular tessellations, e.g., using hexagonal 
prisms. There are thus a finite, although large, number of 
isotope concentrations to be estimated: we index these by 
the subscript s, and let x,  denote the unknown isotope con- 
centration in pixel s, s = 1, 2, * * , S. The whole array 
{ x , }  will be denoted by x .  

The data collected form a three-dimensional array of 
photon counts, but the gamma camera is not inherently 
either three-dimensional or discrete. After passing through 
a collimator, which only admits photons whose paths are 
nearly exactly perpendicular to the face of the camera, 
incoming photons strike a crystal where fluorescence oc- 
curs as a result of photomultiplication. The coordinates of 
the fluorescence are measured discretely, and the photons 
thus indirectly “binned” into a rectangular array. The 
gamma camera is then advanced around the patient’s axis, 
another projection recorded, and so on. The resulting bins 
are thus indexed by angle and pixel within a projection. 
We shall use the single subscript t to index such bins; yt  
denotes the recorded count within bin t ,  t = 1 ,  2, * * , 
T and y = { y ,  } the complete collection of data. We will 
refer to t as varying in projection space. 

With this notation, our modeling requirements are as 
follows : 

I )  the data model p ( y I x ) ,  and 
2) the prior model p ( x ) .  

It is important to note that this model involves no as- 
sumptions, other than those stated and the effects of the 
spatial discretization of body space. It is an unusual lux- 
ury for probability model based statistical analysis to be 
built on a model that has such strong justification. The 
only difficulties lie in determination of the coefficients, or 
weights, {a, ,  }.  The weight a,, is simply, although some- 
what circularly, defined to be the mean number of photons 
detected at t originating from a point U ,  per unit isotope 
concentration at U, integrated over U in the pixel s. 

These weights depend on various factors: the geometry 
of the detection system, the activity of the isotope and 
exposure time, and the extent of attenuation and scatter- 
ing between source and detector. It should be noted that 
this is a very much more complicated situation than arises 
in positron emission tomography (PET: [24]) where at- 
tenuation can be neglected. SPECT is much more impor- 
tant in practice because it is cheaper and uses standard 
apparatus. (In the U.K., SPECT is probably in use in at 
least 200 hospitals, compared to perhaps 10 using PET 
[C. J .  Gibson, personal communication] .) Numerical ex- 
periments on reconstruction algorithms have typically 
used simulated data, and so the weights a,, have been as- 
sumed known. In analyzing real data, the weights must 
either be constructed with some care, or estimated from 
separate transmission tomography experiments on the 
same patient. 

The weights used in the examples in this paper are based 
on a simple model for the physical circumstances in which 
the data are recorded. Scattering is neglected, and atten- 
uation considered to be at a constant rate per unit distance 
within an idealized elliptical boundary representing the 
patient’s body. The rate of emission declines appreciably 
during the period in which the data are collected, so a 
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decay term is included. A more detailed description of the 
model for the weights is given in the next section. 

The model l), or equivalently 2), has much wider ap- 
plicability than the SPECT problem that is the focus of 
this paper. With appropriate changes to the definitions of 
pixel s and detector bin t ,  the model applies to any of the 
image acquisition technologies that collect particles emit- 
ted by radioactive disintegration. In particular, it applies 
to other uses for the gamma camera, in collecting single 
projections or sequences of images, and it also applies to 
PET and even to modern low-intensity optical astronomy. 
Much of what follows in this paper is therefore also ap- 
propriate to other problems, but only SPECT will be con- 
sidered when we discuss details of practical implementa- 
tion. 

.* 

111. MODELING THE WEIGHTS 

In this section, we consider modeling the coefficients 
{a, ,}  of (1) and (2). The aim is to use simple physical 
and geometrical arguments to derive values for these con- 
stants that are sufficiently accurate for reasonable recon- 
struction of x, without the need for auxiliary transmission 
experiments. The values will involve only known physi- 
cal constants and easily measured dimensions, and do not 
depend on the data obtained during the scanning of the 
patient. In a later section, we consider a method for au- 
tomatically revising these coefficient values following a 
preliminary analysis of the data. 

Recall that a,, represents the mean number of photons 
recorded at bin t ,  per unit concentration of the isotope at 
pixel s. It is therefore influenced by a number of factors 
as follows: 

a) activity of isotope, 
b) exposure time, 
c) rate of radioactive decay, 
d) rate of elimination of the radiopharmaceutical from 

e) spatial correspondence between detector and pixel, 
f )  detector geometry, 
g) absorption of photons, 
h) photon scattering. 

Note that d), g), and h) depend on the patient, and so 
in the absence of auxiliary data can at best be approxi- 
mated. In the present paper, we shall neglect a), b), d), 
and h). The effect is to assume that each projection has 
the same exposure time, that elimination is negligible 
within the duration of the data acquisition, that scattering 
can be neglected, and finally means that our reconstruc- 
tion has an arbitrary scale: some external calibration is 
needed to express the reconstructed x in physical units. It 
would not be difficult to remove some of these restric- 
tions. The remaining factors are accounted for by assum- 
ing that each a,, is the product of three factors: 

i) the proportion of radioactivity that has not decayed 
by the time at which photons are collected in de- 
tector r ,  

ii) the solid angle of view of the center of pixel s into 

the organ, 

detector f, which is treated as a cylindrical tube of 
known length and radius, and 

iii) the proportion of emissions that survive attenua- 
tion. 

These considerations apply for three-dimensional re- 
construction from a sequence of two-dimensional projec- 
tions. Our numerical examples will address the usual 
smaller problem obtained by ignoring the third dimen- 
sion: the spatial component parallel to the axis of rotation. 
We thus reconstruct each section or slice of the patient, 
perpendicular to this axis, from the one-dimensional pro- 
jections corresponding to that slice. It is then necessary 
to account for the third dimension: for example, emis- 
sions outside a slice may be registered within that slice. 
The approximation made here is that successive slices are 
sufficiently similar that they can be assumed equal: x, 
therefore denotes the concentration throughout a narrow 
prism parallel to the axis of rotation. The solid angle in 
ii) is then replaced by its integral over the third dimen- 
sion. 

Representing the attenuation process is the most diffi- 
cult aspect of modeling the weights. In PET, attenuation 
is usually neglected, partly because the radiation is of a 
different energy where absorption is less, and partly be- 
cause to first order its effect is eliminated by the geometry 
of the situation. The literature on SPECT contains many 
suggestions for the approximate elimination of the atten- 
uation effect, including arithmetic or geometric averaging 
of opposing projections. We are taking the different ap- 
proach of attempting to model the effect from geometrical 
considerations. 

It is well known that attenuation operates multiplica- 
tively, so that the proportion of photons surviving atten- 
uation along a line L is of the form exp ( - j L  p (  U )  du) ;  
the linear attenuation rate p varies markedly with the me- 
dium, and in particular has different values in bone, soft 
tissue, and air. The approximation we will make is that p 
has a constant value 0.099 cm-' (C. J. Gibson, personal 
communication) within the patient's body, and 0 else- 
where. Further, the body is approximated as a cylinder 
with elliptical cross section, parallel with the tomographic 
axis. The dimensions of the ellipse can be easily mea- 
sured from the patient, or estimated from a trial recon- 
struction from the data, presuming that the body outline 
can be readily distinguished. 

Calculation of our approximate weights thus reduces to 
derivation of some simple but tedious trigonometrical for- 
mulas, and substitution into these of a dozen or so phys- 
ical constants and measurements. Precise details can be 
found in a computer program available from the author. 

Notice that since the patient will not typically be per- 
fectly centered on the tomographic axis, there are no sym- 
metries among the (a , ,}  that can be exploited to save 
storage or computing time, even under the simple model 
described above. 

There are few previous published treatments of these 
issues. Among most papers that have explicitly used the 
model l ) ,  there seems to be either no detail given about 
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the construction of the weights, or a side-stepping of the 
whole matter by using only artificial projection data gen- 
erated either precisely from the model, or by simulating 
from the continuous Poisson model that underlies it. At- 
tempts to model the weights realistically include the pa- 
pers by Floyd, Jaszczak, and Coleman [4] and Veklerov, 
Llacer, and Hoffman [30], which both use Monte-Carlo 
methods to generate values for the weights. We believe 
that it is essential to attempt to model the weights prop- 
erly, perhaps in the way suggested above and, further, 
that the weight values will in general need to be modified 
in light of the data, following diagnostics generated dur- 
ing reconstruction (see Section VIII). 

IV . RECONSTRUCTION WITHOUT PRIOR INFORMATION 

There are many approaches to the reconstruction for 
SPECT that do not make use of any prior information 
about x, whether represented by a prior distribution p (x )  
or in some other way. The standard method of filtered 
back-projection does not even use the model 2) for 
p ( y I x),  but rather operates entirely linearly on the data 
to create an estimate of x of the form 

where we have written t as ( E ,  e ) ,  separating the coordi- 
nates of pixel within a projection and angle. The coeffi- 
cient fa, represents the filter applied to each projection, 
and bsse the back-projection operator. Both of the coeffi- 
cient arrays b andfenjoy a considerable number of sym- 
metries. Construction of these coefficients does not in- 
volve acknowledging either the Poisson variation 
underlying the data, or attenuation: rather they are chosen 
so that the quality of the reconstruction is not much af- 
fected by ignoring such details. Since it takes such little 
account of the physical processes underlying emission to- 
mography, it is remarkable how effective filtered back- 
projection is. The chief problems with the resulting re- 
constructions are that they tend to have both radial and 
ring-like artifacts, that they underestimate the isotope 
concentration in the middle of the body, and that they ap- 
pear noisy (see, for example, 1301). 

In pioneering work directed primarily at the PET prob- 
lem, Shepp and Vardi [24] and Lange and Carson [31] 
independently proposed using model 1) explicitly. They 
suggested reconstructing x using the principle of maxi- 
mum likelihood estimation (MLE), and developed an EM 
algorithm for iterative approximation of the MLE solu- 
tion: that 2 = .?( y ) maximizing p ( y 1 x )  as given in ( 2 ) ,  
subject to the physically-necessary positivity condition xs 
I 0 for all s. This approach was further developed by 
Vardi, Shepp, and Kaufman [28]. There has been some 
ambiguity about the uniqueness of the MLE. Of course if 
T, the number of bins, is less than S, the number of pixels, 
the solution .f cannot be unique; in practice it will typi- 
cally not be unique even when T is somewhat more than 
S .  The EM algorithm still converges to a maximum of 
(2); the set of maxima is convex. Choice of the initial 

estimate affects the final estimate and “is somewhat akin 
to a choice of a Bayes prior” [28]. However, Shepp and 
Vanderbei [23] argue that, with photon counts typical of 
real emission tomography experiments, the maximum is 
rendered essentially unique by the positivity condition. 
The EM algorithm will be discussed in more detail in Sec- 
tion VI: it underlies our own proposal for reconstruction. 

It is common experience that MLE reconstructions have 
the unattractive feature of being very noisy in appearance. 
(In fact, the MLE is never achieved by the EM approach, 
as it converges so slowly, but at the point where the EM 
iterations are abandoned as changing the current estimate 
of x so little, the noisiness in x is typically increasing.) 
Vardi, Shepp, and Kaufman suggest that “either a slightly 
smoothed version of the MLE or, alternatively, an EM 
reconstruction that starts . . . uniform . . . and is run for 
a limited number of iterations . . . gives very good recon- 
structions.” We find the latter alternative unappealing: 
developing the former, but based on maximizing the pos- 
terior probability, is the main point of this paper. 

The idea of stopping the EM iteration at a point deter- 
mined by a statistical significance test is explored by Vek- 
lerov and Llacer [29]. The recent literature has contained 
a number of ideas for improving the reconstruction yielded 
by the EM approach, including papers by Snyder and 
Miller [26], Lange, Bahn, and Little [15], Levitan and 
Herman [ 171, Liang and Hart [ 191, Tanaka [27], and Sil- 
verman, Jones, Wilson, and Nychka [25]. Connections 
between some of these and our proposed approach are 
drawn in Section VI. 

Other methods based on (1) are discussed by Vardi, 
Shepp, and Kaufman, including least-squares estimation, 
Stein type estimates, and moment estimates including fil- 
tered back-projection. We do not discuss these further 
here. 

Statisticians recognize (2) as a simple example of a gen- 
eralized linear model [20], determined by the Poisson er- 
ror model and identity link function. Such models are 
conventionally fitted by an iterative scheme known as the 
method of scoring, a modification of the Newton-Raph- 
son procedure, but of course the scale of the present prob- 
lem renders such matrix methods impractical. Further, 
such an approach, in common with some of the others 
mentioned, needs nontrivial modification to allow impo- 
sition of the positivity constraints. 

V. MODELING PRIOR INFORMATION 

Selection of a prior distribution p ( x )  for the isotope 
concentration x should properly involve consideration of 
the physician’s expectations regarding the spatial distri- 
bution of isotope concentration in the organs of interest, 
and indeed the shapes and sizes of those organs. Specifi- 
cation of such information in probability form seems a 
challenging task, involving modeling at a very high level. 
Fortunately, it is now often considered in Bayesian image 
analysis that long-range, high-level structures in the prior 
may not be important: the posterior p (x 1 y )  is chiefly sen- 
sitive only to local properties of p ( x ) .  Put another way, 
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suppose that we have two candidate prior distributions, 
p ( x )  and p ( x ) ,  that are very different, yet the local con- 
ditional probability p ( xA I xVA ) is similar to p ( xA I xVA ) 
whenever A is a small set of pixels and uA a set of pixels 
near toA.  Thenp(x ly )wi l lbec lose top (x ly ) inmos t  
important respects. This statement is deliberately made 
imprecisely here, but can be made more rigorous (for ex- 
ample, see Green, in discussion of Besag [2]). 

We can therefore concentrate on local properties only. 
Following Geman and McClure [6], [7], we will in fact 
only allow pairwise interactions, among pairs of pixels 
that are neighbors. Specifically, we suppose that 

-* 

( 3 )  

where 0 and 6 are parameters, w,, is a weight coding the 
strength of neighborliness between pixels s and r : w,, = 

1 i f s  and r are orthogonal nearest neighbors, J1/2 for 
diagonal neighbors, and 0 otherwise. The function 4 is 
nonnegative and symmetric about 0, and monotonically 
increasing for positive values of its argument. For ex- 
ample, Geman and McClure choose 4 ( U )  = ( 1 + u - ~ ) - ’ ,  
and we will use 4 ( u )  = c1 log cosh ( c 2 u )  where ci are 
chosen to match Geman and McClure’s function by taking 
c1 = 27/128 and c2 = 16/3 h; this matching is derived 
by arranging that max 4’ and 4’’ (0) coincide for the two 
functions: they are then very close for all U with I U I 
< 1. 

The distribution (3) is in fact improper if the range of 
values of {x,} is unbounded, but this need not concern 
us: it nevertheless gives rise to a proper posterior distri- 
bution. 

The log cosh function generates quite a flexible family 
of prior distributions: in particular, if 0 and 6 -+ 00 in 
such a way that -+ K ,  then P ~ ( U / S )  -+ K U ~  for all 
U ,  while if 0 and 6 -+ 0 such that OS-’ -+ K ,  then 04( u / 6 )  
4 K I U I .  The former case gives a Gaussian prior, the lat- 
ter corresponds with a proposal due to J. Besag (personal 
communication). The log cosh function may be closely 
approximated by a curve that is piecewise quadratic and 
linear for 1 U I < 1 and 11, respectively; there may be 
computational advantages in such an approximation. An 
important property of the function and this approxima- 
tion, not shared by Geman and McClure’s function, is 
convexity of log p ( x )  and, hence, log p ( x  I y ) ,  with ob- 
vious numerical advantages in optimization. However, 
which function is more appropriate depends on the typical 
pattern of isotope concentrations in the organ in question. 

For any 4 ,  the form of (3) is such as to treat equal dif- 
ferences in neighboring x values equally at all points of 
the scale: it may be more appropriate first to change the 
x scale by applying a logarithmic or power transforma- 
tion, but we do not consider this here. As in other appli- 
cations of Bayesian image analysis, there is potential for 
employing a richer class of priors, for example, incorpo- 

rating edge sites [5], or allowing 6 and 6 to vary stochas- 
tically across the scene ([2] and discussion). 

VI. EM ALGORITHM FOR BAYESIAN RECONSTRUCTION 
Our aim is to choose x = x( y )  to maximize the pos- 

terior probability 

logp(x(y)  = l o g p (  y(x) + logp(x)  + constant 

- @ V ( x )  + constant (4) 

where V ( x )  is given by (3). Since this objective function 
is not quadratic, some iterative algorithm will be needed, 
and the large size of the problem means that conventional 
Newton or gradient methods are not practicable. We will 
use the EM algorithm instead [3]. The EM algorithm is 
a general approach for maximizing a likelihood or poste- 
rior distribution when some of the data are “missing” in 
some sense, and observation of that missing data would 
have greatly simplified the estimation of parameters. In 
the present case, data are “missing” not because of any 
censoring or misrecording, but because of the superposi- 
tion of the Poisson streams of photons. This means that 
we cannot observe the more basic data { zr, } , the number 
of photons recorded at bin t emitted from pixel s. Equiv- 
alently, what is missing is a label on each recorded photon 
stating its source in body space. The observed data are yr 

Let us begin by reviewing the application of the EM 
algorithm to reconstructing x without using the prior term, 
that is, by maximizing the log-likelihood p ( y 1 x )  alone. 
The result will be the maximum likelihood reconstruction 
2. If the zrs were observed, then 2 would be very easily 
calculated. Since the Poisson model 1) holds good for the 
disaggregated data: 

= E, Zt,. 

zf, - Poisson (a,,x,) , independently, ( 5 )  

2, = L. ( 6 )  

we immediately find 
c 22, 
C a/, 

The { zu } can be estimated using another result from el- 
ementary probability theory, so that 

( 7 )  

which is just its conditional expectation given y. Since the 
Poisson distributions ( 5 )  form a linear exponential family, 
the { zrs } are complete-data sufficient statistics [3], so that 
the EM algorithm for estimating X from y is obtained by 
combining (6) and (7) to give 
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as an iteration producing the updated estimate Xnew from 
x . This iteration is repeated until apparent convergence. 
This derivation is essentially that of Shepp and Vardi [24], 
and we have already discussed in Section V some of the 
shortcomings of the resulting reconstruction. One rather 
attractive feature of the method, however, is that the pos- 
itivity constraints are automatically satisfied, providing 
the initial estimate is entirely positive. 

It is interesting to note that the EM algorithm for this 
problem can be seen as an iterative forward/backward 
projection technique. Calculation of the fitted values 
C, a,x, corresponds to forward projection, and their use 
in (6) and (7) to reestimate x, is backward projection. 

Our present objective is to use a similar approach to 
construct the maximum posterior probability reconstruc- 
tion i .  As noted by Dempster, Laird, and Rubin, the EM 
algorithm can still be appropriate: it will increase the pos- 
terior probability at each stage, and convergence can usu- 
ally be established if p (x  I y )  is convex in x .  

There is no change to what is treated as the missing 
data, so that the E step given by (7) remains the same. 
The M step should now maximize log p ( x  I z ) ,  the log 
posterior probability of x given the missing data z .  This 
is as follows: 

-old 

C ( z ,  log (a,x,) - a,x,) - P V ( X )  + constant 
t , s  

and so, after differentiating, we have to solve 
-c- 

In contrast to the nonBayesian case where /3 = 0, direct 
solution of this is completely impractical, except in the 
degenerate case where the pixels are independent under 
the prior. Instead, we will use a "one-step-late" (OSL) 
approximation, as proposed by Green [ 101 to facilitate an 
EM-type approach to quite general maximum penalized 
likelihood or posterior probability problems. We evaluate 
the partial derivatives of V ( x )  in (8) at the current esti- 
mate .toold, and thus have the simple updating equations 

(9) 
C Z f S  

= 

Solving these involves only trivially more computing ef- 
fort than when 

We cannot give a proof that the OSL algorithm con- 
verges in general, as this will depend on the form of the 
function V ( x )  and the value of 0. However, empirical 
evidence suggests that it usually converges when V is as 
defined in Section V and /3 is not too large. The algorithm 
does at least have a fixed point justification: if it con- 
verges, to i say, then i is a solution to (8), and hence also 

The rates of convergence of the EM and OSL algo- 
rithms have been discussed by Green [lo]. Asymptoti- 
cally, the error innew - 2 declines geometrically with the 

= 0, so it is entirely practicable. 

to ( a l a x )  i o g p ( x l y )  = 0. 

iteration number for the OSL algorithm, at a rate given 
by the spectral radius of ( B  + C ) - ' ( C  - P K ) .  Here B 
is the observed information matrix, C is the expectation 
of the additional information in the missing data, given 
the observed data, and K is the matrix of second-order 
partial derivatives of V ( x ) ;  all are evaluated at x = 2 .  The 
convergence rate for the (impracticable) EM method is 
similarly determined by ( B  + C + P K ) - ' C ,  and is 
slightly slower, at least for small P .  

Elementary calculations show that for the Poisson 
model l),  B has entries 

Y B,, = Z f a  a 
' P ;  lr fs 

where jif = C, a,,i,,, and ( B  + C )  is diagonal with 

( B  + C),, = a,' CY+ 
f Pt 

It is readily established that B and C are positive definite, 
so when P = 0, the required spectral radius is 1 - X I  
where X I  is the smallest eigenvalue of ( B  + C ) - ' B ,  or 
equivalently of the symmetric matrix ( B  + C ) -  ' 12B(  B 
+ C)- '12.  Finding the spectrum of this matrix seems far 
from straightforward, but of course X I  can be character- 
ized by 

v r B ( B  + C ) - ' B v  X: = inf 
V # O  v T ( B  + C ) v  . 

Thus, upper bounds on A, can be constructed by evalu- 
ating the right-hand side of this expression for various 
vectors U .  This calculation is straightforward, given the 
forms for B and ( B  + C )  quoted above. The bound can 
be expressed in the form 

where c, = ir.& yrarr/ f i t  are positive numbers, and wrt = 
( ytatr / f i t ) /C, ,  ( yt3at,,/jif ,) are positive weights summing 
to 1. Thus, it is evident that the bound will be small when 
II E, a,s U ,  II / IIC, II is much smaller than II II / II 2 II , 
and this will tend to occur when elements of v alternate 
abruptly in sign. Calculations based on the circumstances 
of the data discussed in Section IX showed that a partic- 
ularly small bound on X: was obtained when U ,  = X : E ,  

where E ,  consisted of a checkerboard of alternating f 1 's. 
This led to a lower bound on the spectral radius of 
0.99938, confirming the extremely slow rate of conver- 
gence observed in practice. 

Similar calculations were performed for the OSL 
method using the log cosh prior distribution from Section 
V, and a range of positive p and 6. The resulting lower 
bounds are given in Table I, and support empirical evi- 
dence that convergence is appreciably faster after the in- 
troduction of the prior. 
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TABLE I 
LOWER BOUNDS ON CONVERGENCE RATE 1 - h,  

0.2 
0.1 

0.0075 

bound 

0.99938 
0.94341 
0.93638 
0.97586 
0.95758 
0.90772 
0.97878 
0.96562 

Other approaches to maximizing the posterior proba- 
bility (4) have appeared in recent literature. Although our 
formulation of the problem is almost identical to that of 
Geman and McClure [6], [7], we have followed a differ- 
ent approach to its solution. They have proposed a num- 
ber of stochastic algorithms for reconstructing x .  The form 
of the posterior distribution (4) is such as to give the pos- 
terior local characteristics p ( x ,  I y, { x,  , r + s } ) a par- 
ticularly simple form. This allows them to simulate a 
Markov chain on the x space whose equilibrium distri- 
bution is p ( x  1 y ), and so can be used to estimate E (  x I y ). 
Similarly, annealing can be used to iterate towards the x 
maximizing p ( x  I y) ,  as in Geman and Geman [5]. Prac- 
tical considerations have led to compromises employing 
deterministic neighbors of these algorithms, including It- 
erated Conditional Modes [2] and gradient descent. One 
advantage of the stochastic algorithms is that they can be 
adapted to yield estimates of 0, with the rather impressive 
results to be seen in Geman and McClure [7]. 

Adaptation of the EM approach to the Biyesian recon- 
struction problem has been previously suggested by sev- 
eral authors. Liang and Hart [19] restrict attention to the 
use of priors for which the EM updating equations (8) 
have an explicit solution, after some approximation. Lev- 
itan and Herman [ 171 suppose that the prior is Gaussian 
and indeed, in presenting an explicit algorithm, assume 
that the pixels are independent; Lange, Bahn, and Little 
[15] also use various prior distributions in which pixels 
are independent. While this restriction gives rise to ex- 
plicitly soluble EM updating equations, we do not believe 
that it can model prior belief about x adequately, and thus 
cannot satisfactorily "smooth" the data. 

Silverman, Jones, Wilson, and Nychka [25] modify the 
EM algorithm for the unpenalized problem by including 
an additional smoothing step in each cycle. This is intui- 
tively appealing, but it seems difficult to give it an objec- 
tive justification. They are able to relate their approach 
approximately to a penalized likelihood method that uses 
a certain penalty which is quadratic in the square roots of 
x ;  for more information on this cannection, see [lo].  

In none of the papers cited a h v e ,  with the exception 
of those by Geman and McClure, is there any analysis of 
real tomographic data. 

VII. IMPROVING THE ONE-STEP-LATE EM ALGORITHM 
The derivation of the updating algorithm defined in (9) 

is somewhat naive from a numerical-analytic point of 

view. Surprisingly, we shall see in the examples in Sec- 
tion IX that it can give quite acceptable performance, but 
it is worth considering some simple methods for improv- 
ing it. Further work is needed in this area: it is the subject 
of current research, and will appear elsewhere. 

As we stated in Section VI, the one-step-late approxi- 
mation to the EM algorithm converges more quickly than 
the true EM iteration, when the prior parameter 0 is suf- 
ficiently small. When this is not the case, one of the only 
practical ways of achieving the EM algorithm is by an 
inner iteration that updates the calculation of the deriva- 
tives of V,  but not the missing data zt,. Specifically, given 
x , let z,, = yrafsf: ld/Csr a,,,i:fd, and set inew.' = . fold.  

Then form = 1 ,  2 ,  * * , iterate on 

,.old 

until convergence, then set ,fold = inew3", and recalculate 
zfs,  and repeat. Some limited experience suggests that this 
modification does not speed convergence to i ;  it seems 
better to spend the extra computing effort on another one- 
step-late update. 

Generally, the EM method is notorious for generating 
algorithms that are slow to converge. At a typical stage, 
fnew is a poor approximation to f. However, if successive 
iterations tend to lie in approximately the same direction 
in the space of all x it may be that fnew is a good guide to 
the direction in which f lies from foold, so that it is worth 
searching along the line 

( 1 1 )  20 - - fold + ,(,new - fo ld )  

and optimizing by maximizing p (ae  I y )  over 8. This 
search could be implemented by a bisection method, or 
by quadratic extrapolation, etc. Such modifications to the 
EM procedure for MLE in PET are considered in much 
detail by Kaufman [13], whose experience, with which 
ours agrees, is that such modifications are well worth- 
while. Such searches will usually involve examining ie  
for some 0 outside the interval [ 0, 1 1 ,  and if so, care must 
be taken that the elements of fe  remain nonnegative. The 
range of valid 0 is easily determined by inspecting ( 1  1 ) .  
This matter has also been investigated by Lange, Bahn, 
and Little [15]; see also the references therein. The sim- 
pler option of simply scaling up the EM step by a fixed 
multiplier 8 has been proposed by Lewitt and Muehlleh- 
ner [18]. Algorithms like (11) have also been proposed 
for an EM solution to the problem of estimating finite 
mixture distributions; see Peters and Walker [22]. 

VIII. DIAGNOSTICS, AND IMPROVING THE MODEL 
A further advantage of our approach of treating recon- 

struction as a statistical estimation problem is that a whole 
battery of diagnostic techniques are immediately available 
to investigate the adequacy of the estimated reconstruc- 
tion, and thereby of the model underlying it. The log- 
likelihood ratio statistic or deviance [20] is defined for the 
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present problem as 

In regular estimation problems, with x estimated by max- 
imum likelihood, this would have a x2  distribution on 
T - S degrees of freedom under the null hypothesis that 
the model 1) was correct. Here the standard distribution 
theory does not apply, but we would nevertheless expect 
that the realized value of D should be substantially less 
than T, the number of counts, if the model were satisfac- 
tory. We recommend that both the deviance D and the 
log-posterior p ( x  1 y )  be monitored as iteration proceeds. 

More specific diagnostics can be obtained by examining 
residuals. Since y,  - Poisson ( p , )  where p, = C ufFxs ,  y,  
has both mean and variance equal to p,, and therefore 
( y, - p , ) / a  is standardized. Of course, p is un- 
known, but is estimated by jl, = C a,,&, and the quantities 
( y,  - ,L,)/G are residuals that approximately have 
mean 0 and variance 1. Further, apart from small corre- 
lations induced by estimation, they should only reflect the 
Poisson variation in the data, and therefore appear ran- 
dom and unstructured. Any pattern reflects some failure 
of the model 1). Since the Poisson assumption is difficult 
to criticize, pattern in residuals is pointing to deficiency 
in the model for the weights { U,, 1. It would be surprising 
if such deficiencies did not exist. 

When a clear pattern is seen, it can be used to modify 
the model for the weights. Suppose the weights should be 
c,u,, where a,, are as already determined. Then y j  - Pois- 
son( c, C a,,x,), and if x were known, we would estimate 
c, by y,/C arsx,. In fact, we have only an estimate of x, 
but assuming that the c, vary smoothly in projection space 
(otherwise a pattern in the residuals would not have been 
evident) we can estimate c, by ( S y ) , / ( S f i ) ,  where S is a 
suitable smoother in projection space, and ji is the result 
of a preliminary reconstruction f. This idea works well in 
practice; see Section IX. 

IX. IMPLEMENTATION AND EXAMPLES 
The OSL method has been implemented on a Sun 3 / 160 

workstation. The algorithm is straightforward and the 
program has no special features of note except perhaps 
regarding the representation of body space and the weight 
matrix ( a r y ) .  

The method as described makes no assumption about 
the pixelization of body space: for the SPECT problem, 
we prefer to retain the conventional rectangular grid, 
rather than one of the circular grids advanced by Kearfott 
[ 141, Kaufman [ 131, or Silverman, et al. [25]. Unlike the 
PET problem, SPECT offers no symmetries to be ex- 
ploited, as the attenuation pattern is determined by the 
patient’s body. Further, the prior distribution p ( x )  cannot 
be specified in a spatially stationary way when the grid is 
not regular, so there is a risk of artifacts being introduced. 

In our analysis of head sections we generally recon- 
struct on a 48 X 48 grid of 0.55 cm squares from 64 pro- 
jections each of 52 counts. With these dimensions, only 

Fig. 1 .  Four of the 64 projections of raw data, each 64 X 64 

about 10 percent of the weights { urs } are nonzero, and so 
a sparse matrix representation is used: the weights are 
stored columnwise together with pointers to the detectors 
t concerned. This choice of representation has implica- 
tions for the order of looping over s and t in the OSL 
update; see also [ 13, sect. 111. 

We will illustrate the OSL method applied to data kindly 
made available by Dr. C .  J. Gibson of the Northern Re- 
gional Medical Physics Department, Durham. Fig. 1 
shows 4 of the 64 projections. We will concentrate on a 
horizontal slice, obtained by aggregating the 29th and 30th 
rows from the top of these pictures. The relevant data are 
shown in Fig. 2 as a sinogram, the horizontal axis repre- 
senting angle of view and the vertical one linear displace- 
ment: note that only data from the central 52 detectors are 
being used, to reduce the computing time. There are a 
total of 219123 photons in the data displayed in this im- 
age. The EM algorithm was run for 16 complete sweeps 
starting from a “flat” image: and using no prior term. 
The result was the trial reconstruction shown in Fig. 3. 
At this point, residuals were calculated, as defined in Sec- 
tion VIII; these are displayed in Fig. 4 and reveal a pro- 
nounced pattern. Discussions with Dr. Gibson suggested 
that this might be caused by absorption of photons within 
the couch supporting the patient. The weights {a ,$}  were 
modified as described in Section VIII, and the algorithm 
ran for a further 128 iterations, using the log cosh func- 
tion, with p = 0.2 and 6 = 50.0. At this point further 
changes were imperceptible. The resulting reconstruction 
is shown in Fig. 5; the corresponding residual pattern is 
in Fig. 6 ,  and shows little cause for concern. The devi- 
ance associated with this reconstruction is 2275. In Fig. 
7, we compare four different reconstructions, one (top left) 
being a filtered back-projection reconstruction supplied 
with the data. The other three were obtained in the same 
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Fig. 2. Sinogram slices 29 and 30 from Fig. 1 

Fig. 3 .  Trial reconstruction after 16 EM iterations 

manner as Fig. 5 ,  but with varying choices for and 6, 
namely: (top right) 0 = 0, approximating the ML recon- 
struction; (bottom left) /3 = 0.0075, 6 = 5, close to an 
“absolute value” prior; and (bottom right) /3 = 80, 6 = 
1000, close to a Gaussian prior. The deviances for these 
three were 2253, 2266, and 2290, respectively. Note how 
the characteristics of the reconstruction change with the 
specification of prior information. None of these is con- 
sidered to be satisfactory. The first is noisy and has spu- 
rious radial artifacts. The ML reconstruction is noisy, and 
this would get worse had the iteration been continued. 
The next is too discrete in the intensity scale, and the 
fourth has over-smoothed transitions in isotope concen- 
trations. 

In all of these examples, the resolution attainable in the 

Fig. 4. Residuals corresponding to Fig. 3.  

I 

Fig. 5 .  An OSL reconstruction after 16 + 128 iterations. 

reconstruction is limited by the coarseness of the grid on 
which the data are collected: as can be seen from Fig. 2 ,  
the maximum diameter of the head is about 30 pixels (each 
0.625 cm across). Fine detail is inevitably obscured. Some 
of the remaining lack of clarity in the reconstruction can 
probably be attributed to the neglect of photon scattering 
in our model for the coefficients, and this could be rem- 
edied without affecting the proposed method. Note that in 
Figs. 3 ,  5 ,  and 7 the images have been cropped to remove 
uninteresting peripheral background. 

Further work is needed to fine-tune the approach to var- 
ious practical circumstances, but our present conclusion 
is that, for these data, when /3 = 0.2 and 6 = 50.0 in the 
log cosh prior distribution, the OSL method has success- 
fully yielded a “cleaner,” more interpretable, reconstruc- 
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Fig. 6. Residuals corresponding to Fig. 5.  

Fig. 7. Four unsatisfactory reconstructions 

tion. It is smoother generally, yet retains abrupt gradients 
in the estimated isotope concentrations where these are 
suggested strongly by the data. 
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