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1. Bayesian variable selection

Let y � �y�� ���� yn�
T be a vector of responses, X be

an n� p design matrix and consider a linear model

y � X� � �

where � � ���� ���� �p�
T is a vector of parameters

and � � N��� ��I� is a vector of zero mean errors.

The problem of variable selection is to decide which
predictors should be included in the model for the
mean of the responses; the remainder are excluded
(or equivalently, the corresponding �j set to 0).

We take a Bayesian view, and make such inference
simultaneously with inference on � and ��.
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Let � � ���� ���� �p�
T be a binary vector, and write

q� �
P

j �j for the number of nonzero elements of
�. Let X� be the n� q� design matrix obtained by
removing those columns j from X for which �j � �.
Similarly let �� be the subvector of � obtained by
removing components �j of � for which �j � �.

We assume that

yj��X� ��� � �
� � N�X��� � �

�I��

For Bayesian inference on the model parameters we
use a hierarchical prior. The prior for �� given �

and �� is normal,

p��� j�� �
�� � N��� n���XT

�X��
����

The prior on �� is p���� � ���, and for our prior on
� we use p��� � ��p, so that all models have equal
prior probability. For alternative prior specifications
on � that encourage model parsimony see Denison
et al. (1998) and Kohn et al. (2001).
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We are interested in the posterior distribution on �

with �� and �� integrated out,

p��jy� � p���p�yj���

It can be shown that

p�yj�� � �� � n��q���

�

�
yTy �

n

n� �
yTX��X

T
�X��

��XT
� y

��n��

For p relatively small, we can compute the posterior
p��jy� exactly, obtaining the normalising constant
by summing over all possible values of �. For large
p, this is not feasible due to the number of terms in
the sum, and we use Markov chain Monte Carlo
algorithms to identify high posterior probability
models.
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MCMC: the basic idea

Given a distribution of interest ����

(in statistical analysis, more often than not a Bayesian
posterior)

� construct a Markov chain ���������� � � �, whose
invariant distribution is �,

� simulate it, and

� treat the realisation as a sample from �.

For example, estimate

P��� � A� by
�ft � N 	 ��t� � Ag

N

or

E��g���� by
PN

t�� g��
�t��

N
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The usual MCMC approach to variable selection

Typically, we update one component of � at a time
(that is, add or delete single terms from the model),
by a Metropolis method.

When columns of X are highly collinear, this
sampler mixes very slowly.

6

2. Improving performance of MCMC by
augmenting the state space

Perhaps counter-intuitively, it is sometimes possible
to improve MCMC performance by augmenting the
state vector to include additional components. Two
successful recipes are those in which the original
model appears as a conditional distribution in an
augmented model (simulated tempering) and in
which it appears as a marginal (auxiliary variables).

7

2a. Simulated tempering

Combat slow mixing by embedding desired model
in a family of models, indexed say by �, and treat �
now as an additional dynamic variable. Design the
family so that for some �, the chain mixes much
better.

��x�� ���x� ���

Run MCMC on ���x� ��, and condition on � � ��

by selecting from the output.
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Simulated tempering, by changing the
temperature

This was the original Marinari/Parisi idea; we set

���	� �� � f��	�g�

where � � �� � � corresponds to the original
model, and �	 � makes the probability surface
‘flatter’, or in physical terms, ‘warmer’.

The full conditionals change in the same way:

���	ij	�i� �� � f��	ij	�i�g
�

so implementation is very easy.

We place a (discrete) artificial prior on � so that the
marginal for � is approximately uniform.

9

Simulated tempering, by inventing models

An example from mixture analysis: allowing the
number of components to vary gives much better
mixing.
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2b. Auxiliary variables

Edwards and Sokal (1988) proposed a way to
improve mixing by augmenting the state space so
that the original target appears as the marginal
equilibrium distribution. The following
interpretation of their approach in statistical
language can be found in Besag and Green
(JRSS(B), 1993).

Starting from ��x�, take some additional variables
u, with ��ujx� arbitrarily chosen. Then the joint is
��x� u� � ��x���ujx�, for which ��x� is certainly
the marginal for x.

We could now run a MCMC method for the joint
target ��x� u� (usually a method that updates x and
u alternately), and simple ignore the u variable in
extracting information from the simulation.
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When might this idea be useful? Suppose ��x�
factorises as:

��x� � ���x�b�x�

where ���x� is a (possibly unnormalised)
distribution that is easy to simulate from, and b�x�

is the awkward part, often representing the
‘interactions’ between variables that are slowing
down the chain.

Then take a one-dimensional u with
ujx � U 
�� b�x��: we find

��x� u� � ��x���ujx� � ���x�b�x�
I
� � u � b�x��

b�x�

so that
��xju� � ���x�

restricted to (conditional on) the event
fx 	 b�x� 
 ug. At least when this ��xju� can be
sampled without rejection, we can easily implement
a Gibbs sampler, drawing u and x in turn.

12



This method has recently been popularised under
the name of the ‘slice sampler’, reflecting the fact
that if ���x� � constant, not only ��ujx� but also
��xju� are uniform distributions; the latter
corresponding to a horizontal slice through the
graph of ��x�.

θ

π(
θ)

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(  ,u)(  ’,u) θθ
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For statistical applications of the idea, see Neal
(1997) and Damien, Wakefield and Walker (1999),
and for a detailed analysis of the method, see
Roberts and Rosenthal (1999).
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3. Swendsen-Wang and the Potts and
Ising models

The (symmetric) Potts model on an arbitrary graph
�V�E� is the probability distribution for a random
vector x with components indexed by V and values
in a finite set of colours C, given by

��x� � exp

��
��

X
�v�w��E

I
xv � xw�

��
	 �

Y
e�E

be�x��

The Ising model is the special case where C has just
2 elements, say f�� �g or fwhite,blackg. For now, we
assume � 
 �.

There are also asymmetric versions, with an
additional multiplicative term exp�

P
v�V ��xv��,

and inhomogeneous relatives, where ���� and/or �
can vary with v or �v� w�.

The Swendsen-Wang method is an auxiliary
variable MCMC method for these models.

15

We define one auxiliary variable ue for each edge e,
conditionally independent given x, with
uejx � U��� be�x��. If ue 
 e�� we say the edge e is
‘on’, otherwise ‘off’.

It is easy to see that in drawing u given x, edges are
on with probability �� e�� if xv � xw, always off if
xv �� xw.

Simple manipulation shows that ��xju� is a
random uniform colouring on the clusters
determined by the on bonds.

16



Illustrating the Swendsen-Wang algorithm for a
small graph
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Illustrating the Swendsen-Wang algorithm: (a)
bond variables between like-coloured nodes are ‘on’
with probability �� e�� , always ‘off’ between
unlike-coloured ones; (b) clusters formed by ‘on’
bonds are re-coloured uniformly at random; (c) the
new colouring.

The original applications of auxiliary variable
methods were to statistical physics problems, where
in particular the Swendsen-Wang method
(Swendsen and Wang, 1987) has had a profound
influence; see also Edwards and Sokal (1988) and
Sokal (1989).
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4a. Partial decoupling

Attempts to exploit the idea of auxiliary variables in
other statistical models have been less successful,
chiefly because ��xju� often cannot be directly
simulated, so that computational effort is not
reduced overall.

The idea of partial decoupling is to choose auxiliary
variables that while not completing ’killing’
interactions, nevertheless do reduce their effect,
without making the computation more
complicated.

19

Thus, in general, we might have

��x� � ���x�b�x�

and use
uejx � U��� ce�x��

independently, where we no longer require
b�x� �

Q
e ce�x�.

The resulting conditional distribution is

��xju� � ���x�
b�x�Q
e ce�x�

�

With a suitable choice of fce�x�g, MCMC updates in
detailed balance with this conditional distribution
will mix quickly yet be computationally
inexpensive.

20



4b. Ising models with negative
interactions

If C � f�� �g, and

��x� � exp

��
�
X

�v�w��E

�vwI
xv � xw�

��
	

where some of the �vw are negative, the
Swendsen-Wang idea still applies, except that the
direction of the association is reversed, and hence a
cluster is interpreted differently.

If �vw � � and uvw 
 exp��vw�, then in updating x
given u, xv and xw are constrained to be different.

21

5. Application to variable selection

We apply the ideas of auxiliary variables with
partial decoupling, allowing negative interactions,
to the variable selection problem by identifying

��x� with p��jy�

Thus we treat the indices of the regression variables
as ’spatial’ locations, and try to approximate the
posterior distribution of the indicator variables �j
by an (inhomogeneous) Ising model.

The auxiliary variables uij define clusters among
the components of � as in the Swendsen-Wang
algorithm. Components of � within the same
cluster satisfy a set of constraints of the form �i � �j

or �i �� �j . (The constraints always have at least one
feasible solution, since they are created based on the
current value for �.)

22

Let C � C�u� be one cluster defined by the set of
auxiliary variables u, and let C denote the set of
variables not in C. Let ��C� be the subset of �
corresponding to the variables in C, and ��C�

denote the remaining components of �. Given the
constraints, note that there are only two possible
values for the vector ��C�: from one possible value
we can obtain the other by “flipping” the ones to
zeros and zeros to ones within the cluster C.

In general, we can update ��C� by a
Metropolis-Hastings step. Write �new for a
proposed value of � in which �new�C� is generated
from the proposal distribution q���C�j��u�y� and
�new�C� � ��C�. The Metropolis-Hastings
acceptance probability is

min



��
q���C�j��u�y�p��newjy�

q��new�C�j��u�y�p��jy�

� exp

�
�X

i	j

�ij�I��i � �j�� I��newi � �newj �


A
��
	 �

23

Since �new�C� � ��C� we can simplify this
expression by noting that

exp

�
�X

i	j

�ij�I��i � �j�� I��newi � �newj ��


A

� exp

�
� X

�i�j��
C

�ij�I��i � �j�� I��newi � �newj ��


A

where

�C � f�i� j� 	 i � j and exactly one of i� j � Cg�

This is inexpensive to compute provided that �ij is
nonzero only for a fairly small number of pairs
�i� j� � �C.

24



Baseline methods for comparison

A special case: fix �ij  �, and then draw from the
full conditional for ��C�j��C��u�y – that is, the
Gibbs sampler.

In fact, this is easily improved. Let

q � Pr��c�C�j�c�C�� u� y�

be the probability that ��C� stays at its current
value (given the current ��C� and u) with this
Gibbs move.

We will flip to the opposite state for ��C� with
probability

min

�
��

�� q

q

�
�

instead of �� q.

It is easy to show that in this case detailed balance is
maintained. This changes state more often than
Gibbs, and so by Peskun (1973) is superior in terms
of asymptotic variance. We call this the ’antithetic’
proposal.

25

Obtaining the interaction parameters

Compromises must be struck in designing the
approximating Ising field (that is, choosing the �ij).

If many �ij �� �, then the acceptance probabilities
will be expensive to compute; it is therefore better
to truncate small j�ij j to 0.

Further, following Higdon (JASA, 1998), the
nonzero j�ij j should not be too large, since this will
mean that clusters are typically large, so that strong
likelihood ratios will inhibit ’flipping’.

26

Our starting point for choosing �ij is to note that if
we have a binary random field with

���� � exp�
X
i�V

���i��

� exp

��
�
X

�i�j��E

�ijI
�i � �j �

��
	

(an inhomogeneous Ising model), then for any fixed
configuration ��,

�ij � ���

�
�X

�

log �����
X
��

log ����


A (1)

where
P

� (respectively,
P
��) are sums over � such

that �k � ��k for all k �� i� j, and �i � �j (resp.,
�i �� �j).

27

It is also true that for such Ising models on p

variables,

�ij � ���p��

�
� X
���

i
��

j

log �����
X

���
i
���

j

log ����


A �

(2)
Both of these identities seem to provide plausible
approximating �ij for arbitrary binary random
fields, although of course the latter involves
unfeasibly large summations in the case of interest
where p is large.

28



4 methods

In each case we use the ’antithetic’ proposal.

A �ij  �

B Use (2), scale to interval [-1,1], then truncate if
j�ij j � ���

C Use (1) with ��j  �, scale to interval [-1,1], then
truncate if j�ij j � ���. (This baseline ensures
that all predictors are included in capturing
correlation between the indicators).

D A more complicated method based on an
eigenvalue decomposition of the scaled
sum-of-products matrix, followed again by
scaling and truncation.
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Example 1: George and McCulloch simulated data
set

They simulated a data set with 15 predictor
variables as follows. Let Z�� ����Z���Z � N�	���� I�.
Then let Xi � Zi � �Z, i � �� � �� �� ��� ��� �� ��� ��

and set X� � X� � ����Z�, X
 � X� � ����Z
,
X� � X� � ����Z�, X � X	 �X� �X�� � ����Z

and X�� � X�
 �X�� �X�� �X�� � ����Z��.

This construction results in severe and complicated
multicollinearity: there is a correlation of about
����� between Xi and Xi��, i � �� � � and strong
linear dependencies among �X�X	�X��X��� and
�X���X���X���X�
�X���. Let X be the design
matrix with columns Xi, i � �� ���� ��. Let

� � ����� �� ���� �� ���� �� ��������� �� �� ���� ���� ���� �� ��T

and generate the responses Y as

Y � X� � �

where � � N�	���� ���
�I�.
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Relative improvements in Monte Carlo standard errors
for �

i
for simulated example for methods B, C and D,

relative to method A. Estimates are based on 50,000
iterations from two different starting points for each
sampling scheme with �� ��� iterations burn in.

Predictor B C D

X� 0.9244 1.1691 1.2619

X� 3.0625 3.6750 3.2667

X� 2.7170 3.4286 3.7403

X� 0.7750 0.8424 1.2500

X� 1.7966 10.6600 8.8833

X� 1.7418 13.2667 10.3377

X� 1.7841 12.4609 10.9247

X�	 1.7171 12.4286 9.7875

X�� 2.7088 10.8769 8.9494

X�� 2.5316 9.0187 9.0187

X�� 2.5647 9.5067 11.3175

X�� 2.6346 13.9796 13.1731

X�
 2.6766 15.4111 14.7553
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Example 2: US crime rates

Data set discussed by Ehrlich (1973) and Raftery
(1995).

47 states, response = crime rate.

15 predictors, with several strong collinearities
among them.
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Predictors for US crime data set

Predictor Description

M percentage of males aged 14-24

So indicator variable for a southern state

Ed mean years of schooling

Po1 police expenditure in 1960

Po2 police expenditure in 1959

LF labour force participation rate

M.F number of males per 1000 females

Pop state population

NW number of nonwhites per 1000 people

U1 unemployment rate of urban males 14–24

U2 unemployment rate of urban males 35–39

GDP gross domestic product per head

Ineq income inequality

Prob probability of imprisonment

Time average time served in state prisons
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Relative improvements in Monte Carlo standard errors
for �

i
for US crime example for methods B, C and D,

relative to method A.

Predictor B C D

M 1.1895 1.6259 1.4967

So 1.1535 1.6871 1.7714

Ed 1.1397 0.9761 1.1027

Po1 1.0389 1.2511 1.3868

Po2 1.7127 2.0000 1.9745

LF 1.4508 2.3289 1.9239

M.F 1.1236 1.2422 1.0471

Pop 0.9274 1.0550 1.1443

NW 0.8587 0.8827 1.0327

U1 1.4809 1.3759 1.3288

U2 1.0645 1.1250 1.2857

GDP 1.0820 1.7069 1.1061

Ineq 1.0886 0.8643 0.9053

Prob 1.3725 1.3642 1.2139

Time 1.0571 1.7619 1.3136
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Example 3: Statistical correction of a numerical
weather prediction model

Responses: daily maximum temperatures on 369
dayes in August–October, 1993–1996.

62 predictors: averages of 24hr and 36hr
meteorological fields from a numerical weather
prediction model.
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Monte Carlo standard errors for �
i

for numerical weather
prediction model data for methods A, C and D. Estimates
are based on 200,000 iterations for each method from two
different starting methods with �� ��� iterations burn in
for each sequence. The columns labelled “Relative” for
methods C and D give relative improvements of the
Monte Carlo standard errors for these methods compared
to that for method A.

Method

Predictor A C D

SE(�
i
) SE(�

i
) Relative SE(�

i
) Relative

X� 0.0237 0.0234 1.0107 0.0183 1.2951

X�� 0.0194 0.0205 0.9463 0.0160 1.2125

X�� 0.0153 0.0125 1.2240 0.0178 0.8596

X�� 0.0158 0.0138 1.1449 0.0101 1.5644

X
� 0.0152 0.0186 0.8172 0.0195 0.7815

X
� 0.0128 0.0090 1.4144 0.0118 1.0894
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To follow up

This paper:

http://www.stats.bris.ac.uk/�peter/

papers/bvsswang.ps

This talk:

http://www.stats.bris.ac.uk/�peter/

slides/tokyo.ps

My web page:

http://www.stats.bris.ac.uk/�peter

My email address:

P.J.Green@bristol.ac.uk
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