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Trivial example: Normal random sample

DataYy,Ys,...,Y, are a random sample from
N(p,0?).

Independent priors on p and o

po~ Nk
o~ T(af)

(these are only conditionally conjugate).

Joint posterior:

r(u,o”[¥Y) o (o%) o

B _kp=8? Yi-p?’

e {_F 2 2072

which is not of standard form.

Bayesian inference

Data: YV

Parameters, latent variables: 8 = (6;,6-,...,0,)
Likelihood: f(Y]0)

Prior: my(0)

Inference is based on the joint posterior

mo(0)f(Y0)
"O) = e e
o< mo(0)f(Y]0)
i.e. Posterior o< Prior x Likelihood

We will write 7(0) for =(0]Y).

Example: Weibull/Gamma experiment

Data are a random sample, possibly censored, from
Weibull(p, k):

F(¥lp, k) = K" p™ [ Y exp (—p" YY)

where m and [, are number of and product over
uncensored observations.
Independent Gamma priors on p and k:

mo(p, k) o p* te PPRI g0
Posterior:

m(p,k) o KTV exp (—p LY
paflefﬂpli'yflefén



Computation for Bayesian inference

Under the posterior distribution, the parameters 6
are generally dependent, so we have to compute with
a multivariate distribution, often in a high number
of dimensions, with arbitrarily complex patterns of
dependence.

Here, “compute with” could mean almost anything;
an example would be to calculate a marginal
(posterior) density.

Some of the possible approaches:

e Exact analytic integration is usually not
available (and we don’t want to be restricted in
our model construction to use conjugate priors,
etc., to make it possible).

Markov chain Monte Carlo

MCMC (a.k.a. Dynamic simulation) works even
where static simulation doesn’t, because

e All simulation methods rely on the Law of
Large Numbers, and this remains true (the
Ergodic theorem) when you have a Markov
chain instead of an i.i.d. sequence.

¢ If you don’t mind Markov dependence, then
you can update the parameters 6,,6,, ...,6,
one-by-one (or in small groups).

The objective is to construct a Markov chain whose
state space is the parameter space {6}, and whose
limiting distribution is the required posterior
distribution 7 (0).

e Asymptotic analytic approximations (e.g.
Laplace) are awkward to set up, and can be
unreliable.

e Conventional numerical methods require
expertise and careful design to set up, and are
only efficient in a low number of dimensions.

e Ordinary (“static”) simulation is always
available in principle, since the posterior
distribution can be factorised as

TI'(G‘Y) = 7['(91,92, o .,gp)

= 7T(01)7T(02|91) .. .7T(0p‘01, .. .701),1)

but the univariate distributions on the right
hand side are rarely all available for simulation
purposes (even after re-ordering).

The basic limit theorems

If {6V} is an irreducible Markov chain with
transition kernel P and invariant distribution 7, and
g is a real valued function with [ |g(8)|r(d8) < oo,
then

%Zg(ﬂ(t)) R /g(@)n(d@) <o

for r-almost all 6©).

If the chain is also aperiodic, then there is
convergence in total variation:

1P, ) = x()]| >0
ast — oo, for m-almost all 8.

Richard Tweedie will give the details!



The key idea in most practical MCMC methods is

reversibility. The distribution = is invariant for P if

we have detailed balance (reversibility):
m(0)P(6,6') = (6')P(6',0)

forall 6,6'.

Reversibility is sufficient but not necessary;
however it is far easier to work with. We’ll ignore

the irreducibility and aperiodicity for the moment.

The basic MCMC sampling methods
The Gibbs sampler

Discard the current value of 6;, and replace it by a
value drawn from the full conditional distribution

m(0:]0-:)

(where “—i” stands for {j : j # ¢}). Then we are
using the kernel

P(0,0") = m(0;10_,)I[0—; = 0"],

and reversibility holds because given 6_;,
0; and 6; are i.i.d. ~ 7(0;]0_;).

1

Think of reversibility as requiring a balance in the
flow of probability.

The transitions described by P are neutral with
respect to the contours of probability of .

10

The Metropolis method

Draw a candidate new value (or “proposal”) ¢,
from an arbitrary distribution ¢(¢;; ) satisfying the
symmetry condition ¢(6; 8) = q(6;;6’) (where
0_;=10")).

Accept this with probability
a =min{l,7(6;|0_;)/7(6;]60_;)};

otherwise leave 6 unchanged.

The Hastings sampler

As Metropolis, except that symmetry of ¢ is not
needed; the acceptance probability becomes:

. m(0;00_:)q(0:;0")\
o = i {1’ w(0:10-0)a(0:0) J

the proof of correctness of each is the same: the
choice of acceptance probability simply ensures that
detailed balance is satisfied.

12



Proof of reversibility
For@ + ¢,

©(0)P(6,0") = =(0_;)m(0:10_;)q(0};0)a(6,0")
= 7(0_;)min{R(9,6"),R(0',0)}

where R(0,60') = w(0:10_;)q(0}; 8). The whole
expression above is therefore symmetric in 8 and
(recall that 0_; = 60"_,). So reversibility holds.

This argument for the Hastings method covers
Gibbs and Metropolis a fortiori.
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Combining kernels to make an ergodic sampler

All of the methods above satisfy detailed balance,
and hence preserve the equilibrium distribution: if

0 ~ (0)

before the transition, then so it will afterwards.

To ensure that this is also the limiting distribution
of the chain (ergodicity), we must combine such
kernels to make a Markov chain transition
mechanism that is irreducible (and aperiodic).

To do that, scan over the available kernels (indexed
by i or A) either systematically or randomly, or in
various other ways that are valid, provided you
visit each variable often enough. You can use
different recipes (Gibbs, Metropolis,...) for different
A.
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Updating several variables at once

Each of the Gibbs, Metropolis and Hastings
methods is equally valid if a group of variables
64 = {0; : j € A} is updated simultaneously; each
uses the full conditional 7(64]6—-.4). You could
update all variables at once in Metropolis or
Hastings. (It is a subtle question whether it is a
good idea to update many variables.)

An important special case arises where the variables
in 64 are conditionally independent (under the full
conditional). They can then be updated in parallel.

Role of full conditionals

All of the basic methods use the full conditionals
m(64]0-4), where A indexes the variables being
updated. In Gibbs, you have to draw from this
distribution; in Metropolis and Hastings, you only
have to evaluate it (up to a multiplicative constant)
at the old and new values.

14

Trivial example: Normal random sample

Data are a random sample from N (y, 0?).

Independent priors on x and o

po~ N(Er
o ? ~ DI(f)

Full conditionals are easily found:

o 22V + k€ 1 >

Y ~ N
plo, < o 2n+k ‘o ?n+k

oY ~ Tla+n/28+Y(Y: — w)?/2)

and we can implement a Gibbs sampler by
alternately drawing i and o2 from these
distributions.

16



Gibbs sample of size 1000

sigma

12 13 14 15 16 17 18

Posterior sample of (u, o) from data with n = 10,
Y = 15, s2. = 4. Uninformative prior.
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Full conditionals for Weibull/Gamma example

m(plr) o P exp (=p" YY) p e

w(klp) o K™ TIL Y exp (—pt LY KT e O

.. hardly of standard form, so Gibbs is
problematical, but easily evaluated for Metropolis
or Hastings.

An easily implemented MCMC method would be

e alternate between p and «

e propose new value from distribution symmetric
about present value

e reject if out of range

e accept with probability (e.g.)
min{1, 7(p'|)/m(plx)}

19

Marginal distributions

0.00.10.20.30.40.50.6

12 14 16 18
mu

0.0 0.2 0.4 0.6 0.8

sigma

Posterior distributions of 1, and ¢ from data with
n =10,Y = 15, s2 = 4. Uninformative prior.
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Using a MCMC sample
Having generated a MCMC sample 6,8 ..,

we are free to extract from it information about the
target distribution in many different ways.

Probabilities can be estimated by computing
empirical frequencies:

1 N
(t)
ﬁz [0 e A]
Expectations using empirical averages:
Ex(9) = [ 9(®)r(d iz (09)
™ N e

Marginal distributions arise from simply ignoring
some components:

N
Z (t)



Conditional distributions can be obtained either by
holding components fixed or selecting from the sample.

For example, if 6 is partitioned as (64, 82), and we
want to estimate E.(g(61)|62 = c), we could either

(@) use a MCMC sampler formed from kernels that
only update 6, (note that detailed balance for = is
the same as detailed balance for (6, |6-) for such
kernels), initialising 8, = ¢, or

(b) (assuming w(@2 = ¢) > 0) use an unconstrained
sampler and the estimate

S 9018y = ¢
E(9(01)|02 =c) =
(9160162 =€) #{t < N6y =c}
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Directed acyclic graphs

For example, the DAG (directed acyclic graph) —a
graph in which all edges are directed, and there are
no directed loops -

®
N\ (I)/

@

expresses the natural factorisation of a joint
distribution into factors each giving the joint
distribution of a variable given its parents

m(a,b,c,d) = w(a)m(b)m(c|a,b)m(d|c)

23

The role of graphical models

Graphical modelling provides a powerful language
for specifying and understanding statistical models.

Graphs consist of vertices representing variables,
and edges (directed or otherwise) that express
conditional dependence properties.

22

IR
NPaY

JINS

3 O g
A

In general
m(6) = [] 7(6s16pa(w))
veV

which in turn implies a Markov property, that
variables are conditionally independent of their
non-descendants, given their parents.

24



From the perspective of setting up MCMC methods,
the graphical structure assists in identifying which
terms need be included in a full conditional.

TF(O) = H 7r(evaat(v))
veV
implies
71'(01,‘9,“) = 71'(ei)wpa(v)) H ﬂ(9w|9pa(w))
wivEpa(w)

that is, one term for the variable itself, and one for
each of its children.

Graphical modelling, the construction of MCMC
methods through full conditional distributions, and
good practice in statistical model building all
exploit the same modular structure.

25

Monte Carlo standard errors

(Not the standard error of the posterior!)

We should be concerned about the precision of
simulation-based estimates. Because of Markov
dependence, this is not quite straightforward, even
though we (mostly) just use empirical averages as
estimates.

Some possibilities:
e Blocking (Hastings)

e Time-series methods (= estimating spectral
density at 0) (e.g. Sokal)

e Initial series estimates (Geyer)
e Regeneration (Tierney, Mykland and Yu)
For reversible samplers, there is also a Central Limit

theorem for Markov chain averages (Kipnis and
Varadhan).

27

Performance of MCMC methods
There are three main issues to consider

e Convergence (how quickly does the
distribution of 8 approach 7 (8(Y)?) (or, can
we find exact/perfect MCMC sampling methods that
give guaranteed convergence?)

o Efficiency (how well are functionals of 7(8|Y")
estimated from {8(V1?)

e Simplicity (how convenient is the method to
use?)

Note that here computer effort should be measured
in seconds, not iterations!

Gibbs is not necessarily superior to other methods
on any of these three criteria.

26

Estimating [ g(6)m(0)d0 by N~' 3N 4(6Y) = gy.
Var(gN) ~N1 Z’Yt
where v, = cov{g(8*)), g(6©+)}.

Blocking (or batching)

Divide run of length NV into b consecutive blocks of
length k.

b
var(gy) = {b(b— D}y {gki — gna}’
=1

where
ik

Gri =K1 Z g(89).

j=(i—1)k+1

This extends to nonlinear functions of empirical
averages.

28



Using empirical covariances

Cannot estimate > ~; consistently by >*°_ 7;:
use windowed estimate >~ w(t)7; instead.

Initial series estimators

Geyer (1993, Stat. Sci.) observes that, for a
reversible ergodic chain, A2; 4+ 72:+1 iS non-negative,
decreasing and convex in ¢: truncate Y 7; when one
or other of these properties is violated.

Regeneration

Look for regeneration points in the Markov chain
path, in practice aided by Nummelin’s splitting
technique; tours between regenerations are i.i.d., so
renewal theory and ratio estimation give estimates
of posterior expectations, and simulation standard
errors that are valid without quantifying Markov
dependence.

29

Then by simple probability calculus we find
P(SW = 1|9(§t)’5(<t)) = S(g(t))
and

P(OUHY € 419D §(<D g0 — 1) = y(A)

that is, we can post-process the chain stochastically
to generate binary ‘splitting variables’. Whenever
S® = 1, the next state 8 1) is drawn from v,
independent of the past! The chain regenerates.

The problem with using the technique in practice is
that in the Markov chains we tend to create for
Bayesian computation, P (0, A) is difficult to handle
algebraically, and/or impossible to bound below by
s(@)v(A) as required.

31

Regeneration using Nummelin’s splitting

Suppose the transition kernel P(6, A) satisfies
P(0,4) > s(0)v(A)

where v is a probability measure, and s is a
non-negative function such that [ s(0)7(d8) > 0.

Let r(6,0") denote the Radon-Nikodym derivative

0)v(16")

0,6 = 5(6)v(d9") < 1.

r0.9)= 6407 =

Now, given a realisation ), 6 .. from P,
construct conditionally independent 0/1 random
variables S, S with

P(S® =1]..)=r@O", 00

30

Prediction

Formally, in Bayesian inference, we can group all
unobserved variables (parameters, latent variables,
missing data, future data) as 6. But temptation to
do so with MCMC should be restrained.

For example, suppose we have actual data Y and
future data Y+ that are conditionally independent
given 6. Then

7(0,YT|Y) = n(8]Y)r(Y"|)

and MCMC should be used for the first factor, but
direct forwards simulation for the second. There are
other much more subtle cases where combinations
of MCMC and direct simulation will be more
efficient: these are examples of “partial
conditioning”. You need to look at the conditional
independences in the model rather closely to see
what is valid.

32



Credibility intervals

Many computations on the posterior that would be
quite complicated analytically reduce to trivial
enumeration from the MCMC sample. For example,
an estimated 100(1 — )% credibility interval for 6;,
given Y, is [0}, 6N 177! where j = Na/2, and 6V
is the jtI order statistic of the MCMC sample of 6;.

33

Sensitivity analysis via MCMC

It is important to study effect on posterior of
changes to model, especially variations in the prior.

m(@) o m(0)f(Y]6)
T (6) o m(0)f"(Y]6)

Can just repeat MCMC computation on the new
model: note that even where the base model is
rather tractable (e.g. m (@) conjugate to f(Y]0)),
responsible analysis will involve alternatives that
are not.

T T

explicit calculation = MCMC
Gibbs sampler = Hastings

35

Simultaneous credibility intervals

Often, particularly in function and image
estimation, we are interested in simultaneous
credibility intervals. This is still quite
straightforward. Compute the ordinary intervals as
above, then choose j to be the largest integer such
that

al[j] < gl(t) < 91[N+1—j]

for all 4, for at least N (1 — «) values of .

This has nice equivariance properties (exactly
equivariant to strictly monotone componentwise
transformations of 8), and can be computed by
ordering one vector of maximum folded ranks, in
addition to the MCMC samples.

34

Sensitivity analysis via importance sampling

... estimate from MCMC run aimed at 7, by

S w(6®)g(8")
Yo w(@®)

where

™ (6)

()

Problem: except in very low dimensional problems,
w(0®)/ Y, w(-) is effectively concentrated on very
few samples, = very poor efficiency.

w(0)

This can sometimes be mitigated by considering
infinitesimal perturbations instead:

7(8) o (m(0))1 =) (7*(8)) (or by running another
chain).

36



Some tools for improving performance

e Grouping variables for simultaneous updating

Re-parameterisation (e.g. hierarchical
centering)

Antithetic variables/over-relaxation methods

Adaptive algorithms

Enlarging state-space:

i. Auxiliary variables (e.g. Swendsen-Wang)
ii. Multigrid methods
iii. Simulated tempering

iv. Inventing additional models (and using
reversible jump MCMC)

v. Hybrid MCMC (momentum variables)

37

Simulated tempering

Combat slow mixing by embedding desired model
in a family of models, indexed say by «, and treat «
now as an additional dynamic variable. Design the
family so that for some «, the chain mixes much
better.

w(0Y) = 7*(0, a0|Y)

Run MCMC on 7*(8, «|Y"), and condition on o = ag
by selecting from the output.

39

Improving performance by augmenting
the state space

Perhaps counter-intuitively, it is sometimes possible
to improve MCMC performance by augmenting the
state vector to include additional components. Two
successful recipes are those in which the original
model appears as a conditional distribution in an
augmented model (simulated tempering) and in
which it appears as a marginal (auxiliary variables).

38

Simulated tempering, by changing the
temperature

This was the original Marinari/Parisi idea; we set
(0, alY) oc {m(0]Y)}*

where o = oy = 1 corresponds to the original
model, and o — 0 makes the probability surface
‘flatter’, or in physical terms, ‘warmer’.

The full conditionals change in the same way:
F*(giw,i, (e Y) X {7‘(’(91“07,', Y)}a

so implementation is very easy.

We place a (discrete) artificial prior on « so that the
marginal for « is approximately uniform.

40



Simulated tempering, by inventing models

An example from mixture analysis: allowing the
number of components to vary gives much better
mixing. (This uses reversible jump MCMC: see later.)

M

0 200 400 600 800 1000 1200 1400 4 -2 0 2 4
sweep mean(2)

Fixed k sampler

Variable k sampler

density
0.0 0.1 0.2 0.3 0.4 05

e
Ly

prob >0
0.0 0.2 0.4 0.6 0.8

0 200 400 600 800 1000 1200 1400 0200 600 1000 1400
sweep sweep
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When might this idea be useful? Suppose ()
factorises as:
m(8) = m0(0)b(0)

where 7 (0) is a (possibly unnormalised)
distribution that is easy to simulate from, and b(9)
is the awkward part, often representing the
‘interactions’ between variables that are slowing
down the chain.

Then take a one-dimensional « with
u|@ ~ U[0,b(0)]: we find

1[0 < u < b(0)]

w(0,u) = m(0)7(u|@) = m(0)b(0) )

so that
w(0]u) o< m(0)

restricted to (conditional on) the event
{6 : b(0) > u}. At least when this 7(8|u) can be

sampled without rejection, we can easily implement

a Gibbs sampler, drawing v and 6 in turn.

43

Auxiliary variables

Edwards and Sokal proposed a way to improve
mixing by augmenting the state space so that the
original target appears as the marginal equilibrium
distribution.

Starting from 7 (0), take some additional variables
u, With 7(u|@) arbitrarily chosen. Then the joint is
m(0,u) = m(0)7(u|@), for which () is certainly the
marginal for 6.

We could now run a MCMC method for the joint
target (0, u) (usually a method that updates 6 and
u alternately), and simple ignore the u variable in
extracting information from the simulation.

42

This method has recently been popularised under
the name of the ‘slice sampler’, reflecting the fact
that if (@) = constant, both 7(u|@) and 7 (60|u) are
uniform distributions, corresponding to vertical
and horizontal slices through the graph of 7 (6).

0.4

(8)

0.2

o,u (6,u)

0.1

0.0
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Bayesian model determination

It is wrong to behave as if the statistical model for
our data was not subject to question.

Suppose we have a (countable) collection of models
that we wish to entertain: My, My, ..., My, .. ..

A priori, we assign probabilities to these: p(k).

For each model, there is a parameter vector
0 = 0% ¢ R™ say, with a prior: p(§®)|k), and a
likelihood for the observed data Y: p(Y |k, 6%)).

The joint distribution of all variables is

p(k,0®),Y) = p(k)p(0™®) |k)p(Y |k, 6P))

45

Within-model simulation

Here we treat each model M, separately.

The posterior for the parameters %) is in any case a
within-model notion:

PO p(Y 1, 6)
T P6@p(Y Tk, 00)do

p(O® Y, k) =

As for the posterior model probabilities, since

p(k1]Y)  p(k1) p(Y|k1)

p(kolY) p(ko) p(Y|ko)

(the Bayes factor for model Mg, vs. My,), itis
sufficient to estimate the marginal likelihoods

p(Y|k) = / p(6® Y [k)do®

separately for each k, using individual MCMC runs.

47

Observing Y provides information about both the
model indicator £ and the corresponding parameter
vector §(%), through their posterior distributions:

Lo, y)a®
PY) = 5= ok, 99, V)6 ®

and
p(k,0®).Y)

[ p(k, 0%, Y)do®)
involving integrals that as usual seem to need
MCMC!

p(0P|Y, k) =

There are two main approaches: within-model and
across-model simulation.
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Estimating the marginal likelihood

There are many possible estimates based on
importance sampling, some of which are
well-studied, for example

N
Bk =N /3 p(v|k,6")

t=1

based on a MCMC sample 6% 6{*) . from the
posterior p(A®M)|Y, k), or

N
Pa(YIk) = N1 p(YV k. 60)
t=1
based on a sample from the prior p(6%) |k).

Both of these has its faults, and composite estimates
can perform better.
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Across-model simulation

Here we conduct a single simulation that traverses
the entire (k, %)) space. Since the dimension n;, of
) typically varies with k, this requires a MCMC
sampler that works in more general spaces than R%.

The Metropolis-Hastings recipe extends to arbitrary
measure spaces: “reversible-jump MCMC”. We will
use a range of move types m, each providing a
transition kernel P,,, and insist on detailed balance
for each:

/OGAw(dG)Pm(O,B) = /%B m(d0')P,,(6', A)

for all sets of parameter values A, B.
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In concrete terms, think of how the program will do
it:

(0,u) < (6',u)
where v are the random numbers you will draw to
combine with 6 to make the proposed new state &',
and vice-versa. Then the acceptance probability
becomes

The ratio is of joint densities with the same degrees
of freedom, together with the Jacobian needed to
account for the change of variable.

o6, u')
0(0,u)

m(6")q(u')

“:mm{l’ ~(6)(v)

This expression applies for straightforward moves
that do not change the dimension, as well.
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The Metropolis-Hastings idea still works, but you
need to work a bit to make the acceptance ratio
make sense:

o = min {17 (d0')q(8',d0) }

7(d0)q(0,do’)

where numerator and denominator need to have
densities with respect to a common dominating
measure (“dimension-balancing”). That is, we find
a dominating measure for the joint distribution of
the current state (in equilibrium) and the next one.
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Strengths of MCMC

e Freedom in modelling
e Freedom in inference

e Well-adapted for models defined on sparse
graphs

e Addresses questions only posed after
simulation completed (e.g. ranking and
selection)

e Opportunities for simultaneous inference
e Allows/encourages sensitivity analysis

e Model comparison/criticism/choice

Weaknesses of MCMC

e Order N—1/2 precision

e Possibility of slow convergence, especially
when not diagnosable (meta-stability)
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