
Multiple change-point analysis

A Bayesian approach to change-point analysis for
point processes �y�� y�� � � � � yn�: combines

� Poisson-process likelihood:
p�yjx� � expf

Pn

i�� log x�yi��
R L
�
x�t�dtg

� prior model for step function x�t�, � � t � L,
representing intensity

Prior model: represent step function by
�k� fsjg

k
j��� fhjg

k
j���: x�t� �

P
j hjI�sj�sj����t�:

� number of steps k: Poisson(�),

� step heights hj : Gamma(�� �),

� step positions sj : p�sjk� �
Q

j�sj�� � sj�,

all independent.
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MCMC for step functions

� � �k� fsjg
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I will use four moves:

(a) Metropolis change to a randomly chosen step
height hj .

(b) Metropolis change to a randomly chosen step
position sj .

(c) Jump move: birth/death of steps

– birth: choose new step position s� at
random, split current step height h into two:
�h�� h��

– death: choose step at random to kill,
combine current step heights �h�� h�� into
one: h

(d) Update hyperparameters �, �
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Birth and death of steps
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Example:
cyclones hitting the Bay of Bengal

141 cyclones over a period of 100 years
(a cyclone is a storm with winds � �� km h��).
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Choices of hyperparameters:

� Prior on k: Poisson(�), with � � �.

� Prior on hj : Gamma(�,�), with
– � � ���� ��

– � � ���� n�L�

Sample of step functions from the posterior:

time

in
te

ns
ity

0 20 40 60 80 100

0
1

2
3

22

Posterior for the number of change points k
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Zero change points is ruled out; k � � or � more
probable than under the prior.
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Posterior density estimates for change-point
positions

time

de
ns

ity

0 20 40 60 80 100

0.
0

0.
05

0.
10

0.
15

24

Model-averaged estimate: E�x���jy�
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(the expectation of a random step function is not a
step function).
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Ordinary smoothing methods (in this case a kernel
smoother) can’t match that mean curve
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– fixed-bandwidth smoothers either over-smooth
the steps, or under-smooth the plateaux.
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