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Usually in a frequentist setting, inference about
these two kinds of unknown is based on different
logical principles.

There may be debate on what to do with it, but the
Bayesian needs only the joint posterior p(k, 6;|Y").
How should we compute it?

Trans-dimensional Markov chain Monte Carlo

What if ‘the number of things you don’t know is
one of the things you don’t know’?

Ubiquitous in statistical modelling, both

e in traditional modelling situations such as
variable selection in regression, and

¢ in more novel methodologies such as object
recognition, signal processing, and Bayesian
nonparametrics.

Formulate generically as joint inference about a
model indicator k£ and a parameter vector 6, where
the model indicator determines the dimension ny, of
the parameter, but this dimension varies from
model to model.

Hierarchical model
Suppose given

e a prior p(k) over models k in a countable set £,
and

e foreach k

— aprior distribution p(0x|k), and
- alikelihood p(Y |k, 6) for the data Y.

For definiteness and simplicity, suppose that p(6x|k)
is a density with respect to ng-dimensional
Lebesgue measure, and that there are no other
parameters, so that where there are parameters
common to all models these are subsumed into each
0 € R™.

Additional parameters, perhaps in additional layers
of a hierarchy, are easily dealt with. Note that all
probability distributions are proper.



The joint posterior

B p(R)p(6W)p(Y |, 64)
Pk OclY) = S~ (6, (Y Ik, 07, )0

can always be factorised as
p(k, Ok|Y) = p(k|Y )p(0k |k, Y)

—the product of posterior model probabilities and
model-specific parameter posteriors.

- very often the basis for reporting the inference,
and in some of the methods mentioned below is
also the basis for computation.

Compatibility across models

Some would argue that responsible adoption of this
Bayesian hierarchical model presupposes that, e.g.,
p(0x|k) should be compatible in that inference about
functions of parameters that are meaningful in
several models should be approximately invariant
to k.

Such compatibility could in principle be exploited
in the construction of MCMC methods (how?).

But it is philosophically tenable that no such
compatibility is present, and we shall not assume it.

Non-Bayesian uses

Trans-dimensional MCMC has many applications
other than to Bayesian statistics. Much of what
follows will apply equally to them all; however, for
simplicity, I shall use the Bayesian motivation and
terminology throughout.

Note the generality of this basic formulation: it
embraces both

e genuine model-choice situations, where the
variable k indexes the collection of discrete
models under consideration, but also

e settings where there is really a single model, but
one with a variable dimension parameter, for
example a functional representation such as a
series whose number of terms is not fixed (in
which case, k is unlikely to be of direct
inferential interest).

Across- and within-model simulation
Two main approaches:

e across: one MCMC simulation with states of the
form (k, 0y)

o within: separate simulations of 6, for each k.



Across-model simulation
Reversible jump MCMC

The state space for an across-model simulation is
{(F, 1)} = Urex ({F} x R™).

Mathematically, this is not a particularly awkward
object. But at least a little non-standard!

We use Metropolis-Hastings to build a suitable
reversible chain.

On the face of it, this requires measure-theoretic
notation, which may be unwelcome! The point of
the ‘reversible jump’ framework is to render the
measure theory invisible, by means of a
construction using only ordinary densities. Even
the fact that we are jumping dimensions becomes
essentially invisible!

In Metropolis-Hastings, we make a transition by
first drawing a candidate new state / from the
proposal measure ¢(z, dz’) and then accepting it
with probability a(x, z"), to be derived below.

If we reject, we stay in the current state, so that
P(z,dz’) has an atom at x. This contributes the
same quantity [, , P(z, {z})r(dz) to each side of
the DB equation; subtracting this leaves

/ n(dz)g(z,dz’)a(z, ")
(z,z')EAXB

= / n(dz')q(z’', dz)a(z’, ).
(z,z")EAXB
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Metropolis-Hastings on a general state space

We wish to construct a Markov chain on a state
space X’ with invariant distribution 7.

As usual in MCMC we will consider only reversible
chains, so the transition kernel P satisfies the
detailed balance condition

/W(dl’)P(I,dI/) = /W(dx')P(a:',dx)

(both integrals over (z,z') € A x B),
for all Borel sets A, B C X.

Compare this with

7(z)P(z,7") = n(z")P(a’, x)
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Now 7 (dz)g(z,dz’) is dominated by a symmetric
measure p on X x X; let its density
(Radon-Nikodym derivative) with respect to this u
be f. Then DB requires

/ a(z,a) f(z, ' )u(de, do’)
(z,2")EAXB

- / a(a!,2)f(', 2)u(da’, dz)
(z,2")€EAXB

Using the symmetry of p, this is clearly satisfied for
all Borel A, B if

a(z,z') = min{l, f(x,’x)} .

f(z,a')
This might be written more informally in the
apparently familiar form

afiy') = win {1, TEHHT A,

7(dz)q(z, dz’)
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A constructive representation in terms of random
numbers

Now let’s get rid of this abstraction!

Consider how the transition will be implemented;
we find the dominating measure and
Radon-Nikodym derivatives can be generated
implicitly.

Assume X C R4, and that 7 has a density (also
denoted 7) with respect to d—dimensional Lebesgue
measure.

At the current state x, we generate, say, » random
numbers u from a known joint density g, and then
form the proposed new state as a deterministic
function of the current state and the random
numbers: 2/ = h(x,u), say.

The reverse transition from 2/ to =z would be made
with the aid of random numbers «' ~ ¢’ giving
x=h(z' u).
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Detailed balance says the two integrals are equal:
it holds if

o(z',u')
O(z,u)

r(@)gwalz o') = n(z')g (W)ala',2) \

where the last factor is the Jacobian of the
diffeomorphism from (z,u) to (', u').

Thus, a valid choice for a is

involving only ordinary joint densities.
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The equilibrium probability of jumping from A to B
is then an integral with respect to (z, u):

/ 7(z)g(u)a(z, 2’ )dz du.
(z,2'=h(z,u))EAXB

The equilibrium probability of jumping from B to A
is an integral with respect to (z/, u'):

/ 7(z)g (v )a(z', z)d2’ du.
(z=h'(z',u"),z')EAXB

If the transformation from (z,u) to (', v') isa
diffeomorphism (the transformation and its inverse
are differentiable), then we can apply the standard
change-of-variable formula, to write this as an
integral with respect to (z,u).
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What's the point?

Perhaps a little indirect!

- but a flexible framework for constructing quite
complex moves using only elementary calculus.

The possibility that » < d covers the typical case
that given z € X, only a lower-dimensional subset
of X is reachable in one step.

(The Gibbs sampler is the best-known example of
this, since in that case only some of the components
of the state vector are changed at a time, although
the formulation here is more general as it allows the
subset not to be parallel to the coordinate axes.)

16



Deliberate redundancy

Separating the generation of the random innovation
u and the calculation of the proposal value through

the deterministic function 2/ = h(z, u) is deliberate;

it allows the proposal distribution

q(xz, B) = fh(m’u)GB g(u)du to be expressed in many

different ways, for the convenience of the user.
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Dimension matching

Suppose the dimensions of z, 2/, v and v" are d,d’, r
and r’ respectively, then we have functions
h:RIxR" —RYand b/ : RY x R™ — R?, used
respectively in 2’ = h(z,u) and z = 1/ (z', /).

For the transformation from (z, u) to (2, u’) to be a
diffeomorphism requires thatd + r = d + 1/,
so-called ‘dimension-matching’; if this equality
failed, the mapping and its inverse could not both
be differentiable.

Dimension matching is necessary but not sufficient.
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The trans-dimensional case

But the main benefit of this formalism is that
m(z')g'(u') |0(a', u')
m(z)g(u) | O(z,u)

a(z,2") = min {1,

b

applies, without change, in a variable dimension
context.

(Use the same symbol 7(z) for the target density
whatever the dimension of x in different parts of X'.)

Provided that the transformation from (z,u) to
(z',u’) remains a diffeomorphism, the individual
dimensions of z and 2’ can be different. The
dimension-jumping is ‘invisible’.
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Details of application to model-choice

We wish to use these reversible jump moves to
sample the space X = [J,c,c({k} x R") with
invariant distribution m, which here is p(k, 6;|Y).

Just as in ordinary MCMC, we typically need
multiple types of moves to traverse the whole space
X. Each move is a transition kernel reversible with
respect to 7, but only in combination do we obtain
an ergodic chain.

The moves will be indexed by m in a countable set
M, and a particular move m proposes to take

z = (k,0;) toa’ = (K, 0;,) or vice-versa for a
specific pair (k, k'); we denote {k, k'} by K,,.

20



The detailed balance equation becomes

/ () g (2, A’ Yt (2, 2')
(z,2")EAXB

= / 7(dz")gm (2, dz) o (', 7)
(z,2")EAXB
for each m, where now g, (z, dz’) is the joint
distribution of move type m and destination /.

The complete transition kernel is obtained by
summing over m, so that for « ¢ B,

P(z,B)=> fB qm (2, dz" )y (z, 2').
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Toy example

..... of no statistical use at all!

Suppose z lies in R U R?: 7(z) is a mixture:
with probability p;,  is U (0, 1),

with probability ps, it is Uniform on the triangle
O<ze <1 <1

I will use three moves:

(1) withinR: x — U(x — €,z + ¢€), suppressing
moves outside (0,1).

(2) within R2: (:1,'1,1'2) — (]. — 29,1 — $1).

(3) between R and R?
In R, choose (1) or (3) with probabilities 1 — ry, ry.
In R?, choose (2) or (3) with probabilities 1 — ry, rs.

Thus j3(z) =7 forall z € R and j3(z') = ro for all
z' € R2
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The acceptance probability derivation is modified
correspondingly, and yields

a(z',u')
O(z,u)

(") jm (%) g (1)
(@) Jm(z) gm(u)

O (z,7') = min {1,

Here j,,(x) is the probability of choosing move type
m when at z, the variables z, ', u, v’ are of
dimensions d,,,, d.,,, rm, T}, respectively, with
dy + T = di, + 7., We have z’ = h,,(z,u) and
x = hl,(2',u), and the Jacobian has a form
correspondingly depending on m.

Of course, when at = = (k, 6x), only a limited
number of moves m will typically be available,
namely those for which k € IC,,,. With probability
L =3 nkek,, Jm(z) NO Move is attempted.
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Dimension-changing with move (3)

Proposal:

To go from z € R to (71,22) € R?, draw u from
U(0,1) [so gs(u) =1if 0 < u < 1] and propose
(z1,2z3) = (x,u). For reverse move, no v’ required
[write ¢g5(v') = 1] and set z = ;. This certainly
gives a bijection: (z,u) <> (z1,z2), with Jacobian
=1

Acceptance decision:
. m(2") js(a') gh(u') |O(2', u)
1, -
mm{ w(@) js(x) gs(u) | Oz, u)

21 1
min{l,p2 [$2<I1]T21|}
D1 ril

2
min {17 P22 } Ifu < z]
bira

Q
|

|

For reverse move, a = min{1, (p171)/(2par2)}.

24



First 30 steps
5000 steps

pP1 = 04, P2 = 06, rT = 07, To = 04, e=0.3.
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Some remarks and ramifications

¢ key role of joint state-proposal equilibrium
distributions 7 (dz)q(z, dz’)
¢ nested models: RJ = proposals with atoms and
¢ insights into Metropolis-Hastings applying usual M-H formula

quite generally
e there are alternative derivations and

— state-dependent mixing permissible if move descriptions, e.g. Waagepetersen and
probabilities enter into the acceptance Sorensen (2001) and Besag (1997, 2000) (giving a
probability calculation novel formulation in which variable dimension

— contrast between this randomised proposal notation is circumvented by augmenting z by u)

mechanism, and related mixture proposals . . . -
brop e RJis only Metropolis-Hastings (so if it doesn’t

— (contrary to some accounts that connect it seem to work....)
with the jJump in dimension) the Jacobian
comes into the acceptance probability only
because the proposal destination
x' = h(z,u) is specified indirectly

27 28



Relations to other across-model approaches

Several alternative formalisms for across-model
simulation are more or less closely related to
reversible jump.

Jump diffusion

Grenander and Miller (1994): two kinds of move —
between-model jumps, and within-model diffusion
using a Langevin stochastic differential equation (+
discrete-time approximation = a trans-dimensional
Markov chain).

Had they corrected for the time discretisation by a
M-H accept/reject decision (Metropolis-adjusted
Langevin algorithm), this would have been an
example of reversible jump.

Phillips and Smith (1996) applied jump-diffusion to
a variety of Bayesian statistical tasks, including
mixture analysis, object recognition and variable
selection.
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Stephens (2000): various trans-dimensional
statistical problems can be viewed as abstract
marked point processes.

He borrows the birth-and-death simulation idea to
do finite mixture analysis, and also suggests that the
approach appears to have much wider application,
e.g. change point analysis and regression variable
selection. The key feature of these three settings is
the practicability of integrating out latent variables
so that the likelihood is fully available.

Cappé, Robert and Rydén (2001) give a rather
complete analysis of the relationship between
reversible jump and continuous time
birth-and-death samplers.

31

Point processes, with and without marks

Point processes: natural example of a
variable-dimension distribution, since the number
of points in view is random; in the basic case, a
point has only a location, but more generally has a
mark, a random variable in a general space.

A continuous-time Markov chain approach to
simulating certain spatial point processes using
birth-and-death processes was investigated by
Preston (1977) and Ripley (1977).

— Geyer and Magller (1994) proposed a M-H sampler,
as an alternative; their construction is a special case
of reversible jump.

30

Product-space formulations

Several relatives of RJ work in a product space
framework, in which the simulation keeps track of
all 6, not only the ‘current’ one.

The state space is £ x QrexR™ instead of

Urex ({E} x R™).

Advantage: circumvents the trans-dimensional
character of the problem

Cost: requires that the target distribution be
augmented to model all 8; simultaneously (for
some variants of this approach, this is just a formal
device, for others it leads to significantly extra
work).

32



Carlin and Chib (1995)

Let 6_, denote all 4;,1 # k catenated together. Then
the joint distribution of (k, (6, : 1 € K),Y’) can be
expressed as

p(k)p(Or|k)p(0_r|k, Or)p(Y|k, Or),

making the natural assumption that
p(Y|k, (0, :1 € K)) =p(Y|k,Or).

The third factor p(6_y |k, 6x) has no effect on the
joint posterior p(k, 8x|Y'); the choice of these
‘pseudo-priors’ is entirely a matter of convenience,
but may influence sampler efficiency.

33

Variants on Carlin and Chib

Green and O’Hagan (1998) pointed out both that
M-H moves could be made in this setting: also there
is no need to update {6;,! # k} for irreducibility. In
this form the pseudo-priors are only used in
computing the update of k.

Dellaportas et al. (2002) proposed ‘Metropolised
Carlin and Chib’ approach, in which joint model
indicator/parameter updates were made: only
necessary to resample the parameter vectors for the
current and proposed models.

35

Carlin and Chib used conditionally independent
pseudo-priors: p(6_|k, 0x) = ], p(6i|k), and
assumed p(6;|k) does not depend on k for k # 1.

They used a Gibbs sampler, updating & and all 6; in
turn: involves sampling from the pseudo-priors, so
they design these pseudo-priors to ensure
reasonable efficiency, by approximate matching to
the posteriors: p(6;|k) ~ p(6;|1,Y).

34

Composite model space framework

Godsill (2001) provides a general framework that
embraces all of these methods, including reversible
jump, facilitating comparisons between them. He
takes a fixed pool of parameters {61,0s, ...,0x}, Of
which model k needs only 7, parameter vectors
that can overlap.

Then
(k)P (O (k)| K)D(O_z() [, Oz(i) )0 (Y |, Oz (1),

The pseudo-prior is Now p(0_zx) |k, Oz(x))-

This framework

e helps to reveal that a product-space sampler
may or may not entail possibly cumbersome
additional simulation, updating parameters
that are not part of the ‘current’ model

e provides useful insight into some of the
important factors governing the performance of
reversible jump

36



Godsill’s formulation deserves further attention, as
it provides a useful language for comparing
approaches, and in particular examining one of the
central unanswered questions in trans-dimensional
MCMC:

Suppose the simulation leaves model k and
later returns to it. With reversible jump, the
values of 0, are lost as soon as we leave &,
while with some versions of the
product-space approach, the values are
retained until & is next visited. Intuitively
either strategy has advantages and
disadvantages for sampler performance, so
which is to be preferred?

37

In the very limited cases where this is possible,
Bayesian inference about %, and about 6, given &,
can be conducted separately, and trans-dimensional
simulations are not needed.

The approach has been taken a little further by
Godsill (2001), who considers cases of "partial
analytic structure’, where some of the parameters in
fr may be integrated out, and the others left
unchanged in the move that updates the model, to
give an across-model sampler with probable
superior performance.

39

Alternatives to joint model-parameter sampling

The direct approach of an across-model simulation
is in many ways the most appealing, but alternative
indirect methods that treat the unknowns k& and 6,
differently should not be neglected.

Integrating out the parameters If in each model %,
the prior is conjugate for the likelihood, then
p(0k|k,Y) may be explicitly available, and thence
can be calculated the marginal likelihoods

p(Ok|k)p(Y |k, Ok)

PR = == Gl y)

and finally the posterior probabilities
p(k[Y) o p(k)p(Y|k).

38

Within-model simulation

If samplers for the within-model posteriors
p(0k|Y, k) are available for each &, joint posterior
inference for (k, ;) can be constructed by
combining separate simulations conducted within
each model (see Carlin and Louis (1996, §6.3.1) for
more detail).

The posterior p(6;|Y, k) for the parameters 6, is the
target for an ordinary Bayesian MCMC calculation
for model k.

For the posterior model probabilities, since
p(k1)Y) _ p(k1) p(Yk1)

p(kolY)  p(ko) p(Y|ko)
(the second factor is Bayes factor for model k; vs. ko),
to find p(k|Y') for all £ it is sufficient to estimate the
marginal likelihoods

p(Y|k) = / p(6. Y [k)d6y

separately for each k, using individual MCMC runs.

40



Estimating marginal likelihoods

1) = { [0l v akndak}_l

_ /p(y\k,ek)p(mk)dek

so we have the estimates

Pi(Y|k) = Z{ (V1,600 } '

and

Pa(Y[k)= N1 Zp Y|k, 6y")
t=1
based on MCMC samples 919)7 0,(62), ... from the
posterior p(6x|Y, k) and the prior p(0|k),
respectively.
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Chib (1995): new, indirect, estimates of the marginal
likelihood based on the identity

p(Y1k) = p(Y[k, 0)p(6}|K) /p(6} |k, V) for any fixed
parameter point 6;.

The factors in the numerator are available, and
when the parameter can be decomposed into blocks
with explicit full conditionals, the denominator can
be estimated using simulation calculations that use
the same Gibbs sampling steps as the posterior
simulation.

(Note, however, that Neal (1999) has demonstrated
that Chib’s application of this idea to mixture
models is incorrect.)

Chib and Jeliazkov (2001) extend the idea to cases
where Metropolis-Hastings is needed.
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Both of these are simulation—consistent, but have
high variance, with possibly few terms contributing
substantially to the sums in each case. Composite
estimates, based like p; and p, on the importance
sampling identity E,(f) = E,(fp/q), perform
better, including those of Newton and

Raftery (1994) and Gelfand and Dey (1994).

For example, Newton and Raftery propose to

simulate from a mixture p(6y; Y, k) of the prior and

posterior, and use

iy p(Y Ik, 67 w(8;”)
S w())

where w(8,) = p(0ilk) /5(0k: Y, k).

ps(Ylk) =

42

Some issues in choosing a sampler

e Is k amodel indicator really, or a parameter?

e Do we want results across &, within each k, or
for one k& of interest?

e Jumping between models as an aid to mixing
(c.f. simulated tempering: mixing may be better
in the ‘other’ model)

e Are samplers for individual models already
written and tested?

e Are standard strategies like split/merge likely
to work?

e Trade-off between remembering and forgetting
0r when leaving model &

44



Methodological extensions
A simple automatic generic RJ sampler

For each model &, fix a nx—vector u; and a

ng X np—matrix By.

Suppose we are at (k, 6;,) and have proposed a
move to model £/, drawn from some transition
matrix (r ).

We set:
Wi + By [RBk’l(Hk — ,Ltk)]?k' ifng <ng
, ik + B RB M (0r, — pi) if n = ny,
k= B—l 0. —
Uk + Bw R k ( i Mk) if Nk > N

u

Here [ - ]7* denotes the first m components of a
vector, R is a fixed orthogonal matrix of order
max{ng, ny }, and v is a (ngr — ny)-vector of
random numbers with density g(u).

Note that if n;,: < nyg, the proposal is deterministic
(apart from the choice of /).
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The idea might work adequately, if p(6x|k, y) are
reasonably unimodal, with mean and variance
approximately equal to u and By, Bf. Simple
modifications:

e use t-distributions in place of the normals for v

e randomise over the orthogonal matrix R - or, to
simplify implementation, take R to be a
random permutation matrix

e use skewness transformations (David Hastie)

e use mixtures (Christophe Andrieu)
In practice, determine y, and By, by short pilot runs

within each k — only practical for a small finite set of
models
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Since everything is linear, the Jacobian is trivial: if
ny > ng, we have

‘ A(0r) | |Bw

B

8(0k,u)

Thus the acceptance probability is min{1, A} where

g(u) if ng < mng
~ p(K', 01 |y) ik | Br| . B
A= . 0ly) \B|X 1 ifny =n, .
; Tk,k! .
P Y Tk 1Bk glu)™t ifng >ng

Since it is orthogonal, the matrix R doesn’t appear.

If the targets p(6k|k, y) were normal distributions,

N (ux, BiBE), if the innovation variables u were
N(0,I), and if we could choose

Tk /Ti k. = D(K'|Y)/p(k|Y), these proposals would
already be in detailed balance, with no need to
compute the M-H accept/reject decision. This is the
motivation.
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Some experiments

These use a Fortran program, which calls a function
written by the user to compute:

b lng(k, 9k7 y)

e the number of models

e their dimensions, and

e rough settings for the centre and spread of each
variable, used for initial values and spread
parameters for the RWM moves

The code is set up to alternate between

model-jumping moves as described above, and
within-model moves by RWM.

48



(a) Variable selection in a small logistic regression
problem

Dellaportas et al. (2002) illustrate their algorithm
comparisons on a 2 x 2 factorial experiment with a
binomially distributed response. All 5 interpretable
models are entertained, with numbers of
parameters (n;) equal to 1, 2, 2, 3 and 4 respectively.
We use the same prior settings, etc.

One million sweeps of the automatic sampler -
many more than is needed for reliable results - takes
about 18 seconds on a 800MHz PC. The acceptance
rate for the model-jumping moves was 29.4%, and
the integrated autocorrelation time for estimating
E(k|y) was estimated to be 2.90. The posterior
model probabilities were computed to be (0.0051,
0.4929, 0.0113, 0.4388, 0.0519), consistent with the
results of Dellaportas et al.
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Delayed rejection

An interesting modification to Metropolis-Hastings
is the splitting rejection idea of Tierney and

Mira (1999), which has recently been extended to
the RJ setting by Green and Mira (2001), who call it
delayed rejection.

If a proposal is rejected, instead of ‘giving up’,
staying in the current state, and advancing time to
the next transition, we instead attempt a second
proposal, usually from a different distribution, and
possibly dependent on the value of the rejected
proposal.

It is possible to set the acceptance probability for
this second-stage proposal so that detailed balance
is obtained, individually within each stage. The
idea can be extended to further stages.
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(b) Change point analysis for a point process

We revisit the change point analysis of the coal
mine disaster data. In this illustration, we condition
on1 < k < 6. The prior settings, etc., are as in
Green (1995). There are 2k + 1 parameters in model
k.

For this problem, 1 million sweeps takes about 28
seconds on a 800MHz PC.

On this problem, the automatic sampler mixes
much less well (presumably due to the extremely
multi-modal parameter posteriors): the acceptance
rate for model-jumping is 5.9%, while the
integrated autocorrelation time rises to 118.

The sampler described in Green (1995) takes 14
seconds for 1 000 000 sweeps on this computer, with
an acceptance rate of 21% and estimated
autocorrelation time of 67.8. The relative efficiency
of the automatic sampler is only

(14 x 67.8)/(28 x 118) ~ 29%, but of course the
implementation time was far less.
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By the results of Peskun (1973) and Tierney (1998),
this always reduces asymptotic variances of ergodic
averages, on a sweep-by-sweep basis, since the
probability of moving increases by stage.

Whether it is actually worth doing will depend on
whether the reduction in Monte Carlo variance
compensates for the additional computing time for
the extra stages; the experiments in Green and
Mira (2001) suggest that this can be the case.
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The second-stage acceptance probability is
calculated similarly as in deriving RJ above. We use
two vectors of random numbers u; and u,, drawn
from g, and g¢,, and two deterministic functions
mapping these and the current state into the
proposed new states, y = hy(z,uy) and

z = ha(z,u1,ug).

Both u; and uy appear in z to allow this
second-stage proposal to be dependent on the
rejected first-stage candidate y; for example, z may
be a move in a different ‘direction’ in some sense.
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In a model-jumping problem, we would commonly
take y and z to lie in the same model, and y* to be in
the same model as x

Other choices are possible. For example, where
models are ordered by complexity, z might lie
between z and y, so that the second-stage proposal
is less ‘bold’.
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The first-stage proposal is accepted with probability
aq(z, y) calculated as usual:

: m(y)gi (uy) | O(y, uy)
= 1
o) = min {1, TS0
where v is such that z = A} (y, u})

Consider the case where the move to y is rejected.
We need to find az(z, 2) for detailed balance at the
second-stage. As for one stage, we set up a
diffeomorphism between (z, uy, u2) and (z, u1, uz),
where w3 and uz) would be the random numbers
used in the first- and second-stage attempts from z.
Then z = hi(z, u1,u3) and the first-stage move, if
accepted, would have taken us to y* = h(z,u1).

Equating integrands after making the change of
variable, we find that a valid acceptance probability
is

az(z,z) = min {1

(u1)ga(uz) [1 — a1(z,y")]
(u1)ga(uz) [1 — ai(z,y)]

b

7(2) g1
"m(z) ¢
9z, u1, Uy
O(z,u1,us

Efficient proposal choice for reversible jump
MCMC

The most substantial recent methodological
contribution to reversible jump MCMC generally is
work by Brooks, Giudici and Roberts (RSS ordinary
meeting, Banff, July 2002, JRSS(B), 2002?) on the
efficient construction of proposal distributions.

This is focussed mainly on the quantitative question
of selecting the proposal density g(u) well, having
already fixed the transformation «/ = h(z, u) into
the new space. The qualitative choice of such a
transformation h is perhaps more elusive and
challenging.
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Brooks et al. propose several new methods, falling
into two main classes.

1. using analysis of the acceptance rate as a
function of u for small u (having chosen an
appropriate scale of measurement for it),
having assumed that uniformly high
acceptance rate is desirable.

2. methods that work in a product-space
formulation, including some novel
formulations with autoregressively constructed
auxiliary variables.

Their methods are implemented and compared on
examples including choice of autoregressive
models, graphical gaussian models, and mixture
models.
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References and preprints available from

http://www.stats.bris.ac.uk/~peter

.../ papers/hssschapter.ps

P.J.Green@bristol.ac.uk

Full written version: a chapter in the book Highly
Structured Stochastic Systems (OUP, 2003).
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