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The quantum normal form approach to quantum transition state theory is used to compute the
cumulative reaction probability for collinear exchange reactions. It is shown that for heavy-atom
systems such as the nitrogen-exchange reaction, the quantum normal form approach gives excellent
results and has major computational benefits over full reactive scattering approaches. For light atom
systems such as the hydrogen-exchange reaction however, the quantum normal approach is shown
to give only poor results. This failure is attributed to the importance of tunneling trajectories in light
atom reactions that are not captured by the quantum normal form as indicated by the only very slow
convergence of the quantum normal form for such systems. © 2009 American Institute of Physics.
�doi:10.1063/1.3245402�

I. INTRODUCTION

The classical mechanical picture of a chemical reaction
as a scattering problem across a saddle point of the Born–
Oppenheimer potential energy surface �PES� in configuration
space has proven to be a fruitful way of visualizing and
thinking about chemical reactions since the 1930s, when Ey-
ring, Polanyi, and Wigner developed transition state theory
�TST�. TST provides the framework for computing, using
classical mechanics, many of the physically important quan-
tities for describing such chemical reactions. The fundamen-
tal geometrical object in TST is a dividing surface that di-
vides the energy surface into a reactant and a product
component. With such a dividing surface in hand, one can
then compute the reaction rate from the directional phase-
space flux through this surface. In order not to overestimate
the rate, the dividing surface must not be recrossed by reac-
tive trajectories, i.e., the dividing surface should have the
“no recrossing” property. In the 1970s, Pechukas and
McLafferty1 and Pechukas and Pollak2 showed that for two
degrees of freedom, such a dividing surface can be con-
structed from a periodic orbit �the so-called periodic orbit
dividing surface�. Recently it has been shown that for more
than two degrees of freedom, a dividing surface that is free
of recrossings can be built from a normally hyperbolic in-
variant manifold �NHIM�.3 For historical background see
Ref. 4 as well as the important earlier works5–8 inadvertently
omitted from this reference. The dividing surface and the
NHIM can be directly constructed from an algorithm based
on a Poincaré–Birkhoff normal form procedure,9 which also
gives an expression for the flux.10 The classical phase-space
TST based on Poincaré–Birkhoff normal form theory natu-
rally leads to a quantum version of TST based on a quantum
normal form �QNF�. Since the normal form is valid in a
neighborhood in energy both above and below the saddle

point, it includes the quantum effect of tunneling in the re-
gion near the saddle. Moreover, it does not require a full
quantum simulation in a neighborhood of the TST dividing
surface �Refs. 4 and 11� in order to compute important quan-
tities associated with the reaction. This is significant since
much effort has been devoted to developing a quantum ver-
sion of TST whose implementation remains feasible for mul-
tidimensional systems �see the flux-flux autocorrelation func-
tion formalism by Miller12�. However, in Ref. 13 Miller
stated that “the conclusion of it all is that there is no uniquely
well defined quantum version of TST in the sense that there
is in classical mechanics. This is because tunneling along the
reaction coordinate necessarily requires one to solve the
�quantum� dynamics for some finite region about the TS di-
viding surface, and if one does this quantum mechanically
there is no ‘theory’ left, i.e., one has a full dimensional quan-
tum dynamics treatment that is ipso facto exact, a quantum
simulation.” Nevertheless, our approach based on the QNF
leads to a quantum version of TST that includes tunneling
near the saddle and does not require a full quantum simula-
tion in a neighborhood of the TST dividing surface. More-
over, our computation of the cumulative reaction probability
�CRP� can be viewed as the quantum mechanical flux
through a �classically recrossing free� dividing surface,
which includes tunneling. The QNF gives a local decoupling
of the quantum dynamics to any desired order in �, which is
the key issue here, i.e., locally, we have a decoupling of the
scattering states into forward/backward reactive and nonre-
active, and for these states we know the transmission prob-
abilities analytically. Therefore we do not have to “simulate”
the quantum dynamics.

In this paper we illustrate the utility of the QNF ap-
proach to quantum TST by considering the computation and
behavior of the bimolecular CRP N�E� defined as12,14a�Electronic mail: s.wiggins@bristol.ac.uk.
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N�E� = �
nr,np

�Snr,np
�E��2, �1�

where S�E� is the reactive scattering matrix evaluated at en-
ergy E and nr�np� are the quantum numbers describing the
asymptotic channel of incoming reactants �outgoing prod-
ucts�. The CRP is a fundamental quantity that characterizes
the reaction rate: the microcanonical and canonical rate con-
stants can be determined from N�E� by means of simple
relations.14

This paper is outlined as follows. In Sec. II we outline
the theoretical and computational aspects of the QNF theory.
We emphasize the structural features that allow for the treat-
ment of high-dimensional quantum problems and show how
the QNF leads to a “simple” expression for the CRP. In Sec.
III we apply the QNF approach to the computation of the
CRP for the collinear hydrogen and nitrogen-exchange reac-
tions. These quantities are compared to the “exact” answer
obtained from a reactive quantum scattering calculation. In
Sec. IV we discuss some aspects related to the convergence
properties of the QNF, and in Sec. V we summarize our
results and offer some directions for further investigations.

II. QNF THEORY

In this section we present central aspects of the QNF
theory; for rigorous mathematical statements, proofs, and
further details, we refer the reader to Refs. 4 and 11. We

begin by considering a quantum Hamilton operator Ĥ, which
we assume to be obtained from the Weyl quantization of a
classical Hamilton function H�p ,q�. Here q= �q1 ,q2 , . . . ,
qd� and p= �p1 , p2 , . . . , pd� denote the canonical coordinates
and momenta, respectively, of a Hamiltonian system with d
degrees of freedom. Throughout this paper we will use
atomic units so that q and p are dimensionless. We will
denote the corresponding operators by q̂= �q̂1 , q̂2 , . . . , q̂d� and
p̂= �p̂1 , p̂2 , . . . , p̂d�. In the coordinate representation their
components correspond to multiplication by qj and the dif-
ferential operators p̂j =−i�eff� /�qj. Here �eff is a dimension-
less parameter, which corresponds to a scaled effective
Planck’s constant. For molecular reactions described in the
Born–Oppenheimer approximation, �eff

2 occurs naturally as
the ratio of the electronic mass and the reduced mass of the
nuclei participating in the reaction as we will see below in
more detail.

The main idea of the QNF procedure is to approximate

the Hamilton operator Ĥ by a simpler Hamilton operator

obtained from a power series expansion of Ĥ, which is sim-
plified order by order using unitary transformations. As we
will describe in more detail in Sec. IV, the scaled Planck’s
constant �eff will play the role of a “small parameter,” which
controls the quality of the QNF approximation. For our ap-
plication of bimolecular reactions, the resulting transformed
Hamilton operator truncated at a suitable order will be sim-
pler in the sense that it will provide an easy explicit way to
compute the CRP.

To define and implement the unitary transformations, it
is extremely beneficial not to work with operators but with

their Weyl symbols instead. The Weyl symbol of an operator

Ĥ is defined as

H�0��q,p;�eff� =� dx�q − x/2�Ĥ�q + x/2	eipx/�eff. �2�

The superscript �0� is introduced for reasons that will be-

come clear in a moment. The map Ĥ�H�0��q ,p ;�eff� lead-
ing to Eq. �2� is also called the Wigner map. It is the inverse

of the transformation that yields a Hamilton operator Ĥ from
the Weyl quantization Op�H� of a phase-space function H
�the Weyl map�, which, using Dirac notation, is given by

Ĥ = Op�H� =� � dqdp

�2��eff�dH�q,p�

�� dx�q − x/2	e−ipx/�eff�q + x/2� . �3�

Accordingly, H�0��q ,p ;�eff� in Eq. �2� agrees with the clas-
sical Hamilton function H�q ,p� in our case. The argument
�eff is introduced for convenience since the Weyl symbol of
the unitarily transformed Hamilton operator will in general
explicitly depend on �eff.

We will now assume that H�0��q ,p ;�eff� �or equivalently
H�q ,p�� has a �single� equilibrium point, z0
�q0 ,p0�, of
saddle-center-…-center stability type. By this we mean that
the matrix associated with the linearization of Hamilton’s
equations about this equilibrium point has two real eigenval-
ues, ��, of equal magnitude and opposite sign and d−1
purely imaginary complex conjugate pairs of eigenvalues
�i�k, k=2, . . . ,d. If the classical Hamiltonian is of the form
kinetic energy plus potential energy, then these types of equi-
librium points of Hamilton’s equations correspond to index
one saddle points of the potential energy. Using the symbol
calculus the QNF theory provides a systematic procedure to

obtain a local approximation ĤQNF of the Hamiltonian Ĥ in a
phase-space neighborhood of the equilibrium point z0 in or-
der to facilitate further computation of various quantities,
such as the CRP, of the reaction system under consideration.
In the following we summarize the essential steps of the
QNF procedure.

The QNF procedure consists of a sequence of, in gen-
eral, �eff dependent, generalized phase-space coordinate
transformations, changing the symbol as

H�0� → H�1� → H�2� → H�3� → . . . → H�N�. �4�

The first of the transformations �4� shifts the equilibrium
point z0 to the origin according to

H�1��z;�eff� = H�0��z + z0;�eff� , �5�

where z
�q ,p�. Once the equilibrium point is shifted to the
origin, the QNF procedure deals with the Taylor expansion
of the symbols in z and �eff,

H�n��z;�eff� = E0 + �
s=2

�

Hs
�n��z;�eff� , �6�

with
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Hs
�n��z;�eff� = �

���+�	�+2j=s

H�1,. . .,�d,	1,. . .,	d,j
�n�

�1 ! . . . �d ! 	1 ! . . . 	d ! j!

� q1
�1 . . . qd

�dp1
	1 . . . pd

	d�eff
j , �7�

where �k ,	k , j�N0, ���=�k�k, �	�=�k	k, and

H�1,. . .,�d,	1,. . .,	d,j
�n� = � �

k,l=1

d
��k

�qk
�k

�	l

�pl
	l

� j

�
 j H
�n��z;
��

�0;0�

.

�8�

At the next step of the transformation sequence, one
finds a symplectic 2d�2d matrix M such that the second
order term of the symbol

H�2��z;�eff� = H�1��M−1z;�eff� �9�

takes the particularly simple form

H2
�2��z;�eff� = �q1p1 + �

k=2

d
�k

2
�qk

2 + pk
2� . �10�

Section 2.3 of Ref. 4 provides an explicit procedure for con-
structing the transformation matrix M.

In order to proceed with the higher order transformations
of the symbol of the Hamiltonian, it is essential to introduce
the notion of the Moyal bracket. Given two symbols

A�z ;�eff� and B�z ;�eff�, corresponding to operators Â and B̂,
respectively, the Moyal bracket

A,B�M =
2

�eff
A sin��eff

2 �
j=1

d � ��

�qj

��

�pj
−

��

�pj

��

�qj
��B �11�

gives the Weyl symbol of the operator i�Â , B̂� /�eff, where
�· , ·� denotes the commutator. The arrows in Eq. �11� indicate
whether the partial differentiation acts to the left �on A� or to
the right �on B�. Equation �11� implies that, in general, for
�eff→0,

A,B�M = A,B� + O��eff
2 � , �12�

where · , ·� denotes the Poisson bracket. Moreover, if at least
one of the functions A, B is a second order polynomial in the
variables q, p, then A ,B�M = A ,B�. Finally, to simplify fur-
ther notations, we define the Moyal-adjoint operator as

MadA:B � MadAB 
 A,B�M . �13�

Continuing with the sequence of transformations of the
symbol in Eq. �4�, we define the spaces

Wn = spanq1
�1 . . . qd

�dp1
	1 . . . pd

	d�eff
j :��� + �	� + 2j = n� .

�14�

Then, the symbol H�n� with n�3 is obtained from H�n−1� by
means of the transformation generated by a function
Wn�z ;�eff��Wn,

H�n� = �
k=0

�
1

k!
�MadWn

�kH�n−1�. �15�

The structure of the transformation defined by Eq. �15�
implies4 that the operators Ĥ�n� and Ĥ�n−1� corresponding re-

spectively �through the Weyl quantization� to the symbols
H�n� and H�n−1� are related to one another by means of the

unitary transformation Ĥ�n�=eiŴn/�effĤ�n−1�e−iŴn/�eff, where Ŵn

is the operator corresponding to the symbol Wn. In terms of
the Taylor expansion defined in Eqs. �6�–�8�, the transforma-
tion introduced by Eq. �15� reads

Hs
�n� = �

k=0

�s/�n−2��
1

k!
�MadWn

�kHs−k�n−2�
�n−1� , �16�

where � · � gives the integer part of a number, i.e., the “floor”-
function. Using Eq. �16� one can show that the transforma-
tion defined by Eq. �15� satisfies the following properties for
n�3:

Hs
�n� = Hs

�n−1� for s � n , �17�

so that, in particular, H2
�n�=H2

�2� and

Hn
�n� = Hn

�n−1� − DWn, �18�

where

D 
 MadH2
�2� = H2

�2�, ·� . �19�

Equation �18� is referred as to the quantum homological
equation.

We now specify the generating function Wn by requiring
DHn

�n�=0, or equivalently Hn
�n�, to be in the kernel of the

restriction of D to Wn; in view of Eq. �18�, this condition
yields

Hn
�n−1� − DWn � KerD�Wn. �20�

Section 3.4.1 of Ref. 4 provides the explicit procedure of
finding the solution of Eq. �20�. Provided that the linear fre-
quencies �2 , . . . ,�d in Eq. �10� are rationally independent,
i.e., m2�2+ . . .+md�d=0 implies that m2= . . . =md=0 for all
integers m2 , . . . ,md, it follows that for odd n, Hn

�n�=0, and for
even n,

Hn
�n� � spanI�1J2

�2J3
�3 . . . Jd

�d�eff
j :��� + j = n/2� , �21�

where I=q1p1 and Jk= �qk
2+ pk

2� /2, with k=2, . . . ,d, are the
analogs of the classical integrals.

Applying transformation �15�, with the generating func-
tion defined by Eq. �20�, for n=3, . . . ,N and truncating the
resulting Taylor series �6� at the Nth order, one arrives at the
Weyl symbol HQNF

�N� corresponding to the Nth order QNF of

the Hamiltonian Ĥ,

HQNF
�N� �z;�eff� = E0 + �

s=2

N

Hs
�N��z;�eff� . �22�

The Nth order QNF operator ĤQNF
�N� is then given by

ĤQNF
�N� = Op�HQNF

�N� � , �23�

where Op� · � is the Weyl map defined in Eq. �3�. The Weyl
quantizations of the classical integrals I and Jk, k=2, . . . ,d,
are

Î 
 Op�I� = 1
2 �q̂p̂ + p̂q̂� , �24�
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Ĵk 
 Op�Jk� = 1
2 �q̂k

2 + p̂k
2�, k = 2, . . . ,d . �25�

Using Eq. �10� and the linearity of the Weyl quantization, we
get

Ĥ2
�2� = �Î + �

k=2

d

�kĴk. �26�

Since the higher order terms in Eq. �22� are polynomials in I
and Jk, k=2, . . . ,d �see Eq. �21��, we need to know how to
quantize powers of I and Jk. As shown in Ref. 4, this can be
accomplished by using the recurrence relations

Op�In+1� = ÎOp�In� − ��

2
�2

n2Op�In−1� �27�

and

Op�Jk
n+1� = ĴkOp�Jk

n� + ��

2
�2

n2Op�Jk
n−1� �28�

for k=2, . . . ,d. Hence, ĤQNF
�N� is a polynomial function of the

operators Î and Ĵk,

ĤQNF
�N� = KQNF

�N� �Î, Ĵ2, Ĵ3, . . . , Ĵd� = E0 + �Î + �
k=2

d

�kĴk

+ �
n=2

�N/2�

�
���+j=n

kn,�,jÎ
�1Ĵ2

�2 . . . Ĵd
�d�eff

j . �29�

The coefficients kn,�,j are systematically obtained by the
QNF procedure to compute the symbol HQNF

�N� as described
above and recurrence relations �27� and �28�. So the full

procedure to compute ĤQNF
�N� is algebraic in nature and can be

implemented on a computer. Our software for computing the
QNF as well as the classical normal form �CNF�, which is
recovered for �eff=0, is publicly available at http://
lacms.maths.bris.ac.uk/publications/software/index.html.

We stress that ĤQNF
�N� represents an Nth order approxima-

tion of the operator obtained from conjugating the original

Hamiltonian Ĥ by the unitary transformation

Û = e−iŴ1/�effe−iŴ2/�eff . . . e−iŴN/�eff, �30�

where we used the fact that the first two steps in sequence �4�
can also be implemented using suitable generators Ŵ1 and

Ŵ2 �see Ref. 4 for more details�. This is why it is legitimate

to use ĤQNF instead of Ĥ in analyzing such properties of the
system as the CRP.

The main advantage of having the Hamiltonian in the

form of a polynomial in the operators Î and Ĵk, k=2, . . . ,d, is

that the eigenstates of the QNF operator ĤQNF
�N� can be chosen

to be simultaneously the eigenstates of the operators Î and Ĵk,
whose spectral properties are well known,

ĤQNF
�N� �I,n2, . . . ,nd	 = E�I,n2, . . . ,nd	 , �31�

where

Î�I,n2, . . . ,nd	 = I�I,n2, . . . ,nd	 , �32�

Ĵk�I,n2, . . . ,nd	 = �eff�nk + 1/2��I,n2, . . . ,nd	 , �33�

with nk�N0 and k=2, . . . ,d and the energy being given by

E = KQNF
�N� �I,�eff�n2 + 1/2�, . . . ,�eff�nd + 1/2�� . �34�

Effectively, the QNF procedure yields an approximation of

the original Hamiltonian Ĥ in terms of the operator ĤQNF
�N�

whose classical counterpart is integrable, while the classical

counterpart of Ĥ is in general not integrable. The approxima-
tion is only valid in the neighborhood of the saddle equilib-
rium point. However, it is crucial to note that this local ap-
proximation is sufficient to compute the CRP, which in terms
of the QNF is given by4,14

N�E� = �
n2,. . .,nd

�1 + exp�− 2�
I�E,n2, . . . ,nd�

�eff
��−1

, �35�

where the summation runs over all n2 , . . . ,nd, and for given
energy E and quantum numbers n2 , . . . ,nd, the quantity I in
Eq. �35� is implicitly defined by Eq. �34�.

III. COLLINEAR HYDROGEN- AND NITROGEN-
EXCHANGE REACTIONS

In this section we demonstrate the efficiency and the
capability of the QNF theory by applying it to the computa-
tion of the CRP for collinear triatomic reactions. To this end
we focus on Hamiltonians of the form

Ĥ 
 H�q̂1, q̂2, p̂1, p̂2� = 1
2 �p̂1

2 + p̂2
2� + V�q̂1, q̂2� , �36�

where V�q1 ,q2� gives the Born–Oppenheimer PES of a two-
dimensional atomic system. Here, q1 and q2 are the Delves
mass-scaled coordinates,15 and the effective Planck’s con-
stant is given by �eff=−1/2, where  is the �dimensionless�
reduced mass of the triatomic system �note that the electronic
mass is one in the atomic units we are using�.

The PES is assumed to possess a single saddle point
governing the reaction from the asymptotic reactants and
products states. In this paper we analyze the following col-
linear exchange reactions:

H + H2 → H2 + H, �37�

N + N2 → N2 + N, �38�

where various isotopes of hydrogen are considered. The
Porter–Karplus �PK� PES �Ref. 16� is taken to model the
hydrogen-exchange reaction �37�, and the London–Eyring–
Polanyi–Sato �LEPS� PES �Ref. 17� is adopted for the
nitrogen-exchange reaction �38�.

We applied the algorithm presented in Sec. II to con-
struct the QNF Hamiltonian of various orders for the tri-
atomic systems in Eqs. �37� and �38�. Then, the QNF Hamil-
tonian was used to compute the CRP for a range of reaction
energies E in accordance with Eq. �35�. The obtained CRP-
versus-energy curves, N�E�, were later compared to the re-
sults of the full reactive quantum scattering calculations.18,19

The latter was performed by integrating the coupled multi-
channel Schrödinger equation in hyperspherical coordi-
nates18,19 from the strong interaction region to the asymptotic
reactant and product configurations. The log-derivative ma-
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trix method of Manolopoulos and Gray20 together with the
six-step symplectic integrator of McLachlan and Atela21 was
used to integrate the radial Schrödinger equation.

Figure 1 shows the CRP, N�E�, as a function of the total
energy E for a collinear hydrogen, 1H, exchange reaction,
Eq. �37�, on the PK PES. The circular points represent N�E�
obtained in the reactive quantum scattering calculation and
can therefore be regarded as the exact CRP values. The ver-
tical dashed line shows the saddle point energy E0 of the PK
PES. The five solid colored lines represent the N�E� curves
corresponding to different orders, N=2,4 , . . . ,10, of the
QNF computation. As we argue in Sec. IV, one of the sources
of the apparent failure of the QNF method to reproduce the
correct values of the CPR in the collinear 1H triatomic sys-
tem is the very slow convergence �or perhaps even diver-
gence� of the QNF expansion for the value of the effective
Planck’s constant, �eff�3.07�10−2, characterizing this par-
ticular reacting system. Another reason for the QNF theory
to be unable to predict correct CPR values for the hydrogen-
exchange reaction is the importance of the corner cutting
tunneling trajectories22 in reaction dynamics of light atom
systems. These tunneling trajectories avoid passing through
the immediate neighborhood of the saddle-center-…-center
equilibrium point in phase space, and therefore, their contri-
bution to the CRP cannot be captured by the QNF theory.

Figure 2 presents the CRP-versus-energy curves ob-
tained in the reactive quantum scattering approach �circular
points� and by the QNF calculation �colored solid lines� of
different orders, N=2,4 , . . . ,8, for the triatomic collinear
system of 3H �tritium� isotopes of hydrogen. The vertical
dashed line shows the saddle point energy E0 of the PK PES.
The effective Planck’s constant characterizing the system is
now �eff�1.77�10−2. The convergence of the QNF
�eff-expansion for the energies up to �0.54 eV is now evi-
dent from the figure. However, the QNF-predicted CRP val-
ues approximate the reactive quantum scattering N�E� data
only at small energies. As in the case of the 1H exchange
reaction �see Fig. 1�, we attribute the disagreement of the

QNF and reactive quantum scattering CRP values to the non-
negligible contributions of tunneling trajectories, which
avoid passing through the neighborhood of the saddle.

Figure 3 presents the results of the CRP calculations for
a collinear system of three hypothetical 20H isotopes of hy-
drogen. As before, the circular data points correspond to the
reactive quantum scattering data and are treated as exact
CRP values. The three colored solid lines show the QNF
N�E� curves of orders N=2, 4, and 6; the N�E� curves ob-
tained with the fourth and sixth order QNFs are essentially
indistinguishable for most of the energy range. The vertical
dashed line shows the saddle point energy E0 of the PK PES.
The model system is characterized by �eff�6.9�10−3. The
convergence of the QNF �eff-expansion, as well as the quan-
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is �eff�1.77�10−2. The vertical dashed line shows the saddle point energy
E0 of the PK PES.
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FIG. 3. CRP as a function of the total energy N�E� for the collinear reaction
�37� with hypothetical 20H isotopes of hydrogen. The effective Planck’s
constant is �eff�6.9�10−3. The N�E� curves obtained with the fourth and
sixth order QNFs are basically indistinguishable for most of the energy
range. The vertical dashed line shows the saddle point energy E0 of the PK
PES.
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titative agreement of the QNF predictions and exact CPR
values for energies E�0.45 eV, is evident from the figure.

Comparison of Figs. 1–3 allows us to conclude that
while basically failing for systems of light atoms, the QNF
method of computing the CPR proves very effective for
treating heavy-atom reactive systems. On the contrary, the
full reactive quantum scattering computations are only fea-
sible for reactive systems consisting of light atoms, and the
computations rapidly become formidable as the atomic mass
is increased.23

In order to further illustrate the efficiency of the QNF
technique for treating heavy-atom systems, we compute the
CRP for the collinear nitrogen-exchange reaction �38� on the
LEPS PES. Figure 4 compares the CRP values obtained in
the reactive quantum scattering calculation �circular data
points� and those given by the QNF analysis �colored solid
lines� of orders N=2, 4, and 6. The system is characterized
by �eff�8.2�10−3. The vertical dashed line shows the
saddle point energy E0 of the LEPS PES. The N�E� curves
obtained with the fourth and sixth order QNFs are essentially
indistinguishable for most of the energy range; this fact sig-
nals the rapid convergence of the QNF �eff-expansion for the
given value of the effective Planck’s constant. The quantita-
tive agreement of the exact and QNF values of N�E� extends
up to energies of �1.5 eV.

Finally, we briefly discuss how the QNF approach can be
used for computation of the thermal reaction rate constant,
k�T�, defined as14

k�T� =
1

2�Qr�T��0

�

dE exp�−
E

kBT
�N�E� , �39�

where T stands for the absolute temperature, Qr�T� is the
partition function of the reactant, and kB is the Boltzmann
constant. To this end, we use the CRP data for the nitrogen-
exchange reaction, Eq. �38�, presented in Fig. 4. The data
allow us to compute k�T� in the range of temperatures be-
tween 600 and 700 K, for which the integrand at the right

hand side of Eq. �39� is well localized to the energy interval
between 1.3 and 1.7 eV. Figure 5 provides a comparison of
k�T� calculated from N�E� obtained using the QNF of orders
of 2, 4, and 6 �color solid lines� and the exact reactive quan-
tum scattering technique �black line with circles�. The inset
of the figure shows the ratio, kQNF /kQS, of the thermal rate
computed using the QNF of orders of 2, 4, and 6 to the one
obtained from the quantum scattering data. One can clearly
see that the thermal rate constant computed with the QNF
method rapidly approaches its exact value as the approxima-
tion order is increased.

The QNF calculation of the CRP requires significantly
less computational time than the corresponding full quantum
reactive scattering calculation. For example, the sixth order
QNF computation of the nitrogen-exchange CRP curve in
Fig. 4 took about 10 min on a 2.6 GHz processor, 2 GB
RAM computer, while the corresponding full quantum reac-
tive scattering computation took more than 12 h on the same
machine. The QNF approach becomes even more advanta-
geous for treating chemical systems of atoms heavier than
nitrogen: the expense of the full quantum computations rap-
idly grows with the number of asymptotic channels �and,
therefore, with mass�,23 while the QNF expansion only be-
comes more rapidly convergent, making the corresponding
analysis computationally cheaper.

IV. CONVERGENCE OF QNF

While it is well known that for d=2 degrees of freedom,
the CNF converges in the neighborhood of saddle-center
equilibrium points �see, e.g., Refs. 24 and 25�, this is not
clear for the QNF �for the first results in this direction,
see Ref. 26�. Still, in the following we provide a qualitative
discussion of the convergence of the QNF based on our cal-
culations performed for the triatomic collinear reactions in
Sec. III.
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FIG. 4. CRP as a function of the total energy N�E� for the collinear
nitrogen-exchange reaction �38�. The effective Planck’s constant is �eff

�8.2�10−3. The N�E� curves obtained with the fourth and sixth order
QNFs are essentially indistinguishable for most of the energy range. The
vertical dashed line shows the saddle point energy E0 of the LEPS PES.
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The QNF approximates the Hamiltonian of the reaction
system in a phase-space vicinity of the saddle-center equilib-
rium point. Thus, for instance, in computing the CRP, one
only expects this approximation to render reliable results in a
certain energy range around the saddle point energy E0 of the
PES under consideration. The energy difference �E−E0� may
therefore be considered as one small parameter in the QNF
expansion. The role of the other small parameter is played by
the effective Planck’s constant �eff. It is the convergence of
the QNF with respect to this second small parameter that we
focus on in this section.

We proceed by considering the right hand side of Eq.
�34�, i.e., the QNF at I=0, corresponding to no “energy” in
the reaction coordinate, and n2=0, giving the zero-point “vi-
brational energy” of the transverse degree of freedom. Then,
Eq. �34� becomes

E = E0 + �
n=1

�N/2�
cn�eff

n . �40�

For the case of the PK PES the first five expansion coeffi-
cients are c1=0.161 982, c2=1.193 254, c3=14.900 23, c4

=378.7950, and c5=1227.035. As N→� the radius of con-
vergence �eff

�0� of the sum in Eq. �40� is given by

�eff
�0� = lim

n→�

cn

cn+1
. �41�

Here, we make a crude estimate of �eff
�0� by only considering

the first five expansion coefficients in Eq. �41�, i.e., cn with
n=1, . . . ,5; then, the radius of convergence is given by �eff

�0�

�0.04.
The estimated value of �eff

�0� sheds light on the seeming
inefficiency of the QNF theory for CRP computations in light
atom reactions. Indeed, the 1H exchange reaction �see Fig. 1�
is characterized by �eff=3.07�10−2. This value being close
to �eff

�0� signals that the corresponding QNF expansion con-
verges very slowly, if at all, and, possibly, terms of orders far
beyond N=10 are needed for a reliable CRP prediction in
Fig. 1.

In the case of the 3H exchange reaction, the effective
Planck’s constant is �eff=1.77�10−2 and is thus smaller than
�eff

�0�. This fact is in agreement with the apparent speed-up of
the convergence of the CRP values �see Fig. 2� in compari-
son to the 1H case. Finally, the convergence is very fast and
pronounced for the case of the heavy �hypothetical� 20H at-
oms �see Fig. 3�, for which �eff=6.9�10−3, which is much
smaller that the estimated convergence radius.

V. CONCLUSIONS

In this paper we used the QNF approach to quantum
TST �Refs. 4 and 11� for computing the CRP for triatomic
collinear reactions. The QNF leads to a realization of quan-
tum TST, which is very much in the spirit of �classical� TST.
Similar to the classical case where a recrossing free dividing
surface can be constructed from a CNF such that reaction
probabilities can be computed from the flux through the di-
viding surface, the QNF can be viewed to give quantum
reaction probabilities as the quantum mechanical flux

through the same �classically recrossing free� dividing sur-
face. So unlike reactive scattering techniques, which involve
full global quantum computations, the QNF realization of
quantum TST requires only local information in the neigh-
borhood of the saddle equilibrium point which governs the
reaction. In this paper we demonstrated that for heavy-atom
systems �comprised of ten or more nucleons�, the QNF this
way indeed gives a very efficient method for computing cu-
mulative reaction probabilities. Here we measure “effi-
ciency” by the effort of both implementing and computing
the QNF. The latter is comparable to both implementing and
computing the CNF, which lead to the realization of classical
TST �in particular for multidimensional systems�. The major
difference between the classical and quantum cases is that
the QNF computation involves the Moyal bracket, which is
slightly more complicated �and thus computationally more
expensive� than the Poisson bracket in the classical case.
Nevertheless the efforts for implementing and computing the
QNF are far lower than for the full reactive scattering com-
putations to which we compared our results.

We saw, however, that for reactions involving light at-
oms �such as the hydrogen-exchange reaction�, the QNF
gave only very poor results. We attributed the failure of the
QNF computation in these cases to the presence of corner
cutting tunneling trajectories, which are not captured by the
QNF. This way the QNF and reactive scattering methods can
be viewed as complementary methods, where the latter gives
very good results for light atom systems and the former dis-
plays its full power especially for heavy-atom systems for
which reactive scattering approaches become very difficult
or even unfeasible due to the growing number of reactive
channels that have to be taken into account.23

Here we point out that the QNF approach to the CRP
computation presented in this paper differs from the earlier
method in Ref. 7. The latter is based on the quartic Taylor
expansion of the PES about the saddle point and relies on the
Einstein–Brillouin–Keller quantization of the degrees of
freedom transverse to the reaction coordinate. The QNF ap-
proach, on the other hand, goes unrestrictedly beyond the
fourth order approximation of the PES and includes further
�eff corrections coming from the Weyl quantization of the
Hamiltonian symbol �see Sec. II�.

We note that also other approximation techniques such
as the initial value representation �IVR� �Ref. 27� have been
shown to be fruitful for reaction probability analysis of col-
linear triatomic reactions.28 However, in order to properly
account for interference effects, the IVR method requires
propagation of a huge number of classical trajectories and,
therefore, can pose difficulties for application to high-
dimensional atomic systems, whereas the difficulties in com-
puting the QNF do not grow so rapidly with the number of
degrees of freedom. In fact it would be very interesting to
make a detailed comparison between the QNF and the IVR
approaches.

Another benefit of the QNF approach to compute cumu-
lative reaction probabilities lies in the fact that it involves
only little �local� information of the Born–Oppenheimer
PES, namely, the Taylor expansion of the PES about the
saddle equilibrium point governing the reaction. In fact we
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saw that highly accurate results over quite a broad energy
range can already be obtained from the fourth or sixth order
Taylor expansions, which enter the QNF of the same order.
This is especially useful for systems for which the computa-
tion of the global PES required in other methods is very
difficult.
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