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Previous studies of quantum delta-kicked rotors have found momentum probability distributions with a
typical width (localization length L) characterized by fractional @ scaling; i.e., L� @

2=3 in regimes and
phase-space regions close to ‘‘golden-ratio’’ cantori. In contrast, in typical chaotic regimes, the scaling is
integer, L� @

�1. Here we consider a generic variant of the kicked rotor, the random-pair-kicked particle,
obtained by randomizing the phases every second kick; it has no Kol’mogorov-Arnol’d-Moser mixed-
phase-space structures, such as golden-ratio cantori, at all. Our unexpected finding is that, over
comparable phase-space regions, it also has fractional scaling, but L� @

�2=3. A semiclassical analysis
indicates that the @

2=3 scaling here is of quantum origin and is not a signature of classical cantori.
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A notable recent achievement of atom optics has been
the realization of a well-known paradigm of quantum
chaos, the quantum ‘‘�-kicked particle’’ (DKP) [1,2].
Laser-cooled atoms in a pulsed periodic optical potential
can be effectively modeled theoretically by the Hamilton-
ian H � p2=2� k cosx

P
n��t� nT� provided the pulses

are sufficiently short. This system has been extensively in-
vestigated in numerous theoretical (see, e.g., [3,4] ) and ex-
perimental [5] studies. In the chaotic regime (kT � 1) the
momentum distributions N�p; t� evolve into a final, time-
independent distribution of exponential form: N�p; t!
1� � exp��jpj=L�. L, the momentum localization length,
has well-known integer scaling properties L� K2

@
�1.

This effect, termed ‘‘dynamical localization (DL)’’, has
been well studied both experimentally and theoretically.

An important exception to the integer scaling law for L,
with L� @

2=3, was found in the seminal theoretical study
of quantum behavior in the vicinity of so-called ‘‘golden
cantori’’ in [6]. At a critical value of kT � 0:97, the last
classical barrier (KAM torus) which impedes chaotic dif-
fusion is broken. What remains are fractal partial barriers,
termed cantori, situated at momenta p � 2�R and p �
2��R� 1� (or integer multiples thereof), where R is the
golden ratio. A subsequent study [7] suggested that a posi-
tive exponent L�@

�� was associated with tunneling trans-
port (favored by increasing @) while a negative exponent
L�@

�� was associated with dynamical localization where
transport increases as @! 0. In [7] it was found that the
sign of the scaling exponent can change from negative to
positive as the dominant transport mechanism changes
from tunneling to dynamical localization. A study of the
classical phase-space scaling near these golden tori [8]
identified two characteristic scaling exponents, � � 0:65
and � � 0:75. Since the fractional L� @

� � @
2=3 quantum

scaling was found in regions close to p� 2�R, this be-

havior was attributed in [6] to the smaller of the classical
exponents.

A recent study [9] of a closely related system, the
double-kicked particle (2-DKP), found fractional scaling
of momentum distributions with L� @

�0:75, i.e., charac-
terized by one of the classical golden-ratio exponents, and
in phase-space regions corresponding quite closely to those
of [6]. It was argued that this too was evidence of the
quantum signature of the golden cantori. As the 2-DKP
has already been experimentally realized with cold atoms
[10] and its fractional scaling occurs over a much broader
range of p than for the usual DKP, this feature of the atomic
momentum distributions is particularly amenable to ex-
perimental study.

Here we introduce a system which is random but closely
related to both the DKP and 2-DKP: the randomized-pair
DKP or RP-DKP. It is obtained as a limit as the phases be-
tween consecutive kick pairs become completely random.
This system has no mixed-phase-space regions or KAM
cantori at all. We find that the random system has exactly
the same scaling properties as the mixed-phase-space 2-
DKP. Both have L� @

�2=3 for small @ (in [9] a slightly
larger exponent was found because some nonasymptotic
values of @ were included). This unexpected result is the
key finding of our Letter. A semiclassical analysis shows
that the scaling with @

�2=3 arises naturally from the quan-
tum unitary matrix and is not a signature of golden cantori.
We discuss possible implications for the ordinary DKP.

The Hamiltonian of the 2-DKP is given by [9] H �
P02=2� k cosx

P
N	��t

0 � NT� � ��t0 � NT � ��
, where
�� T is a small time interval. In effect, the particles are
exposed to a sequence of pairs of closely spaced � kicks.
One could now adopt the usual procedure and choose T to
define the time unit and then derive a classical map with a
stochasticity parameter K � kT and momentum units
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p � P0T. However, we show below that, for the 2-DKP, it
is the small time scale �, rather than the period T, which
provides the natural unit of time. Hence, rescaling time as
t0=�! t, and P0�! p, we obtain our 2-DKP map:
 

pN�1�pN�K� sinxN; pN�2�pN�1�K� sinxN�1;

xN�1�xN�pN�1; xN�2�xN�1�pN�2��:
(1)

The classical stochasticity parameter K� � k�. This map
depends also on a further parameter �� � �T � ��=�.

Clearly, we see that setting �� � 1 in Eq. (1) recovers
the standard map or DKP. To obtain the 2-DKP, we take
�� � 10–100: typical experimental values used in [10] are
�� � 10–25 and K� � 0:1 to 0.5. The RP-DKP is obtained
by taking the limit �� ! 1, causing the impulse sinxN�2 to
become randomized. This can be achieved in practice by
keeping k and � constant and taking T ! 1. In the usual
T-scaled map this would yield an infinite stochasticity
constant K � kT (but little insight). This RP-DKP limit
has no mixed-phase-space behavior at all, but it retains the
momentum trapping and its behavior is determined by the
stochasticity parameter K�. The map Eq. (1) has 2� peri-
odicity in these rescaled momentum units for integer ��.

Figure 1(a) compares Poincaré surfaces of section (SOS)
for the 2-DKP and RP-DKP. For the 2-DKP, a periodic
structure of chaotic ‘‘cells’’ separated by thin mixed-phase
regions is apparent. These momentum ‘‘trapping’’ regions
appear at p � �2m� 1�� where m � 0, �1, �2 . . . . For
odd-integer multiples of � there is near cancellation of
consecutive kicks. Figure 1(b) shows the RP-DKP, for
which �� � 106. In fact, an indistinguishable SOS can be
obtained by taking actual random phases, i.e., xN�2 �
2��N , where 0< �N < 1 is a random number chosen every
kick pair. We see that the trapping is there, but with no
trace of islands, etc. The RP-DKP never has any islands,
regardless of how small K� becomes.

For the quantum equivalent we note that in a basis of
plane waves, the one-period time-evolution operator for the
2-DKP, Û�, has matrix elements U�

lm�U
free
l . U2kick

lm , where

 U2kick
lm �

X
k

Jl�k�K@�Jk�m�K@� exp��ik2
@�=2�; (2)

where Jn is the integer Bessel functions of the first kind,
@� � @� is the effective value of Planck’s constant. K@ �
K�=@� andUfree

lm ���� � il�m exp��il2��@�=2�. To within an
unimportant phase, it can be shown that [9]:

 U2kick
lm ’ Jl�m

�
2K�
@�

cos	l@�=2

�
: (3)

Equation (5) can be derived most straightforwardly by
evaluating the sum in Eq. (4) using Poisson summation.
The key point is that U2kick

lm is common to all the kicked
systems: only Ufree

lm ���� determines whether we investigate
the standard DKP (�� � 1), the mixed-phase-space 2-DKP
(1< �� & 100), or the random RP-DKP (�� ! 1).
Equivalently, we can also obtain the RP-DKP by taking
Ufree
l � exp��i2��l�, i.e., using random phases for each

angular momentum l. Taking �� � 104–106 gives the same

behavior, provided �� is not a rational multiple of �:
transport can be strongly affected at such resonances.

Figure 2(a) shows the asymptotic quantum momentum
distributions, N�p; t! 1�, obtained from an initial state
 �t � 0� � ��p� p0� for p0 � 0, in regimes analogous to
Fig. 1. The dashed line corresponds to a momentum dis-
tribution obtained for the mixed-phase-space 2-DKP while
thesolid line represents the equivalent result obtained using
random phases in Ufree

l . One sees that both the mixed-
phase-space 2-DKP and the random map (RP-DKP) dis-
tributions are very similar, with a distinctive ‘‘staircase’’
structure.

Figure 2(b) shows the staircases obtained for K� � 0:4,
@� � 1=25, 1=250, and @� � 1=2500 for the 2-DKP. We
have rescaled the momentum distributions N�p� using the
‘‘local’’ scaling exponent estimated in Fig. 3 for K� � 0:4
which yielded � � 0:65. We plot ln	N�p�
@�0:65, shifted
by an appropriate constant. The figure shows that the shape
and magnitude of the distribution around the first trapping
region rescales perfectly with @�. Lloc is the slope on the
first step. The height of the steps (2d in the notation of [9] )
scales fractionally with @�, while the width w (momentum
width between the dashed vertical lines) is independent of
@�: in scaled momentum units w� 2�=6. Thus we take
Lloc � w=2d, i.e., for the scaling, Lloc � �2d��1.

The longer-ranged localization length L, characterizing
the envelope of the full staircase, scales well in the smaller
@� range @� & 1=250 but we note that the @� � 1=25 stair-
case does not scale at long range.

In Fig. 3 we investigate the @� scaling exponent
itself. For staircases where @� is sufficiently small,

FIG. 1. Comparison of the Poincaré SOS for the 2-DKP and
Randomised-Pair DKP. Stochasticity parameter K� � 0:4. (a) 2-
DKP: �� � 24. A periodic structure of chaotic ‘‘cells’’ separated
by thin mixed-phase regions (coinciding with the trapping re-
gions) is apparent. (b) RP-DKP: �� � 106 so impulses between
kick pairs are uncorrelated. A similar plot is obtained by taking
xN�2 to be a random number. The strength of trapping is largely
unchanged, but all remnants of mixed-phase-space structures are
eliminated. Our key finding here is that the fractional scaling of
the quantum localization lengths remains unchanged for the RP-
DKP.
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ln	N�p�
 � const outside the ‘‘steps’’ in the trapping re-
gions. Then, only the step heights depend on @�. We can
restrict ourselves to a study of the parameter 2d since it has
the same @� scaling as Lloc. The midpoint of the nth step is
at p�n�1=2 � 2�n� 1��=� for n � 1; for n � 1, we take

p�1�1=2 � �=�2��. For the nth step we measure

 2d�n� � hln	N�p�n�1=2�
i � hln	N�p
�n�1�
1=2 �
i; (4)

where the average is taken over a small momentum interval
around p�n�1=2. This procedure is easily automated, allowing

a very fine grid of @� values, so we can examine fluctua-
tions in behavior.

Figure 3(a) compares the @� scaling of 2d�1� for the 2-
DKP and the RP-DKP, while Fig. 3(b) shows the average of
2d for steps n � 2 to 4. We take the behavior of the first
step to indicate the local localization length and of steps 2
to 4 to indicate the properties of the long-ranged scaling.
All the plots, whether 2-DKP or RP-DKP, show a slope
� � 0:65 for small @�. For the upper ranges of @�, the slope
(for L only) increases significantly. These results are quite
consistent with the slightly higher estimate � � 0:75
found in [9]: there, an average of the first few steps was
obtained, including a few @� values in the range where the
deviation from � � 2=3 begins.

We note that the trapping regions and the standard map
golden-cantori regions occupy similar regions of phase
space: the golden tori occur at winding number p0=2� �
0:618 and p0=2� � �1� 0:618�. The trapping occurs for
p0=2� � 0:5 (e.g., momentum p � �), exactly midway
between these. In Fig. 4 we show the well-known plot of
Geisel et al. [Fig. 2(b) in [6]] reproduced in quantum chaos
textbooks [2]. In that study, an initial state  �t �
0� � ��p� p0� was evolved for critical Kc � 0:9716 to
investigate transport through the golden cantori. Notably,
that study used precisely p0 � 3:2 � �: the initial state
was centered in the trapping region. We compare a RP-
DKP result also with p0 � 3:2 � �, destroying all the
KAM structures including cantori by taking �� ! 1 but
otherwise running exactly the same numerical code. (We
take the same @ � 1=100 but K � 0:1 for the RP-DKP to
keep diffusion rates comparable to the DKP.) Since � is our
unit of time in both systems, we can drop the � subscripts
on @ and K.

We now analyze the cause of the L� @
�2=3 scaling of

the RP-DKP. We consider the trapping regions �p � �p�
p0� centered at p0 � l0@ � �2n� 1��. At the centers of
these regions the argument of the Bessel function in Eq. (3)
vanishes. Near these points it is of appreciable size up until
when its argument x � 2K

@
cos	l@=2
 is of the order of the

index, i.e., when x & jl�mj. If also jl�mj � 1, the
asymptotic approximation

0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1

1

10

2d

RP-DKP
2-DKP (τε=49)
slope=0.65

hε

Kε=0.4

Lloc (first step)

Kε=0.7

Kε=
0.2

(a)
K ε=

0.97

0.1

1

10

2d

RP-DKP
τε=49
slope=0.65

hε

L : average of steps 2, 3, and 4

Kε=0.4
Kε=0.7

Kε=0.2

(b)
Kε=0.97

FIG. 3 (color online). (a) Fractional scaling of the Lloc [the localization length at the first step: note that Lloc � �2d�
�1]. It shows the

fractional 2d� @
2=3
� scaling holds over the full @� range. Straight lines indicate slope 0.65. The � 2=3 scaling holds even for K� �

0:97 � Kc, the parameter for criticality in the standard map: the only difference is that here �� ! 1 (RP-DKP) instead of �� � 1
(standard map). (b) As for (a) but shows the average of steps 2 to 4, showing that the L� @

�2=3
� global scaling persists only for the

smaller @� values.
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FIG. 2 (color online). (a) Shows that the quantum momentum
distributions for the mixed-phase-space double-kicked atoms (2-
DKP) are similar to those of the RP-DKP, for which the phases
between kick pairs are random numbers. The staircase structure
and ‘‘heights’’ of the steps are comparable. K� � 0:4 and @� �
1=500 in every case. (b) Shows the fractional scaling for the 2-
DKP. K� � 0:4 and �� � 49. The @

2=3
� rescaling of the momen-

tum distributions shows that the first step scales near perfectly in
the range from @� � 1=2500 to 1=25; i.e., the ‘‘local’’ localiza-
tion length in the trapping region scales over this entire @� range.
The global localization length (the envelope of the whole distri-
bution) shows this fractional @� scaling holds only for the smaller
@� � 1=2500 and @� � 1=250 but not for @� � 1=25. Vertical
lines indicate width and center (p � �) of the first trapping
region. The inset shows the same curves without the @2=3 scaling.
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 U2kick
lm � Jl�m�x� �

21=3

jl�mj1=3
Ai ��21=3z�; (5)

with x�jl�mj� z
jl�mj1=3 , holds. �p is small, as we are

near the center of a bottleneck, so this implies we are in the
semiclassical, @! 0, regime. Heuristically, the transition
probability corresponding to a small change in momentum
�p is jU2kick

lm j2, which is proportional to jl�mj�2=3 �

@
2=3

�p2=3 (where �p � jl�mj@). The effect of Ufree
lm is to ran-

domize the phases. The trapping regions act as bottlenecks
for transport. On scales larger than �p, considered fixed,
diffusion takes place: p2 �Dt, where the local diffusion
coefficient D is proportional to jU2kick

lm j2 and therefore to
@

2=3. Assuming that the evolution operator is a band matrix
with constant width (as is the situation for the ordinary
kicked rotor), the local localization length satisfies [4,11]
Llocal �

D
@

, implying Llocal � @
�1=3. In our case, the width

of the contributing region, as implied by the scaling of the
argument of the Airy function in Eq. (5), is of the order

jl�mj1=3��p1=3

@
1=3 . This should multiply the expressions for

D and Llocal. The resulting localization length therefore sat-
isfies L�@

�2=3. The condition for the validity of the
asymp-
totic properties of the Bessel function and for the mo-
mentum to be in a bottleneck region is 1� cos	l@=2
� @

2K .
We recall that this structure of U2kick

lm is common to both
the quantum DKP as well as RP-DKP, and Fig. 4 shows
that the fractional scaling is observed over similar phase-
space regions. One may safely conclude from the analysis

here that the behavior of the generic RP-DKP follows only
from the semiclassical dynamics in the bottleneck regions:
it is the hallmark of the scaling of an Airy function rather
than of the fractal scaling near golden cantori. However,
for the DKP, the additional presence of large stable islands
bordering the regions where @

2=3 is observed (which occur
when �� � 1) make the quantum-classical interplay less
transparent. In this case, too, Airy functions and @

2=3

factors occur naturally in the semiclassical quantization
of torus states [12]. A much more detailed study than the
one undertaken here is required to conclusively establish
whether the semiclassical dynamics is also the dominant
mechanism in the quantum DKP, but we suggest that
cantori do not represent the only possible source for
@
�2=3 scaling behavior.
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FIG. 4 (color online). Figure 4 shows that the RP-DKP trap-
ping regions coexist with the phase-space regions which contain
the two ‘‘golden-ratio’’ tori of the DKP (standard map); never-
theless, destroying the cantori in the RP-DKP with random
phases does not eliminate fractional scaling. (Bold solid lines)
DKP at critical Kc � 0:97; the plot is similar to Fig. 2(b) of
Geisel et al. 1986 [6] which yielded Lloc � @

�2=3. Vertical lines
indicate ‘‘golden’’ tori. Graph was obtained by setting K� �
Kc � 0:97, �� � 1, @� � 0:01. (Dotted line) The RP-DKP dis-
tribution is shown for a kick strength K� � 0:1, sufficiently
small that the amplitude ‘‘drops’’ are comparable in magnitude
to the DKP (but without the golden cantori).
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