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Upper Bounds on the Rate
of Quantum Ergodicity

Roman Schubert

Abstract. We study the semiclassical behaviour of eigenfunctions of quantum
systems with ergodic classical limit. By the quantum ergodicity theorem al-
most all of these eigenfunctions become equidistributed in a weak sense. We
give a simple derivation of an upper bound of order |In#|™" on the rate of
quantum ergodicity if the classical system is ergodic with a certain rate. In
addition we obtain a similar bound on transition amplitudes if the classical
system is weak mixing. Both results generalise previous ones by Zelditch.

1. Introduction

The quantum ergodicity theorem by Shnirelman, Zelditch and Colin de Verdiere,
[Sni74, Zel87, CAV85], states that almost all eigenfunctions of a quantum mechan-
ical Hamilton operator become equidistributed in the semiclassical limit if the
underlying classical system is ergodic.

Consider as example an Hamiltonian of the form

H=—R2A+V 1)

on L?(R%) with a smooth potential satisfying [0V (x)| < Cy(1+|2|?)™/2 for some
m € R and all @ € N?. Assume that for a fixed energy E the classical energy-
shell X := {(¢,2) € RY x RY; €2 + V(z) = E} is compact, then the spectrum
of H is discrete in a neighbourhood of E, and we will denote by N(I(E,k)) the
number of eigenvalues in the interval I(E, k) := [E — ahi, E + ahl, a > 0. If now
the Hamiltonian flow generated by H = &2 + V(z) is ergodic on Y then the
normalized eigenfunctions ,, of H satisfy

. 1 Zo12 =
PRI, 2, O

with ag := m sz a dpp and where a is a smooth bounded function on phase
space and Opla] its Weyl quantization (defined below in (4)). This result is the
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semiclassical version of the quantum ergodicity theorem, which was derived in
[HMRA7]. It implies that almost all of the expectation values (i, Op[a]¢y,) tend
to @g in the limit 7 — 0, so in this sense the eigenfunctions become equidistributed
on the energy-shell.

Our aim is to derive an upper bound on the rate by which the left-hand side
of (2) approaches zero. For the eigenfunctions of the Laplacian on manifolds of
negative curvature such a bound has been derived by Zelditch [Zel94]. The bound
we give is of the same order, so we do not get an improvement on the rate, but
the advantage of our method is that it is simpler and uses only ergodicity with
a certain rate as condition on the classical flow. Therefore it applies to a larger
class of systems. The main input in the proof is the result on the semiclassical
propagation of observables up to Ehrenfest time, [BGP99, BR02].

We will now describe the classes of Hamiltonians and observables we consider,
see, e.g., [DS99] for more details. We say a(h,x,&) € S™ for m € R if a is smooth,
satisfies

|a;afa(h’ $,§)| S C’Y(l —+ |£L’|2 + |§|2)m/2 (3)

for all v € N?¢ and h € (0,1/2], and has an asymptotic expansion a(h,x,§) ~
S nen Ban(z,€), ie., (a — SN hta,) N satisfies (3) for all N € N. Now let
M be a smooth manifold, the set of operators U™ (M) is given by local Weyl
quantization of these classes, if a € S™ in some local chart, then Opla] is defined
as

Oplaly = ﬁ //e%@*yv%(h, z ; Y )w(y) dyde . (4)

A general operator A € U™ (M) is then an operator that is locally of the form (4)
with some a € S™. For sake of simplicity we will in the following always assume
that M is either R? or a compact manifold and in the case M = R? (3) and (4)
should be valid globally. Then we do not have to worry about estimates at infinity
and if operators are properly supported. The function a is called the local symbol
of the operator A and the leading term in the asymptotic expansion of a is called
the principal symbol

o(A):=aq , (5)

the principal symbol can be glued together to a function on T*M, but the full
symbol not. The operators in W(M) are bounded on L?(M) (uniformly in /) and
will form our basic class of observables.

We will assume that the Hamiltonian H is a selfadjoint operator in H €
U™ (M), for some m > 0, and denote by ®' the Hamiltonian flow on T*M gener-
ated by the principal symbol Hy = o(H) of H. Let X := {(,§) € T*M ; Ho(z,§)
= FE} C T*M denote the energy surface and dug the Liouville measure on Y. If
E is a regular value of Hy and X g is compact, then the spectrum of H is discrete
in a neighbourhood of E. If furthermore the set of periodic orbits of ® on Y
has measure zero, then the number of eigenvalues close to E satisfies the Weyl
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estimate
2¢
N(I(E,h)) = (2m)aha T vol(¥g)(1+o(1)) , (6)
where vol(Xg) = fEE dpg and dup denotes the Liouville measure on Y g, see

[PR&5, Ivr98, DS99].
The autocorrelation function at energy E of a function a on T* M is defined

as
Cglal(t) = @ /EE ao®adup — (EE)2 , (7)
where
1
ap !Zm/%ad/m- (8)
The flow ®! is ergodic on X if for every a € L?(Xg, dug) one has
1 /7T
Jin - [ culawae=o. )

see [Wal82]. We will say that ®! is ergodic with rate v > 0 on X if for every
a € C>®(Xg) and f € S(R) there is a constant C such that

1 t -
T/f(T)CE[a](t) dt < C1+ T . (10)

The rate of ergodicity can be related to the more common rate of mixing, the
system is called mixing if lim;_, . Cg[a](t) = 0, and if |Cgla](t)] < C(1 + |t])77,
then 4 is called the rate of mixing. We see from (10) that for 0 < 4 < 1 we have
at least a rate of ergodicity v = 7, whereas for 4 > 1 we have at least v = 1. So
a rate of mixing implies a rate of ergodicity, but the contrary is not true, there
are dynamical systems which are not mixing but which can have a large rate of
ergodicity due to an oscillatory behaviour of Cgla](t). Examples are easily found
among maps, for instance the Kronecker map.
Our main result is now

Theorem 1. Assume M is either compact or M = R and let H € ¥™(M),
for some m > 0, be selfadjoint with principal symbol Hy. Assume that E is a
reqular value of Hy, that X g is compact and denote by E,, 1, the eigenfunctions
and eigenvalues of H in the interval I(E,h) = [E — ah, E + ah], a > 0. If the
Hamiltonian flow ®¢ generated by Hy is ergodic with rate v > 0 on X g, then for
any A € WO(M) there exists a C > 0 such that

1 — Inkl=7 #f0<~y<1
nyA n/ A 2 S c 5 11

where o(A) , is defined in (8).
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This result is an extension of a previous result by Zelditch, [Zel94], who
obtained the same logarithmic bound for v > 1 for eigenfunctions of the Laplacian
on compact manifolds of negative curvature (in order to connect the two setups one
has to rescale the Laplacian with /). The improvement lies in the weakening of the
assumptions to a rate of ergodicity and in a simpler proof, this is possible because
we can use the recent results on propagation of observables up to Ehrenfest time
[BGP99, BR02]. But Zelditch obtained in [Zel94] as well logarithmic bounds for
higher moments of the expectation values, something we do not. A similar result
to Theorem 1 has been stated recently by Robert in the review [Rob04].

Further systems where Theorem 1 applies are Schrodinger operators H =
—h2A +V on the 2-torus with the smooth potentials V' constructed by Donnay
and Liverani [DL91], for which the classical flow is ergodic and mixing, see [BT03].
These examples have been recently generalized to higher dimensions in [BT05].
The assumptions on M are made for sake of simplicity and because they cover the
examples which are mainly studied in the literature, they could be relaxed.

For strongly chaotic systems the bound (11) is far from the conjectured opti-
mal one. For eigenfunctions of the Laplace Beltrami operator on compact surfaces
of negative curvature, where the corresponding classical system is the geodesic
flow, which is Anosov, Rudnick and Sarnak [RS94, Sar03] have conjectured that

‘mewm */Pd’/g < CEE;1/4+E (12)

holds for all € > 0. Here p is a sufficiently nice function on the surface and dy,
is the Riemannian volume element. Translated in our context that would imply
a bound h'~¢ in (11). A very precise prediction for the behaviour of the sum on
the left-hand side of (11) has been derived in [EFKT95], for a compact uniformly
hyperbolic system with time reversal invariance and no other symmetry it reads

m ST (s Athy) — 0(A) 2

E,€I(E,h)
27‘('77, d-1 d—1
22— / Clo(A)(t) dt + o(h1) .

(13)

Numerical tests of these predictions have been performed in [EFKT95, AT98,
BSS98]. They were confirmed for uniformly hyperbolic systems like manifolds of
negative curvature. For non-uniformly hyperbolic systems like Euclidean billiards
the findings are less clear and the rate is sometimes slower, at least in the tested
energy range. So understanding the rate of quantum ergodicity remains a major
open problem. Very recently Luo and Sarnak, see [Sar03], established a result of
the form (13) for the discrete spectrum of the Laplacian on the modular surface.
But due to the arithmetic nature of the system the right-hand side of (13) differs
and an additional factor related to L-functions appears.

The reason for the rather large gap between the estimate (11) and the con-
jectured one is our poor understanding of the quantum time evolution for large
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times for the case that the underlying classical system is hyperbolic. In our present
techniques the hyperbolicity leads to exponentially growing remainder terms and
this reduces us to time scales which are logarithmic in /. But for systems which are
ergodic but not hyperbolic we can hope to get much stronger results. Examples for
such systems can be constructed as maps on the torus and these will be studied
in a separate paper.

The method we use to prove Theorem 1 can be used as well to get a bound
on the off-diagonal matrix elements. We say that the flow ®¢ is weak mixing with
rate v > 0 on X if for all smooth a on ¥g and f € S(R) there is a constant C
such that for all e € R

] (%)CE[aut)ei“ dt < C(1+[T)) 7. (14)

That the above quantity tends to 0 for T" — oo is equivalent to weak mixing, see
[Wal82], so the above condition quantifies the rate of weak mixing. As for the rate
of ergodicity, a rate of mixing implies a similar rate of weak mixing.

Theorem 2. Under the same conditions as in Theorem 1 we have for v > 0

1 ! Mna|=" f0<y<1
N U, Apy) | < C . , (15
N(I(E’h))n,m;};;(m) It ) Inhal~t ify>1 (15)

|En—Em|<Rh/[In A

and if the flow is weak mizing with a rate § > 0, then for any ¢ € R

1 ' Inh|=% if0<ds<1
FY ok aravy Pny Ap) > < C . , (16
N(I(E’h))n,m;EneIZw,h) ' ! LU "

|Ep—Em—he|<h/|In k|

where the prime at the sum indicates that we sum over E,,, E, with E,, # E,.

The behaviour of off-diagonal matrix elements have been studied in [Zel90,
Zel96] where it was shown that ergodicity and weak mixing imply that the above
sums tend to zero for & — 0. Further results have been derived in [Tat99].

The plan of the paper is as follows. In Section 2 we collect some preliminaries,
and in Section 3 we do the proof of Theorems 1 and 2.

2. Preliminaries

The proofs of Theorems 1 and 2 rest on two ingredients, a microlocal version of

Weyl’s law and a version of Egorov’s Theorem which is valid up to Ehrenfest time.

In this section we will recall these results and present them in the form we need.
The estimates collected in this section will be finally applied to compute

Tr p((E — H)/h) BU* (t) AU (#) (17)

for A, B € WO(M). This quantity can be localized by splitting B = =, Oplb;]
with b; supported (modulo 7%°) in local charts. So whenever we write Opla] in
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the following we will tacitly assume that a covering with local charts is fixed with
respect to which Opla] is defined as in (4).
For a function a € C*°(R™) we will use the notation

lalg = Z sup |0%(z)| (18)

\a|§kx€Rm
for kK € N.

Proposition 1. Assume that H € U™ (M) is selfadjoint and has principal sym-
bol Hy. Assume furthermore that E is a reqular value of Hy and that X g is compact.
Let p be a smooth function on R such that the Fourier transform p has compact
support in a small neighbourhood of 0 which contains no period of a periodic orbit
of ®* on Y. Then there is a constant C > 0 such that for every Op[b] € ¥O(M)
we have

Zp<E—hEn><¢mOp[an> G ;;g) a(b) | < CR*~|plsblaars - (19)

En

The proposition is a standard result and well known in the literature, except
that the way that the error term depends on b is usually not made explicit. Since
the main tool in deriving the formula (19) is the method of stationary phase, or
variants thereof, it comes as no surprise that the error term can be estimated by a
finite number of derivatives of b. An analogous result for high-energy asymptotics
on compact manifolds was derived in [Zel94]. For convenience we will sketch the
proof of Proposition 1, for details we frequently refer to [DS99].

Proof. We first observe that without loss of generality we can assume that b is
supported in a compact neighbourhood of the energy-shell ¥p. Let f(E) be a
smooth function with compact support such that f(H(z,£)) has compact support
and f(H(z,€)) =1 on a neighbourhood of ¥ . By the functional calculus one has
then f(H) € W(1), see [DS99]. Let U(t) = e~ ™ be the time evolution operator,
i.e., the solution to 140U (t) = HU(t) with initial condition U(0) = I. One then
constructs an approximation to the operator Us(t) = U(t)f(H) by solving the
initial value problem

(ihdy = H)Us(t) =0, Us(0) = f(H) (20)
approximately for small ¢, i.e., for every N € N one can find an V(™) (t) such that
(ihdy — H) VI (1) = N Ry (1) . VIV(0) = f(H) , (21)

with ||Ry(t)|| < C for t € [-Tp,Tp] where Ty is smaller then the period of the
shortest periodic orbit on X . Then Duhamel’s principle gives

Us(t) = VO (1) + Y / #(t— )Ry (¢) dt (22)
0
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and therefore

| Tr Uy (¢) Op[b] — Tr VN (£) Op[b]| < AN[t| sup |TrUy(t — )Ry (') Oplb]|
t'€[0,t] (23)
< BN Cy Tr|Oplb]|

since [t|supy e [|Ur(t — )Ry (t)|| < C for t € [Ty, Ty] and we have used the
general relation |Tr AB| < ||A]| Tr|B| if A is bounded and B of trace class. Since b
is of compact support Op[b] is of trace class and its trace norm can be estimated
as

1
Tr|Opf]| < C—— |b 24
| p[ H = (27Th)d | |2d+1 ) ( )
see [DS99, Chapter 9]. The kernel of V(V)(#) satisfying (21) is given by
1 i
N _ Lip(t,z,8)—ye] (N
VNt 2, y) = W/eﬁm gt 2, ) de (25)

where ¢(t, z, ) is a solution to the Hamilton Jacobi equation
Op(t,x, &) + H(w, ¢ (t,2,€)) =0 (26)

with initial condition (0, z, &) = z€, and a™)(t,z, &) € C=([-Tp, Tp], S*) is the
solution of a corresponding transport equation with initial condition a(™) (0,z,€) =
f(H(z,£)) + O(h) given by the symbol of f(H). See [DS99, Chapter 10] for the
proof and more details. If b = ¢":%p denotes the left symbol of Op[b] (the case
t =0 in [DS99, Equation (7.5)]) then we get from (25)

/ e BT [V (N (1) Op[B] p(8) dt

= ﬁ ///e%[w(t,x,f)fzéJrEt]ﬁ(t)a(N)(t7Lg)g(m’g) dadedt .
™

The main contributions to this integral come from the points where the phase is
stationary, the stationary phase condition reads

8t@(tax7§)+E:O ) 8;8()0(t,I,£)—€:O and a{w(taz7£)—‘r:0 . (28)

(27)

In view of (26) the first equation means that H(x,&) = E and the second and
third imply that ®(z,&) = (x,€), i.e., (x,£) has to lie on a periodic orbit with
period t. Since by assumption the support of p does not contain any period of a
periodic orbit, the only stationary points left are at ¢ = 0, and consist of the whole
energy shell ¥ . Because F is assumed to be a non-degenerate energy level we can
choose new coordinates (E’, z) in a neighbourhood of X g such that H(FE’,z) = E’,
and when we use furthermore that ¢(t,z,&) = z¢ — tH(x, &) + r(t,x,§) with
r(t,z, &) = O(t?), which follows from (26), then the above integral becomes

1 i / , -
e / / / HE=EN4r (LB D) 5y (1) B/ VB(E, 2)J(E, 2) dE'dtdz , (29)
i
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where J(E', z) denotes the Jacobian of the change of coordinates. We can now
apply the stationary phase theorem with remainder estimate, see, e.g., [DS99,
Chapter 5], to the ¢, E’ integrals and get

- / / HIE=ENr (B ) 50000 N (1) B )B(E, 2)J (', 2) dE'dt
Y3

= p(O)a )(07 E, Z)E(E7 z)J(E, z) + O(h‘p‘5‘l~)|5) )

(30)

where the implied constant does only depend on a and ¢. With the initial condition
a™(0, B, z) = 1+ (h*°) and [0%b — 0°b| < C|b||a|+2a+3 We then finally obtain

’ / e P Te(VON) (1) Op[B)) (1) dt — (25,%)3_ /2 o(b) due

< Ch¥2|p|5]bl2g+s -

(31)

On the other hand side, by the spectral resolution of U(t) we have

/e%Ethf(t) Op[b))p(t) dt = 2772 (

and so finally we get

;p<E _,iE) (¢n, OP[B]¢n)

) (G, ODBI)  (32)

H(0) (33)
p (b - —

= WU( e+ O(hd 2‘P‘5|b|2d+8) + O(ﬁd N\p\0|b|2d+1)

where the implied constants do only depend on a, ¢ and f. O

We want to use this proposition with Op[b] = Op[a]U*(t) Op|a]U(t) where
Op[a] € ¥°. In order to do so we will use the Theorem of Egorov with remainder
estimate from [BGP99] and [BR02, Proposition 2.7].

Theorem 3 ([BR02)). Assume that H € W™ (M) is selfadjoint, let U(t) := e~ '™
and assume that X is compact. Then there exists a constant I'y > 0 such that for
every Opla] € WO (M) with support in a neighbourhood of X g there is a C > 0 with

lU*(#) Op[a]U (t) — Opla o ®'][| < Che"I" (34)

Proof. The case M = R? is [BR0O2, Proposition 2.7]. For compact M one could
use a partition of unity and the results from [BR02] in local coordinates. But to
keep track of ®¢ and U(t) in different charts for large ¢ gets cumbersome, so we
sketch a proof close to the one in [BR02] but using the global calculus of Safarov,
[Safo7].

Let us equip M with a Riemannian metric g, let r4 be the injectivity radius
of (M, g) and let d(z, y) be the metric distance on M induced by g. For two points
z,y € M with d(z,y) < rg let v44(s), s € [0,1] be the unique geodesic joining x
and y and set z(z, y) := Y,y (3) and for £ € T7, S M M, o(z,y,§) := —Yy(3)€. Then
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for a function a € C§°(T*M) the operator Op,la] is defined to be the operator
with kernel

Klew)=plen) g | eHeaier).d @)
z(z,y)

where p(x,y) is a smooth cutoff function with p(z,y) = 1 for d(z,y) < 0 and
p(z,y) =0 for d(z,y) > r, — & for some § > 0. If M = R? and g is the Euclidean
metric then this quantization reduces to Weyl quantization (modulo O(h*) due
to the cutoff function). The class of operators obtained by this quantization is
the same as the standard one for the usual symbol classes, and we have for a
Opla] € ¥O(M) that

10py[a] — Opla]|| < Clalkh (36)

for some K € N. We collect now some facts we need about the global calculus. For
a,b € C§°(T* M) there is an a#b such that Op[a] Op,[b] = Op,[a#b] and

ab = ab + %{a, b} + K2Ry(a, b) (37)

where the remainder satisfies |Ra(a,b)|cr < Ckla|gr+x|b|lgr+x, for some K € N.
This remainder estimate is not explicitly contained in [Saf97], but is follows di-
rectly from the structure of the product formula. We will use furthermore the two
estimates for a € Cg°(T* M)

|Op,la]ll < Clalor , a0 ®|cr < Cret I (38)

for some constants L € N, IV > 0. The first one is the Calderon Vallaincourt
Theorem and the second one is Lemma 2.2 in [BR02]. The calculus just sketched
is actually the semiclassical version of the one in [Saf97], but the results can be
proved the same way.

Since we are working in the neighbourhood of an compact energy shell X g
we can localize H and assume that H = Op,/[H], where H has compact support
in a neighbourhood of ¥ 5. Now let us consider

S U(1) Op,la o #)U" (1

_ U(t)(Opg[{H, ao®')] - fii

= —hU(t) Opy[Ry (H,a 0 @)U (1)

[Op,[H], Op,[a o @]] ) U*(¢) (39)

where we have used (37) and defined R, (a,b) := Ra(a,b) — Ra2(b, a). Integrating
this equation leads to
U (t) Opy[a]U(t)— Opgyla o @]

= h/t Ut —t')Opy[R; (H, a0 NU*(t —t') dt’ (40)
0
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and with the estimates (38) this gives

|U* (£) Op,la]U (t) — Op,fa o ®]| < h / IO, s (H a0 ® ) 0

< Chellt!

for some constants I, C' > 0. Using (36) we obtain then (34). O

From this we get

Corollary 1. Under the assumption in Theorem 3 there exists a constant I' > 0
such that for every Opla] € WO(M) with support in a neighbourhood of X there
is a C > 0 with

|Opa)*U*(t) Op[a]U (t) — Opla*a o ®']|| < Che'!" (42)
Proof. Using the triangle inequality and Egorov’s Theorem we get
|Opla] U™ (t) Opla]U(t) — Opla*a o ®*]]|
< | Opla]*U* (¢) Op[a]U(¢) — Opla]* Opla o @]
+|Opla]” Opla o '] — Opla*a o @]
< Ch||Op[a]|[e"*"! + | Opla]* Op[a o #'] — Op[a*a o &']|

(43)

and since Opla] is bounded we only have to estimate the second term. By the
product formula for pseudo-differential operators and the Calderon Vallaincourt
Theorem there exists a k € N such that

|0pla] Op[b] — Oplab]|| < Chlalk|b|x (44)

where C does not depend on a and b. We use this estimate with b = a o ®' and
that for some I'y, > 0

la o @), < Cel*lt (45)
see [BR02, Lemma 2.4]. This proves the corollary with I' = max{I'y,T'; }. O

Using Corollary 1 together with Proposition 1 we obtain

Corollary 2. There exists C > 0, I' > 0 and k € N such that for every selfadjoint
Opla] € WO(M)

E—-FE,\ i _ ()
S o B e, i) ~ T
T (46)

- (27:3)2(;361—1 Crlo(a))(t) + O(h*4|p|s|alxet ) .

This kind of relationship between transition amplitudes and the autocor-
relation function is well known, the only new piece is that we have an explicit
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estimate on the time dependence of the remainder term. In fact if we multiply
with a function f(t) of compact support and integrate over ¢ we obtain

Z p(EhEn)f<EmhEn)|<¢n’op[a]wm>_%E|2
o /(0) (47)
- (pr)dw /CE[U(G)](t) f(t) dt +O(h*7)

which was derived in [FP86, Wil87] and proved in [CR94].

3. Proofs of Theorems 1 and 2

The proof of Theorem 1 will rely on the fact that by Corollary 2 we can let the
support of f in (47) become larger with 7.

Proof of Theorem 1. We will assume in the following that ag = 0, this can alwayb
be achieved by subtracting @z from a. Choose p such that p > 0, p(EZE ) >1
for E' € I(E, h). Choose furthermore f such that f € C°°([—1,1]) and f >0 and
£(0) =1 and set fp(r) := f(T'r) so that fp(t) = f(t/T)/T. Then we have

> (¥, Oplalgpn)?

E.c€I(E,h)

< 3 (B ) (B ) o ovtanl

En,Em

(48)

and with Corollary 2 we get

> (555 ) (5 hﬂﬂuwxmmwmﬁ

En, By
= p; dl/cE fr(t) dt (49)

+O(h2_dp5|a|k/ert|frp(t) dt) .

Now we have
— 1
[ @ < 1o e (50)

and with (10) we obtain

L1 >1
’/CE Ud4 Cr ooz , (51)
Crs for0<vy<1

for large T', since ag = 0 by assumption. If we choose

1
T = = [n(h)| (52)
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then he'” = 1, and therefore we get

5 o E5E ) e (B ) o Ol P

En,Em

(53)

< op-1 Inhl=Y f0<y<1
- Inh|=t ify>1 '

Combining this inequality with the estimate (48) and the asymptotic for the num-
ber of eigenvalues in I(FE, h), (6), finally gives

1 Inkl~" f0<y<1
Sy 2 [{nOplalvn)? < C{ Lo (54)
N(I(E,h)) B eI E.h) [In 7| ify>1

and the proof is complete. O

Theorem 2 is proved along the same lines.

Proof of Theorem 2. The proof is based on relation (53), notice that the only as-
sumption on p and f which entered the derivation are that f has compact support
and p is supported in (—Tp, Tp). We choose now p as before and f such that

/= X-r,n (55)
where x[_p ) is the characteristic function of the interval [-I',T']. Then we get

using (53)

1 9 Inka|=" f0<y<1
N(I(B.h) > |[(¥n Oplaltm)|” < C {ln B iy > 1 (56)

n,m: E,€I(E,h)
|Ep—Em|<h/|Inh|

if ag = 0. Together with (54) this gives

1 / 5 Ina|=" f0<vy<1
NaEw), 2 Ol C {un Aty =1 0D

n,m: E,€l(E,h)
|En—Em|<h/|Ink|

and since (., apt,) = 0 if B, # E,, this estimate is true for all Op|a] € ¥O(M).
With the same choices of p and f and by shifting fr,
() = fr(r—e), (58)
we get from (49) and (50)

E-FE, E, —-E,—he
5 o( B ) (B Y g Oblalen
FnBm o (59)
— (0 FRAWRES 2—d Fl IT
— i [ Celo@IOFe= di+ O~ ollab floc™ )
And with the choice (52) and the rate of weak mixing (14) the second relation in
Theorem 2 follows. 0
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