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A quantum version of a recent formulation of transition state theory in phase space is presented. The
theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-
Siegert resonances with very high accuracy. The algorithm is especially efficient for multi-degree-of-
freedom systems where other approaches are no longer feasible.

DOI: 10.1103/PhysRevLett.96.218302 PACS numbers: 82.20.Ln, 05.45.�a, 34.10.+x
Introduction.—The question of how, as Marcus [1] for-
mulates it, a system ‘‘skis the reaction slope’’ is one of the
crucial questions in reaction dynamics. Experimental tech-
niques like photodissociation of jet-cooled molecules, mo-
lecular beam experiments, or transition state spectroscopy
give detailed information about the reaction process as has
recently been demonstrated, e.g., for the ‘‘paradigm’’ re-
action of hydrogen atom-diatom collisions (see, e.g., the
review paper [2]). A chemical reaction can often be viewed
as the scattering problem across a saddle point of the
interaction potential. The cumulative reaction probability
is then given by

N�E� � trt̂t̂y �
X
nr;np

jh out
np jŜj 

in
nrij

2;

where t̂ is the transmission subblock of the scattering
operator Ŝ for energy E and the summation in the latter
expression runs over all incoming reactant states with
quantum numbers nr and outgoing product states with
quantum numbers np. The ab initio quantum mechanical
computation of N�E� soon becomes very expensive if the
number of atoms in the system increases beyond 3 and one
has to resort to suitable approximations. The main ap-
proach to compute N�E� classically is transition state
theory which was invented by Eyring, Polanyi, and
Wigner in the 1930’s. The main idea is to define a dividing
surface that divides the energy surface into a reactant and a
product component and compute the rate from the direc-
tional phase space flux through this surface. In order not to
overestimate the rate, the dividing surface must not be
recrossed by reactive trajectories. In the 1970’s Pechukas,
Pollak, and others [3] showed that for 2 degrees of freedom
such a dividing surface can be constructed from a periodic
orbit (the so-called periodic orbit dividing surface).
Recently, it has been shown that in higher dimension a
dividing surface that is free of recrossings can be built from
a normally hyperbolic invariant manifold (NHIM) [4]. The
dividing surface and the NHIM can be directly constructed
from an algorithm based on a Poincaré-Birkhoff normal
form procedure [5] which also gives an expression for the
flux [6].
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Much effort has been devoted to developing a quantum
version of transition state theory whose implementation
remains feasible for multidimensional systems (see the
flux-flux autocorrelation function formalism by Miller
and co-workers [7]). In this Letter we present a quantum
version of the normal form procedure that lead to the
construction of the high-dimensional phase space struc-
tures that govern the classical reaction dynamics (see [8]
for work in a similar direction). We demonstrate that this
quantum normal form approach to transition state theory
provides an efficient procedure to compute quantum reac-
tion rates and the corresponding Gamov-Siegert reso-
nances [9].

The quantum normal form.—We consider scattering
across a single equilibrium point of saddle-center-???-
center stability type (‘‘saddle’’ for short), i.e., the matrix
associated with the linearized classical equations of motion
has one pair of real eigenvalues �� associated with the
saddle or ‘‘reaction coordinate’’ and f� 1 pairs (f being
the number of degrees of freedom) of imaginary eigenval-
ues �i!k, k � 2; . . . ; f, associated with the center or
‘‘bath’’ degrees of freedom. The main idea of which the
seed can already be found, e.g., in [10] in the chemical and
[11] in the mathematical literature, is to derive a local
approximation of the Hamilton operator of the scattering
problem that is valid near the saddle, and in order to
facilitate further computations, takes a much simpler
form than the original Hamiltonian. We therefore develop
an explicit algorithm to realize the ideas of [11] based on
the Wigner-Weyl calculus that has been used by others
before to compute energy spectra associated with stable
equilibria [12]. Here the manipulations of an operator Â are
expressed in terms of its symbol, which is the function
A�p; x� defined by

Â �x� �
1

�2�@�f
Z
R2f
eihx�y;pi=@A

�
p;
x� y

2

�
 �y�dydp:

Defining the multiplication � of two symbols A and B as

A � B � A exp
�
i
@

2
�h@

*
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pi � h@
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x; @
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pi	

�
B; (1)
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FIG. 1 (color online). (a) Normal form saddle plane (x1; p1)
with the projection of the NHIM (x1 � p1 � 0), its stable and
unstable manifolds (x1 � 0 and p1 � 0, respectively), the divid-
ing surface (p1 � x1; dashed line) separating reactants (p1 > x1)
from products (p1 < x1), forward and backward reactive trajec-
tories that have E> E0 (hyperbola with branches in the first and
third quadrant, respectively) and nonreactive trajectories that
have E< E0 (hyperbola with branches in the second and fourth
quadrant). (b),(c),(d) show Husimi representations [13] of the
scattering state  in

react for the energies marked in (e). (e) Trans-
mission probability T�E� and Gamov-Siegert resonances in the
complex energy plane for the Eckart potential. The parameters
are a � 1, 10A � B � 5, m � 1, and @ � 0:1.
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where the arrows indicate whether the partial differentia-
tion acts to the left (on A) or to the right (on B), gives the
property that the quantization of the product of two sym-
bols A and B is equal to the product of the quantizations of

the individual symbols, i.e., Â B̂ � dA � B . The � product
leads to the definition of the Moyal brackets

fA;BgM �
i
@
�A � B� B � A�:

We define the order s of a monomial p�x�@n 


p�1
1 � � �p

�f
f x

�1
1 � � � x

�f
f @

n according to s � j�j � j�j �
2n 
 �1 � � � � � �f � �1 � � � � � �f � 2n, and denote
the vector space of polynomials spanned by monomials of
order s by W s. For A 2W s and B 2W s0 we define the
Moyal adjoint by MadAB :� fA;BgM, then its iterates sat-
isfy �MadA	

nB 2W n�s�2��s0 .
The symbol of the Hamilton operator Ĥ can be expanded

about the saddle according to

H � E0 �
X1
s�2

Hs; (2)

where E0 is a constant energy and Hs 2W s. Like in the
classical case [5], a suitable linear canonical transforma-
tion allows one to write the second order term as

H2 � �I �!2J2 � � � � �!fJf

with I � p1x1, Jk �
1
2 �p

2
k � x

2
k�, k � 2; . . . ; f. Note that

p1x1 � �~p
2
1 � ~q2

1�=2, where (p1; x1) and (~p1; ~q1) are re-
lated by a rotation of 45�.

In order to simplify the Hamiltonian Ĥ we will trans-
form it by successive conjugations with unitary operators,
Ĥ �: Ĥ�2� ! Ĥ�3� ! Ĥ�4� ! � � � ! Ĥ�N�, where

Ĥ �n� � eiŴn=@Ĥ�n�1�e�iŴn=@;

with Wn 2W n. Using the Moyal adjoint the symbol of
the right-hand side can be expanded as

H�n� �
X1
k�0

1

k!
�MadWn

	kH�n�1�: (3)

If we expand furthermore each of the symbols H�n� in a
power series as in (2),H�n� � E0 �

P
s
2H

�n�
s , withH�n�s 2

W s, then using (3) the terms in these series can be related
by

H�n�s �
X��s�2�=�n�2�	

k�0

1

k!
�MadWn

	kH�n�1�
s�k�n�2�;

where ��	 denotes the integer part. Notice that for s < n,
H�n�s � H�n�1�

s , and for s � n we obtain

H�n�n � H�n�1�
n � fWn;H2g; (4)

where we have used that H�n�2 � H2 for all n 
 3 and that
the Moyal brackets reduces to the Poisson brackets f�; �g if
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one of its arguments is a quadratic function. This is the
homological equation which is familiar from the classical
normal form algorithm, [5], and under the nonresonance
conditions on the frequencies !k, given anyH�n�1�

n 2W n

there exists a unique Wn 2W n such that H�n�n can be
written as a function of I; J2; . . . ; Jf alone.

Choosing the generators of the unitary transformations
Wn recursively for n � 3; 4; . . .N as solutions of (4) we
obtain an operator Ĥ�N� whose symbol is of the form
H�N� � E0 �

PN
s�2 H

�N�
s � R�N�1�, where the first part is

a polynomial in I; J2; . . . ; Jf, i.e., is in normal form, and the
remainder R�N�1� consists of terms of order N � 1 and
higher. In a final step we want to express the quantization
of the normal form part as an operator function of the
quantized Î and Ĵk. To this end we use a recursion relation
for În (and a similar one for the Jk), Î

n�1 � ÎÎn �
În�1n2

@
2=4, which can be derived from the product for-

mula (1). This allows us to express quantizations of powers
of I as a polynomial in powers of Î. In this way we find a
polynomial H�N�QNF such that

U�NĤUN � H�N�QNF�Î; Ĵ2; . . . ; Ĵf� � R̂
�N�1�;

where UN �
QN
n�3 e

�iŴn=@. H�N�QNF�Î; Ĵ2; . . . ; Ĵf� is called
the quantum normal form (QNF) of Ĥ of order N. The
remainder term R̂�N�1� has a symbol which is of order N �
1 and is therefore very small near the saddle point. Hence
the dynamics near the saddle point can be described with
high accuracy by the QNF Hamiltonian. The QNF
Hamiltonian is an operator function of the commuting
operators Î and Ĵk whose properties are well understood.

In the limit @! 0 we recover the classical normal form
of order N. The classical normal form gives explicit ex-
2-2
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pressions for the NHIM, its stable and unstable manifolds
and the dividing surface that govern the classical dynamics
[5] [see Fig. 1(a)].

Resonances and reaction rates.—The eigenfunctions of
the QNF Hamiltonian are tensor products of harmonic
oscillator wave functions for the center degrees of freedom
xk, k � 2; . . . ; f, and eigenfunctions of the operator

Î �
@

i

�
x1@x1

�
1

2

�
associated with the saddle direction. The operator Î has
eigenfunctions [13]

 out
react=prod�x1� � ���x1�x

�1=2�iI=@
1 ;

� being the step function, which are outgoing waves.
Incoming waves can be defined from the Fourier trans-
forms

 in
react=prod�x1� �

1���������
2�@
p

Z
 out�

prod=react�y1�e
ix1y1=@dy1: (5)

For I > 0 these wave functions are associated with the
reactants and products pieces of the forward and backward
trajectories in Fig. 1(a) [13]. Expressing the functions
 in

react=prod in terms of  out
react=prod gives the entries of a local

S matrix:

 in
prod � Sn11 out

prod � Sn21 out
react;

 in
react � Sn12 

out
prod � Sn22 

out
react:

Here, n denotes the vector (n2; . . . ; nf) of quantum num-
bers of the modes in the center directions. The local S
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matrix is block diagonal. Mode mixing is a ‘‘global’’ effect
which occurs from connecting the local wave functions to
the asymptotic reactants’ and products’ wave functions.
However, the local S matrix alone already contains the full
information needed to compute reaction rates and reso-
nances (if the NHIM is the only trapped set [11]).

Evaluating the integrals (5) gives

Sn�E� �
ei��=4�I ln@=@��������

2�
p �

�
1

2
� i

I
@

�
�
�ie���=2��I=@� e��=2��I=@�

e��=2��I=@� �ie���=2��I=@�

 !
with I being implicitly defined by

H�N�QNF�I; @�n2 � 1=2�; . . . ; @�nf � 1=2�� � E: (6)

The transmission probability of mode n is

Tn�E� � jSn12�E�j2 � �1� e�2��I=@���1;

which gives the cumulative reaction probability N�E� �P
nTn�E�. The Smatrix has poles at I � �i@�n1 � 1=2� for

non-negative integers n1 and these define the Gamov-
Siegert resonances via (6).

Examples.—For 1D potential barriers, i.e., Hamiltonians
of the form H � p2=�2m� � V�x�, where V�x� has a maxi-
mum which we can assume to be at x � 0, the second order
QNF is easily obtained and gives the well-known result
ĤQNF;2 � V�0� � �Î with � � ��V 00�0�=m	1=2, which is
equivalent to approximating the potential barrier by an
inverted parabola. The first nontrivial correction to this
result comes from the fourth order QNF ĤQNF;4 given by
V�0� � �Î �
1

16m2�2

�
5

3m�2 �V
000�0�	2 � V0000�0�

�
Î2 �

1

64m2�2

�
7

9m�2 �V
000�0�	2 � V0000�0�

�
@
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FIG. 2 (color online). (a) Errors for the transmission probabil-
ity of the Eckart potential computed from the QNF. (b) Differ-
ences between the QNF resonances and the corresponding exact
complex energies of the Eckart potential as a function of the
quantum number n1. The different colors correspond to different
orders of the QNF. The parameters are the same as in Fig. 1.
We apply the QNF to the Eckart potential [14]

VEckart�x� � A
e�x�x0�=a

1� e�x�x0�=a
� B

e�x�x0�=a

�1� e�x�x0�=a�2

with x0 � a ln�B� A�=�B� A� and B> A 
 0. Figure 1
shows the exact transmission probability which is known
analytically, and the exact string of resonances together
with the resonances from the second order QNF which
have constant imaginary part. The bending of the string of
exact resonances is a nonlinear effect that is very well
described already by the fourth order QNF. The excellent
accuracy of the resonances and the cumulative reaction
probability computed from higher orders of the QNF is
illustrated in Fig. 2.

We next consider the three-degree-of-freedom example
of a Hamiltonian with an Eckart potential in the x1 direc-
tion, and Morse potentials

VMorse;k�xk� � De;k�e�2�kxk � 2e��kxk�; k � 2; 3

in the x2 direction and x3 direction, plus a mutual kinetic
coupling ��p1p2 � p1p3 � p2p3�. In Fig. 3 the cumulative
reaction probability and the resonances computed from the
QNF are compared with the exact results. In the uncoupled
case � � 0, N�E� increases as a function of E at integer
steps each time a new transition channel opens, i.e., when
2-3
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FIG. 3 (color online). (a) The top panel shows the cumulative
reaction probability N�E� (oscillatory curve) and the classical
flux computed according to [6] divided by �2�@�2 (smooth
curve) for the Eckart-Morse-Morse potential defined in the text
with � � 0. It also shows the quantum numbers (n2; n3) of the
Morse oscillators that contribute to the quantization steps. The
bottom panel shows the resonances in the complex energy plane
marked by circles for the uncoupled case � � 0 and by crosses
for the strongly coupled case � � 0:3. For the coupled case the
numerically exact resonances are computed from the complex
dilation method [15]. The parameters for the Eckart potential are
the same as in Fig. 1. The parameters for the Morse potential are
De;1 � 1, De;2 � 3=2, �1 � 1, and �2 � 1. Again we choose
m � 1 and @ � 0:1. (b) Errors for the cumulative reaction
probability in (a) for different orders of the QNF. (c) Errors
for a selection of resonances (n1; n2; n3) computed from the QNF
for the coupled case � � 0:3.
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the transmission probability T�n2;n3�
�E� of a mode (n2; n3)

of the two Morse oscillators switches from 0 to 1. For both
the uncoupled and strongly coupled case the resonances
form a distorted lattice parametrized by the mode quantum
numbers (n2; n3) in the horizontal direction and the quan-
tum number n1 in the vertical direction. Similar to the 1D
example, each string of constant (n2; n3) is related to one
step ofN�E�. Like in the 1D case the agreement of the QNF
results with the exact results is excellent and this remains
the case even for the strongly coupled system. The QNF is
an asymptotic expansion which in general does not con-
verge. However, up to the maximal order shown the accu-
racy of the QNF results still increases as the order of the
QNF is increased.

Conclusions.—The QNF computation of reaction prob-
abilities and the corresponding Gamov-Siegert resonances
is highly promising since it opens the way to study high-
dimensional systems for which other techniques based on
the ab initio solution of the quantum scattering problem
like the complex dilation method [15] or the utilization of
an absorbing potential [16] are no longer feasible. In fact,
in order to compute sufficiently accurate resonances from
the complex dilation method that facilitate a comparison
21830
for our QNF computations for the shown three-degree-of-
freedom example, we had to diagonalize matrices of size
2500� 2500 reaching the limits of our computation
power. However, the numerical effort for computing the
QNF is only slightly higher than the effort for computing
the classical normal form (NF). The main difference is that
the Poisson brackets in the classical NF needs to be re-
placed by the Moyal brackets. Moreover, the QNF gives an
explicit formula for the resonances from which they can be
computed directly by inserting the corresponding quantum
numbers. This leads to a direct assignment of the reso-
nances. The QNF provides a quantum version of transition
state theory that, in the classical limit, is in accord with the
classical phase structures that govern the reaction dynam-
ics. In fact, the classical phase space structures form the
skeleton for the scattering and resonance wave functions,
and exploiting this relationship is the subject of our future
studies.
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