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Abstract
We study the autocorrelation function of different types of eigenfunctions in
quantum mechanical systems with either chaotic or mixed classical limits. We
obtain an expansion of the autocorrelation function in terms of the correlation
distance. For localized states in billiards, like bouncing ball modes or states
living on tori, a simple model using only classical input gives good agreement
with the exact result. In particular, a prediction for irregular eigenfunctions in
mixed systems is derived and tested. For chaotic systems, the expansion of the
autocorrelation function can be used to test quantum ergodicity on different
length scales.

PACS numbers: 05.45.Mt, 02.50.Ey, 03.65.SQ, 05.45.−a

1. Introduction

The behaviour of a quantum mechanical system in the semiclassical limit strongly depends on
the ergodic properties of the corresponding classical system. In particular, the eigenfunctions
semiclassically reflect the phase space structure of the classical system and therefore they
depend strongly on whether the classical system is chaotic or regular. In this study we
are interested in the fluctuations of the wavefunctions, and in the correlations between the
fluctuations in different regions which are induced by the classical phase space structures. In
particular, we will consider the case of quantum billiards in a domain � ⊂ R

2, which are
described by the time-independent Schrödinger equation (in units h̄ = 2m = 1)

(� + E)ψ(q) = 0 for q ∈ �\∂� (1)

with Dirichlet boundary conditions, ψ(q) = 0 for q ∈ ∂�. For compact � one obtains a
discrete spectrum {En} of eigenvalues, 0 < E1 � E2 � . . ., with associated eigenfunctions
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ψn ∈ L2(�), which we assume to be normalized, i.e. ‖ψn‖ := ∫
�

|ψn(q)|2 dq = 1. The
corresponding classical billiard is given by the free motion of a point particle inside � with
elastic reflections at the boundary ∂�.

The amplitude distribution of an eigenfunction of a quantum mechanical system whose
classical limit is chaotic is conjectured to become Gaussian in the semiclassical limit [1], and
numerical studies support this conjecture, see e.g. [2–4]. A more sensitive quantity is the
local autocorrelation function [1] which measures correlations between different points of an
eigenfunction ψ

Cloc(x, δx) := ψ∗(x − δx/2)ψ(x + δx/2). (2)

The crucial fact for the theoretical analysis of Cloc(x, δx), observed by Berry [1], is that the
autocorrelation function can be expressed as the Fourier transformation of the Wigner function
(see equation (7) below) of ψ

Cloc(x, δx) =
∫
W(p,x)e−ipδx dp. (3)

Hence information on the behaviour of the Wigner function can be used to predict the
behaviour of the autocorrelation function, and since semiclassical limits of Wigner functions
are concentrated on invariant sets in phase space, see e.g. [5], it follows that in the semiclassical
limit autocorrelation functions are determined by the classical phase space structure. For
example, if the classical system is ergodic, the quantum ergodicity theorem [6–11] (roughly
speaking) states that almost all quantum expectation values tend to the corresponding classical
limit. One can show [12] that for ergodic systems this is equivalent to the semiclassical
eigenfunction hypothesis [1, 13–15], when restricted to a subsequence of density one. Using
this result in (3) one gets Berry’s result [1] that for chaotic billiards in two dimensions

Cloc(x, δx) ∼ 1

vol(�)
J0(

√
E|δx|) (4)

weakly as a function of x (for fixed δx) as E → ∞, where E denotes the energy of the
eigenstate ψ in (2). Equivalently we have

lim
E→∞

Cloc(x, δx/
√
E) = 1

vol(�)
J0(|δx|). (5)

Numerical tests of this relation have been performed for several chaotic systems [2–4] and at
finite energies show notable fluctuations of the autocorrelation function around the high energy
limit (4), especially for correlation distances larger than a few de Broglie wavelengths.These
fluctuations have been studied further in [16–19], where for a small correlation distance |δx|
a random model for the eigenfunctions of a chaotic system was used to predict the variance
of these fluctuations, and for larger |δx| a formula involving closed orbits of the system has
been derived. In [23, 24] the path correlation function, which is an average of the local
correlations along a given trajectory, has been introduced. A further study of autocorrelations
of eigenfunctions in the framework of the nonlinear σ -model has been recently conducted
in [20], and spectral averages of autocorelation functions are studied in [21, 22]. The path
correlation function is closely related to the autocorrelation function and for ergodic systems
also tends asymptotically to a Bessel function (4). This path correlation function has been
studied in [3] for a hyperbolic octagon, and an expansion in terms of Legendre functions has
been derived, which can be used to determine corrections to the leading Bessel part (4).

The autocorrelation function in nonchaotic systems has attracted very less attention. The
integrable case has already been discussed by Berry [1], and the corresponding formula has
been successfully tested for the circle billiard in [2]. For a system with mixed classical
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phase space the autocorrelation function has been studied in [25], in particular for irregular
eigenfunctions an expansion of the Wigner function in polar coordinates has been used.

In this paper we are interested in the question how the universal limit (4) is reached, and
how, in the case of mixed systems, further constraints on the classical motion are reflected
in the autocorrelation function. For instance, if an eigenfunction is concentrated on an
ergodic component, then by a generalization of the quantum ergodicity theorem [26], the
Wigner function becomes equidistributed on that component, and this will determine the
autocorrelation function.

The paper is organized as follows. In section 2 we discuss some examples of the
autocorrelation function for different eigenfunctions in systems with chaotic and mixed
classical dynamics. In section 3 a general expansion of the autocorrelation function for
eigenfunctions in billiards is derived, which allows a systematic study of their properties. It is
an expansion in the correlation distance |δx| which reflects the fact that the determination of
correlations at larger distances needs classical information on finer length scales than for short
range correlations. In section 4 it is shown that the correlation distance expansion provides
an efficient way to explain the fine structure of the autocorrelation functions of the systems
studied in the first section. Of particular interest is that for chaotic systems deviations of
the autocorrelation function from the quantum ergodic limit (4) can be related to the rate
of quantum ergodicity. In turn the autocorrelation function can be used to study the rate of
quantum ergodicity on different classical length scales.

2. Examples of autocorrelation functions

For numerical computations as well as for theoretical considerations it is much more convenient
to consider a smoothed version of the local autocorrelation function (2). Furthermore, as the
eigenfunctions oscillate on a scale proportional to 1/

√
E, we rescale the autocorrelation

function by this factor. Hence we will study the autocorrelation function in the form

Cρ(x, δx) :=
∫
�

ρ(x − q)ψ∗
(

q − δx

2
√
E

)
ψ

(
q +

δx

2
√
E

)
dq (6)

where ρ is a positive function which determines the smoothing of the local autocorrelation
function. In the literature (see the papers mentioned in the introduction) the mean is usually
taken over a small disc, which corresponds to taking the characteristic function of a disc for ρ
in (6). However, nothing prevents one considering the case ρ ≡ 1, i.e. taking the mean value
of the local autocorrelation function (2) over the whole position space. In terms of the Wigner
function

W(p, q) := 1

(2π)2

∫
eipq ′

ψ∗(q − q′/2)ψ(q + q′/2) dq ′ (7)

one obtains in this case

C(δx) :=
∫

ψ∗
(

q − δx

2
√
E

)
ψ

(
q +

δx

2
√
E

)
dq (8)

=
∫ ∫

W(p, q)e−ipδx/
√
E dq dp =

∫
|ψ̂(p)|2e−ipδx/

√
E dp. (9)

This is a particularly good choice for the numerical computation of the autocorrelation function
in billiards because it can be reduced to boundary integrals (see the appendix). The resulting
formula reads

C(δx) = 1

8
√
E

∫ ∫
∂�×∂�

|q(s)− q(s′)+ δx| Y1(
√
E|q(s) − q(s′) + δx|)u∗(s)u(s ′) ds ds′

(10)
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Figure 1. Grey scale plot of |ψ1277(q)|2 in the cardioid billiard with odd symmetry, where black
corresponds to high intensity. To the right the autocorrelation function C(r, θ), computed using
(10), is shown for three different directions θ = 0, π/4 and π/2. For comparison the asymptotic
result C(r, θ) = J0(r) is shown as the grey line.

where u(s) is the normal derivative of the normalized eigenfunction ψ on the billiard
boundary. This relation provides a very efficient method for the numerical computation
of the autocorrelation function.

The systems for which we study the autocorrelation functions are the stadium billiard and
two members of the family of limaçon billiards, namely the cardioid billiard, and a billiard
with mixed classical phase space. The stadium billiard is proved to be strongly chaotic, i.e.
it is ergodic, mixing and a K-system [27, 28].The height of the desymmetrized billiard is
chosen to be 1, and a denotes the length of the upper horizontal line, for which we have
a = 1.8 in the following. The family of limaçon billiards is given by the simplest nontrivial
conformal mapping of the unit circle [29, 30] and can be parametrized in polar coordinates
by ρ(ϕ) = 1 + ε cos(ϕ) with ϕ ∈ [−π, π], and ε ∈ [0, 1] denotes the family parameter.
We consider the case ε = 0.3 which leads to a mixed dynamics in phase space. For ε = 1
one obtains the cardioid billiard,which is also proved to be strongly chaotic [31–33]. The
eigenvalues of the cardioid billiard have been provided by Prosen and Robnik [34] and were
calculated by means of the conformal mapping technique, see e.g. [30, 35]. For the stadium
billiard the eigenvalues and eigenfunctions have been computed using the boundary element
method, see e.g. [36, 37], and for the limaçon billiard the eigenvalues have been computed
using the conformal mapping technique and then the boundary element method has been used
to compute the eigenfunctions (see [38] for details). For the high-lying states in the limaçon
billiard the scaling method has been used [39].

First we consider a ‘typical’ eigenfunction in the cardioid billiard (figure 1). In the plots
we show

C(r, θ) = C(rê(θ)) (11)

where ê(θ) = (cos θ, sin θ), as a function of r for three different values of θ .The quantum
ergodicity theorem implies that there is a subsequence {nj} ⊂ N of density one such that
Cnj

(r, θ) → J0(r) as nj → ∞ with r fixed. This convergence is, however, not uniform in r.
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Figure 2. Autocorrelation function for the same state as figure 1, but for a larger r-interval
showing the non-universal behaviour at larger r. The inset shows a magnification and the vertical
bars indicate the places r = √

Endiam(�, θ) from where on C(r, θ) = 0, due to the compactness
of the billiard.

For the example shown in figure 1 C (r, θ ) fluctuates, as expected for a ‘quantum ergodic’
state, around the asymptotic result

C(r, θ) ∼ J0(r). (12)

Actually, for an eigenstate with energy En we have C (r, θ ) = 0 for r >
√
Endiam(�, θ),

where diam(�, θ ) is the diameter of � in the direction θ , as follows directly from the
definition (6). This is illustrated in figure 2 which clearly shows the non-universal behaviour
for larger r.

In contrast to the case of quite uniformly distributed eigenfunctions one expects a stronger
directional dependence of the autocorrelation function for localized eigenfunctions, such as
scars [40]. One example is shown in figure 3, where the eigenfunctions shows localization
along the shortest unstable periodic orbit in the cardioid. The corresponding autocorrelation
function shows clear deviations from (12).

A class of eigenfunctions which show even stronger localization are the bouncing ball
modes in billiards with two parallel walls (see, e.g. [2, 41–44]). Figure 4 shows for the stadium
billiard an example of a bouncing ball mode, which localizes on the so-called bouncing ball
orbits having perpendicular reflections at the parallel walls and thus forming a one-parameter
family. The simplest approximation is to consider them as a product of two sines, one in the
x direction and the other in the y direction. In this case the autocorrelation function can be
computed explicitly. For the odd–odd eigenfunctions

ψnx,ny
(x, y) = 1√

lxly
sin(πnxx/lx) sin(πnyy/ly) (13)

in a box B := [−lx, lx] × [−ly, ly] one gets

Cbox
nx,ny

(r, θ) = F(r cos(θ)/
√
E, nx, lx) F (r sin(θ)/

√
E, ny, ly) (14)
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Figure 3. Grey scale plot of |ψn(q)|2 with n = 1277 in the cardioid billiard with odd symmetry.
For the autocorrelation function C(r, θ) one observes clear deviations from C(r, θ) = J0(r).
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Figure 4. For the stadium billiard with odd–odd symmetry, a = 1.8, ψ320(q) is a bouncing
ball mode. The corresponding autocorrelation function is compared with the result Cbox

1,13(r, θ),
equation (14), obtained for a box, shown as dotted curves, which follow C (r, θ ). Only for θ = 0
(full line) and θ = π/4 at r ≈ 17 are small deviations visible.

where

F(z, n, l) := χ[−l,l](z/2)
1

l

∫ l−z/2

−l+z/2
sin(πn(x − z/2)/ l) sin(πn(x + z/2)/ l) dx (15)

= χ[−l,l](z/2)

[(
1 − z

2l

)
cos(πnz/l) +

1

2πn
sin(πnz/l)

]
(16)

and χ[−l,l](z) denotes the characteristic function of the interval [−l, l].
In figure 4 we compare the autocorrelation C(r, θ )function for a bouncing ball mode in

the stadium billiard with Cbox
1,13(r, θ), equation (14), and observe very good agreement. Mainly
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for θ = 0 some deviations are visible; these are understandable from the fact that in this case
only correlations in the x-direction are measured, where the bouncing ball mode ‘leaks’outside
the rectangular region. To take this into account one can determine an effective leff

x > 2a, by
fitting sin2

(
πx/leff

x

)
to

ψproj
n (x) :=

∫ 1

0
|ψ(x, y)|2 dy. (17)

For the case shown in figure 4 this procedure leads to leff
x ≈ 4 (whereas 2a = 3.6) and the

corresponding autocorrelation function gives excellent agreement with the one for ψ320.

3. Expansion of the autocorrelation function

In this section we derive an expansion of the autocorrelation function which will lead to an
understanding of the directional dependence of the autocorrelation function observed in the
last section. We start from the representation of the local autocorrelation function in terms of
the Wigner function

Cρ(x, δx) =
∫ ∫

ρ(x − q)W(p, q)e−ipδx/
√
E dp dq. (18)

Since the Wigner function is concentrated around the energy shell |p| = √
E, and is

furthermore even in p by time reversal symmetry, we get

Cρ(x, δx) =
∫ ∞

0

∫ 2π

0

∫
�

ρ(x − q)W(p, q) dq ′ e−i|δx| cos(ϕ−θ) r dϕ d r + O(|δx|E−1/2)

=
∫ ∞

0

∫ 2π

0

∫
�

ρ(x − q)W(p, q) dq cos(|δx| cos(ϕ − θ)) r dϕ dr + O(|δx|E−1/2) (19)

where we have used polar coordinates p = (|p| cos ϕ, |p| sin ϕ), δx = (|δx| cos θ,

|δx| sin θ). Because of the rescaling by
√
E the factor e−ipδx/

√
E is only slowly oscillating

for p close to the energy shell, on which the Wigner function is concentrated. Therefore
we get that the error is of order |δx|/√E (see appendix B for a sketch of the derivation of
this remainder estimate). If we now use that cos(r cos ϕ) is a generating function for Bessel
functions [45]

cos(|δx| cos ϕ) = J0(|δx|) + 2
∞∑
l=1

(−1)l cos(2lϕ)J2l(|δx|) (20)

we obtain

Cρ(x, δx) = ξ0(x) J0(|δx|) + 2
∞∑
l=1

(−1)lξ2l (x, θ) J2l (|δx|) + O(E−1/2) (21)

with (setting r = |p|)

ξ2l(x, θ) :=
∫ ∞

0

∫ 2π

0

∫
�

ρ(x − q)W(p, q) dq cos(2l(ϕ − θ)) r dϕ dr. (22)

The coefficients ξ2l(x, θ) can be further decomposed

ξ2l(x, θ) = cos(2lθ)
∫ ∞

0

∫ 2π

0

∫
�

ρ(x − q)W(p, q) dq cos(2lϕ) r dϕ dr

+ sin(2lθ)
∫ ∞

0

∫ 2π

0

∫
�

ρ(x − q)W(p, q) dq sin(2lϕ) r dϕ dr. (23)
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Recall that for an operator Â with Weyl symbol A(p, q) the expectation value 〈ψ, Âψ〉 can
be written as an integral over the phase space of the symbol multiplied by the Wigner function
of ψ , see e.g. [46],

〈ψ, Âψ〉 =
∫ ∫

W(p, q)A(p, q) dp dq. (24)

Therefore the coefficients in (23) can be interpreted as expectation values of certain operators
Â2l(x), B̂2l(x) given as the Weyl quantizations of the functions

A2l(p, q) := ρ(x − q) cos(2lϕ) B2l (p, q) = ρ(x − q) sin(2lϕ) (25)

respectively, ∫
�

∫ 2π

0

∫ ∞

0
W(p, q) ρ(x − q) cos(2lϕ) r dr dϕ dq = 〈ψ, Â2l (x)ψ〉 (26)

∫
�

∫ 2π

0

∫ ∞

0
W(p, q) ρ(x − q) sin(2lϕ) r dr dϕ dq = 〈ψ, B̂2l(x)ψ〉. (27)

Note that the operators Â2l(x) and B̂2l(x) depend on the parameter x. Since their symbols are
smooth and homogeneous of degree zero in p they are classical pseudodifferential operators
of order zero, see e.g. [46] for the definition of pseudodifferential operators. So we finally
obtain the following general expansion of the autocorrelation function

Cρ(x, δx) = 〈ψ, Â0(x)ψ〉 J0(|δx|) + 2
∞∑
l=1

(−1)l[〈ψ, Â2l (x)ψ〉 cos(2lθ)

+ 〈ψ, B̂2l(x)ψ〉 sin(2lθ)] J2l(|δx|) + O(|δx|E−1/2) (28)

in terms of the expectation values of a sequence of bounded operators given as Weyl
quantizations of the symbols (25). Recall that the only approximation we have made was
to insert for |p| in the exponent in equation (19) the value at the energy shell

√
E.

Since the Bessel functions have the property that J2l(|δx|) ≈ 0 for |δx| � 2l, this
representation is an efficient expansion for small |δx|, then only a few terms in the sum
contribute. But the larger |δx| becomes, the more terms of the sum have to be taken into
account. Therefore it is desirable to have an estimate of the number of terms which have to be
taken into account for large |δx|. The first, and largest, maximum of J2l(r) lies around r ∼ 2l,
and close to it one has the expansion [45]

J2l(2l − zl1/3) = 1

l1/3
Ai(z) + O(1/l). (29)

So the first peak becomes broader with a rate ∼l1/3 and therefore we have to take for large r
approximately

m ∼ r

2
+

z

2

( r

2

)1/3
(30)

terms in the sum over l into account; here z determines the error term. We refer to appendix C
for a more detailed discussion.

We would like to mention two papers in which related results have been obtained. For
the case of a free particle on a surface of constant negative curvature an expansion of the path
correlation function in terms of the Legendre function was derived in [3]. In the special case of
averaging over the whole billiard (i.e. ρ = 1) the path correlation function for ergodic systems
should be the same as the autocorrelation function. In [25] an expansion similar to (28) was
derived for the case when the eigenfunction is concentrated on an ergodic component of the
phase space of a classically mixed system, however, without extracting the Bessel function
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from the expectation values. To make this possible is the main reason why we have restricted
our attention here to billiards. For more general systems one could derive similar expansions
which approximate the autocorrelation function for small correlation distances using only a
few terms, but their structure becomes more complicated.

The correlation distance expansion (28) has various possible applications; some of them
will be discussed and illustrated in the next section. In particular, the expansion leads to a
prediction for the asymptotic limit of the autocorrelation function in different situations. More
precisely, consider a subsequence of eigenfunctions

{
ψnj

}
j∈N

for which the corresponding
sequence of Wigner functions converges weakly to a measure ν on phase space. Such a
measure ν is called a quantum limit, and it is an invariant measure of the classical flow [5].

If a sequence of eigenfunctions
{
ψnj

}
j∈N

converges to a quantum limit, the correlation
distance expansion for the autocorrelation function (28) shows that the corresponding sequence
of autocorrelation functions converges as well and their limit is obtained by substituting in (28)
the expectation values of Â2l(x) and B̂2l(x) by their corresponding classical limit. Explicitly,
this gives

Climit
ρ (x, δx) = Ā0J0(|δx|) + 2

∞∑
l=1

(−1)l[Ā2l(x) cos(2lθ) + B̄2l(x) sin(2lθ)] J2l(|δx|) (31)

where

Ā :=
∫
T ∗�

A dν. (32)

As we will discuss in section 4.4, for ergodic systems almost all eigenfunctions have the
Liouville measure as the quantum limit, then the terms Ā2l and B̄2l vanish, and with Ā0 = 1
we recover (12).

4. Applications of the correlation distance expansion

4.1. Direct comparison

In the numerical examples we have studied the autocorrelation function in the case ρ = 1,
which allows for an exact computation of the autocorrelation function using the representation
(10), which is much more efficient than a direct computation of the autocorrelation function
by its definition, equation (8). In this case the general expansion (28) gives the representation

C(r, θ) = J0(r) + 2π
∞∑
l=1

(−1)l[a2l cos(2lθ) + b2l sin(2lθ)] J2l(r) + O(rE−1/2) (33)

where the coefficients a2l and b2l are the Fourier coefficients

a2l = 1

π

∫ 2π

0
I (ϕ) cos(2lϕ) dϕ b2l = 1

π

∫ 2π

0
I (ϕ) sin(2lϕ) dϕ (34)

of the radially integrated momentum density [47, 48]

I (ϕ) :=
∫ ∞

0
|ψ̂(re(ϕ))|2r dr (35)

where e(ϕ) = (cos ϕ, sin ϕ). Also for I(ϕ) a representation in terms of a double integral of
the normal derivative function is available [48]. Taking the symmetries into account, one can
show that for the odd eigenfunctions in the limaçon billiards and the odd–odd eigenfunctions
in the stadium billiard all b2l vanish, so only the cosine terms remain in (28) and (33).
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Figure 5. Comparison of the autocorrelation function C (r, θ ) for ψ1907 in the stadium billiard
(full curve) with the expansion (33). In particular, for small r the agreement is excellent, whereas
for larger r small differences become visible.

First we will test the influence of the error termO(E−1/2) in equation (33) for computations
at finite energies. To that end we use the exact quantum I(ϕ) in equation (34). In figure 5 the
autocorrelation function C (r, θ ) for four different angles θ is compared to (33). In particular,
for r not too big the agreement is excellent. Only for larger r do small deviations become
visible, which go to zero for higher energies and r fixed. One should remark that for any r > 0
the effective integration region in equation (8) is reduced by the factor

c(r, θ) := vol(� ∩ �(r/
√
E, θ))

vol(�)
(36)

where �(r/
√
E, θ) is the set � shifted by the vector r/

√
E (cos θ, sin θ). Incorporating this

factor leads to an improvement in the agreement of the expansion with the exact autocorrelation
function at larger r.

Instead of looking at the dependence of the autocorrelation function C (r, θ ) for fixed
θ and varying r, it is also interesting to keep r fixed and consider the angular dependence.
For a ‘chaotic’ eigenfunction in the cardioid billiard some examples are shown in figure 6.
The result of the expansion (33) is in good agreement with the exact result. For larger r the
autocorrelation function C (r, θ ) oscillates more strongly around J0(r). For even larger r we
observe clear deviations of the expansion from the exact result (not shown). For comparison
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Figure 6. Angular dependence of the autocorrelation function C (r, θ ) for different r. Shown are
the results for ψ6000 in the cardioid billiard with odd symmetry. The full line is the result for
C (r, θ ) using (10), the dashed line shows the result of the expansion (33), the full grey line is the
value of J0 (r) and the dotted horizontal lines show the variance J0(r) ± �1/2 (see equation (37)).

the variance of the autocorrelation function around the prediction J0(r) for a random wave
model [16] in leading order

�1/2 =
(

16

3π3/2A

)1/2 1

E1/4
(37)
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is shown and good agreement is found. Note that for bounded r this error is much larger than
the additional error term O(rE−1/2) from (33).

4.2. Localized eigenfunctions

For a state strongly localized on an periodic orbit of length lγ we have (either in the semiclassical
limit, or as a crude model at finite energies)

I (ϕ) ∼ 1

lγ

∑
lγi

δ(ϕ − ϕi) (38)

where lγi
are the lengths of the segments of the orbit with direction ϕi . Thus we get

a2l = 1

πlγ

∑
lγi

cos(2lϕi) b2l = 1

πlγ

∑
lγi

sin(2lϕi) (39)

which therefore using (33) gives a prediction for C(δx) for such states, namely

C(δx) ∼ 1

lγ

∑
i

lγi
cos(|δx| cos(θ − ϕi)). (40)

Note that in the presence of symmetries all symmetry-related directions have to be taken into
account in equation (38). For this simple model one can determine the autocorrelation function
more directly by using (3)

C(δx) =
∫ ∫

W(p, q)eipδx dp dq =
∫

|ψ̂(p)|2eipδx dp

=
∫ 2π

0
I (ϕ) cos(|δx| cos(θ − ϕ)) dϕ + O(|δx|E−1/2) (41)

inserting (38) directly gives (40).
In figure 7 we compare the limiting behaviour (40) with the autocorrelation function of

a high-lying eigenstate in the limaçon billiard. The state localizes on the (stable) orbit of
triangular shape. Up to r ≈ 10 the agreement is very good; for larger r the autocorrelation
function of the eigenstate shows deviations from the asymptotic behaviour. Note that the
state has a much higher energy than the other examples. At lower energies the agreement
is not as good, because the region in phase space on which the state localizes is broader.
This in turn implies that its corresponding radially integrated momentum distribution I(ϕ) also
has broad peaks, which are not accounted for properly by the ansatz (38). However, when
considering states of this type with increasing energies, a clear trend to the asymptotic result
(40) is observed.

This simple model has also been tested for a scarred state in the cardioid. However, the
agreement is limited to a qualitative description for up to r ≈ 2. This is understandable in
view of the observation (see [48, figure 8(a)]) that for a scarred state the radially integrated
momentum distribution I(ϕ) shows quite large fluctuations, and also in the considered case the
direction ϕ = π/2 is not clearly pronounced. As these fluctuations essentially correspond to
the random ‘background’ fluctuations of the state, a simple ansatz to model this behaviour is

C(r, θ) = (1 − α)J0(r) + α
1

lγ

∑
i

lγi
cos(|δx| cos(θ − ϕi)). (42)

It turns out that one can vary α such that quite good agreement of this model with the
exact autocorrelation function is obtained (see figure 8 where α = 0.22 (for all directions)).
Depending on the direction θ the ‘optimal’ value for α does vary, which already indicates
the limitations of this simple model. To get a better agreement a more precise description of
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Figure 7. High-lying eigenfunction (E = 367 984.82 . . ., approx. 47 788th eigenfunction of odd
symmetry) in the limaçon billiard (ε = 0.3), which localizes on the stable orbit of triangular
shape. The autocorrelation function for three different directions is compared with the δ-model,
equation (40), shown as the dashed line using the directions of the stable orbit.

I(ϕ) for scarred states is necessary. In particular, this should also lead to an understanding of
the energy dependence of α which is expected to go to zero in the semiclassical limit. Note
that the structure of the autocorrelation function is quite similar to the one for ψ1817 shown in
figure 3.

Another case, for which we obtain much better agreement, is for an eigenfunction localized
on an invariant torus. In such a case the expectation values, equations (26), (27), tend to the
mean of the classical observable over the torus (see equations (31), (32)). Figure 9(a) shows for
the limaçon billiard the eigenfunction and the corresponding Husimi Poincaré representation
[49, 50]; see [51] for a more detailed discussion and the formula which has been used.
Also shown in the Husimi plot are the points of some orbits. Using an initial condition
on the torus we can determine the classical angular distribution I classical(ϕ). As this has a
singularity due to the caustic of the torus we show in figure 9(c) a binned distribution together
with the corresponding quantum radially integrated momentum distribution I3056(ϕ). There
is qualitative agreement between these two curves in the sense that smoothing I classical(ϕ)

describes the mean behaviour of the quantum I3056(ϕ). Of course, the classical distribution
cannot describe the (quantum) oscillations visible for I3056(ϕ). It turns out, see figures 9(d)–
(f), that already this simple model leads to surprisingly good agreement between the exact
autocorrelation function and the expansion (33) computed using I classical(ϕ).
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Figure 8. For a scarred state (ψ7147 of odd symmetry) in the cardioid billiard the autocorrelation
function is compared with the simple model (42) for α = 0.22.

4.3. Autocorrelation function of irregular states in mixed systems

In classical systems with mixed phase space regions with regular and regions with stochastic
behaviour coexist. It is conjectured [52] that correspondingly the quantum mechanical
eigenfunctions split into regular and irregular ones, respectively, living semiclassically on
the corresponding parts of phase space. This has been confirmed numerically for several
systems (see e.g. [53–57]). Consider now a sequence of eigenfunctions ψnj

which localize
on some open ergodic domain D in a system with mixed phase space, then almost all
the expectation values

〈
ψnj

Âψnj

〉
tend to the mean ĀD of the corresponding classical observable

A over this domain D [26]. Therefore using (33) we get in the limit E → ∞ for the
autocorrelation function of such a sequence

Climit
ρ (x, δx) = ĀD

0 J0(|δx|) + 2
∞∑
l=1

(−1)l
[
ĀD

2l (x) cos(2lθ) + B̄D
2l (x) sin(2lθ)

]
J2l(|δx|).

(43)

Instead of computing ĀD
2l and B̄D

2l directly, we can also use a typical trajectory of the ergodic
component to determine the corresponding classical I classical(ϕ) via

I classical(ϕ) = lim
l→∞

1

l

∑
liδ(ϕ − ϕi) (44)

where l is the total length of the trajectory and ϕi is the direction of the ith segment having
length li. Then we use (33) to get a prediction for the autocorrelation function.
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Figure 9. Grey scale plot of ψ3056 for the limaçon billiard with ε = 0.3 together with the
corresponding Husimi plot, for which in addition some orbits are shown. In (c) the radially
integrated momentum distribution I3056(ϕ) and the corresponding classical distribution I classical(ϕ)

for the torus are shown. In (d)–(f) the exact autocorrelation function is compared with the expansion
of the autocorrelation function, equation (33), using I classical(ϕ) for different angles θ .

However, we observe that even quite high-lying states do not yet localize on the whole
chaotic component. Instead they are confined to smaller subregions due to partial barriers
in phase space. Figure 10(a) shows an example of a high-lying state in the limaçon billiard
(ε = 0.3) In figure 10(b) the corresponding Husimi function is plotted, which clearly shows
the localization on a chaotic subdomain (the whole irregular region is much larger). If D is
an open region in phase space, then the corresponding classical distribution of the momentum
directions is given by

I classical(ϕ) = 1

vol(D)

∫
χD(p(ϕ), q) dq (45)
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Figure 10. Autocorrelation function for a high-lying irregular state (E = 1002 754.70 . . . , approx.
130 516th eigenfunction of odd symmetry) in the limaçon billiard with ε = 0.3. In (b) the Husimi
representation on the boundary is shown together with an approximate boundary (full curve) of the
region D on which the state localizes. The resulting classical momentum distribution I classical(ϕ)

is shown in (c) as a full curve and compared with the radially integrated momentum distribution
I qm(ϕ) of the state in (a) and a smoothing of this, I qm,smoothed(ϕ), shown as a dashed curve. In
(d)–( f ) the autocorrelation function C (r, θ ) of the eigenfunction is compared for three different
directions with result of the expansion (43) using I classical(ϕ).

where p(ϕ) = (cosϕ, sin ϕ). One can show that in terms of the projection D of D on the
Poincaré section this equation can be reduced to

I classical(ϕ) =
∫
D l(s, p)δ(ϕ − φ(s, p)) ds dp∫

D l(s, p) ds dp
(46)

=
∫
∂�′(ϕ) l(s, p(s, ϕ))

√
1 − p2(s, ϕ)χD(s, p(s, ϕ)) ds∫

D l(s, p) ds dp
(47)
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where l(s, p) is the length of the orbit segment starting in the point (s, p) ∈ P with direction
φ(s, p) and in the second equation p(s, ϕ) = p(ϕ)t(s), with t(s) denoting the unit tangent
vector to ∂D at the point s. Furthermore, ∂�′(ϕ) := {s ∈ ∂� | p(ϕ)n(s) � 0}, where n(s)

denotes the outer normal vector to ∂D in the point s, is the subset of ∂� where the vector p(ϕ)
points inwards. For the numerical computation we have used (47) because we just have to
deal with a one-dimensional integral to compute the ϕ dependence, and also compared to (46)
no binning of I classical(ϕ) is necessary.

After these general remarks on the computation of I classical(ϕ) let us describe how we
compute the relevant quantities to determine the autocorrelation function for the state shown
in figure 10(a). To describe the projection D of the domain D in phase space, we use an
approximation of the boundary of D by a splines, which are shown in the figure 10(b) as
full curves. Then we use equation (47) to determine the corresponding I classical(ϕ), shown in
(c) as a full curve. Of course the radially integrated momentum distribution I qm(ϕ) of the
eigenstate shows strong fluctuations, but the smoothing I qm,smoothed(ϕ) is well described by
I classical(ϕ), although the agreement is not perfect. Using I classical(ϕ) we employ the expansion
(43) to get a prediction for the autocorrelation function for states localizing on D, which is
compared in figures 10(d)–(f) with the exact autocorrelation function. Up to r ≈ 10 we get
quite good agreement, whereas for larger r deviations become more visible. This shows that
the eigenfunction has more structure than accounted for by I classical(ϕ), i.e. it is not yet far
enough in the semiclassical limit.

For higher energies the states tend to localize on the full ergodic region, and then
I classical(ϕ) can simply be computed using (44) by averaging a typical trajectory in D.
One should emphasize that the agreement has to be compared with the agreement of the
autocorrelation function for ergodic systems with (12) as the prediction equation (43) only
takes into account the classical limit. This has been studied in [25] (in the case of averaging
the local autocorrelation function over a small disc), where in particular for [25, figure 13(b)]
very good agreement has been found.

4.4. Ergodic systems and the rate of quantum ergodicity

If the classical billiard is ergodic, then by the quantum ergodicity theorem [6–11] almost all
eigenfunctions become equidistributed in the semiclassical limit. More precisely, there exists

a subsequence
{
ψnj

}
j∈N

of density one, i.e. limE→∞
#{Enj

�E}
#{En�E} = 1, such that

lim
j→∞

〈
ψnj

, Âψnj

〉 = Ā (48)

for all pseudodifferential operators Â, and Ā denotes the mean with respect to the Liouville
measure of the corresponding classical observable. The rate by which this equidistribution is
reached is called the rate of quantum ergodicity. It is an important quantity, as it determines
the practical applicability of the quantum ergodicity theorem at finite energies.

If the billiard is ergodic and ψnj
is a quantum ergodic sequence of eigenfunctions, then

for j → ∞
〈
ψnj

, Â2l(x)ψnj

〉 ∼ Ā2l = δl0 (49)〈
ψnj

, B̂2l(x)ψnj

〉 ∼ B̄2l = 0. (50)

Thus using the expansion (28) we again get (12) for E → ∞. Deviations from this universal
behaviour are then determined by the rate at which the limit in (49) and (50) is reached, i.e. the
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Figure 11. Comparison of the second moment σ 2
1907(r) of the autocorrelation function, equation

(52), with the expansion (53) for the stadium billiard. The inset shows the difference for r ∈ [0, 20].

rate of quantum ergodicity. In order to exploit this it will be convenient to remove the angular
dependence by taking the mean over all angular directions in C(δx). Since by equation (33)

1

2π

∫ 2π

0
Cn(r, θ) dθ = J0(r) + O(rE−1/2) (51)

we consider the second moment

σ 2
n (r) := 1

2π

∫ 2π

0
[Cn(r, θ) − J0(r)]

2 dθ (52)

where Cn(r, θ) denotes the autocorrelation function of ψn. Inserting the expansion (33) of
Cn(δx) leads to

σ 2
n (r) = 2π2

∞∑
l=1

(
a2

2l,n + b2
2l,n

)
[J2l(r)]2 (1 + O(rE−1/2)). (53)

In figure 11 we compare σ 2(r) for an eigenfunction in the stadium billiard with the expansion
(53). For small r we get excellent agreement and some deviations become visible in the plot
for r > 20. The inset shows a plot of the difference up to r = 20. It is surprising that even
though for large r the amplitudes do not match anymore, still the expansion gives the right
oscillatory structure.

If we take the mean of (53) over all eigenfunctions up to energy E, we get

σ̄ 2(E, r) := 1

N(E)

∑
En�E

σ 2
n (r) (54)

= 2π2
∞∑
l=1

1

N(E)

∑
En�E

(
a2

2l,n + b2
2l,n

)
[J2l(r)]2 (1 + O(rE−1/2)). (55)

Remarkably, together with equations (28) and (53) this shows that the rate of quantum
ergodicity can be studied in terms of the autocorrelation function. Particularly interesting is
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that the observables in the expansion (28) become more and more oscillatory with increasing
l, so by varying |δx| one can determine the rate of quantum ergodicity on different length
scales.

A prediction for the behaviour of σ̄ 2(E, r) follows from [58], where it is argued that
(under suitable conditions on the system) in the mean

1

N(E)

∑
En�E

[〈
ψnj

, Âψnj

〉 − Ā
]2 ∼ 4σ 2

cl(A)

vol�

1√
E

(56)

for any pseudodifferential operator Â of order zero with symbol A. Here Ā denotes the mean
value of A, and σ 2

cl(A)/
√
T is the variance of the fluctuations of

1

T

∫ T

0
A(p(t), q(t)) dt (57)

around Ā. So if we insert (56) into (55) we obtain

σ̄ 2(E, r) ∼ 8π2

vol�

∞∑
l=1

[
σ 2

cl(A2l) + σ 2
cl(B2l )

]
[J2l(r)]2 1√

E
. (58)

A detailed study of the rate of quantum ergodicity in terms of the autocorrelation function, i.e.
via equation (54), and a comparison with the semiclassical expectation (58) will be given in a
separate paper.

5. Summary

We have discussed the autocorrelation function for eigenstates of quantum mechanical systems,
and its relation to the behaviour of the classical system. For billiards we have derived a formula
for the autocorrelation function of an eigenfunction in terms of the normal derivative on the
boundary (10), which enables an efficient numerical computation.

Our main result is the correlation distance expansion of the autocorrelation function (28)
for billiards, which provides an efficient expansion for small correlation distances, where only
a small number of terms enters the sum. Moreover, it provides a tool for understanding the
behaviour of the autocorrelation function for different types of eigenfunctions in terms of their
semiclassical limit.

The coefficients in the correlation distance expansion (28) can be computed in terms of
the radially integrated momentum density. Even though it is based on an approximation,
our numerical study shows very good agreement with the corresponding exact results; only
for large correlation distances do deviations become visible. As the expansion coefficients
have to be determined just once for a given eigenfunction, this is also a numerically efficient
method to compute the autocorrelation function. Similar, but more complicated, expansions
can be derived in higher dimension and for more general systems (e.g. systems with potential
and magnetic field), but then the Bessel functions have to be modified in order to reflect the
structure of the energy shell of the classical system.

We applied the expansion of the autocorrelation function to different types of
eigenfunctions, and showed that it provides a good tool for the understanding of their
autocorrelation functions. In systems with mixed phase space regular states concentrated
on tori and irregular states have been successfully treated. For chaotic system the fluctuations
of the autocorrelation functions around the leading term are shown to be connected with the
rate of quantum ergodicity. Moreover, by varying the correlation distance the autocorrelation
function is shown to be an interesting new tool to measure the rate of quantum ergodicity on
different length scales.
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Appendix A. Autocorrelation function in terms of normal derivatives on the boundary

We will give a derivation of the formula (10) which provides an expression of the
autocorrelation function C(δx) in terms of the normal derivative. Let ψ(q) be a solution
of the Helmholtz equation with Dirichlet boundary condition on ∂�,

(� + k2)ψ(q) = 0 ψ(q) = 0 for q ∈ ∂� (59)

where we have defined k = √
E, and let

u(s) := n(s)∇ψ(q(s)) (60)

be the outer normal derivative of ψ on ∂�, where s parametrizes ∂� in arclength. It is well
known that

− 1

4

∫
∂�

Y0(k|q − q(s)|)u(s) ds =
{
ψ(q) for q ∈ �◦

0 for q /∈ �
(61)

and furthermore∫
∂�

J0(k|q − q(s)|)u(s) ds = 0. (62)

Let ρ(t) be a smooth cut-off function with

ρ(t) =
{

1 for t � 2 diam(�)

0 for t � 3 diam(�)
(63)

where diam(�) denotes the diameter of �. Then we have for q in some neighbourhood of �

ψ(q) = −1

4

∫
∂�

ρ(k|q − q(s)|)Y0(k|q − q(s)|)u(s) ds (64)

and obtain

C(δx) =
∫

R
2
ψ∗(q)ψ(q + δx) dq =

∫ ∫
∂�×∂�

Kρ(δx, s, s′)u∗(s)u(s ′) ds ds′ (65)

with

Kρ(δx, s, s′) = 1

16

∫
R

2
ρ(k|q − q(s)|)Y0(k|q − q(s)|)Y0(k|q − q(s′) + δx|) dq

= 1

16

∫
R

2
ρ(k|q|)Y0(k|q|)Y0(k|q + q(s) − q(s′) + δx|) dq. (66)

Due to the factor ρ(k|q − q(s)|) this integral is absolutely convergent. We now use Grafs
addition theorem [45]

Y0(k|q + �q|) =
{∑

l∈Z
Yl(k|�q|)Jl(k|q|) cos(lϕ) for |q| < |�q|∑

l∈Z
Yl(k|q|)Jl(k|�q|) cos(lϕ) for |q| > |�q| (67)

where �q = q(s) − q(s′) + δx and ϕ is the angle between �q and q. Introducing polar
coordinates in the integral in (66) and using (67) gives
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Kρ(δx, s, s′) = π

8

∫ |�q|

0
Y0(kr)J0(kr)r dr Y0(k|�q|)

+
π

8

∫ ∞

|�q|
ρ(kr)Y0(kr)Y0(kr)r dr J0(k|�q|) (68)

where we have furthermore used that ρ(r) = 1 for r � |�q| by (63). The first integral is∫ |�q|

0
Y0(kr)J0(kr)r dr = |�q|2

2
[Y0(k|�q|)J0(k|�q|) + Y1(k|�q|)J1(k|�q|)] (69)

see, e.g. [45], and for the second one partial integration gives∫ ∞

|�q|
ρ(kr)Y0(kr)Y0(kr)r dr = −|�q|2

2
[Y0(k|�q|)Y0(k|�q|) + Y1(k|�q|)Y1(k|�q|)]

− k

2

∫ ∞

|�q|
ρ ′(kr)[Y0(kr)Y0(kr) + Y1(kr)Y1(kr)]r2 dr. (70)

Note that since ρ ′ has compact support the second integral is over a finite interval, and for
s, s′ ∈ ∂�, δx ∈ � the lower limit of the integral, |�q|, is outside the support of ρ ′, hence
the second term on the right-hand side of equation (70) is constant. So we get

Kρ(δx, s, s′) = K(δx, s, s ′) + Rρ(δx, s, s′) (71)

with

K(δx, s, s′) = π |�q|2
16

[Y1(k|�q|)J1(k|�q|)Y0(k|�q|) − Y1(k|�q|)Y1(k|�q|)J0(k|�q|)]
(72)

and

Rρ(δx, s, s′) = CJ0(k|�q|) (73)

with C constant and by (62) this term gives no contribution to C(δx). Using a Wronsky
determinant of Bessel functions [45] we can simplify K(δx, s, s′) further

K(δx, s, s′) = π |�q|2
16

Y1(k|�q|)[J1(k|�q|)Y0(k|�q|) − Y1(k|�q|)J0(k|�q|)]

= π |�q|2
16

Y1(k|�q|) 2

πk|�q| = |�q|
8k

Y1(k|�q|) (74)

which gives the final result.

Appendix B. Remainder estimate

In this appendix we sketch the derivation of the remainder estimate in equation (19). We start
by representing the integral as an expectation value, see (24)∫ ∞

0

∫ 2π

0

∫
�

ρ(x − q)W(p, q) dq ′ eir |δx| cos(ϕ−θ)/
√
E r dϕ dr = 〈ψ,Aψ〉 (75)

where A is the Weyl quantization of the symbol

a(p, q) := ρ(x − q) ei |p|√
E

|δx| cos(ϕ−θ)
. (76)

The basic idea is to find a decomposition of the operator A

A = A0 + (
√−� −

√
E)A1 + R (77)
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where A0 has the Weyl symbol

a0(p, q) = ρ(x − q) ei|δx| cos(ϕ−θ) (78)

and the remainder R satisfies

‖R‖ � C E−1/2. (79)

If we assume the decomposition (77) and take the expectation value of both sides, one gets

〈ψ,Aψ〉 = 〈ψ,A0ψ〉 + 〈ψ,Rψ〉 (80)

where (
√−� − √

E)ψ = 0 has been used. In terms of the symbols equation (80) is the
desired result, see (19)∫ ∞

0

∫ 2π

0

∫
�

W(p, q)ρ(x − q) dq ′ eir |δx| cos(ϕ−θ)/
√
E r dϕ dr

=
∫ ∞

0

∫ 2π

0

∫
�

W(p, q)ρ(x − q) dq ′ ei|δx| cos(ϕ−θ)/ r dϕ dr + O(rE−1/2). (81)

Let us now show that the decomposition (77) is basically a quantization of the Taylor expansion
of the symbol a(p, q) around |p| = √

E,

a(p, q) = a0(p, q) + (|p| −
√
E)a1(p, q). (82)

Quantizing this classical decomposition yields (77) with R given as the Weyl quantization of

r(p, q) = (|p| −
√
E)a1(p, q) − (|p| −

√
E)#a1(p, q) (83)

since the Weyl symbol of (
√−�−√

E)A1 is (|p|−√
E)#a1(p, q) with # denoting the symbol

product (see e.g. [46]). Since E is a constant we have

r(p, q) = |p|a1(p, q) − |p|#a1(p, q) (84)

and this is a function which is bounded and of order O(|δx|E−1/2), and all its derivatives are
bounded and of order O(|δx|E−1/2), too. So by the Calderon Vallaincourt theorem [46] the
estimate (79) follows.

Appendix C. Estimating the Bessel sum

In this appendix we determine how many terms in the sum (28) have to be taken into account
such that the remainder is smaller than some given error δ. From (26) and (27) it follows that
for fixed ψ

|〈ψ, Â2l(x)ψ〉 cos(2lθ) + 〈ψ, B̂2l(x)ψ〉 sin(2lθ)| � C. (85)

Thus if we split the sum
∞∑
l=1

(−1)l[〈ψ, Â2l(x)ψ〉 cos(2lθ) + 〈ψ, B̂2l(x)ψ〉 sin(2lθ)] J2l(|δx|)

=
m−1∑
l=1

(−1)l[〈ψ, Â2l(x)ψ〉 cos(2lθ) + 〈ψ, B̂2l (x)ψ〉 sin(2lθ)] J2l(|δx|) + Rm(|δx|) (86)

we get for the remainder

|Rm(r)| � C

∞∑
l=m

|J2l(r)|. (87)
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Therefore we have to estimate the sum over Bessel functions
∞∑

l=m

|J2l(r)| (88)

and determine its dependence on m and r. The asymptotics in the transition region

J2l(2l − z(2l)1/3) ∼ 1

l1/3
Ai(21/3z) (89)

gives that J2l(r) is monotonically increasing for r < 2l, such that for r < 2m
∞∑

l=m

|J2l(r)| =
∞∑

l=m

1

l1/3
Ai

(
2l − r

l1/3

)
+ O(m−1). (90)

Defining z by

r = 2m − zm1/3 (91)

we obtain
∞∑

l=m

1

l1/3
Ai

(
2l − r

l1/3

)
=

∞∑
l=m

1

l1/3
Ai

(
2(l − m)

l1/3
+ z

(
m

l

)1/3)

=
∞∑
l=0

1

(l + m)1/3
Ai

(
2l

(l + m)1/3
+ z

(
m

l + m

)1/3)

=
∞∑
l=0

1

m1/3
Ai

(
2l

m1/3
+ z

)
+ O(m−1/3) (92)

where we have furthermore used that for large m only the terms with l � m contribute, because
the Airy function is exponentially decreasing for positive arguments. The Euler McLaurin
formula then gives

∞∑
l=0

1

m1/3
Ai

(
2l

m1/3
+ z

)
=

∫ ∞

0

1

m1/3
Ai

(
2l

m1/3
+ z

)
dl + O(m−1/3)

= 1

2

∫ ∞

z

Ai(x) dx + O(m−1/3). (93)

And so finally we arrive at
∞∑

l=m

|J2l(r)| = 1

2

∫ ∞

z

Ai(x) dx + O(m−1/3). (94)

The function
∫ ∞
z

Ai(x) dx is monotonically decreasing, so for a given δ > 0 we can define a
z(δ) by

1

2

∫ ∞

z(δ)

Ai(x) dx = δ (95)

and then (91) defines together with (95) a function m(r, δ) such that
∞∑

l=[m(r,δ)+1]

|J2l(r)| = δ + O(r−1/3). (96)

By solving (91) for large r, we see that we have to take approximately

m(r, δ) ∼ r

2
+

z

2

( r

2

)1/3
(97)
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Figure 12. For the bounds δ = 10−4 and δ = 10−8 of the sum over Bessel functions (88) the result
of the exact computation of m(r, δ) (full curves) and the asymptotic result (97) are compared. The
asymptotic result approaches the exact one slowly from below with a rate O(r−1/3).

terms in the sum (28) over l into account such that the error is δ + O(r−1/3).
For instance, if we require δ = 10−4, then (95) gives z(δ) = 4.359 . . . ; for δ = 10−8 one

gets z(δ) = 7.925 . . . . In figure 12 we show for these choices of z the asymptotic result (97)
compared to the exact computation, corresponding to (88). The asymptotic result approaches
the exact one slowly from below; in the plotted region a constant offset by two compared to
(97) gives a good bound for m(r, δ).
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[8] Colin de Verdiére Y 1985 Ergodicité et fonctions propres du laplacien Commun. Math. Phys. 102 497 (in French)
[9] Helffer B, Martinez A and Robert D 1987 Ergodicité et limite semi-classique Commun. Math. Phys. 109 313
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