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On the number of bouncing ball modes in billiards
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Abstract. We study the number of bouncing ball modesNbb(E) in a class of two-dimensional
quantized billiards with two parallel walls. Using an adiabatic approximation we show that
asymptoticallyNbb(E) ∼ αEδ for E → ∞, where δ ∈] 1

2 , 1[ depends on the shape of the
billiard boundary. In particular for the class of two-dimensional Sinai billiards, which are
chaotic, one can get arbitrarily close (from below) toδ = 1, which corresponds to the leading
term in Weyl’s law for the mean behaviour of the counting function of eigenstates. This result
shows that one can come arbitrarily close to violating quantum ergodicity. We compare the
theoretical results with the numerically determined counting functionNbb(E) for the stadium
billiard and the cosine billiard and find good agreement.

1. Introduction

In quantum chaos one is interested in studying properties of quantum-mechanical systems,
whose classical limit is chaotic, see for example [1]. In particular, billiard systems have
been studied thoroughly because a lot of analytic results are known on the classical ergodic
properties. Classically, a two-dimensional Euclidean billiard system is given by the free
motion of a point particle inside a domain� ⊂ R2 with elastic reflections at the boundary
∂�. The corresponding quantum-mechanical system is given by the stationary Schrödinger
equation (h̄ = 2m = 1)

(1+ En)ψn(x) = 0 ∀x ∈ �\∂� (1)

with Dirichlet boundary conditionψn(x) = 0 on the boundary∂�. Much work has been
devoted to the investigation of statistical properties of the set of eigenvalues{En} and
eigenfunctions{ψn} and their dependence on the properties of the classical system.

In this paper we study a special type of eigenfunctions which occur in billiards with
two parallel walls (like the stadium billiard), the so-called bouncing ball modes. These
are eigenfunctions which are localized in the rectangular part between the parallel walls
and have a structure similar to eigenfunctions of a rectangular box. The classical billiard
possesses a family of neutral periodic orbits bouncing up and down between the two parallel
walls, and the bouncing ball modes are semiclassically concentrated on this family.

Already in [2] bouncing ball-like states were discussed and then were observed in the
stadium billiard [3, 4]. A method of constructing these states approximately was given in
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[5]. Based on this work, our principal aim is to count the number of bouncing ball modes
up to energyE,

Nbb(E) := {n|En 6 E, with ψn being a bouncing ball state}. (2)

We will derive the asymptotic behaviour ofNbb(E) for E → ∞, and compare it with
numerical results. For the stadium billiard this question has been addressed in [6] where
it is argued that bouncing ball modes exist up to infinite energy, and in [7] the asymptotic
behaviour ofNbb(E) has been derived for this system.

For us the main motivation for studying this question comes from quantum ergodicity.
Assume that we have a billiard� where the classical flow is ergodic, for example the Sinai
billiard [8] or the stadium billiard [9, 10]. This means that for a particle moving along a
generic trajectory, the probability of finding it at timet in some region of phase space is
the relative volume of that region. Quantum ergodicity denotes a quantum analogue of this
behaviour. One says that a subsequence{Enj } ⊂ {En} has density 1 if

lim
E→∞

#{nj |Enj 6 E}
N(E)

= 1 (3)

where

N(E) := #{n|En 6 E} (4)

is the spectral staircase function, counting the number of energy levels below a given energy
E. The quantum ergodicity theorem states that if the classical flow is ergodic, then there is
a subsequence{Enj } ⊂ {En} of density 1, such that

lim
j→∞

∫
�′
|ψnj (x)|2 d2x = |�

′|
|�| (5)

for every subset�′ ⊂ �. So for almost all eigenfunctions the probability of finding a
particle in a certain region�′ of the position space� becomes proportional to the volume
|�′| if the energyE becomes large. In fact a stronger result is valid, where the left-hand
side of (5) is given by an integral of the Wigner function of a stateψnj over a phase-space
region and the right-hand side is given by the relative volume of this region. This concept
of quantum ergodicity was introduced for flows on manifolds without boundaries in [11],
and was proven in [12–14]. In [15, 16] quantum ergodic theorems are proven for a large
class of billiard systems, which include for example the stadium billiard.

The condition for the density of the subsequence to be 1 leaves a lot of room for
subsequences of eigenstates which are not quantum ergodic in the sense of (5). In general,
the behaviour of the counting function of such sequences is an open question; the quantum
ergodicity theorem only says that it is of lower order thanN(E). It is even conjectured
for certain systems that no such exceptional subsequences exist, i.e. relation (5) is valid for
the whole sequence{ψn}, a property which is thus called unique quantum ergodicity, see
[13, 17]. The bouncing ball modes clearly form an exceptional subsequence which does not
satisfy (5). If the billiard is ergodic and its geometry permits the existence of bouncing
ball modes, as it is the case for the stadium and Sinai billiard, then the quantum ergodicity
theorem gives an upper bound forNbb(E),

lim
E→∞

Nbb(E)

N(E)
= 0. (6)

Any further information on the asymptotic behaviour ofNbb(E) provides information on the
question whether one could improve the quantum ergodicity theorem by giving a stronger
bound on the number of non-quantum ergodic states.
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Figure 1. Boundary of the desymmetrized cosine billiard,B(y) = 2+ 1
2(1+ cos(πy)), and

notation used for the adiabatic approximation.

2. Adiabatic approximation of bouncing ball modes

The type of billiards we investigate in the following is a class of two-dimensional billiards,
where one example is shown in figure 1. The billiard has the shape of a rectangular box of
heightL0 and widthB0, at which one side is replaced by a curved boundary, defined by a
functionL(x) with L(B0) = L0, L(B1) = 0 andB1 > B0. The functionL(x) is assumed
to be decreasing forx > B0 in a neighbourhood ofx = B0.

First we have to make the notion of a bouncing ball mode more precise. The idea is
that the bouncing ball modes are eigenfunctions which are semiclassically concentrated on
the bouncing ball orbits in phase space. Let�B := {(x, y); x ∈ [0, B0], y ∈ [0, L0]} be
the box-like region between the parallel walls in the billiard. We say that a sequence of
eigenfunctions{ψnj } is a sequence of bouncing ball modes, if they satisfy the following two
conditions

(i) lim
j→∞

supp(ψnj ) = �B

(ii) lim
j→∞

∣∣∣ψ̂nj (√Enj px,√Enj py)∣∣∣2 = δ(px)δ(py − 1)+ δ(py + 1)

2
.

(7)

The first condition expresses the localization on the bouncing ball orbits in position
space, where supp(ψ) is the support ofψ , i.e. the closure of the set whereψ is not zero.
A function which is approximately zero outside�B and satisfies the Schrödinger equation
inside�B , is close to an eigenfunction for�B , so the bouncing ball modes should be close
to

ψnj (x, y) =
√

2

B0
sin

(
π

B0
(kj + ν)x

)√
2

L0
sin

(
πlj

L0
y

)
(8)

with eigenvaluesEnj = π2(
l2j

L2
0
+ (kj+ν)2

B2
0
), wherekj , lj ∈ N\0. Hereν is an arbitrary phase

shift.
The second condition expresses the localization in momentum space, because the

bouncing ball orbits have momentumpx = 0 andpy = ±1 on the energy surfacep2 = 1.
Here ψ̂ denotes the Fourier transform ofψ . The arguments have been rescaled by the
square root of the energy, because the Fourier transform is concentrated on the energy shell,
which is with this scaling a circle of radius 1.

Consider now a sequenceEnj = π2(
l2j

L2
0
+ (kj+ν)2

B2
0
)→∞, and the corresponding sequence

|ψ̂nj (
√
Enj px,

√
Enj py)|2 with ψnj given by (8). The computation of̂ψnj shows that the
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sequence|ψ̂nj |2 converges in the limitnj →∞, if and only if the sequencekjL0

lj B0
converges

for j →∞, the limit of the latter is then denoted byβ. In this case the sequence|ψ̂nj |2 tends
to a sum of four delta functions concentrated on the unit circle at anglesπ/2± arctan(β),
3π/2± arctan(β). Therefore condition (ii) of (7) demands thatβ = 0, or equivalently

lim
j→∞

kj

lj
= 0. (9)

A consequence of this condition is that the counting function for the bouncing ball modes
cannot be of leading order, i.e. equation (6) follows for these modes without assuming
ergodicity.

The general picture of a bouncing ball mode at finite energies which emerges from
our discussion is a plane wave in two dimensions with frequencies( πk

B0
, πl
L0
), and l � k.

However, for finite energies the eigenfunctions will certainly penetrate the region outside
�B because an eigenfunction of the Laplacian in� cannot vanish in an open subset of�.
Therefore, following [5], we make the adiabatic separation ansatz

ψl,k(x, y) = ϕl(y; x)χl,k(x) (10)

with

ϕl(y; x) =
√

2

L(x)
sin

(
πl

L(x)
y

)
(11)

whereL(x) is the width of the billiard at the lengthx as defined in figure 1. The function
(10) is still close to a separation ansatz, but the weak dependence ofϕl on x due toL(x)
ensures thatψl,k satisfies Dirichlet boundary conditions on∂�.

The functionϕl can be viewed as quantization of the fast motion iny-direction. The
slow motion inx-direction is then according to [5] quantized by demanding thatχl,k satisfies
the Schr̈odinger equation

− χ ′′l,k(x)+ l2V (x)χl,k(x) = el,kχl,k(x) (12)

with the potential

V (x) = π2

L2(x)
− π

2

L2
0

. (13)

From the eigenvaluesel,k of (12) one obtains the eigenvaluesEl,k = l2π2

L2
0
+ el,k of the

Schr̈odinger equation (1).
The ansatz (10) satisfies the Schrödinger equation (1) exactly inside the rectangular

region�B . Since the potentiall2V (x) becomes very steep for largel, the two directions
will be effectively decoupled outside�B for l � k. So (10) satisfies the Schrödinger
equation (1) ifl � k.

The main point now is to estimate how largek may be for a givenl. The principal
idea is that the de Broglie wavelength in thex-direction should be large compared with
the effective length how farψl,k penetrates into the region outside�B , because then the
wavefunction does not feel the deviation ofl2V (x) from an infinitely high wall. Therefore
we first have to derive some asymptotic properties of the solutions to (12).

The potentialV (x) is zero forx 6 B0 and tends to infinity forx → B1, see figure 2.
So for x < B0 theχl,k are plane waves with frequency

√
el,k.

Equation (12) is of WKB type with WKB parameterl. Definex0
l,k by

l2V (B0+ x0
l,k) = el,k. (14)



On the number of bouncing ball modes in billiards 6787
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Figure 2. Potentiall2V (x) in the x-direction for the adiabatic approximation.

Standard WKB theory (see, e.g. [18]) predicts that the solutionχl,k to equation (12) is
exponentially small forx > B0 + x0

l,k in the limit l → ∞, so one only has to care about
the interval [B0, B0+ x0

l,k]. Since we are looking for solutions which asymptotically live in
�B we assume thatx0

l,k → 0 for E →∞. Then we only need to know the potentialV in
a small neighbourhood ofB0. For x ↘ 0 one can writeL(x) as

L(B0+ x) ∼ L0− Cxγ (15)

with characteristic exponentγ > 0, andC > 0. For example, for the stadium billiard one
hasγ = 2 and for the cosine and the Sinai billiard (with circular hole)γ = 1

2. The potential
V (x) is thus forx ↘ B0 given by

V (B0+ x) ∼ cxγ (16)

with c = 2π2C/L3
0. In particular, forx0

l,k defined in (14) we obtain

x0
l,k ∼

(el,k
cl2

)1
γ

for l→∞. (17)

For the eigenvaluesel,k one has the WKB condition

k − 1

2
= 1

π

∫ B0+x0
l,k

0

√
el,k − l2V (x) dx

= B0

π

√
el,k + 1

π

∫ x0
l,k

0

√
el,k − l2V (B0+ x) dx. (18)

Inserting expression (16), and substitutingx = y( el,k
cl2
)
− 1
γ = y

x0
l,k

, leads to

√
el,k = π

B0

(
k − 1

2

)
− π

B0

√
el,kx

0
l,k

∫ 1

0

√
1− xγ dx. (19)

Now we return to the main question, to consider for whichl, k the ansatz (10) satisfies
the Schr̈odinger equation. By construction the ansatz has the correct boundary conditions,
and satisfies the Schrödinger equation inside�B . By x0

l,k the depth how far the functions
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(10) penetrate into the region outsideB0 is characterized, and the de Broglie wavelength of
ψl,k in thex-direction isλl,k = 2π/

√
el,k. If we demand that the ratio betweenx0

l,k and the
de Broglie wavelength tends to zero for large energies, then as mentioned above,ψl,k will
satisfy the Schr̈odinger equation (1). Withλl,k = 2π/

√
el,k this condition leads to

lim
Ej→∞

√
elj ,kj x

0
lj ,kj
= 0. (20)

Using this condition formula (19) gives for theel,k the asymptotic expression

el,k = π2

B2
0

(
k − 1

2

)2

. (21)

Then (20), together with (17) and (21), leads to

lim
l,k→∞

k
2
γ
+1

l
2
γ

= 0. (22)

This is the crucial condition which tells us how fastk may grow compared withl and which
in turn gives us the number of bouncing ball modes which exist up to a given energyE.
So

kmax∝ l
2

γ+2 (23)

is the borderline below which our ansatz satisfies asymptotically the Schrödinger equation
with the energy

El,k = π2

L2
0

l2+ el,k = π2

L2
0

l2+ π
2

B2
0

(
k − 1

2

)2

. (24)

The number of such states up to energyE asymptotically equals the area of the
intersection between an ellipse with axes

√
EL0/2,

√
EB0/2, and the domain between

the curvel
2

2+γ and thex-axis. This area asymptotically equals∫ √EL0/2

0
l

2
2+γ dl = constEδ (25)

with exponent (recall thatγ is defined by equation (15))

δ = 1

2
+ 1

2+ γ . (26)

So we have found an upper bound for the number of bouncing ball modes in the sense that

Nbb(E) = o(Eδ) (27)

but

lim
E→∞

Eδ−ε

Nbb(E)
= 0 for all ε > 0. (28)

This meansEδ is the smallest power which is an upper bound forNbb(E).
Note that the exponent (26) takes its values in ]1

2, 1[, soNbb(E) varies between the
behaviour of the counting functionN(E) for a one- and a two-dimensional system. A
small exponentγ corresponds to a sharp edge atB0, where one would intuitively expect
more bouncing ball modes as for largeγ , which is confirmed by (26). The two limiting
casesδ→ 1 andδ→ 1

2 correspond to the cases of a right angle and of infinite continuation
of the parallel walls respectively. In both cases we would expect the result from direct
computations.
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In the case of the stadium billiard the exponentδ = 3
4 was previously obtained in [7]

by means of an approximation of the semiclassical transfer operator in the bouncing ball
limit, which leads to a similar cut-off condition such as (23). We will return to this point
in section 3.

The result (27), (28) forNbb(E) follows from the cut-off condition (20). That this
condition should be satisfied is a heuristic argument, one could also imagine that it might
suffice that the ratiox0

l,k/λl,k tends to some small constant. Then one would obtain
Nbb(E) ∼ αEδ. But we do not see any reasonable choice for such a constant not being
equal to zero.

Concerning equation (21) we should remark that one can obtain better asymptotic
expressions by including higher-order terms. For our purpose this is not necessary.

We finish this section by discussing some generalizations of our construction.
The result can immediately be extended to more general geometries of the billiard.

Suppose the billiard has a rectangular part, i.e. a region where the opposite sides are parallel
straight lines. Similarly one defines the functionL(x) as the distance between the opposite
sides of the billiard measured orthogonal to the parallel walls. Let the behaviour ofL(x)

at the endpointsB1, B2 of the rectangular region be given byL(B1− x) = L0− c1x
γ1, and

L(B2 + x) = L0 − c2x
γ2, with c1, c2 > 0, for small x. Then one gets for the exponent

δ = 1
2 + 1/(2+ γmax), with γmax= max(γ1, γ2).

Our derivation can also be performed for other boundary conditions; the result does
not change because the boundary conditions are incorporated inϕl which then has to be
adapted. For example for Neumann boundary conditions one takes

ϕl(y; x) =
√

2

L(x)
cos

(
πl

L(x)
y

)
(29)

and equation (12) forχl,k remains unchanged. Therefore we get the same asymptotic
behaviour for the number of bouncing ball modes in billiards with Neumann boundary
conditions as for billiards with Dirichlet boundary conditions. Similarly one can treat the
case of mixed boundary conditions, which are discussed in detail in [19].

A particularly nice example is given by the class of Sinai billiards [8] which are given by
the free motion in a square with a convex hole (in quantum chaos the term Sinai billiard is
usually used for the special case with a circular hole). The class of Sinai billiards is ergodic
and one can find for everyγ > 0 a Sinai billiard such thatL(x) has the characteristic
exponentγ . As an example, consider the case that the boundary curve of the convex hole
is given by

|L0− L(x)|µ + (B0+ 1− x)2 = 1 µ ∈ R+. (30)

This curve is a circle forµ = 2 and tends to a square in the limitµ → ∞. In this case
we haveγ = 1/µ, and δ = 1− 1

2(2µ+1) tends to 1 forµ → ∞. Therefore one can find
for everyδ < 1, arbitrarily close to 1, an ergodic billiard with thisδ giving the asymptotic
behaviour of the number of non-quantum ergodic bouncing ball modes. So our analysis
shows that the quantum ergodicity theorem cannot be improved without further assumptions
on the system.

3. Numerical results

As model systems to study the increase of the number of bouncing ball modes numerically,
we have chosen the desymmetrized cosine billiard withB0 = 2, B1 = L0 = 1,
B(y) = 2+ 1

2(1+ cos(πy)), see figure 1, and the desymmetrized stadium billiard with
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Figure 3. Density plot of|ψn(x, y)|2 for a series of bouncing ball modes in the stadium billiard,
with n = 320 (13,1),n = 321 (13,2),n = 325 (13,3),n = 329 (13,4),n = 333 (13,5) and
n = 339 (13,6). The numbers in brackets denote the adiabatic quantum numbers (l, k) being
the number of modes in thex- andy-direction, respectively. Notice that the second and third
bouncing ball mode do not have such a clear structure as the others.

L0 = 1, B0 = 1.8, B1 = 2.8, see figure 3. For the stadium billiard it is proven that it is
ergodic, mixing and aK-system [9, 10]. For the cosine billiard numerical studies do not
reveal any stability islands; therefore these do not have any influence on the energy range
under consideration [20].

A crucial step in the determination ofNbb(E) is the selection of the bouncing ball
modes. This selection process was done by visual inspection of the sets of eigenfunctions,
according to the description given at the beginning of section 2. The eigenmodes are found
to be organized in series with fixed numberl of maxima iny-direction, while the numberk
of maxima in thex-direction increases from 1 up to a certain maximumkmax(l). However,
we found that there is no sharp border ink within a series; in particular the association
was not unambiguous for states with a high number of horizontal nodal lines. Therefore we
used a conservative approach, i.e. in doubtful cases we did not count a state as a bouncing
ball state.

In order to study the asymptotic behaviour of the bouncing ball modes, we first selected
the bouncing ball modes from the first 2000 (odd–odd symmetry) eigenfunctions of the
stadium billiard and from the first 1620 (odd–odd symmetry) eigenfunctions of the cosine
billiard. In both cases the eigenfunctions were obtained by the boundary integral method
[21, 22] using a singular-value decomposition [23].

As an example in figures 3 and 4 we show density plots of|ψn|2 of a complete series of
bouncing ball modes for both systems. Notice that some states strongly resemble states of a
rectangular billiard, whereas there are also states in between, which do not have such a clear
structure. Moreover, we observed gaps (i.e. missingk values) in several series of bouncing
ball modes with fixed number of vertical nodal lines, which was also remarked in [7].
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Figure 4. Density plot of|ψn(x, y)|2 for a series of bouncing ball modes for the cosine billiard,
with n = 673 (19,1),n = 675 (19,2),n = 678 (19,3),n = 682 (19,4),n = 687 (19,5) and
n = 691 (19,6).

These observations can be explained by taking the neighbouring eigenfunctions into
account. In the case of the missing bouncing ball modes we found that these can be
recovered as a superposition of eigenfunctions whose eigenvalues are close to the one of
the expected bouncing ball mode. The involved eigenfunctions themselves do not resemble
the bouncing ball mode structure, see figures 5(d)–5(f ). If the eigenvalue of a bouncing
ball state is nearly degenerated, i.e. the nearest neighbouring eigenvalue is much closer than
the mean level spacing, we find that the bouncing ball mode structure is less clear. Instead
the bouncing ball mode structure is distributed among these two states, see figures 5(a)–5(c)
illustrating this for the(13, 2) bouncing ball mode in the stadium billiard (see also figure 3).
By varying the parameterB0 in the stadium billiard we found that this phenomenon is due
to avoided crossings of the corresponding energy levels. Since the mean level spacing
is independent of the energy for two-dimensional billiards, we expect the fraction of the
missing bouncing ball modes to be constant. Therefore their contribution only affects the
prefactorα in equation (31) below, but not the exponentδ.

Among the first 2000 odd–odd eigenstates of the stadium we identified 224 bouncing
ball modes, from which we obtainNbb(E) as shown in figure 6. In addition, a fit to

Nbb(E) = αEδ (31)

is shown withα = 0.20 andδ = 0.76. Similarly we obtainδ = 0.72 for the stadium billiard
with even–even symmetry using the first 2000 eigenstates. As already mentioned, in the
case of the stadium billiard the exponentδ = 3

4 for Nbb(E) has also been derived in [7].
Additionally the derivation in [7] provides asymptotically the factorα = a

π3/2 = 0.323. . .,
which, however, does not agree with our numerical result. One might think that this is due
to the missing bouncing ball modes, but their inclusion in the counting function increasesα

only slightly. We see two possible reasons for this disagreement of the prefactor: first, the
result in [7] is based on an estimate of the volume of the region in phase space around the
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(a) (b) (c)

(d ) (e) ( f )

Figure 5. Examples showing that by superposition of two states the structure of not so clear
bouncing ball modes can be drastically improved (c), or missing bouncing ball modes can be
recovered (f ). Density plot (c) shows the superpositionψ+ of (a), n = 321 (see also figure 3),
with the next eigenfunction (b), n = 322. In this caseψ+ = cos(0.2π)ψ321+ sin(0.2π)ψ322.
The second superposition f) is given byψ+ = cos(0.2π)ψ718+ sin(0.2π)ψ719, with ψ718 and
ψ719 shown in (e) and (d), respectively. Notice thatψ718 andψ719 do not resemble any bouncing
ball mode structure. In both cases the corresponding eigenvalues have a separation which is
much smaller than the mean level spacing.

0
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200

250

0 2000 4000 6000 8000 10000E

Nbb(E)

Figure 6. Nbb(E) for the stadium billiard together with the fitαEδ , whereα = 0.20 and
δ = 0.76.

bouncing ball orbits which can be considered regular at energyE. We observe a rather large
number of eigenfunctions which are scarred by periodic orbits lying in a neighbourhood
of the bouncing ball orbits in phase space. If we include these eigenfunctions, we obtain
a prefactorα = 0.27 (and exponentδ = 0.753), which is still smaller than the result of
Tanner. Secondly, next-to-leading-order contributions could influence the result of the fit.

From the first 1620 eigenstates of the cosine billiard 137 bouncing ball modes have been
selected. The result forNbb(E) is shown in figure 7. Also shown is a fit to equation (31)
with an additional constantβ starting from energyE = 800, givingα = 0.04, δ = 0.87
and β = 12.4. The reason for performing the fit not fromE = 0 but fromE = 800 is
clearly visible in figure 7. For smaller energiesNbb(E) has a different slope than for larger
energies. This presumably is due to next-to-leading-order contributions toNbb(E), which
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Figure 7. Nbb(E) for the cosine billiard together with the fitαxδ+β whereα = 0.04, δ = 0.87
andβ = 12.4.

may dominate the low-energy range.
The oscillatory contribution of the bouncing ball orbits to the spectral staircase function

(first observed in [24]) has been derived in [25]; to avoid confusion we should remark that
the functionN̂b(k) in [25] is not the counting function for the bouncing ball modes.

For both systems we find good agreement of the numerically determined exponentδ

with the corresponding resultsδ = 3
4 for the stadium andδ = 9

10 for the cosine billiard. This
agreement is quite remarkable for two reasons: first, equation (31) is only an asymptotic
result forNbb(E) and thus there could be corrections dominating the low-energy domain;
secondly, as already mentioned, there is the problem of identifying bouncing ball modes
with a large number of horizontal nodal lines, because visually there is no clear border
between bouncing ball modes and others.

We should remark that the total number of observed bouncing ball modes in the
considered energy range is smaller for the cosine billiard than for the stadium billiard,
despite the fact that the exponentδ is larger for the cosine billiard; the reason for this lies in
the smaller prefactorα in case of the cosine billiard. However, that the system with larger
exponent has a smaller prefactor is probably accidental, we see no reason why this should
be the case in general. It would be interesting to test this for other billiards withδ = 9

10,
for example a Sinai billiard with a circular or elliptical hole.

4. Summary

In this paper we have studied the number of bouncing ball modesNbb(E) in Euclidean
billiards. We have presented a derivation using the adiabatic separation ansatz of [5] of the
asymptotic behaviour forNbb(E). For two-dimensional systems our result is

Nbb(E) ∼ αEδ for E→∞ (32)

whereδ varies between1
2 and 1, depending on the geometry of the billiard. For example

for the stadium billiard one getsδ = 3
4, and for the Sinai billiard with a circular hole

and the cosine billiardδ = 9
10. In fact any billiard whose boundary is locally of circular

or elliptic shape at the connection pointB0 with the rectangular part hasδ = 9
10. We
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have checked the exponent numerically for the stadium and the cosine billiard, and the
agreement with the theoretical results is even at low energies very good. Furthermore, we
found that missing bouncing ball modes and the occurrence of states with a not so clear
bouncing ball mode structure are due to avoided level crossings. Varying the lengthB0 of
the billiard the bouncing ball mode structure is passed in an avoided level crossing from
one eigenfunction to the other. We illustrated that by superpositions of neighbouring states
the missing bouncing ball modes can be recovered.

Our derivation applied to the class of two-dimensional Sinai billiards with a convex
hole gives that one can find for every1

2 < δ < 1 an ergodic billiard for which (32) holds.
This shows that the bound on the number of non-quantum ergodic eigenfunctions in ergodic
billiards, as given by the quantum ergodicity theorem, cannot be relaxed in general.
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