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On the number of bouncing ball modes in billiards

A Backert§, R Schubertt| and P Stiftefq

1 Abteilung Theoretische Physik, UniveiitUlm, Albert-Einstein-Allee 11, D-89069 Ulm,
Germany
1 Abteilung Quantenphysik, Univerait Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany

Received 7 May 1997

Abstract. We study the number of bouncing ball modeg,(E) in a class of two-dimensional
quantized billiards with two parallel walls. Using an adiabatic approximation we show that
asymptotically Npp(E) ~ «E® for E — oo, wheres e]%, 1[ depends on the shape of the
billiard boundary. In particular for the class of two-dimensional Sinai billiards, which are
chaotic, one can get arbitrarily close (from below)ste= 1, which corresponds to the leading
term in Weyl's law for the mean behaviour of the counting function of eigenstates. This result
shows that one can come arbitrarily close to violating quantum ergodicity. We compare the
theoretical results with the numerically determined counting funcNgg(E) for the stadium
billiard and the cosine billiard and find good agreement.

1. Introduction

In quantum chaos one is interested in studying properties of quantum-mechanical systems,
whose classical limit is chaotic, see for example [1]. In particular, billiard systems have
been studied thoroughly because a lot of analytic results are known on the classical ergodic
properties. Classically, a two-dimensional Euclidean billiard system is given by the free
motion of a point particle inside a domafa c R? with elastic reflections at the boundary

9. The corresponding qguantum-mechanical system is given by the stationadbcfar
equation § = 2m = 1)

(A+E)Yn(x) =0 Va € Q\9S2 @

with Dirichlet boundary condition, () = 0 on the boundarg. Much work has been
devoted to the investigation of statistical properties of the set of eigenvékigsand
eigenfunctiongv,} and their dependence on the properties of the classical system.

In this paper we study a special type of eigenfunctions which occur in billiards with
two parallel walls (like the stadium billiard), the so-called bouncing ball modes. These
are eigenfunctions which are localized in the rectangular part between the parallel walls
and have a structure similar to eigenfunctions of a rectangular box. The classical billiard
possesses a family of neutral periodic orbits bouncing up and down between the two parallel
walls, and the bouncing ball modes are semiclassically concentrated on this family.

Already in [2] bouncing ball-like states were discussed and then were observed in the
stadium billiard [3,4]. A method of constructing these states approximately was given in
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[5]. Based on this work, our principal aim is to count the number of bouncing ball modes
up to energyE,

Npo(E) = {n|E, < E, with v, being a bouncing ball state (2)

We will derive the asymptotic behaviour @¥y,(E) for E — oo, and compare it with
numerical results. For the stadium billiard this question has been addressed in [6] where
it is argued that bouncing ball modes exist up to infinite energy, and in [7] the asymptotic
behaviour of Ny, (E) has been derived for this system.

For us the main motivation for studying this question comes from quantum ergodicity.
Assume that we have a billiaid where the classical flow is ergodic, for example the Sinai
billiard [8] or the stadium billiard [9,10]. This means that for a particle moving along a
generic trajectory, the probability of finding it at timein some region of phase space is
the relative volume of that region. Quantum ergodicity denotes a quantum analogue of this
behaviour. One says that a subsequefitg} C {E,} has density 1 if

#n;|E, <E
S0 (E)
where
N(E) :==#{n|E, < E} (4)

is the spectral staircase function, counting the number of energy levels below a given energy
E. The quantum ergodicity theorem states that if the classical flow is ergodic, then there is
a subsequencg:,;} C {E,} of density 1, such that

!
im [ 1 @) = 1 )

j=oo Jor 12|

for every subsef?’ ¢ Q. So for almost all eigenfunctions the probability of finding a
particle in a certain regio®’ of the position spac& becomes proportional to the volume
|| if the energyE becomes large. In fact a stronger result is valid, where the left-hand
side of (5) is given by an integral of the Wigner function of a state over a phase-space
region and the right-hand side is given by the relative volume of this region. This concept
of quantum ergodicity was introduced for flows on manifolds without boundaries in [11],
and was proven in [12-14]. In [15, 16] quantum ergodic theorems are proven for a large
class of billiard systems, which include for example the stadium billiard.

The condition for the density of the subsequence to be 1 leaves a lot of room for
subsequences of eigenstates which are not quantum ergodic in the sense of (5). In general,
the behaviour of the counting function of such sequences is an open question; the quantum
ergodicity theorem only says that it is of lower order thsE). It is even conjectured
for certain systems that no such exceptional subsequences exist, i.e. relation (5) is valid for
the whole sequencg/,}, a property which is thus called unique quantum ergodicity, see
[13,17]. The bouncing ball modes clearly form an exceptional subsequence which does not
satisfy (5). If the billiard is ergodic and its geometry permits the existence of bouncing
ball modes, as it is the case for the stadium and Sinai billiard, then the quantum ergodicity
theorem gives an upper bound f¥g,(E),

Npb(E)
Jim =P = (6)
o N(E)
Any further information on the asymptotic behaviourMfy(E) provides information on the

guestion whether one could improve the quantum ergodicity theorem by giving a stronger
bound on the number of non-quantum ergodic states.
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Figure 1. Boundary of the desymmetrized cosine billia®l(y) = 2 + %(1 + cogqry)), and
notation used for the adiabatic approximation.

2. Adiabatic approximation of bouncing ball modes

The type of billiards we investigate in the following is a class of two-dimensional billiards,
where one example is shown in figure 1. The billiard has the shape of a rectangular box of
height Ly and width By, at which one side is replaced by a curved boundary, defined by a
function L(x) with L(Bg) = Lo, L(B1) = 0 andB; > By. The functionL(x) is assumed

to be decreasing for > Bg in a neighbourhood of = By.

First we have to make the notion of a bouncing ball mode more precise. The idea is
that the bouncing ball modes are eigenfunctions which are semiclassically concentrated on
the bouncing ball orbits in phase space. K&t := {(x, y); x € [0, Bo], y € [0, Lo]} be
the box-like region between the parallel walls in the billiard. We say that a sequence of
eigenfunctiongy,, } is a sequence of bouncing ball modes, if they satisfy the following two
conditions

() lim supp,,) = Q25
J—=>© ’

~ 2 5(py— 1) +8(py + 1) @)
Y, ( Ey; px, En;py>’ = 8(px) : 2 ! .

The first condition expresses the localization on the bouncing ball orbits in position
space, where supy) is the support ofis, i.e. the closure of the set whefe is not zero.
A function which is approximately zero outsideg and satisfies the Sabdinger equation
inside 23, is close to an eigenfunction f@2z, so the bouncing ball modes should be close

to
2 b4 2 . (ml;
Y, (X, y) = ,/— sin (Bo(kj + V)x> ‘/fo sm(LO y) (8

(kj +v)

(ii) lim
j—o00

with eigenvaluest,, = nz(%

shift. ’
The second condition expresses the localization in momentum space, because the

bouncing ball orbits have momentum = 0 andp, = +1 on the energy surfacg® = 1.

Here tp denotes the Fourier transform @f. The arguments have been rescaled by the

square root of the energy, because the Fourier transform is concentrated on the energy shell,

which is with this scaling a circle of radius 1.
(kj +v)

), wherek;, l; € N\O. Herev is an arbitrary phase

. ?
Consider now a sequends,, = yrZ(LAg ) — o0, and the corresponding sequence

|1an( E,, px. /En, py)1? With v, given by (8). The computation ofrnj shows that the
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sequencé;@/}2 converges in the limik; — oo, if and only if the sequencéé—;’ converges
J -~

for j — oo, the limit of the latter is then denoted I8y In this case the sequenme,lj|2 tends

to a sum of four delta functions concentrated on the unit circle at angl2st arctang),

31 /2 + arctar{B). Therefore condition (ii) of (7) demands that= 0, or equivalently

iim N o, 9)

A consequence of this condition is that the counting function for the bouncing ball modes
cannot be of leading order, i.e. equation (6) follows for these modes without assuming
ergodicity.

The general picture of a bouncing ball mode at finite energies which emerges from
our discussion is a plane wave in two dimensions with frequer((%oés%é), and/ > k.
However, for finite energies the eigenfunctions will certainly penetrate the region outside
Qp because an eigenfunction of the Laplaciarfarcannot vanish in an open subset<f
Therefore, following [5], we make the adiabatic separation ansatz

Yia(x, y) = @ (y; ) X1k (x) (10)

2 . wl
o (y; x) = ‘/msm (L(x)y) (11)

where L(x) is the width of the billiard at the length as defined in figure 1. The function
(10) is still close to a separation ansatz, but the weak dependengeoafx due toL(x)
ensures thaf; ; satisfies Dirichlet boundary conditions 0.

The functiong; can be viewed as quantization of the fast motioryidirection. The
slow motion inx-direction is then according to [5] quantized by demanding fhatsatisfies
the Schodinger equation

— X1k () + PV 00 0k (0) = 1 xi x(x) (12)
with the potential

with

w? n?

V(x):LT(x)—L—S.

(13)

From the eigenvalues,; , of (12) one obtains the eigenvalués; = ’ZLLZZ + e of the
Schibdinger equation (1). ’

The ansatz (10) satisfies the Satlinger equation (1) exactly inside the rectangular
region Q. Since the potential®V (x) becomes very steep for lardgethe two directions
will be effectively decoupled outsid&p for I > k. So (10) satisfies the Scidinger
equation (1) ifl > k.

The main point now is to estimate how largemay be for a giveri. The principal
idea is that the de Broglie wavelength in thedirection should be large compared with
the effective length how faty; ; penetrates into the region outside;, because then the
wavefunction does not feel the deviation/é¥ (x) from an infinitely high wall. Therefore
we first have to derive some asymptotic properties of the solutions to (12).

The potentialV (x) is zero forx < By and tends to infinity forx — Bi, see figure 2.
So forx < By the ;. are plane waves with frequencgye; ;.

Equation (12) is of WKB type with WKB parametér Definexﬁk by

1V (Bo + x0}) = evx. (14)
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Figure 2. Potential/?V (x) in the x-direction for the adiabatic approximation.

Standard WKB theory (see, e.g. [18]) predicts that the solufipnto equation (12) is
exponentially small forx > Bo + x,‘?k in the limit / — oo, so one only has to care about
the interval By, Bo+x,?k]. Since we are looking for solutions which asymptotically live in
Qp we assume thazt}?k — 0 for E — oco. Then we only need to know the potentialin
a small neighbourhood aBy. Forx N\ 0 one can writel.(x) as

L(Bo+x) ~ Lo— CxY (15)

with characteristic exponent > 0, andC > 0. For example, for the stadium billiard one
hasy = 2 and for the cosine and the Sinai billiard (with circular hglex % The potential
V(x) is thus forx ~\, Bg given by

V(Bg+ x) ~ cxV (16)
with ¢ = 272C/L}. In particular, forx?, defined in (14) we obtain

1
ek \y
xﬁk ~ (ﬁ)y for I — oo. a7)

For the eigenvalues ; one has the WKB condition

1 1 Bo+x!
k—é:;/ ’k,/e,’k—IZV(x)dx
0

B 1 [
= ;0‘/61,1(-{—;\/0 \/elyk—le(Bo—i—x) dx. (18)
Inserting expression (16), and substituting= y(%)’% = ¥, leads to
ALk
T 1 T 0 L
Jer=— k=5 ) — —ex; /1 —xvdx. (29)
’ Bo 2 Bo ’ “Jo

Now we return to the main question, to consider for which the ansatz (10) satisfies
the Schodinger equation. By construction the ansatz has the correct boundary conditions,
and satisfies the Sdbdinger equation insid&p. By xfk the depth how far the functions
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(10) penetrate into the region outsidg is characterized, and the de Broglie wavelength of
V1« in the x-direction isi; , = 2/, /e . If we demand that the ratio betweeﬁk and the

de Broglie wavelength tends to zero for large energies, then as mentioned ghoweil
satisfy the Sclirdinger equation (1). Witl; , = 27/, /e;x this condition leads to

A i3y, = 0. (20)
Using this condition formula (19) gives for the, the asymptotic expression
2 1)\?
= —lk—2). 21
= a(k=3) @1)
Then (20), together with (17) and (21), leads to
241

lim

1,k—o00 l%

—0. (22)

This is the crucial condition which tells us how fasmay grow compared withand which
in turn gives us the number of bouncing ball modes which exist up to a given efergy
So

Kimax ¢ 72 (23)

is the borderline below which our ansatz satisfies asymptotically thed8iciger equation
with the energy

2 2 2 2

b4 b4 b4 1

Ep=—lP+e =12+(k—>. 24

Lk Lg 1,k Lg Bg 2 ( )

The number of such states up to enerfyasymptotically equals the area of the

intersection between an ellipse with ax@¥ Lo/2, ~EBy/2, and the domain between

2
the curvelz» and thex-axis. This area asymptotically equals

VELo/2
/ 17 dl = constE?® (25)
0
with exponent (recall thay is defined by equation (15))
1 1
§=_-4+ —. 2
2 + 24y (26)
So we have found an upper bound for the number of bouncing ball modes in the sense that
Nob(E) = 0(E®) (27)
but
E5—6

lim =0 for all e > 0. (28)
E—o00 Npp(E)
This meansE? is the smallest power which is an upper bound Agk(E).

Note that the exponent (26) takes its values %n]][, SO Npp(E) varies between the
behaviour of the counting functioW (E) for a one- and a two-dimensional system. A
small exponents corresponds to a sharp edgeRy, where one would intuitively expect
more bouncing ball modes as for large which is confirmed by (26). The two limiting
casess — 1 andé — % correspond to the cases of a right angle and of infinite continuation
of the parallel walls respectively. In both cases we would expect the result from direct
computations.
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In the case of the stadium billiard the exponént % was previously obtained in [7]
by means of an approximation of the semiclassical transfer operator in the bouncing ball
limit, which leads to a similar cut-off condition such as (23). We will return to this point
in section 3.

The result (27), (28) forNp,(E) follows from the cut-off condition (20). That this
condition should be satisfied is a heuristic argument, one could also imagine that it might
suffice that the ratioxl?k/)»,‘k tends to some small constant. Then one would obtain
Npo(E) ~ aE?. But we do not see any reasonable choice for such a constant not being
equal to zero.

Concerning equation (21) we should remark that one can obtain better asymptotic
expressions by including higher-order terms. For our purpose this is not necessary.

We finish this section by discussing some generalizations of our construction.

The result can immediately be extended to more general geometries of the billiard.
Suppose the billiard has a rectangular part, i.e. a region where the opposite sides are parallel
straight lines. Similarly one defines the functifiix) as the distance between the opposite
sides of the billiard measured orthogonal to the parallel walls. Let the behavialxof
at the endpoint®;, B, of the rectangular region be given By B; — x) = Lo — c1x”, and
L(By 4+ x) = Lo — cpx??, with ¢1,¢c2 > 0, for smallx. Then one gets for the exponent
8 =34 1/(2+ Yma, With ymax = max(y1, y2).

Our derivation can also be performed for other boundary conditions; the result does
not change because the boundary conditions are incorporatgdviich then has to be
adapted. For example for Neumann boundary conditions one takes

2 wl
o (y; x) = \/ m COS(L(X)y) (29)

and equation (12) fory; , remains unchanged. Therefore we get the same asymptotic
behaviour for the number of bouncing ball modes in billiards with Neumann boundary
conditions as for billiards with Dirichlet boundary conditions. Similarly one can treat the
case of mixed boundary conditions, which are discussed in detail in [19].

A particularly nice example is given by the class of Sinai billiards [8] which are given by
the free motion in a square with a convex hole (in quantum chaos the term Sinai billiard is
usually used for the special case with a circular hole). The class of Sinai billiards is ergodic
and one can find for every > 0 a Sinai billiard such thaL(x) has the characteristic
exponenty. As an example, consider the case that the boundary curve of the convex hole
is given by

|Lo— LX)|* +(Bo+1—x)?=1 weR* (30)
This curve is a circle for = 2 and tends to a square in the limit— oco. In this case
we havey = 1/u, andé = 1 — Wl-&-h tends to 1 foru — oo. Therefore one can find

for everys < 1, arbitrarily close to 1, an ergodic billiard with thisgiving the asymptotic
behaviour of the number of non-quantum ergodic bouncing ball modes. So our analysis
shows that the quantum ergodicity theorem cannot be improved without further assumptions
on the system.

3. Numerical results

As model systems to study the increase of the number of bouncing ball modes numerically,
we have chosen the desymmetrized cosine billiard with = 2, By = Lo = 1,
B(y) = 2+ %(l + cogqmy)), see figure 1, and the desymmetrized stadium billiard with
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Figure 3. Density plot of|, (x, y)|? for a series of bouncing ball modes in the stadium billiard,
with » = 320 (13,1),n = 321 (13,2),n = 325 (13,3),n = 329 (13,4),n = 333 (13,5) and

n = 339 (13,6). The numbers in brackets denote the adiabatic quantum nurhligrbding
the number of modes in the- and y-direction, respectively. Notice that the second and third
bouncing ball mode do not have such a clear structure as the others.

Lo =1, Bp = 1.8, By = 2.8, see figure 3. For the stadium billiard it is proven that it is
ergodic, mixing and & -system [9,10]. For the cosine billiard numerical studies do not
reveal any stability islands; therefore these do not have any influence on the energy range
under consideration [20].

A crucial step in the determination afy,(E) is the selection of the bouncing ball
modes. This selection process was done by visual inspection of the sets of eigenfunctions,
according to the description given at the beginning of section 2. The eigenmodes are found
to be organized in series with fixed numldesf maxima iny-direction, while the numbek
of maxima in thex-direction increases from 1 up to a certain maximkyax(/). However,
we found that there is no sharp borderknwithin a series; in particular the association
was not unambiguous for states with a high number of horizontal nodal lines. Therefore we
used a conservative approach, i.e. in doubtful cases we did not count a state as a bouncing
ball state.

In order to study the asymptotic behaviour of the bouncing ball modes, we first selected
the bouncing ball modes from the first 2000 (odd—odd symmetry) eigenfunctions of the
stadium billiard and from the first 1620 (odd—odd symmetry) eigenfunctions of the cosine
billiard. In both cases the eigenfunctions were obtained by the boundary integral method
[21, 22] using a singular-value decomposition [23].

As an example in figures 3 and 4 we show density plots/gf?> of a complete series of
bouncing ball modes for both systems. Notice that some states strongly resemble states of a
rectangular billiard, whereas there are also states in between, which do not have such a clear
structure. Moreover, we observed gaps (i.e. misginglues) in several series of bouncing
ball modes with fixed number of vertical nodal lines, which was also remarked in [7].



On the number of bouncing ball modes in billiards 6791

T —— = —

|

.
{*
'!
Il
g
]
(]

j

|
|

i

|

L]
4l
-

|
|

|
|

e A —— |
e ————— U —— o
e ——— —  — o ——
e — o — e

o — | —

— —_— —
— —— .
—— A . eae———
— - =
—— e  — L —
o d— — —— e —
e — " — ———
— —— e — ————
= I ——
L — —— & e C————
—— A — —
—— —_——— e e =
—— i = — - —
B o — - e—
s e — . — | —
QA RO N~ —F—— e
Veow ="- E—— _—__ [ — e — —
_— e - —— == —_— f— - -
—_— — e — . e & —_ A" -— T
- — . - e T e o
— L — s wmw W - — - e
R s R R R - — - - O e
fES W d, Ema ——— - = - = .- W
R — - - — = Wy e
e — e - oA
— — — A ] B, —
o — — - Mgt —
D - B —
- —— — W . A — — -
— W 5 S s e — —
—— S . o— - - -
—— e "
S e S — — I."‘. - T
— — — - N - .
- - — — ] s —
> — —

i

Figure 4. Density plot of|y, (x, y)|? for a series of bouncing ball modes for the cosine billiard,
with n = 673 (19,1),n = 675 (19,2),n = 678 (19,3),n = 682 (19,4),n = 687 (19,5) and
n =691 (19,6).

These observations can be explained by taking the neighbouring eigenfunctions into
account. In the case of the missing bouncing ball modes we found that these can be
recovered as a superposition of eigenfunctions whose eigenvalues are close to the one of
the expected bouncing ball mode. The involved eigenfunctions themselves do not resemble
the bouncing ball mode structure, see figure$)5%(f). If the eigenvalue of a bouncing
ball state is nearly degenerated, i.e. the nearest neighbouring eigenvalue is much closer than
the mean level spacing, we find that the bouncing ball mode structure is less clear. Instead
the bouncing ball mode structure is distributed among these two states, see fig)+&¢p(
illustrating this for the(13, 2) bouncing ball mode in the stadium billiard (see also figure 3).

By varying the parameteB, in the stadium billiard we found that this phenomenon is due

to avoided crossings of the corresponding energy levels. Since the mean level spacing
is independent of the energy for two-dimensional billiards, we expect the fraction of the
missing bouncing ball modes to be constant. Therefore their contribution only affects the
prefactora in equation (31) below, but not the exponént

Among the first 2000 odd—odd eigenstates of the stadium we identified 224 bouncing
ball modes, from which we obtaiVy,(E) as shown in figure 6. In addition, a fit to

Npp(E) = ¢ E® (31)

is shown witha = 0.20 ands = 0.76. Similarly we obtairs = 0.72 for the stadium billiard

with even—even symmetry using the first 2000 eigenstates. As already mentioned, in the
case of the stadium billiard the exponent= % for Npp(E) has also been derived in [7].
Additionally the derivation in [7] provides asymptotically the factor= _3, = 0.323.. .,

which, however, does not agree with our numerical result. One might think that this is due
to the missing bouncing ball modes, but their inclusion in the counting function increases
only slightly. We see two possible reasons for this disagreement of the prefactor: first, the
result in [7] is based on an estimate of the volume of the region in phase space around the
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Figure 5. Examples showing that by superposition of two states the structure of not so clear
bouncing ball modes can be drastically improvedi ©r missing bouncing ball modes can be
recoveredf(). Density plot €) shows the superposition™ of (a), » = 321 (see also figure 3),

with the next eigenfunctionb, » = 322. In this case/™ = cog0.27)v¥321 + Sin(0.27)¥322.

The second superposition f) is given gy = cog0.27)vy715 + Sin(0.27) 1719, With 718 and

Y719 Shown in €) and @), respectively. Notice thak71g andy719 do not resemble any bouncing

ball mode structure. In both cases the corresponding eigenvalues have a separation which is
much smaller than the mean level spacing.
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Figure 6. Npo(E) for the stadium billiard together with the fit E%, wherea = 0.20 and
3 =0.76.

bouncing ball orbits which can be considered regular at enErgy/e observe a rather large
number of eigenfunctions which are scarred by periodic orbits lying in a neighbourhood
of the bouncing ball orbits in phase space. If we include these eigenfunctions, we obtain
a prefactora = 0.27 (and exponené = 0.753), which is still smaller than the result of
Tanner. Secondly, next-to-leading-order contributions could influence the result of the fit.
From the first 1620 eigenstates of the cosine billiard 137 bouncing ball modes have been
selected. The result faW,,(E) is shown in figure 7. Also shown is a fit to equation (31)
with an additional constang starting from energye = 800, givinga = 0.04, § = 0.87
and 8 = 124. The reason for performing the fit not from = 0 but from £ = 800 is
clearly visible in figure 7. For smaller energi#s,(E) has a different slope than for larger
energies. This presumably is due to next-to-leading-order contributiongp@), which
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Figure 7. Nup(E) for the cosine billiard together with the fitx® + 8 wherea = 0.04,5 = 0.87
andg = 124.

may dominate the low-energy range.

The oscillatory contribution of the bouncing ball orbits to the spectral staircase function
(first observed in [24]) has been derived in [25]; to avoid confusion we should remark that
the functionN, (k) in [25] is not the counting function for the bouncing ball modes.

For both systems we find good agreement of the numerically determined exgonent
with the corresponding resulés= 231 for the stadium and = 1% for the cosine billiard. This
agreement is quite remarkable for two reasons: first, equation (31) is only an asymptotic
result for Npp(E) and thus there could be corrections dominating the low-energy domain;
secondly, as already mentioned, there is the problem of identifying bouncing ball modes
with a large number of horizontal nodal lines, because visually there is no clear border
between bouncing ball modes and others.

We should remark that the total number of observed bouncing ball modes in the
considered energy range is smaller for the cosine billiard than for the stadium billiard,
despite the fact that the exponéris larger for the cosine billiard; the reason for this lies in
the smaller prefactow in case of the cosine billiard. However, that the system with larger
exponent has a smaller prefactor is probably accidental, we see no reason why this should
be the case in general. It would be interesting to test this for other biIIiardséWiihl%,
for example a Sinai billiard with a circular or elliptical hole.

4. Summary

In this paper we have studied the number of bouncing ball madgsE) in Euclidean
billiards. We have presented a derivation using the adiabatic separation ansatz of [5] of the
asymptotic behaviour foy,(E). For two-dimensional systems our result is

Npp(E) ~ « E® for E — oo (32)
wheres varies between} and 1, depending on the geometry of the billiard. For example
for the stadium billiard one get$ = %, and for the Sinai billiard with a circular hole
and the cosine billiard = 1%. In fact any billiard whose boundary is locally of circular

or elliptic shape at the connection poiBt with the rectangular part has = 1—90. We
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have checked the exponent numerically for the stadium and the cosine billiard, and the
agreement with the theoretical results is even at low energies very good. Furthermore, we
found that missing bouncing ball modes and the occurrence of states with a not so clear
bouncing ball mode structure are due to avoided level crossings. Varying the [Bngth
the billiard the bouncing ball mode structure is passed in an avoided level crossing from
one eigenfunction to the other. We illustrated that by superpositions of neighbouring states
the missing bouncing ball modes can be recovered.

Our derivation applied to the class of two-dimensional Sinai billiards with a convex
hole gives that one can find for eve§y< 3 < 1 an ergodic billiard for which (32) holds.
This shows that the bound on the number of non-quantum ergodic eigenfunctions in ergodic
billiards, as given by the quantum ergodicity theorem, cannot be relaxed in general.
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