
J. Phys. A: Math. Gen.32 (1999) 4795–4815. Printed in the UK PII: S0305-4470(99)03078-4

Chaotic eigenfunctions in momentum space
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Abstract. We study eigenstates of chaotic billiards in the momentum representation and propose
the radially integrated momentum distribution as a useful measure to detect localization effects.
For the momentum distribution, the radially integrated momentum distribution, and the angular
integrated momentum distribution explicit formulae in terms of the normal derivative along the
billiard boundary are derived. We present a detailed numerical study for the stadium and the
cardioid billiard, which shows in several cases that the radially integrated momentum distribution
is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find
examples, where the localization is more strongly pronounced in position space than in momentum
space, which we discuss in detail. Finally, applications and generalizations are discussed.

1. Introduction

In quantum mechanics the state of a system is given by a normalized vector in a Hilbert space,
which in turn can be represented in different ways. Usually one chooses the representation
which is most convenient for the problem at hand. In quantum chaos the main concern is to
understand the semiclassical limit, and the fingerprints which properties of the classical limit,
like chaoticity or integrability, leave on the quantum system.

A particulary convenient class of representations for the study of the quantum to classical
correspondence is given by the Wigner function and its relatives, e.g. the Husimi density. The
Wigner function of a quantum state is the representation which comes closest to a probability
density on the phase space of the corresponding classical system [1, 2], and therefore should
be a sensitive detector for classical fingerprints. One drawback of the Wigner function is that it
is difficult to visualize, because it is a function on the 2n-dimensional phase space. Therefore,
one is often forced to study the projections on position or momentum space when one wants
a visual representation of the state. Whereas the position representation is commonly used
in quantum chaos, the momentum representation is not. Our aim here is to promote the
momentum representation, by showing that it has some potential advantages.

What we are especially looking for are fingerprints of the classical phase space structure,
e.g. periodic orbits. So in the position representation one is searching for an enhanced
probability density around an orbit, in order to detect, for example, so-called scarred eigenstates
[3]. But the detection of such a state from the probability density in position space can be
rather ambiguous; there is no clear borderline which distinguishes scarred eigenstates from
those which are not. In this case the probability density in momentum space can be helpful.
For example, assume we are studying a Euclidean billiard system, where the periodic orbits
consist of segments of straight lines; therefore the momentum distribution of a state which is
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scarred by a periodic orbit should be concentrated on the directions of the line segments of that
orbit. This criterion can be further simplified if one realizes that the momentum distribution
of thenth state is concentrated on the energy shellp2 = En, so that the main information is
contained in the dependence on the direction ofp. By integrating over the radial direction one
gets a one-dimensional distribution, the angular distribution of the momentum, which contains
all the essential information about the momentum distribution. This is the main advantage of
the momentum representation, instead of working with a two-dimensional distribution as in
position space, one can reduce the study to the one-dimensional angular distribution of the
momentum.

A related quantity was introduced in [4], where the scattering approach is used to study
expectation values and scars on the Poincaré section. The expectation values of a proposed ‘scar
operator’ correspond to a smoothed angular distribution of the momentum. Other approaches
to study eigenfunctions consist of the use of the Bargmann representation and the stellar
representation [5]. For billiards, these can be used to obtain representations on the Poincaré
section [6] (see also [7]).

The plan of this paper is as follows. In section 1 we use the boundary integral method
to obtain expressions for the momentum representation of a given eigenfunction in terms of
the normal derivative of this eigenfunction on the boundary. Furthermore, we derive formulae
for the angular and the radial distribution of the momentum density, respectively, expressed
in terms of the normal derivative. In section 2 we present a gallery of eigenstates displayed
in position space and in momentum space, and compare the different representations. Finally,
applications and generalizations are discussed.

2. Momentum distributions

The boundary integral method is a common method for computing eigenvalues and
eigenfunctions of two-dimensional billiards, see e.g. [8, 9]. The main point is that one can
reduce the two-dimensional eigenvalue problem in such a billiard with the help of Green’s
formula and a Green function into an integral equation for the normal derivative of the
eigenfunction on the boundary. Therefore, one needs to solve only a one-dimensional problem,
which is much more efficient numerically.

2.1. Reduction to the boundary

Let � ⊂ R2 be a domain in the Euclidean plane with piecewise smooth boundary∂�. The
Dirichlet quantum billiard in� is defined by

−1ψn(q) = p2
nψn(q) for q ∈ �\∂� (1)

ψn(q) = 0 for q ∈ ∂�. (2)

And we use the trivial extension ofψn(q) toR2 by requiringψn(q) = 0 for q ∈ R2 \� toR2.
The transformation of this problem to a problem on the boundary rests on the Green formula,∫
�

[f (q)1g(q)− g(q)1f (q)] d2q

=
∫
∂�

[f (q(s))n(s)∇g(q(s))− g(q(s))n(s)∇f (q(s))] ds (3)

wheref andg are arbitrary smooth functions, andn(s) denotes the outer normal on∂�, which
is defined almost everywhere if the boundary is piecewise smooth. If one inserts forf a Green
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function, e.g.f (q) = − i
4H

(1)
0 (pn|q − q′|), whereH(1)

0 = J0 + iY0 is the Hankel function of
the first kind, which satisfies

(1q + p2
n)
−i

4
H
(1)
0 (pn|q − q′|) = δ(q − q′) (4)

and forg the eigenfunctionψn, one gets forq ∈ R2 \ ∂�

ψn(q) =
∫
∂�

i

4
H
(1)
0 (pn|q(s)− q|)un(s) ds (5)

whereun(s) := n(s)∇ψn(q(s))denotes the normal derivative ofψn on the boundary expressed
in terms of the arclength coordinates. Equation (5) is the crucial relation by which one recovers
the eigenfunction from its normal derivative on the boundary. Taking the normal derivative
of (5) leads to an integral equation forun on the boundary, which is then solved numerically.
The choice ofH(1)

0 for the Green function is necessary in order that this integral equation for
un does not lead to any spurious solutions, see e.g. [8]. For the integral (5) the contribution of
J0 is irrelevant, because with(1 +p2

n)J0(pn|q|) = 0 the Green formula gives forq ∈ � \ ∂�∫
∂�

J0(pn|q(s)− q|)un(s) ds = 0 (6)

and so one has the simpler formula for the eigenfunction forq ∈ � \ ∂�
ψn(q) = − 1

4

∫
∂�

Y0(pn|q(s)− q|)un(s) ds. (7)

Furthermore, one can express theL2-norm ofψn by un as [9,10]

1

2p2
n

∫
∂�

n(s)q(s)|un(s)|2ds = ||ψn||2. (8)

This expression is very convenient as it allows one to obtain a normalized normal derivative
un such that all other derived quantities of interest, such as expectation values, are correctly
normalized. This relation is much faster to compute numerically than a normalization obtained
from integrating|ψ(q)|2 over the billiard domain�.

Even in cases where the eigenfunctions are given by an expansion into some basis it can
be useful to perform the computations starting from the normal derivative, as one can exploit
the relation (8) to obtain normalized eigenfunctions.

2.2. Momentum representation of eigenfunctions

The momentum representation of an eigenfunctionψn is given by its Fourier transform

ψ̂n(p) := 1

2π

∫
R2

e−ipqψn(q) d2q = 1

2π

∫
�

e−ipqψn(q) d2q. (9)

Using Green’s formula (3) withf (q) = ψn(q) andg(q) = 1
2π e−iqp one gets

1

2π

∫
�

[ψn(q)(−ip)2e−iqp − e−iqp(−p2
n)ψn(q)] d2q

= 1

2π

∫
∂�

[ψn(q(s))(−in(s)p)e−iq(s)p − un(s)e−iq(s)p] ds. (10)

Asψn(q) = 0 for q ∈ ∂�, we get a representation of the Fourier transform as an integral over
the normal derivative at the boundary

ψ̂n(p) = 1

p2 − p2
n

1

2π

∫
∂�

un(s)e
−iq(s)p ds. (11)
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This expression has an apparent singularity atp2 = p2
n, but since the Fourier transform and its

derivatives are bounded this singularity has to be cancelled by a zero of the integral. Solving
(11) for the integral gives

1

2π

∫
∂�

un(s)e
−iq(s)p ds = (p2 − p2

n)ψ̂n(p) (12)

and taking the derivative of this equation with respect tor := |p| at the pointr = pn one gets

ψ̂n(p) = − i

4πp2
n

∫
∂�

e−ipq(s)pq(s)un(s) ds (13)

for |p| = pn. By repeating this procedure one can get expressions for the derivatives ofψ̂n(p)

at |p| = pn as well. This can be used to interpolate near|p| = pn for a numerical plot of
ψ̂n(p).

2.3. Radially integrated momentum distribution

In a billiard the classical flows at different energiesp2 are isomorphic, because the system
scales with energy. At the quantum mechanical side the momentum distribution of thenth
state is concentrated around the energy shellp2 = p2

n. Because of the scaling property of the
classical system the interesting phenomena, i.e. those which are due to the special system at
hand, should occur only in the angular distribution of the momentum probability.

Therefore we want to study the angular distribution of the momentum defined by

In(ϕ) :=
∫ ∞

0
|ψ̂n(r, ϕ)|2r dr (14)

where we have introduced polar coordinatesp = (r cosϕ, r sinϕ). The advantage of this
quantity, in contrast to the full momentum probability density or the probability distribution
in position space, is that it depends only on one variableϕ ∈ [0, 2π ].

By inserting the expression (11) for the Fourier transformψ̂n into (14) one gets

In(ϕ) = 1

(2π)2

∫ ∞
0

r

(r2 − p2
n)

2

∫∫
∂�×∂�

e−irαun(s)un(s
′) ds ds ′ dr (15)

where we have used the abbreviation

α = α(ϕ, s, s ′) := p̂(ϕ)(q(s)− q(s ′)) (16)

andp̂(ϕ) = (cosϕ, sinϕ) is the unit vector inp direction. Using r
(r2−p2

n)
2 = − 1

2
d
dr

1
r2−p2

n
and

partial integration one obtains

4π2In(ϕ) = −2π2p2
n|ψ̂n(0)|2 −

1

2

∫ ∞
0

1

r2 − p2
n

∫∫
∂�×∂�

iαe−irαun(s)un(s
′) ds ds ′ dr (17)

where it was used that
∫
∂�
un(s) ds = −2πp2

nψ̂n(0) which follows from (11).
Here we have to discuss a problem which always occurs when inserting the expression

(11) for ψ̂n in an integral such as in equation (14). Since (11) is the product of a factor which
becomes singular at|p| = pn and a factor which is zero there, we have an apparent problem if
we want to interchange the order of integration in (17). Therefore we choose a regularization
for the factor 1

p2−p2
n
. This can be done by adding topn a small positive or negative imaginary

part,pn ± iε, performing all computations and taking afterwards the limitε → 0. The result
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is independent of the regularization. In the following we choose a symmetric regularization,
i.e., replace(p2 − p2

n)
−1 by

1

2

(
1

p2 − (pn + iε)2
+

1

p2 − (pn − iε)2

)
(18)

which corresponds in the limitε → 0 to taking the principal values of all integrals overr = |p|.
To avoid complicated formulae we proceed formally without regularization, and interchange
integrals whenever needed, but interpret all integrals overr as principal values. The reader
can always check that the described regularization leads to the same results.

Returning to the computation ofIn(ϕ) we interchange the order of integration in (17) and
get

In(ϕ) =
∫∫
∂�×∂�

Kn(ϕ, s, s
′)un(s)un(s ′) ds ds ′ (19)

where the kernel is given by

Kn(ϕ, s, s
′) = − iα

8π2

∫ ∞
0

e−irα

r2 − p2
n

dr − 1

2p2
n

= − α

8π2

∫ ∞
0

sin(rα)

r2 − p2
n

dr − 1

2p2
n

− i
α

8π2

∫ ∞
0

cos(rα)

r2 − p2
n

dr (20)

and the integrals are interpreted as principal values. Note that the real part is an even function
of α and the imaginary part is an odd function ofα, thusKn has the property

Kn(ϕ, s, s
′) = Kn(ϕ, s

′, s) (21)

which is equivalent toI n(ϕ) = In(ϕ). For Euclidean billiards the eigenfunctions can be
choosen to be real. In this caseun(s)un(s ′) is even under interchange ofs ands ′, and therefore
the integral over the imaginary part ofKn, which is odd, vanishes.

From [11] one gets for the integrals (interpreted as principal values)

− α

8π2

∫ ∞
0

sin(rα)

r2 − p2
n

dr = 1

8π2
(sin(|α|pn)Ci(|α|pn)− cos(|α|pn)Si(|α|pn)) (22)

− α

8π2

∫ ∞
0

cos(rα)

r2 − p2
n

dr = α

16πpn
sin(|α|pn) (23)

where Si and Ci denote the sine and cosine integrals. Note that for billiards with Dirichlet
boundary conditions,pn > 0. With the abbreviation

f (x) := sin(x)Ci(x)− cos(x)Si(x) (24)

we can write our final expression forIn(ϕ) in terms of the normal derivativeun as

In(ϕ) =
∫∫
∂�×∂�

[
1

8π2
f (|α|pn)− 1

2p2
n

]
un(s)un(s

′) ds ds ′

+i
∫∫
∂�×∂�

α

16πpn
sin(|α|pn)un(s)un(s ′) ds ds ′. (25)

Recall thatα = α(ϕ, s, s ′) = p̂(ϕ)(q(s)− q(s ′)). If the normal derivativeun is real then the
second term in (25) vanishes, and if furthermore the eigenfunctionψn is odd with respect to
some discrete symmetry of the billiard, see the appendix, then

∫
∂�
un(s) ds = 0. So under

these special conditions the expression (25) simplifies to

In(ϕ) = 1

8π2

∫∫
∂�×∂�

f (|α|pn)un(s)un(s ′) ds ds ′. (26)
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2.4. Angular integrated momentum density

Similarly to the radially integrated momentum density one can study the radial distribution of
the momentum density by integrating over the angleϕ. The radial momentum distribution is
defined as

Rn(r) := r
∫ 2π

0
|ψ̂n(r, ϕ)|2 dϕ (27)

and if we insert the expression (11) forψ̂n one gets

Rn(r) := r

(r2 − p2
n)

2

1

(2π)2

∫∫
∂�×∂�

un(s)un(s
′)
∫ 2π

0
e−i|q(s)−q(s ′)|r cos(ϕ) dϕ ds ds ′

= r

(r2 − p2
n)

2

1

2π

∫∫
∂�×∂�

un(s)un(s
′)J0(|q(s)− q(s ′)|r) ds ds ′. (28)

Again one has an apparent singularity atr = pn due to the pre-factor 1/(r2 − p2
n)

2. In the
same way as in the previous section, by differentiating(r2 − p2

n)
2Rn(r)/r sufficiently often

one obtains

Rn(pn) = 1

8pn

(
d

dr

)2(
(r2 − p2

n)
2Rn(r)

r

)
r=pn

(29)

R′n(pn) =
1

24pn

(
d

dr

)3(
(r2 − p2

n)
2Rn(r)

r

)
r=pn

(30)

and higher derivatives ofRn at r = pn can be obtained in the same way. Using equation (28)
one gets

Rn(pn) = 1

16πpn

∫∫
∂�×∂�

un(s)un(s
′)|q(s)− q(s ′)|2

× 1
2[J2(|q(s)− q(s ′)|r)− J0(|q(s)− q(s ′)|r)] ds ds ′ (31)

R′n(pn) =
1

48πpn

∫∫
∂�×∂�

un(s)un(s
′)|q(s)− q(s ′)|3

× 1
4[3J1(|q(s)− q(s ′)|r)− J3(|q(s)− q(s ′)|r)] ds ds ′ (32)

and these expressions can be used to interpolate in the region aroundr = pn.

3. Gallery of eigenfunctions in momentum space

In the following we present a number of examples of eigenfunctions in momentum
representation for two chaotic billiards and compare them with the position representation.
A series of eigenfunctions of the cosine billiard in momentum representation can be found
in [12]. The first system we study is the stadium billiard, which is proven to be strongly
chaotic, i.e. it is ergodic, mixing and aK-system [13, 14]. The height of the desymmetrized
billiard is chosen to be 1, anda denotes the length of the upper horizontal line, for which
we havea = 1.8 in the following. To compare the structures in the eigenfunctions with the
classical orbits, we use the symbolic dynamics proposed in [15], which is proven in [16].

The second system is the cardioid billiard, which is the limiting case of a family of billiards
introduced in [17]. The cardioid billiard is proven to be ergodic, mixing, aK-system and a
Bernoulli system [18–20]. The eigenvalues of the cardioid billiard have been provided by
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Prosen and Robnik [21] and were calculated by means of the conformal mapping technique,
see e.g. [22,23]. To describe the periodic orbits in the cardioid we use the symbolic dynamics
proposed in [24,25], see [16,26] for proofs.

As these two billiards are ergodic, the quantum ergodicity theorem [27–31] applies, see
e.g. [32–34] for introductions. It implies that for ‘almost all’ eigenfunctions their Wigner
functionsWn(p, q) become equidistributed on the energy shell in the semiclassical limit, i.e.

Wnj (p, q) :=
∫
R2

eiq′pψnj

(
q − q

′

2

)
ψnj

(
q +

q′

2

)
d2q ′ ∼ δ(p2 − Enj )

vol(6Enj )
(33)

where vol(6E) =
∫∫
R2×� δ(p

2 − E) d2p d2q is the volume of the energy shell. ‘Almost all’
precisely means that equation (33) holds for a subsequence{nj } ⊂ N of density one, that is
one has

lim
E→∞

#{nj |Enj < E}
#{n|En < E} = 1. (34)

For the eigenstates in position and momentum representation the quantum ergodicity
theorem implies that

|ψnj (q)|2→
1

vol(�)
as nj →∞ (35)

and

|ψ̂nj (p)|2→
1

π
δ(p2 − Enj ) as nj →∞ (36)

in the weak sense. For the radially integrated momentum distribution it follows that

Inj (ϕ)→
1

2π
as nj →∞ (37)

in the weak sense. For the angular integrated momentum density one has, in general,
independent of the ergodic properties of the classical system,

Rnj (r)→ 2rδ(r2 − Enj ) as nj →∞. (38)

Of special interest are, of course, the subsequences of exceptional eigenfunctions (if
they exist) which are, according to the quantum ergodicity theorem, of density zero for
ergodic systems. A drastic example of such eigenfunctions are the so-called bouncing ball
modes in the stadium (which also occur in other billiards with two parallel walls). These
eigenfunctions localize on the orbits which bounce up and down between the two parallel
walls with perpendicular reflections at the boundary. For the stadium billiard the counting
function for these modes increases asymptotically asE3/4 [35,36].

Another important class of exceptional eigenfunctions are the so-called ‘scarred’
eigenfunctions [3], showing localization along unstable periodic orbits, which were first
observed in the stadium billiard. Scarred eigenfunctions have also been observed in the cardioid
billiard [34,37]. As was mentioned in the introduction, for an eigenfunction which is scarred
by a periodic orbit,In(ϕ) should have prominent peaks at the angles corresponding to the
directions of the orbit, whose intensity is expected to be proportional to the length of the
corresponding orbit segment.

Let us start the discussion by showing plots of some low-lying eigenfunctions of the
stadium billiard with odd–odd symmetry. Figures 1 and 2 show, for the stadium billiard, three-
dimensional plots of|ψn(q)|2, |ψ̂n(p)|2 and the corresponding greyscale plots. Furthermore,
In(ϕ) andRn(r) are shown. In the case ofIn(ϕ) we only plot the intervalϕ ∈ [0, π/2], as
the other directions are obtained from symmetry, e.g.In(ϕ) = In(π − ϕ) for ϕ ∈ [π/2, π ].
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Figure 1. Forn = 24, odd–odd symmetry: three-dimensional plots of|ψ24(q)|2, |ψ̂24(p)|2, their
corresponding greyscale pictures and the plot of the radially integrated momentum distribution
I24(ϕ) and the angular integrated momentum distributionR24(r). The momentum distribution
|ψ̂24(p)|2 is concentrated around the energy shell, which is indicated as the inner circle. This
is also clearly visible in the plot ofR24(r). The angular distributionI24(ϕ) does not show any
significantly preferred directions and the plot of|ψ24(q)|2 also does not show any prominent
patterns.

The dashed line in the plot ofIn(ϕ) corresponds to the mean value 1/(2π), see equation (37).
The staten = 24 displayed in figure 1 does not show any prominent localization in position
space, whereas the staten = 26, figure 2, is an example of a low-lying bouncing ball mode.
For both eigenstates the momentum distribution|ψ̂n(p)|2 is mainly concentrated around the
energy shellEn = p2, which is indicated by the inner full circle in figures 1 and 2. This is also
nicely seen in the plots ofR24(r) andR26(r) where the radius of the energy shell is marked by
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Figure 2. For n = 26, odd–odd symmetry: an example of a low-lying bouncing ball mode,
for which |ψ26(q)|2 is localized on the rectangular part of the billiard. The plot of the momentum
distribution|ψ̂26(p)|2 shows a strong localization in the momentum directions (px ≈ 0,py ≈ ±pn)
of the bouncing ball orbits. This is also clearly seen in the plot ofI26(ϕ), which is concentrated
near toϕ = π/2. The corresponding directionϕbb

2,8 = arctan(4a) is marked by a triangle. In the
plot ofR26(r) one observes some additional oscillations in comparison withR24(r) in figure 1.

a rhombus. Whereas|ψ̂24(p)|2 shows peaks at several places,|ψ̂26(p)|2 only has prominent
peaks around thepy direction. The pictures shown in figure 2 are precisely those expected for
a bouncing ball mode [36]: in position space we have localization on the rectangular part of
the billiard, and in momentum space there is localization in the direction of the bouncing ball
orbits. That there are four major peaks of|ψ̂26(p)|2 visible in figure 2 is due to the symmetry
of the billiard, which implies that|ψ̂n(p)|2 is reflection symmetric with respect to the axes
px = 0 andpy = 0, on which|ψ̂n(p)|2 vanishes for the stadium billiard with everywhere
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(a) (b)

Figure 3. (a) n = 263, odd–odd symmetry; (b) n = 455, odd–odd symmetry. In (a) an
example of an eigenfunction is shown which appears to be completely non-localized in position
space. However, in momentum space|ψ̂263(p)|2 and I263(ϕ) show clear localization in three
major momentum directions. The second eigenfunction is an example of a higher-lying bouncing
ball mode with 14 modes in thex-direction and 30 modes in they-direction. Consequently, the
corresponding momentum distributions show localization near to theϕ = π/2 direction. In the
plot of I455(ϕ) the triangle marks the directionϕbb

14,30 = arctan( 30
14a).

Dirichlet boundary conditions. According to [36] the peaks should be in the directions

±ϕbb
k,l and π ± ϕbb

k,l with ϕbb
k,l := arctan(al/k) (39)

wherek denotes the number of modes in thex-direction andl denotes the number of modes
in they-direction anda = 1.8 is the billiard parameter. If the ratiol/k increases, then the
value ofϕbb

k,l increases, and in the limitl/k→∞ we haveϕbb
k,l → π/2. For the bouncing ball

mode shown in figure 2 there is good agreement with the directionϕbb
2,8 = arctan(4a), which

is marked by a full triangle in the plot ofI26(ϕ).
Figure 3(a) shows an example of an eigenfunction having quite a regular and uniform

pattern in position space. However, the plots of|ψ̂263(p)|2 and I263(ϕ) reveal three major
momentum directions. Although we did not succeed to find an orbit corresponding to these
directions, there is some indication that this orbit should have quite a large geometric length.
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(a) (b)

Figure 4. (a) n = 1771, odd–odd symmetry; (b) n = 500, even–even symmetry. In (a) the
eigenfunction shows localization along the1155 orbit of rectangular shape and also the0123 orbit
in the stadium. In the plot ofI1771(ϕ) the corresponding momentum directions are marked by full
triangles (1155 orbit) and open triangles (0123 orbit). The staten = 500 of even–even symmetry
provides a nice example of an eigenfunction localized around the shortest unstable orbit, which
runs along the symmetry axis. This is also seen in the plots of|ψ̂500(p)|2 andI500(ϕ), which show
a strong enhancement in theϕ = 0, π directions.

The second eigenfunction shown in figure 3 is an example of a higher-lying bouncing ball
mode with 14 modes in thex-direction and 30 modes in they-direction. For this bouncing
ball mode the distance of the maximum to these directions is larger than for the one displayed
in figure 2. This is well accounted for by the formula (39), as the location of the maximum of
I455(ϕ) is close toϕbb

14,30 = arctan(30/14a), which is marked by a full triangle in the plot of
I455(ϕ).

Figure 4 shows two examples of eigenfunctions showing scarred structures in position
space.|ψ1771(q)|2 shows an enhanced probability along the two orbits with symbolic codes
0123 for the orbit of diamond shape, and1155 for the orbit of rectangular shape (shown as
dashed lines in the plot of|ψ1771(q)|2). These two structures are less visible in the momentum
representations. For the contribution of the diamond orbit toI1771(ϕ) we find that it is spread
out near toϕ = π/8, in agreement with the structure in position space, which is also not
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(a) (b)

Figure 5. (a) n = 1993, even–even symmetry; (b) n = 1874, odd–odd symmetry. The
eigenfunction in (a) is localized in position space along the1105552 orbit. This orbit has two
different momentum directions (in the intervalϕ ∈ [0, π/2]), still there is an additional high peak
visible for I1993(ϕ). This illustrates that, forIn(ϕ), not just the height of the peak is relevant, but
the total area below a peak, which accounts for a high probability in the corresponding direction.
In (b) an example of an eigenfunction is shown, which is localized on the rectangular part of the
stadium billiard, but which is not a bouncing ball mode. This eigenfunction may be understood in
terms of the plotted orbit, although in momentum space there are additional prominent momentum
directions. This might indicate that other orbits also contribute to the eigenfunction, see the text
for further discussion.

aligned precisely along the diamond orbit. The higher intensity near toϕ = 0 corresponds
to localization along the rectangular orbit. Although|ψ1771(q)|2 shows stronger localization
near to the circular boundary which seems to be associated with theϕ = ±π/2 directions,
there is no prominent peak in that direction. However, there is some enhancement of the total
probability to find the particle with momentum directions 3π/8 < ϕ < π/2 which is seen
more clearly in the plot of|ψ̂1771(p)|2 than in the plot ofI1771(ϕ). The rapid oscillations of
I1771(ϕ) near toϕ = π/2 are not a numerical artefact; the structures are also visible in the
plot of |ψ̂1771(p)|2; we will return to this point at the end of this section. In figure 4(b) an
eigenfunction with clear localization in position space is shown, this time for the stadium
billiard with even–even symmetry. The eigenfunctionψ500(q) shows localization along the
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unstable01 orbit running along the symmetry axis. This localization is also clearly seen in
momentum space, where|ψ̂500(p)|2 shows strong enhancement in the directionsϕ = 0, π ,
corresponding to a strong peak ofI500(ϕ) atϕ = 0.

Figure 5 shows two further examples of localized eigenfunctions. The eigenfunction
with n = 1993 displayed in figure 5(b) shows clear localization in position space along the
110552 orbit. In momentum space there is one significant momentum direction atϕ ≈ 3π/8;
however, this direction does not correspond to the pattern seen in position space, from which
one would expect an important contribution to|ψ̂1993(p)|2 and I1993(ϕ) in the direction of
ϕ = 0.71. . . . Indeed near to this direction there is a range of angles for whichI1993(ϕ) has
a number of smaller peaks, which together lead to an enhanced probability in this interval
compared with other intervals. This example again illustrates that not just the height of the
peaks is of importance in the interpretation of the pictures forIn(ϕ), but the overall accumulated
probability corresponding to some interval of momentum directions.

In [34] the rate of quantum ergodicity has been studied both in position and in momentum
space. For the stadium billiard it was expected that if the bouncing ball modes are the
dominating (in the sense of having the strongest increase in the counting function) subsequence
of localized eigenfunctions, that then the rate of quantum ergodicity should obeyS1(E,A) :=

1
N(E)

∑
En6E |〈ψn,Aψn〉 − σ(A)| ∼ E−1/4. However, it turned out that the rate is much

slower [34], at least in the considered energy range covering the first 6000 eigenfunctions.
This was attributed to a considerable number of eigenfunctions, which show localization in
position space in the rectangular part of the billiard, without being bouncing ball modes, see
figure 11 of [34]. One example is shown in figure 5(b). One sees that they are also localized
in momentum space near the directionϕ = π/2, like the bouncing ball modes, but have more
peaks. These states seem to correspond to the set of periodic orbits which are bouncingm

times between the parallel walls before they are reflected into themselves in the circular part.
One of them, the2020202320202024 orbit, is shown in the density plot of|ψ1874(q)|2. Since
the lengths of these orbits for largem are close to being rationally dependent one can speculate,
that the naive Bohr–Sommerfeld quantization leads to a number of eigenvalue sequences which
have some very close pairs of eigenvalues, for which the corresponding eigenfunction should
be scarred by the corresponding orbits. The plotI1874(ϕ) indicates that this happens, because
it has strong peaks at the directions corresponding to two orbits.

The cardioid billiard possesses no parallel walls and therefore no bouncing ball modes;
in this sense it is more generic than the stadium billiard. Figure 6 shows for the cardioid
billiard three-dimensional plots of|ψ24(q)|2, |ψ̂24(p)|2 and the corresponding greyscale plots.
Furthermore,I24(ϕ)andR24(r)are shown. This eigenstate of odd symmetry shows localization
in position space around the unstable orbitAB, which is also indicated in the plot. This
localization is also reflected in the plots of|ψ̂24(p)|2 andI24(ϕ). In the plot ofI24(ϕ) the
corresponding momentum direction of the orbit is marked by a full triangle atϕ = π/2. At
this place one observes a local minimum ofI24(ϕ), but overall there is a large intensity near to
ϕ = π/2. The plot ofR24(r) shows the expected localization (plus some oscillations) around
the energy shellr = |pn|, indicated by the rhombus. In the plots of the Fourier transforms the
energy shell is marked by the full inner circle.

In figure 7, the first example shows clear localization in position space along the orbit with
codeAAABBB. In momentum space, a neighbourhood of the vertical direction (ϕ = π/2)
shows an enhanced probability, whereas the second direction,ϕ = 0.62. . . , is not as prominent
as one might expect from the picture of the eigenfunction in position space. The second
eigenfunction shown in figure 7 is an example of a non-localized eigenfunction, which is also
nicely seen in the plots of the momentum distributions, which do not show any preferred
momentum direction.
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Figure 6. For n = 1, odd symmetry: three-dimensional plots of|ψ24(q)|2, |ψ̂24(p)|2, their
corresponding greyscale pictures and the plot of the radially integrated momentum distribution
I24(ϕ) and the angular integrated momentum distributionR24(r). The momentum distribution
|ψ̂24(p)|2 is concentrated around the energy shell, which is indicated by the inner circle. This is
also clearly visible in the plot ofR24(r). Furthermore, this state is to some extent localized along
theAB orbit, leading to an enhancement of|ψ̂24(p)|2 near toϕ = π/2, 3π/2, also seen in the plot
of I24(ϕ) near to the momentum directionϕ = π/2 (marked by a triangle).

Figure 8(a) shows an example an of eigenfunction localized along theAB orbit, which is
clearly seen in the plot of|ψ1817(q)|2. A similar eigenfunction,ψ2605(q), was found in [38] to
have the largest maximum norm||ψn||∞ among the first 6000 eigenfunctions of odd symmetry.
Also, the corresponding momentum distribution reveals that the directionϕ = π/2 stands
out. The second eigenfunction in figure 8(b) shows localization along the cusp orbitCAAC,
and thus is an example of andiffractive scar. However, this localization is not reflected in
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(a) (b)

Figure 7. (a) n = 1970, odd symmetry; (b) n = 1277, odd symmetry. The eigenfunction in (a)
shows localization along theAAABBB orbit. There is some enhancement in the corresponding
momentum directions, in particular nearϕ = π/2, and less significantly for the second direction
nearπ/4. The eigenfunction in (b) is an example which appears to be quite delocalized both in
position and in momentum space. The pictures look like those expected, according to the quantum
ergodicity theorem, for a typical eigenfunction.

an enhancement of the momentum distribution in the corresponding directions. This may
correspond to the fact that the enhancement is also not very strong in position space and nor
precisely around the cusp orbit.

We conclude our survey of eigenfunctions in momentum space with two further examples
of localized eigenfunctions. For the first example in figure 9(a) one observes that|ψ1538(q)|2 is
clearly localized along the billiard boundary. Due to the non-convexity of the billiard there are
no whispering gallery orbits as in the stadium billard. However, as found in [25], in the cardioid
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(a) (b)

Figure 8. (a) n = 1817, odd symmetry; (b) n = 1908, odd symmetry. In (a) an example of an
eigenfunction localized along theAB orbit is shown, which is also reflected in the corresponding
momentum distribution. The eigenfunction displayed in (b) shows localization along the cusp
orbit CAAC, and thus is an example of adiffractive scar. The association of the corresponding
momentum directions seems to be ambiguous.

there exist families of periodic orbits which accumulate in length. A candidate responsible for
the structure visible in|ψ1538(q)|2 is the family of orbits with codeAnBABB. This type of
orbit also accounts for the additional structures visible in the interior of the billiard. As for an
orbit running along the boundary, all momentum directions occur; one expects to see only the
two further directions of the part of the orbit inside the billiard, which are marked by triangles
in the plot ofI1538(ϕ). The second eigenfunction in figure 9(b) is localized along theAABB
orbit, which is also seen in the corresponding momentum distributions. Near to the symmetry
axis|ψ1252(q)|2 the enhanced region is much larger, presumably due to interference effects.
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(a) (b)

Figure 9. (a) n = 1538, odd symmetry; (b) n = 1252, odd symmetry. The eigenfunction displayed
in (a) is mainly localized along the boundary. The family of orbits with codeAnBABB appears
to describe the observed pattern quite well. In the plot ofI1538(ϕ) only the momentum directions
of the part of the orbit running inside the billiard are marked by triangles. The second example
shows a nice example of an eigenfunction showing scarring along theAABB orbit is shown. Near
to the symmetry axis the eigenfunction density is spread out. In momentum space there is a clear
enhancement, which is close to (although not as close as one might expect) the momentum direction
of the orbit.

For the cardioid billiard one generally observes a finer scale on whichIn(ϕ) fluctuates,
compared with the stadium billiard. For the stadium billiard the momentum distributions are
stretched in thepy direction, due to the long parallel segments of the boundary. This leads to
the effect that the radial integration acts as a smoothing, except nearϕ = 0 where accordingly
In(ϕ) fluctuates on a much finer scale.
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4. Summary, applications and discussion

In this paper we have proposed the representation of eigenfunctions in momentum space as an
important and useful complementary picture to the commonly used position representation. In
particular, we have introduced the radially integrated momentum distributionIn(ϕ), which
captures all essential features of the momentum distribution|ψ̂n(p)|2. As In(ϕ) is just
a one-dimensional function, it provides the information on the momentum distribution in
a very condensed form. Explicit formulae for̂ψn(p) and In(ϕ), and also the angular
integrated momentum distributionRn(r), are given in terms of the normal derivativeun(s)
along the billiard boundary, which allows for an efficient numerical computation of these
quantities.

For the stadium and the cardioid billiard several examples of|ψn(q)|2, |ψ̂n(p)|2, In(ϕ),
andRn(r) are given. For the stadium billiard in particular, the bouncing ball modes lead to
significant peaks in the radially integrated momentum densitiesIn(ϕ). Also, eigenfunctions
showing scarring in position space lead to scarred states in momentum space. In addition
to eigenstates showing localization around unstable periodic orbits, we have found for the
cardioid billiard examples of eigenfunctions which are localized along cusp orbits, which run
into the singularity of the cardioid billiard. Suchdiffractive scarsare surprisingly clearly
visible, despite the fact that the contribution of the corresponding orbit to the density of states
is of lower order inh̄ than the periodic orbits [24]. Our numerical studies also reveal that
there are eigenstates for which the correspondence between localization in position space and
localization in momentum space is not as clear as one would expect. We see two main
reasons for this: firstly, the fluctuations appear to be larger in momentum space than in
position space (this is also seen in the results for the rate of quantum ergodicity in momentum
space, which appears to be slower than in position space [34]). Secondly, scars which are
weak both in position and momentum space are more visible in position space. This is
because the usually symmetric pattern of the scar can be detected by the eye more easily
against the fluctuating background in the two-dimensional plot of|ψn(q)|2 than in|ψ̂n(p)|2 or
In(ϕ).

An application of the radially integrated momentum distributionIn(ϕ) could be to use
it to construct a quantity which detects localized eigenfunctions. A suitable definition might
be Iscar

n := ∑
ϕi

1
2δli

∫ ϕi+δ
ϕi−δ In(ϕ) dϕ, whereli is the geometric length of the orbit segment

corresponding to the directionϕi andδ is some appropriate width, which might be chosen
to be energy dependent. In this context it may be also useful to employ the results of the
semiclassical studies of eigenfunctions [39–41] to obtain expressions forIn(ϕ) in terms of
periodic orbits. A number of different scar measures have been defined and studied, as, for
example, the integral of the Wigner function over a tube around the orbit in phase space [41],
the integral over a tube in position space [42], or the use of quantum Poincaré sections [43]:
see [44] for a recent review and references therein.

The use of momentum distributions as representations of eigenstates may also be
useful for other systems, like systems with potential, etc. The definition of the radially
integrated momentum density may easily be generalized to other scaling systems. The
usefulness ofIn(ϕ) is due to the fact that the classical motion occurs on straight lines
in Euclidean billiards. If this does not hold, the above simple interpretation ofIn(ϕ) is
lost.

We believe that the use of momentum distributions, in particular the radially integrated
momentum distribution, is a convenient and useful representation, providing additional
information to the commonly used position space representation.
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Appendix. Symmetry reduction

When the billiard has some symmetries they can be used to reduce the domain of integration
over the boundary to a smaller part in integrals as (28). We shall discuss as examples the
stadium billiard and the cardioid billiard. To simplify the notation we useq = (x, y).

The stadium billiard has two symmetries: it is symmetric with respect to reflection at the
x-axis and at they-axis. Therefore, the eigenfunctions can be choosen to be even or odd with
respect to each of these symmetries. So we treat the case of a functionψ(x, y) which satisfies

ψ(−x, y) = (−1)lxψ(x, y) (40)

ψ(x,−y) = (−1)lyψ(x, y) (41)

with lx, ly ∈ {0, 1}. Thusψ either satisfies Dirichlet or Neumann boundary conditions on the
symmetry axes. The symmetry of the wavefunction now implies certain symmetries of the
normal derivativeu(s) = n(s)(∇ψ)(q(s)). Denoting byL the total length of the boundary of
the full system, we can expressu(s) for s ∈ [L/4, L/2], s ∈ [L/2, 3L/4] ands ∈ [3L/4, L] in
terms ofu(s) for s ∈ [0, L/4]. Here, we chooses = 0 to be the intersection of the horizontal
symmetry axis with the right semicircle, ands is oriented counterclockwise. One gets for
s ∈ [0, L/4]

u(L/2− s) = (−1)lx u(s) (42)

u(L/2 + s) = (−1)lx+ly u(s) (43)

u(L− s) = (−1)ly u(s). (44)

These relations can be used to reduce an integral over the boundary
∫ L

0 f (s)u(s) ds to an
integral over one quarter of the boundary. For instance, with (42) one gets∫ L/2

L/4
u(s)f (s) ds =

∫ 0

−L/4
u(L/2 + s)f (L/2 + s) ds =

∫ L/4

0
u(L/2− s)f (L/2− s) ds

=
∫ L/4

0
(−1)lx u(s)f (L/2− s) ds (45)

and applying (43) and (44) to the other parts of the integral leads to∫ L

0
u(s)f (s) ds =

∫ L/4

0
u(s)[f (s) + (−1)lx f (L/2− s)

+(−1)lx+ly f (L/2 + s) + (−1)ly f (L− s)] ds (46)

which is the desired reduction of the integral. We have to also treat double integrals over the
boundary of the form

∫ L
0

∫ L
0 u(s)u(s

′)f (s, s ′) ds ds ′. If we use (46) we get an integral with 16
terms, but for specialf (s, s ′) this can be reduced further. Iff is of the form

f (s, s ′) = g(|q(s)− q(s ′)|) (47)
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which is the case in our applications, then we have

f (s, s ′) = f (L/2− s, L/2− s ′) = f (L/2 + s, L/2 + s ′) = f (L− s, L− s ′). (48)

Because of the symmetry of the billiard the distance between the points on the boundary is the
same for all four pairs of arguments off . Applying (48) and (46) to a double integral over a
function of type (47) leads to∫ L

0

∫ L

0
u(s)u(s ′)f (s, s ′) ds ds ′ =

∫ L/4

0

∫ L/4

0
u(s)u(s ′)f̃ (s, s ′) ds ds ′ (49)

with

f̃ (s, s ′) = 4[f (s, s ′) + (−1)lx f (s, L− s ′) + (−1)lx+ly f (s, L/2 + s ′)
+(−1)ly f (s, L/2− s ′)]. (50)

The cardioid billiard has only one reflection symmetry at thex-axis, so the eigenfunctions
can be chosen to be even or odd,

ψ(x,−y) = (−1)lyψ(x, y) (51)

with ly ∈ {0, 1}. For the normal derivative this leads to

u(L− s) = (−1)ly u(s) (52)

and so we get for an integral over the boundary∫ L

0
u(s)f (s) ds =

∫ L/2

0
u(s)[f (s) + (−1)ly f (L− s)] ds. (53)

For a double integral over a function of type (47) one obtains∫ L

0

∫ L

0
u(s)u(s ′)f (s, s ′) ds ds ′ =

∫ L/2

0

∫ L/2

0
u(s)u(s ′)2[f (s, s ′)

+(−1)ly f (s, L− s ′)] ds ds ′. (54)
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