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Chapter 1

Introduction

Nowadays quantum mechanics is considered as the fundamental theory of physics which
aims to describe phenomena at a microscopic level, e.g., systems like atoms and molecules
are described by it. In this role it has replaced classical mechanics in the beginning of the
20’th century. Nevertheless classical mechanics kept its importance for the description of
macroscopic systems, e.g., the solar system. Furthermore, it saw many developments since
then, together with the general theory of dynamical systems. Beginning with Poincaré and
Birkhoff the emphasis shifted from quantitative to more qualitative methods. The advent
of KAM theory led to an understanding of sufficiently small perturbations of integrable
systems, and showed more generally how intricate and rich the dynamical behavior of a
Hamiltonian system in the neighborhood of an elliptic orbit can be. The term chaos was
introduced to describe the extreme sensitivity to small variations of the initial conditions,
which some systems show. Further concepts and properties, like ergodicity, mixing, positive
entropy have been developed and studied in detail. Also the route from integrability to
chaos was investigated, where a special role is played by the bifurcations of periodic orbits
which occur along this route. So despite the fact that quantum mechanics has replaced
classical mechanics as the fundamental microscopic description of nature, there has been
a very vivid and fruitful development of classical mechanics.

These new concepts and results have even influenced quantum mechanics. Since classi-
cal mechanics is an approximation to quantum mechanics in certain situations, it is natural
to ask how the dynamical properties of the classical approximation of a quantum mechan-
ical system are reflected in the quantum mechanical system itself. This question has many
facets and there are many different ways to approach it. The earliest approaches, such
as WKB theory, have aimed at explicit computations, based on classical quantities, of
quantum mechanical objects such as eigenvalues, eigenfunctions, time evolution, transi-
tion amplitudes and so on. Here it has turned out that in general this is only possible if
the classical system possesses stable or marginally stable structures such as invariant tori
or elliptic orbits. This means that the classical localization of the motion on a certain
part of phase space is reflected in the quantum mechanical system: To certain regions
in phase space one can associate, say, approximate eigenvalues and eigenfunctions which
depend only on the dynamics in this part of phase space. The classical example is torus
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quantization, also called EBK quantization, but there are related methods which apply to
elliptic periodic orbits, and we will spend a considerable amount of space to the discussion
of these methods. But these methods are not applicable if the classical dynamics lacks
such structures, which is for instance the case for chaotic systems. Then more qualitative
methods are needed. Considerable progress in this direction was made by Gutzwiller with
the invention of the trace formula, [Gut71, BB72]. The trace formula gives an asymptotic
approximation of the quantum mechanical spectral density in terms of the periodic orbits
of the classical system and their stabilities. Due to the exponential proliferation of peri-
odic orbits in chaotic systems, this formula can usually not be used to determine individual
eigenvalues, but one can study the distribution of eigenvalues. Rigorous proofs of simi-
lar trace formulae appeared shortly afterwards in the mathematical community using the
newly developed tool of Fourier integral operators, [Col73, Cha74, DGT75].

A number of hypotheses concerning the behavior of eigenfunctions were formulated,
[Ber77b, Vor77], culminating in two main ones: first, eigenfunctions should condense semi-
classically on ergodic subsets of phase space, the semiclassical eigenfunction hypothesis,
and second that for classically chaotic systems the eigenfunctions should asymptotically
behave like a random superposition of plane waves. Both are rather qualitative statements.
With the methods from microlocal analysis it was possible to prove a strong theorem on
the behavior of eigenfunctions of a system with ergodic classical limit, the quantum er-
godicity theorem, [Shn74, Zel87, Col85]. It says that almost all eigenfunctions become
equidistributed in the semiclassical limit if the classical system is ergodic. So for ergodic
systems the semiclassical eigenfunction hypothesis is proven for almost all eigenfunctions.

Similar qualitative conjectures concerning the behavior of the eigenvalues have been
formulated, e.g. the Bohigas-Giannoni-Schmit conjecture, [BGS84|, which says that the
statistical properties of the suitably rescaled eigenvalues are, for generic chaotic systems,
the same as for those of random matrices. This random matrix conjecture has been tested
numerically to a great extent, and some analytical arguments based on the trace formula
supporting this conjecture are known [Ber85], but no proof has been found so far.

In this work we will concentrate mainly on the behavior of eigenfunctions. But first we
have to say what the semiclassical limit is, and how the classical system which corresponds
to a given quantum mechanical system is defined. The field of microlocal analysis provides
a setup to discuss the semiclassical limit on a rigorous basis. One of our particular aims
is to get rid of the usual interpretation of the semiclassical limit as the limit A — 0,
since this appears to be unphysical. Physically, the semiclassical limit is the limit of
highly oscillating states, i.e., the Hamiltonian and all the observables are fixed and do not
depend on a parameter, but the de Broglie wavelength of the states governs the degree to
which the systems behave classically. We will show that in many situations one can shift
the semiclassical limit from the states to the observables by introducing a parameter A,
which plays the role of 1/A then, but whose limit A — oo has a more concrete physical
interpretation.

A fundamental problem which one has to cope with when one tries to construct ap-
proximate eigenfunctions and eigenvalues is the quasimode problem. Assume # is the



Hamiltonian of our system and that we have a pair (1, E) such that
HY =Ey+r

with ||| < §, then one can show that, if the spectrum of # is discrete, there is an eigenvalue
of H in the interval [E — 6, E 4 6]. So F is close to an eigenvalue, but in contrast it turns
out that i doesn’t need not be close to an eigenfunction. Roughly speaking, if there is
more that one eigenvalue in the interval [E — 6, E + 6], then 9 can be a superposition of
the corresponding eigenfunctions. This is the reason why such approximate solutions of
the Schrédinger equation have been called quasimodes.

A good example to illustrate the situation is provided by a symmetric double well
potential, e.g. V(z) = (1 — z?)%. Here one can construct two approximate solutions of
the Schrodinger equation to the same energy, one concentrated in the left well and one
concentrated in the right well, which are transformed into each other by reflection on the
y-axis,

V() and  tp(r) =¢Yr(-2),
see e.g. [HS96]. They satisfy

Hip, = Epp + O(e” M)
Hipr = Evpg + O(e™ M)

with exponentially small errors in /. But the true eigenfunctions 1)*(x) are symmetric or
antisymmetric under reflection, and we have approximately

1
V2

and for the eigenvalues E< of 4/ one has

I

v (2) (Yo(z) £ ¢r(z))

[B-— E*[=0("),

so they are quasi-degenerate.

Hence we see that the quasimodes ¢, (z) and g (z) are linear combinations of the two
eigenfunctions ¢* (x) which have approximately the same eigenenergy. It seems to be quite
probable that the presence of symmetries is the main reason in most cases where a sequence
of quasimodes does not become close to a sequence of eigenfunctions. However, nothing
rigorous is known in this direction. But if this would be the case, then a small perturba-
tion of the system, which destroys the symmetry, would lead to eigenfunctions which are
concentrated on a connected domain, and hence to quasimodes close to eigenfunctions.

In the above example of a symmetric double well potential, Simon [Sim85], has shown
that an arbitrarily small perturbation which destroys the symmetry but which can be
supported far outside the semiclassical support of the eigenfunction, has the effect that the
true eigenfunctions become close to 1y, and ¥g, hence are concentrated in one of the wells.
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We will argue that this example is typical, i.e., we believe that for generic perturbations of
an arbitrary system quasimodes are close to eigenfunctions. The perturbations we study are
of a semiclassically small type, which means that they do not change the classical system.
E.g., one can think of the perturbed systems as being a family of quantizations of the same
classical system. In physical terms these perturbations can represent the influence of an
environment. No system is completely isolated, and the environment acts as a fluctuating
perturbation, which has the effect that the quantities which are observable in nature are
the generic ones. This interpretation of the influence of generic perturbations is quite close
to the ideas in the field of decoherence, see e.g. [Omn94, GJK*96].

The notion of stability with respect to small perturbations, which emerges from the
previous discussion, is interesting in its own right. We examine the usual quasimode
constructions with respect to stability, and it turns out that not all quasimodes are stable.
For instance in the case of torus quantizations it turns out that stability requires that
the torus satisfies a KAM condition. Surprisingly, although we subject the system to a
perturbation which does not affect the classical limit, the condition for stability is the same
as in classical mechanics for the perturbation of an integrable system. The classical result,
due to von Neuman and Wigner, that avoided crossings of eigenvalues are generic can also
be interpreted as saying that almost degeneracies of eigenvalues are unstable under small
perturbations.

The main tools we use in the study of these questions are a class of approximate
projection operators which we can associate with every open domain in phase space. If the
domain is invariant under the classical flow one can furthermore choose an approximate
projection operator which commutes with the Hamilton operator up to a semiclassically
small remainder. More precisely, to an open domain

DcT'M

we associate a class of operators

o= (%) JRECES

where |z) denotes a family of coherent states on M. Here A is a semiclassical parameter
and A\ — oo corresponds to the semiclassical limit. These operators can be thought of
as approximate projection operators, and if D is invariant under the classical flow one
furthermore has

[H,7p] = O(A7?) . (1.1)

If the domain D is moreover stably invariant, in the sense that for all sufficiently small
perturbations of the classical Hamilton function there is an invariant domain D’ close to
D, then by choosing the family of coherent states carefully, one can achieve that

[H, 7TD] = O()\_N)



quantum mechanics classical mechanics
Hilbert space phase space
Hamilton operator Hamilton function
operators functions
commutator Poisson bracket

Table 1.1: Basic objects in quantum and classical mechanics which correspond
to each other.

for every N € IN. Such operators are a good tool to study localization properties of
eigenfunctions in phase space.

We will now give a more detailed description of the contents of this work. In the Chapter
2 we give a presentation of the main features of microlocal analysis from the point of view
of semiclassics. The adjective microlocal means localization in phase space, and in math-
ematics microlocal analysis is, roughly speaking, the qualitative theory of linear partial
differential equations which uses the cotangentbundle of the manifold where the equations
live on (which is nothing but phase space), to study it. So it is no surprise that there are
close relations to semiclassics. The main elements of the theory are pseudodifferential and
Fourier integral operators and some basic relations connecting them.

The microlocal point of view emphasizes the algebras of observables in contrast to the
standard point of view in textbooks on quantum mechanics where more emphasis is put on
the states. In many respects the transition from quantum mechanics to classical mechanics
is much simpler if one studies it for the algebras of observables. The states are then viewed
as positive linear forms on the algebras.

Given an algebra of operators on some function space, the basic principle in microlocal
analysis is to classify these operators by their action on highly oscillating test functions,
which means in physical terms, by testing their semiclassical limit. A pseudodifferential
operator is an operator which satisfies two requirements: first it does not change the
frequency of the highly oscillatory test function, and secondly it changes the amplitude of
this test function in a way depending smoothly on the position and frequency. In order to
express this in formulas we take the simplest type of an oscillating function, a plane wave

ee 1= ol@d)
where £ € R¢ is the frequency vector and |£| — oo corresponds to the semiclassical limit.
Then we require that the operator A satisfies

Aee = a(&, x)eg
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where a(&, z) is a smooth function, called the symbol of the operator A, which satisfies
suitable estimates. The precise estimates which the symbol has to satisfy, define the class
of pseudodifferential operators to which A belongs. The simplest class is given by the so
called polyhomogeneous symbols, where one requires that the symbols have an asymptotic
expansion in homogeneous functions of £ for large |£|,

a(&, ) ~ Zam—k(fax) 5
k=0

where a1 (A, ) = A" *a,, (&, ) for A > 0. The last condition means essentially that
a does not oscillate for large &, and hence adds no contribution to the oscillations of eg.
The degree of homogeneity of the leading term m is called the order of the operator and
the leading part itself is called the principal symbol,

a(A)(&, 2) = am(§; )

which plays an important role in the theory since it turns out to be the classical limit of
the quantum observable A

Operators of this type can be multiplied and the products are of the same type, hence
they form an algebra, and explicit formulas for the products in terms of the symbols are
known. In particular, the principal symbols show a simple behavior,

o(AB) = a(A)o(B),  o([A,B]) = %{G(A),U(B)} :

where {o(A),o(B)} denotes the Poisson bracket of o(.A) and o(B). Hence the principal
symbol defines an algebra morphism from the algebra of quantum mechanical observables
to the algebra of classical observables. In physical terms these relations mean that o(.A)
is really the classical observable corresponding to .A.

As an application we will discuss complex powers of an elliptic differential operator and
the corresponding trace, which is the so-called MP-zeta function. From this Weyl’s law can
be deduced and, furthermore, the Szeg6 limit theorem, an important result which shows
how the high energy limit acts on pseudodifferential operators as a semiclassical limit. Let
the Hamiltonian H be an elliptic pseudodifferential operator on some compact manifold,
and let 1, be the eigenfunctions and N(FE) be the spectral counting function, counting the
number of eigenvalues of H below E. Then the Szego limit theorem says that

. 1 1
Jim 77 32 e ) = e [ (A d

En<E

where ¥ := {(&,z); o(H)(&,z) = 1} denotes the equienergy shell at energy 1 and du de-
notes the canonical Liouville measure on ;. Hence the high energy behavior of expectation
values of pseudodifferential operators does only depend on the principal symbol.

A further important class of operators can be characterized by demanding that they
change the oscillations of a highly oscillating function in a well defined way. Since £ and



x are identified as coordinates on phase space, we expect that a change of them is related
to a canonical transformation. Indeed, if one requires that an operator U/ acts on a plane
wave as

Ueg = b, z)e &™)

where b is a smooth symbol and ¢ is realvalued, smooth and homogeneous of degree one in
&, then U is called a Fourier integral operator, and can be viewed as a quantization of the
canonical transformation ® whose generating function is ¢. The main relation connecting
Fourier integral operators and pseudodifferential operators is the Theorem of Egorov, which
in a simplified version means that one can find for each canonical transformation ® a Fourier
integral operator U(®) with

o (U(®)AU®)") = o(A) 0 & .

The canonical transformations can also be characterized by their action on the Poisson
algebra of the classical observables, they are the algebra automorphisms, and there is a
beautiful theorem, due to Duistermaat and Singer [DS76], that conjugation with Fourier
integral operators gives exactly the order preserving automorphisms of the algebra of pseu-
dodifferential operators.

We next turn to some applications of the concepts developed so far in quantum chaos,
in order to illustrate their use. The first one is the quantum ergodicity theorem which can
be proven using the Szego limit theorem and Egorov’s theorem. It gives a characterization
of the semiclassical behavior of almost all eigenfunctions of a system whose classical limit
is ergodic. It says that they become equi-distributed in the high energy limit, mimicking
the behavior of the classical Liouville probability density. E.g., for a billiard this means
that in position space

. 2 1
jllglo [, | = vol M
in the weak sense, where {1, }new denotes the set of eigenfunctions. This is the strongest
rigorous result of a general nature obtained so far in quantum chaos, since it makes a pre-
diction under well defined and rather weak conditions. In the following we show examples
and discuss further questions related to quantum ergodicity.

The second application is the trace formula, which is based on the observation that the
time evolution operator is a Fourier integral operator associated with the classical flow.
Using methods from the theory of Fourier integral operators one can determine its trace,
which can be expressed in terms of the periodic orbits of the classical system. This is
the famous formula which connects the quantum mechanical spectrum with the classical
periodic orbits, and is at the heart of most attempts to prove results about the dependence
of the statistical properties of the eigenvalues on the hyperbolic properties of the flow. We
then give some applications to spectral asymptotics which we illustrate with examples.

Up to now we have only dealt with systems on compact manifolds to which the usual
methods of microlocal analysis are perfectly applicable, since the semiclassical limit is
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realized as the limit of large energies. Many systems are not of this type, for instance an
atom has a non-compact configuration space, and a finite ionization energy. Here we expect
semiclassical behavior for highly excited states close to the ionization energy, so here the
limit £ — oc is not the limit we want to study. In the literature the semiclassical limit is
typically performed as the limit # — 0, and this can be applied perfectly to this situation.
There exists a theory analogous to the theory of pseudodifferential and Fourier integral
operators described before, which contains & and where the classical structures appear in
the limit & — 0. We give a short review of the main ingredients, showing how the formulas
are adapted. The main drawback of this approach, compared with the previous one, is that
although the number of systems to which this can be applied is considerably larger, its
physical meaning has to be clarified. In nature 7 is a constant, so a priori the limit 2 — 0
is purely formal from the physical point of view, and has to be justified further. This is
attempted in Section 2.5 of Chapter 2, which departs from the general review character
this chapter and contains some new ideas.

The overall picture of the semiclassical limit that emerges from the discussions in Chap-
ter 2 is that quantum mechanical quantities become close to classical quantities, if

1. the states are highly oscillatory, meaning the de Broglie wavelength tends to 0 and,
in the case of eigenstates, the quantum numbers become large,

2. the quantum mechanical spectrum becomes close to the classical spectrum, i.e. the
spectrum of the generator of the classical time evolution, and since the classical
spectrum is for most systems continuous, this means typically that the mean spectral
density has to tend to oo.

Guided by a simple embedding of the classical pseudodifferential operators into the A-
dependent operators (A playing formally the role of 1/k), we construct for a large class of
systems a map which maps these systems to A-dependent systems, where the semiclassical
limit is obtained as the limit A — oo. This construction is illustrated with some examples.
From thereon we will discuss only the A-dependent calculus.

In Chapter 3 about Lagrangian states the main technical tools used in this work are
developed. Here the necessary theory of Lagrangian states, which we will apply in the
following chapters to construct quasimodes and approximate projection operators, is de-
veloped. A Lagrangian state is, generally speaking, a function which is locally given by an
oscillating integral of the form

u(A, ) =/ eMe2)q(N,0,) db (1.2)

where ¢ and a are smooth functions satisfying suitable conditions which we omit for the
moment. Semiclassically, i.e. in the limit A — oo, such a function is concentrated on the
set

L= {(,(0,2),2), ¢4(0,z) =0}, (1.3)



i.e. , we have Au(\) = O(A~*) for every A whose symbol vanishes in a neighborhood of L.
If ¢ is real valued, as we have tacitly assumed, then, under some non-degeneracy conditions
on ¢, L will be a Lagrangian submanifold of phase space. This is the reason why such
states are called Lagrangian. They have been studied thoroughly and their theory is well
developed; their main use in quantum mechanics is the quantization of tori in integrable
and KAM systems, see, e.g., [Mas72, Dui74, Laz93]. Furthermore the kernels of Fourier
integral operators are of this type.

But if one wants to study quasimodes concentrated on lower dimensional submanifolds,
e.g., on elliptic periodic orbits, one is naturally led to states of the form (1.2) with complex
valued phase functions. The theory of these states is less completely developed, although
there exist some treatments [MS73, MSS90]. Our aim is to develop a general theory of
such states, along the lines of the development of the theory of Fourier integral operators
with complex phase functions in [H6r85b], in the same way as the theory with real valued
phase functions was developed in [Dui74].

In the first sections of Chapter 3 we treat some local questions and two special classes
of such Lagrangian states, the one with real valued phase functions and the so-called
coherent states which are concentrated semiclassically in one point of phase space. As
an introduction and motivation we give a review of how the classical WKB ansatz leads
to a construction of quasimodes as Lagrangian states with real valued phase functions
for classically integrable systems in Section 3.1. Special emphasis is put on the symplectic
geometry underlying this construction and a geometrical interpretation of the Maslov index
appearing in the quantization condition. If we try to apply the same procedure to an elliptic
orbit, we see that we are forced to consider complex valued phase functions. In Section 3.2
we study some local questions related to oscillatory integrals with complex valued phase
functions, especially the damping induced by the imaginary part. We present a theorem
due to [MS75] on the action of a pseudodifferential operator on oscillatory integrals with
complex valued phase function. This makes the introduction of almost analytic extensions
necessary. In order to illustrate the problem, assume that P = Z\al <m Pa(2)D®, with

D := %aw, is a partial differential operator, and ¢(z) is smooth and complex valued with

Im ¢ > 0, then we have
P (z) = P(¢!(x), 7)o

where P(§, ) = 3° <, Pa(2)€* is the symbol of P. Now for a general pseudodifferential
operator we expect in leading order a similar formula, but since the symbol will no longer
be polynomial in &, but just a smooth function on phase space, it is a priory not clear how
to evaluate it at complex arguments (¢'(z),z). The method of almost analytic extensions
provides now a way to extend a smooth function to complex arguments, which we can use
for our case.

The simplest type of Lagrangian states with complex phase function are, in a sense, the
coherent states, which we will study in detail in Section 3.3. Since they are concentrated
in one point it is sufficient to study them on R¢. The term coherent state has been used
in the literature for a particular type of states with a more or less precisely defined range
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of properties, see e.g. [Per86, CR95, Pau97]. We will denote by this an oscillatory function
with quadratic phase function which is concentrated in one point in phase space. Explicitly,
a coherent state is given by

d/4
uf:q(/\,x) = (;) (det Im B)1/4e1)‘[<p’5”’q>+%<$’q’B(w’qm , (1.4)

where (p, q) € T*R? denotes a point in phase space and B is a complex symmetric matrix
with Im B > 0. The pre-factor ensures that the state is normalized. What we are interested
in is the dependence on B and (p, q). There is a rich geometrical structure associated with
B, which we study in detail. If we use the formula (1.3) to associate a Lagrangian manifold
with it, we obtain

Lg={(p+ Bzx,q+x)}

which we interpret, by allowing x € C¢, as a complex Lagrangian plane in the complexified
tangent space T(‘g, q)T*]Rd to T*R® at (p,q). From complex linear symplectic geometry it
is known that such a Lagrangian plane defines a complex structure and a metric g; on
T(p,T*R®. These structures play an important role in the theory of coherent states: for

instance, the Wigner function of a coherent state is given by

A d
W(f,x) = (;) ef)‘((gfp@*lI)ng(ff;v,qu»

where (¢ — p,x — q),8L(6 — p,x — q)) is the squared distance between (p,q) and (£, x)
measured in the metric gr..

For the later applications it will be useful to study families of coherent states. It is well
known that the set of states defined by (1.4) forms a complete set of states in the sense

that
)\ d
<%) / |u£q><u£q‘ dpdg=1.

It will turn out to be useful to let B vary with (p,q). This means that we have an
almost complex structure and a non-constant metric on phase space. The states are still
normalized then, but the completeness relation is no longer true. Instead we get

A\ 5B 1
% ‘U’p,q><u’p,q| dpdq =1- ms )

where s is a symmetric pseudodifferential operator whose principal symbol is given by the
scalar curvature s(p, q) of the metric g7. The calculus of pseudodifferential operators shows
that P := (1 — o5 s)~'/2 is well defined for sufficiently large ), and is a pseudodifferential
operator then. Then the modified family of coherent states
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satisfies the completeness relation

A d
(%) // |a£q><ﬂ£q| dpdg=1.

But now the states are generally no longer normalized, instead we have

) 1 .
gl =1+ oy, 0) + O,

so the scalar curvature of g is the leading order obstruction for a family of coherent states
to be simultaneously normalized and complete.

In Section 3.4 we turn to the general theory of Lagrangian states with complex phase
functions on manifolds. We develop the theory along the lines of Lagrangian distributions
with complex valued phase functions [H6r85b]. The first task is to define the complex
Lagrangian submanifold of phase space which acts as a classical support of the state. In
the first treatments of the theory, [MS73, MS75, MSS90], this was done using the machinery
of almost analytic extensions, which is quite technical. We will therefore follow Hormander,
who has replaced the almost analytic machinery by Lagrangian ideals. The idea can be
thought of as shifting the attention from the states to the algebras of observables, which has
already been proven to be fruitful in Chapter 2. Let A be a real Lagrangian submanifold
of phase space, then we can associate the vanishing ideal

Jp = {f € COO(T*M) , f|A = 0}

with it. It is easy to see that J is closed under Poisson brackets and can be locally gen-
erated by d = dim M functions. One can show conversely that for every ideal with these
properties the set of common zeros of the functions in the ideal form a Lagrangian sub-
manifold. Hence we have a one-to-one correspondence between Lagrangian submanifolds
and a certain type of ideals in the space of smooth functions, which are called Lagrangian
ideals. Now one just removes the condition that the functions should be real valued, and
arrives at complex Lagrangian ideals, which play the role of the (non-existent) complex
Lagrangian submanifolds.

This idea of determining a distinguished subset of the set of classical observables as
the “complex Lagrangian submanifold” suggests a natural intrinsic definition of the set of
Lagrangian states associated with this complex Lagrangian ideal J. Namely, if we have
a classical state v concentrated on the zero set of J, then v(f) = 0 for all f € J, and
this condition characterizes the set of classical states concentrated on J. Now we demand
for the quantum mechanical states that the same condition holds asymptotically. We say
that ¢()\) is a Lagrangian state associated with the complex Lagrangian ideal J if, roughly
speaking,

Ap - Ay = O™ )
for every N € N and for all A; whose principal symbols are in J,
O'(AZ) eJ.
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Here m € R is called the order of 7). So classically a set of states is defined by requiring that
they should vanish on the Lagrangian ideal, and the corresponding set of quantum states
is defined by requiring that the quantized Lagrangian ideal should vanish asymptotically
on them.

The quantized Lagrangian ideal can as well be thought of as a set of annihilation opera-
tors. In the simplest case that the Lagrangian ideal is generated by a set of linear complex
functions, the Lagrangian states are given by the coherent states, and the quantizations of
the generators are exactly the annihilation operators known from the harmonic oscillator.
The adjoint operators then give the corresponding creation operators.

We then turn to discuss local representations of such states. Exactly as for the real val-
ued case there exist generating functions for complex Lagrangian ideals, and the Lagrangian
states have local representations as oscillatory integrals with this generating function as
exponent. This means that we have found a general global invariant characterization of
the states of the form (1.2).

Our next aim is to define a principal symbol, and here unfortunately we cannot follow
anymore the treatise of Hormander, since he does not discuss this point. As a preparation
a careful study of the linear case is necessary. By this we mean Lagrangian states defined
by complex Lagrangian planes, but in contrast to the coherent states we only require the
Lagrangian planes to be non-negative. The set of all such planes is called the complex
Lagrangian Grassmannian and we show that the set of Lagrangian states associated with
them form a line bundle over the Lagrangian Grassmannian which is a half density bundle
tensored with the so-called complex Maslov bundle.

Given a complex Lagrangian ideal J, then at each point of the zero set of it a unique
complex Lagrangian plane in the complexification of the tangent space is defined by re-
quiring that the differentials of all elements of the ideal should vanish on the plane at that
point,

L, ={2€TPT*M , {df(z),2) =0 for all f e J}.

This family of Lagrangian planes can be used to define a Maslov bundle on the zero set of
J by a pull back from the complex Lagrangian Grassmannian. If the complex Lagrangian
ideal satisfies certain non-degeneracy conditions one can split this bundle into two parts,
one real part to which all the known results from the real case can be applied, and a purely
complex one which is then studied separately.

The principal symbol of a general Lagrangian state is then defined by testing against
coherent states. It turns out that in addition to the Maslov phase another phase appears,
connected with the Liouville class. So the principal symbol can be defined as a section in
a line bundle which is the tensor product of the half-density bundle, the Maslov bundle
and the Liouville bundle.

In the last sections of Chapter 3 we discuss the time evolution of Lagrangian states. This
can be reduced to the case of a coherent state, for which we give a simplified presentation of
a proof due to Combescure and Robert [CR97] on the time evolution that allows estimates
for large times.
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In Chapter 4 we apply the results on families of coherent states to the construction of
localized operators via the so-called Anti-Wick quantization. An Anti-Wick operator is a
superposition of projection operators onto coherent states with a relative weight given by
a function on phase space. To a function a on phase space one associates the operator

Op3" [a] = (%)d / / a(p, @)\t ) (@] dpdg ,

which is called the Anti-Wick quantization of a. The use of the modified coherent states
ﬂgq is important, since it ensures the completeness relation

Opg"[1]=1.

The Anti-Wick quantization has some nice properties. It maps real valued functions to
symmetric operators and it maps positive functions to positive operators. But most impor-
tantly, it can be used to quantize non-smooth functions or even distributions. The most
severe drawback is that the Anti-Wick operators do not form an algebra, i.e. the product
of two Anti-Wick operators is in general not an Anti-Wick operator.

After collecting some general properties of these operators in Section 4.1, we discuss
estimates in the case of quantizations of measures. It turns out that Cotlar’s Lemma allows
very precise estimates of the norm of such operators in terms of the Hausdorff dimension
of the measure one quantizes. In Section 4.3 we then turn to our main application of Anti-
Wick quantization, the construction of approximate projection operators. Given a domain
D in phase space, the Anti-Wick quantization allows us to quantize the characteristic

function of D,
A d
— ~B \/~B

Such operators indeed form approximate projection operators since they satisfy
75 —mp = O(A™™)

microlocally away from the boundary of D.

In the applications we want to associate such approximate projection operators to
domains in phase space which are invariant under the classical flow, in order to study
localization of eigenfunctions on these domains. We expect that for an invariant domain
D, mp approximately commutes with the Hamilton operator 4, and indeed we show that

[H,7p] = O(A?)

if D is invariant. In order to improve the remainder estimate it turns out that further
requirements on D are needed. As already mentioned, if D is stably invariant, then one
can choose the metric g in such a way that for every N € N

[H,7p] = O(AN) . (1.5)
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Two immediate applications are discussed then, which are among the main results of
this work.
First, using Duhamels principle, (1.5) immediately implies that

14 (t) mpU(t) — 7pl| < ClEIATY

where U(t) is the time evolution operator generated by H. Hence the image and the kernel
of mp form an approximate decomposition of the Hilbert space into two approximately
invariant subspaces. So the strict decomposition of the classical phase space into D and
its complement can be lifted in an approximate way to the quantum mechanical Hilbert
space.

Secondly, if the flow restricted to D is ergodic one can carry over the proof of the
quantum ergodicity theorem to this situation, which gives that for almost all eigenfunctions

lim | (n,, 7oA, ) — (n,, 7ot )o(A) | =0,

J—00

where mB denotes the classical mean over D. The quantity (i, Tpi,,) measures the
fraction of t,,, which lives on D. So this result tells us that the part of 9, living on D
becomes equidistributed on D.

In Chapter 5 we now finally turn to apply the considerably large technical apparatus
developed so far to the questions of semiclassical localization of eigenfunctions we are in-
terested in. In Section 5.1 we review some general properties of quasimodes. As already
mentioned, quasimodes are approximate solutions to the Schrodinger equation, and the
main observation is that although the approximate eigenvalues are close to the real eigen-
values, the approximate eigenfunctions need not be close to real eigenfunctions, hence the
name quasimodes. The main obstruction for a quasimode to be close to an eigenfunctions
is the existence of more than one eigenvalue which is closer to the approximate eigenvalue
than the error of the Schrodinger equation. We show how the classical work of von Neu-
mann and Wigner on avoided level crossings [vNW29] can be interpreted as demonstrating
that such near degeneracies of eigenvalues are unstable under small perturbations of the
system.

In Section 5.2 we study the effect of perturbations more closely and conjecture that
generically quasimodes are close to eigenfunctions in the semiclassical limit. The connection
to some ideas in the field of decoherence is mentioned as well. Especially from (1.5) it
follows that mp, is a sequence of quasimodes, and if quasimodes were generically close to
eigenfunctions, then we could conclude, that the eigenfunctions are generically concentrated
in D or the complement of D. So in this case the splitting of phase space would be directly
visible in the eigenfunctions.

The tools from Chapter 3 are applied in Section 5.4 to construct quasimodes attached
to stable or marginally stable invariant sets in phase space, especially to invariant tori and
to elliptic orbits. Such constructions are well known in the literature, see, e.g., [MF81,
Col77, Laz93, Ral76], and our emphasis is mainly on one new point. Inspired by the
previous section, we study the question which quasimodes are stable under perturbations.



15

It turns out that not all quasimodes are stable under perturbations. And, although we
study perturbations which leave the classical system invariant, the conditions on stability
of the quasimodes on the classical support of them are the same as the conditions of
stability of the classical structures under small perturbations of the classical system. So
for invariant tori we obtain that they have to satisfy certain KAM conditions in order
that the quasimodes supported by them are stable. Similarly, for elliptic orbits we show
that these have to satisfy classical non-resonance conditions in order that the quasimodes
concentrated on them are stable.

In the four appendices some technical tools are discussed. In Appendix A we recall the
definition of densities and half-densities and collect their basic properties. When working
on manifolds they are very useful objects to have at hand, and especially the definition of a
principal symbol for Lagrangian functions is facilitated by them. Appendix B contains the
basic results on the so-called Gauss transforms and their mapping properties on certain
function spaces. These results are needed rather frequently when one works with symbols
and wants to show that certain operations on them again give symbols. In Appendix
C the Malgrange preparation theorem and some of its applications are discussed. This
theorem and its consequences are needed when we discuss Lagrangian ideals and how they
are generated. Finally Appendix D gives a discussion of the method of stationary phase
and some of the basic theorems. We have to go beyond most standard treatments in that
we have to include the case of complex valued phase functions, which can be done using
the machinery of almost analytic extensions, or, more elegantly, by using the Malgrange
preparation theorem from Appendix C.

Since some parts of this work have the character of an review while other parts contain
new results, and these two are not always clearly distinguished, I finally would like to point
out where the results are new. Chapter 2 is of an review character with the only exception
of Section 2.5 which contains some new results. Chapter 3 is of an intermediate type, the
results on the families of coherent states in Section 3.3 are new and Section 3.4 consists of
extensions of known results and ideas. Chapter 4 is in a sense the heart of the work and
almost all results presented there are new. Finally in Chapter 5 the Sections 5.3 and 5.5
contain new results, while the remaining part is mainly a discussion of known results in
the light of two new conjectures from Section 5.2.
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Chapter 1.

Introduction




Chapter 2
Microlocal analysis and semiclassics

“©

. it seems to me that there has been in the literature entirely too
much emphasis on quantization, (i.e. general methods for obtain-
ing quantum mechanics from classical methods) as opposed to the
converse problem of the classical limit of quantum mechanics. This
is unfortunate since the latter is an important question for vari-
ous areas of modern physics while the former is, in my opinion, a
chimera.”

Barry Simon [Sim80)]

The aim of this chapter is to present some basic concepts of microlocal analysis from
the point of view of quantum mechanics and the semiclassical limit. This will serve as
a background for the following chapters, where we will use the mathematical language
and methods from microlocal analysis. Since on the one hand we cannot assume that
every reader is familiar with this part of mathematics, and on the other hand introducing
all these concepts from the scratch would definitely go beyond the scope of this work,
we have decided to give an informal introduction. We will describe the results which are
important for the further development, and set up a kind of dictionary, which translates the
mathematical terms into a more physical language. This will be illustrated by examples,
and occasionally we will sketch some formal computations in more detail in order to make
the reader familiar with the flair of the theory and the methods.

2.1 Quantum and classical mechanics

In this section the basic structures of quantum and classical mechanics, respectively, will
be described for simple types of systems. The basic example, which the reader should keep
in mind, is the motion of a free particle on a Riemannian manifold.

17
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2.1.1 Quantum mechanics

Let (M, g) be a Riemannian manifold. The state space of the quantum system is the
Hilbert space of square integrable functions on M,

12(M, g) = {wm; Wl = [ WP dyfo) < o0 } ,

where dyy(x) denotes the Riemannian volume element on M. More precisely, the pure
states are represented by the normalized functions in L*(M,g), i.e. ||| = 1. If the
particle is in the state v, then [¢(z)|? is the probability distribution of the position, i.e.,
if D C M is some domain, then the probability of finding the particle in the domain D is
given by

| @) @)

This can as well be written as (¢, xpt), where xp denotes the multiplication operator with
the characteristic function of D, and (-, -) denotes the standard scalar-product in L2(M, g).
More generally, observable quantities are represented by selfadjoint operators on L2(M, g)
and the quantity

wy(A) = (¥, AY)

for a selfadjoint operator A is the expectation value, i.e., the mean value which one finds
when measuring the quantity A sufficiently often while the system is in the state 1.

The bounded operators on L*(M, g) form an algebra, which by abuse of language is
called the algebra of observables; the observable quantities correspond to the selfadjoint
elements in this algebra. The states can be viewed as positive linear maps from the algebra

of observables into the complex numbers. More precisely, for every normalized element
e L*(M), i.e. , |[¢|| = 1, the map

A= wy(A) = (¢, A) (2.1)

is linear and in addition normalized, positive and maps selfadjoint operators to real num-
bers:

wy(I) =1 (2.2
w¢(.A.A*) >0 .
wy(A") = wy(A)", (24)

w
= ~—

here I denotes the identity operator. By generalization, any linear functional on the algebra
of observables with these three properties, (2.2), (2.3) and (2.4), is called a state. E.g.,
every trace class operator p that is selfadjoint, positive and has trace one defines a state
by

A= w(A) :=trAp .
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The set of states is a convex set, i.e., if w; and ws are states, then Aw; + (1 — A)ws is a state
for A € [0,1]. The states which cannot be represented as a convex combination of other
states are called pure states; e.g., the states defined by the elements of L*(M) according
to (2.1) are pure.

Instead of the usual point of view in most textbooks on quantum mechanics, where
the state space is the primary object, one can also start from the algebra of observables
(assumed to be some C*-algebra). Then every state defines via the GNS construction
[BR79] a Hilbert space, and a representation of the algebra of observables as bounded
operators on that Hilbert space. We will follow an intermediate point of view, because the
semiclassical limit is more natural on the algebraic level, but we will always work with an
explicit realization of the algebra of observables on a given Hilbert space. An account of
quantum mechanics with emphasis on this algebraic point of view can be found, e.g., in
[Thi79, Seg47|.

The dynamics is defined by specifying a selfadjoint operator, the Hamilton operator,
representing the energy. In case of a free particle this is just the Laplace-Beltrami operator
on M, H = —%Ag. The Schrédinger equation, which determines the time-evolution of
the states, then reads

oY

The solution of this equation with initial value (0, x) = ¥ (z) is given by

U(t)ho = e 5y, (2.5)

where U(t) is called the time evolution operator. It is unitary, because H is selfadjoint.
Since (U (t), AU (t)Y) = (P, U(t)* Aol (L)1), where Ay is an operator on L?(M, g) and
1 is assumed to be in the domain of Ay, the time evolution can as well be shifted to the
algebra of observables. The corresponding equation for the dynamics then is the Heisenberg
equation, which, in the case that Ajg is time independent, reads

dA
—ih—=[H, A], 2.6
ih = [, A (2.6
where [#, A] denotes the commutator of H and .A. The solution of the Heisenberg equation

with initial value A, is given by conjugation of Ay with the time evolution operator
A(t) =U(t) AU (1) - (2.7)

Therefore on the algebra of observables the time evolution is given by a one parameter
group of automorphisms of this algebra. Generally, by conjugation any unitary operator
gives rise to an automorphism of the algebra of observables. Hence, from the conventional
point of view, the morphisms of the theory can be identified with the unitary operators,
and from the algebraic point of view by the algebra-automorphisms. But the set of algebra-
automorphisms can be larger than the set of unitary operators, because a priori not every
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algebra-automorphism has to be induced by a unitary operator. Especially the anti-unitary
operators enter as further algebra-automorphisms.

This was a rather condensed and abstract description of the basic structure of quantum
mechanics, for a more thorough treatment emphasizing the algebraic point of view see
[Thi79], and for a classical treatment, e.g., [Dir58].

We are especially interested in the stationary states, i.e. the eigenfunctions of H, which
satisfy the stationary Schrédinger equation

When M is compact and H satisfies certain natural conditions which we will specify later,
the spectrum is discrete and has no finite accumulation point. We will assume that the
eigenvalues are ordered increasingly, Ay < A\; < Ag---. The information on the eigenvalues
will often be encoded in certain spectral functions, the simplest one being the counting
function

N(A) = #{An <A}, (2.8)

which has a jump at each eigenvalue ), whose height is the multiplicity of the eigenvalue.
In figure 2.1 the counting function is shown for three different systems which are described
below.

Our aim is to obtain information on the behavior of the eigenvalues and eigenfunctions
in the limit n — co. The results in the next sections show that this limit depends in leading
order only on the corresponding classical system, therefore this is called the semiclassical
limit.

In quantum chaos one often studies billiards. A billiard is given by a compact (or
sometimes finite-volume) domain  C R? with smooth or piecewise smooth boundary
0L2. The Hamilton operator is given by the Laplace operator —A with suitable boundary
conditions on 0€2. We will in the following only meet the case of Dirichlet conditions.
The advantage of billiards is that they are simple enough to allow for effective numerical
computations, while on the other hand they encompass a great diversity of dynamical
behavior. The examples which we will look at in the following are taken from the family
of limagon billiards in R2. In polar coordinates (r,p) € RT x [—m, x| their boundary 00
is parameterized by

r(¢) =14+c¢ccose (2.9)

with £ € [0,1]. For ¢ = 0 we have a circle, for ¢ = 0.3 the shape looks like a slightly
deformed circle and for ¢ = 1 we get the cardioid, which has a cusp at the origin, see
fig. 2.2. This family has been introduced as a family of quantum billiards by Robnik
[Rob83, Rob84], and since then has been an object of frequent studies in classical and
quantum chaos. The numerical data we present in the following have been kindly provided
by Arnd Backer, whose Ph.D-thesis can be consulted for more details on these systems
[Bac98]. In order to illustrate the spectral quantities we have shown in fig. 2.1 N(A) for
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Figure 2.1: The spectral counting function (2.8) for three different systems, the cardioid
billiard at the top left, the limagon billiard, see (2.9), with parameter ¢ = 0.3 at the top
right and the circle billiard at the bottom. See the text and (2.9) for a description of the
systems. Note that the strength of the fluctuations about the mean behavior is strongest
for the circle billiard followed by the limagon billiard with parameter ¢ = 0.3 and weakest
for the cardioid billiard. As dotted lines are plotted the mean behavior according to Weyl’s

law.
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| 2

Figure 2.2: Density plots of |¢,|° for a consecutive sequence of Dirichlet eigenfunctions
¥y, of the circle billiard on the left, the limacon billiard , see (2.9), with ¢ = 0.3 in the
middle, and the cardioid billiard on the right, respectively. The upper left starts with
n = 1800 down to the lower left with n = 1804 and the upper right with n = 1805 to
the lower right with n = 1809. Note the different types of structures which appear in the
eigenfunctions of the different systems. The eigenfunction densities of the circular billiard
are of course all rotationally-symmetric and have pronounced structures, but all of a similar
type. The eigenfunctions of the cardioid billiard are more or less all rather equidistributed
in the billiard and possess only weak structures. In contrast to the other two billiards, the
eigenfunctions of the limacon billiard with € = 0.3 display a variety of different structures,
ranging from localization to almost equidistribution. This reflects the structures of the
corresponding classical systems, as we will see later on.
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the three different systems, the circle billiard, the cardioid billiard and the limagon billiard
(2.9) with e = 0.3. Furthermore, in fig. 2.2 density plots of a couple of eigenfunctions of
each billiard is shown.

2.1.2 Classical mechanics

We now describe some of the basic structures of classical mechanics, or more precisely of
Hamiltonian mechanics, see, e.g. , [Arn78, AM78|. We will present Hamiltonian mechanics
in a way that the structural similarities with quantum mechanics are pronounced, with a
view towards our aim to describe how Hamiltonian mechanics is generated as a limit of
quantum mechanics [Thi88].

The state space in Hamiltonian mechanics is given by a symplectic manifold and is
usually called phase space. In our cases this will always be a cotangent bundle 7*M of
some compact manifold M of dimension d. A symplectic manifold is a smooth manifold
together with a nondegenerate closed two-form w on it and necessarily is of even dimension
2d. On a cotangent bundle there is a natural one-form given in local coordinates (§,x),
where x € M denotes position and £ momentum, by

d
a=E&dr = Z&-dxi ,
i=1
and the usual symplectic two-form on 7T*M is the differential of a

d
w:=—do=—-déAdz =) dz; AdE .

=1

A pure state of the system is given by a point (£,z) in phase space, e.g., for a one
particle system x is the position of the particle and & is its momentum. An observable is
given by a function a on phase space, and the value of the observable in a state (¢, z) is the
value of the function at that point. The set of observables form an algebra, e.g., C*(T*M)
if we allow only smooth functions. The evaluation of an observable at a given state is a
linear map from the algebra of observables into the set of complex numbers. Therefore we
can generalize the notion of a state by defining a general state as a smooth positive linear
functional v on the algebra of observables, i.e. a distribution, which is normalized, positive
and takes real values on real observables, exactly as in quantum mechanics. Since positive
distributions are measures, see e.g. [Hor83, Theorem 2.1.7.], which means

v(a) < Csup(a), forallae C®(T*M),

the states are positive measures. The pure states are the ones which are concentrated in
one point, i.e. delta functions.

An explicit system and its dynamics are defined by specifying a Hamilton function
H(&,z) on phase space, giving the energy of the system in the state (£,z). To each real
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valued smooth function H in phase space one can associate a vector-field, the so called
Hamiltonian vector-field Xy, which is defined by

w(Xy,Y)=dH(Y)

for all vector-fields Y. In local symplectic coordinates (£, x), the vector-field Xy is hence
given by

T
XH:< 0H 5H> |

“on %€
OH _ (0H oH . oH _ (0H oH
where we used the shorthand 37 = (5., -, 7;,) and similarly 52 = (55, , 5¢,)-

Hamilton’s equations corresponding to H are then given by

%(f,.’ﬂ) =Xu,

and in local coordinates this is the usual set of Hamilton’s equations

d¢ 8H dz _O0H

dt — 9x At~ 9¢

So the specification of a function on phase space defines a dynamical system on phase
space. For a free particle the Hamiltonian is just

1 1 g
H(g o) = ey =5~ > 0" ()& ,

and the corresponding flow is the geodesic flow lifted to T M.
By duality the flow ®' = exp(tXp) on phase space defines an automorphism of the
algebra of observables:

(®")*a(€, 2) == a(®"(, 7)) , (2.10)
for a € C*°(T*M). Differentiating this equation with respect to time ¢ leads to
Oa
- _{H
g~ ~Uhab,

where {H, a} denotes the Poisson bracket of h and a, defined by

OH da  OH Oa

{H,a} = w(Xg, X,) = o5 0 OE Oz

With the help of the Jacobi identity for the Poisson bracket, see, e.g., [Arn78], one easily
sees that the flow leaves the symplectic form and the Poisson-bracket invariant, so it is
an example of a so-called canonical transformation, or symplectomorphism. Generally a
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canonical transformation is defined to be a smooth invertible map ® : T*M — T™* M, which
leaves the symplectic form invariant,

Pw=w. (2.11)

The group of canonical transformations are the morphisms of Hamiltonian mechanics. The
d’th power of the two-form w defines a volume element

(=1)Lé/2]

Y= T WA= ANw

on phase space, which is invariant under canonical transformations. Therefore the pullback
of a canonical transformation is a unitary operator in the space L?(T*M, i). One special
example is given by the canonical transformations induced by the time evolution of a
Hamiltonian system, V() = ®", whose action on L*(T*M, p) is given by (2.10),

(V(t)a)(& z) = a(®'(§, 7)) - (2.12)

This operator is the analogue of the quantum mechanical time evolution operator U(t),
and we will later see how it appears as the classical limit of ¢(¢). The spectral properties of
this operator contain information on the flow. This point of view in mechanics, using the
spectral theory of V() to study the flow, is sometimes called Koopmanism, see [AMT78|.

A further important class of objects in classical mechanics, or more precisely in symplec-
tic geometry, are Lagrangian submanifolds. A submanifold A C T*M is called Lagrangian
if it has half the dimension of T*M, i.e., dim A = dim M, and if the symplectic two form
vanishes on A, w|y = 0. A simple example is given by the graph of the differential of
some smooth function ¢, that is in local coordinates A = {(¢'(z),z)| x € M}. Then A
is Lagrangian because w|y = daly = d(¢'(x)dz) = d?¢ = 0. On the other hand, every
Lagrangian manifold A whose projection to the base M is locally an diffeomorphism can
locally be represented in this way. Since on A one has da = w = 0 there is a function on
A, which can be parameterized by a subset of M, with o = dp. This function ¢ is called
a generating function for A.

With similar arguments it can be shown [Hér85a] that for an arbitrary Lagrangian sub-
manifold A there exists locally a generating function ¢(z, ), depending on some auxiliary
variables # € R”, such that locally

A={(¢,(z,0),z) |z € X, gy(z,0) =0} . (2.13)

According to the “symplectic creed” [Wei77| everything in symplectic geometry should
be represented by Lagrangian submanifolds. What about symplectomorphisms? Consider
a symplectomorphism ® : T*M — T*M, then it follows from (2.11) that if we equip
T*M x T*M with the symplectic form 7wjw; — m5we, where 7w, is the pullback of the
symplectic form on the first factor by the projection m; to the first factor and mjws the
one on the second factor, then the graph of ®, Ag = {(&,z,P(§,2)} C T*M x T*M is a
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Lagrangian submanifold of (T*M xT*M,w; —ws). So according to the previous paragraph,
there exists a generating function as in (2.13) for this graph. The map

T"M xT"M > (§,259,n) = (§ 25y, —n) € T"M x T"M
maps A to

A ={(&zy,m) | (§ 259, —n) € A},

which is a Lagrangian submanifold in 7*(M x M) with the symplectic form 7w, + m5ws.
Choosing n € R¢ as auxiliary variable we make an ansatz for a generating function of A~
as

o(z,y,m) = Y(x,n) — (Y, m) - (2.14)

Then 0, = 0%, Oy = —1n, Opp = Oy®) — y, so from (2.13) it follows that the Lagrangian
submanifold generated by ¢ in T*(M x M) is

A(p = {(axwaxa -, 6771/))} .

Therefore in order that A, = A~, the function ¢ has to satisfy the equation

(0xth, ) = (1, Op¢)) - (2.15)

In classical mechanics such a function is called a generating function for the canonical
transformation ®. Under certain conditions on ®, e.g., if ® is homogeneous of degree one
in £, a generating function of the type (2.15) locally always exists. Other types of generating
functions are needed in addition if one wants to incorporate all canonical transformations,
see [Arn78].

The previous discussion suggests a generalization of the concept of a canonical trans-
formation. Given two manifolds M, N, one calls a Lagrangian submanifold

AC (T*M X T*N, Wnp — wN) (216)

a canonical relation from T*M to T*N [Wei77]. Relations can be composed, i.e., let M,
M, and M; be three manifolds, then the composition of two relations Ay C T*My x T™* M,
and Ay C T*M; x T*M, is defined as

Ayo Ay :=={((,z & x) € T* My x T*M |
El (77’ y) € T*MQ Wlth (Ca z;1n, y) € A2 and (77, y;gax) € Al} :

Under some geometrical conditions on Ay and Ay, [Wei77, H6r85a, chapter 21.2|, the com-
position of two canonical relations is again a canonical relation. So in this sense they are
generalizations of the group of canonical transformations.
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Figure 2.3: The Poincaré section (2.17) for three different billiards, [Bac98]. Shown are the
orbits of different initial points under the Poincaré map. They give a qualitative picture of
the dynamics. The upper left system is the integrable circle billiard, the invariant tori are
visible as straight lines. The upper right system is the ergodic cardioid billiard, and one
sees that a typical orbit explores the whole phase space. The third system is the limacon
billiard (2.9) with parameter ¢ = 0.3, which has a mixed phase space.
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The properties of the flow ®* generated by a Hamiltonian H depend of course on the
properties of H. Denote by

Yni={(§2) e T"M | H(¢,z) = A}

the energy shell with energy A\. Then ®' : ¥y, — ¥, and the invariant volume form p
on T*M induces a measure on X, the Liouville measure p,, which is invariant under the
flow ®. If the Hamilton function is homogeneous of degree m in £ and the manifold M is
compact, then ¥y is compact too, and Xy = AV/™ . ¥, := {(AY™¢ z) | (€,2) € £1}.

If there exist further conserved quantities g;, i.e. {g;, H} = 0, which are in involution
{9i,9;} = 0, then the flow leaves the level-sets of {g1, -, gk, H}, i.e. the sets in phase
space on which the functions g; and h are constant, invariant. In the case that the system
has d = dim M such conserved quantities which are independent almost everywhere, it is
called integrable, see e.g. [Arn78, AM78| for more details and precise statements. Then the
theorem of Liouville-Arnold says that the 2d-dimensional phase space is foliated into d-
dimensional invariant Lagrangian tori on which the motion is quasi-periodic. A trajectory
starting on a torus will always stay on it and will never explore any other part of the phase
space.

A rather opposite behavior is characteristic for ergodic systems. A system is called
ergodic if a typical trajectory comes arbitrarily close to every point in the energy shell.
This can be expressed formally as the fact that the time mean of an observable equals the
space mean for almost all trajectories,

1 [T 1
lim — a(®'(&,2))dt = /ad ,
Jim / @€t = [ adm

for almost all (£, x) € X,.

Integrability and ergodicity are on the two opposite ends of a variety of possible be-
haviors of Hamiltonian systems; typically the phase space structure is very complicated,
with invariant sets on all scales. We will illustrate these different types of systems by the
three billiards which we considered already in the last section, see (2.9): the circle billiard,
a limagon billiard with € = 0.3 and the cardioid billiard, see also fig. 2.2.

By a classical billiard in two dimensions we mean a system consisting of a single point-
particle moving freely in the interior of the billiard table. A particle on a billiard table
will move on straight lines inside the billiard and will be elastically reflected at the billiard
boundary, i.e. the component of the velocity vector normal to the boundary is multiplied
by —1 at the point of reflection. This dynamics can be described by a special Poincaré
section: denote by s the arclength of a given point on the boundary which is hit by the
particle and denote by p the cosine of the angle between the tangent vector of the boundary
at s and the trajectory of the particle immediately after the bounce with the boundary. By
knowing (s, p) we can predict the position s’ of the next bounce and the angle of reflection
p'. The set

P={(s,p) ;5€0Q,pe[-1,1]} (2.17)
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defines a complete Poincaré section, and the map (s,p) — (s',p’) which we just described
is called the billiard map. The billiard map determines the flow uniquely, and the ergodic
properties of the flow are the same as the ones of the billiard map. In figure 2.3 the Poincaré
section for the three billiards is shown, which illustrates the different possible behaviors.
The circle billiard is integrable, and the invariant tori are visible as parallel lines in the
Poincaré section. The limacon with ¢ = 0.3 has a mixed phase space, there are elliptic
islands, invariant tori and unstable orbits; finally the cardioid is ergodic which leads to a
uniform and rather boring Poincaré section. As a further illustration in figure 2.4 some
orbits of the different billiards are shown.

Figure 2.4: Examples of orbits in the three different billiards. The upper left one is the
cardioid billiard, the next to the right the circle billiard, and all others are in the limacon
with € = 0.3. Compare with the structures of the eigenfunctions of the quantized systems,
fig. 2.2.

2.1.3 Quantum mechanics versus classical mechanics

Now we want to summarize the contents of the last two sections, and compare the structures
of quantum and classical mechanics; an overview is provided in Table 2.1.

In both theories the observables form an algebra, in quantum mechanics it is an algebra
of operators, and in classical mechanics it is an algebra of functions. The basic difference
is that the algebra in quantum mechanics is non-commutative, whereas the one in classical
mechanics is commutative.
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Furthermore, in both cases there is an additional structure on the algebra which enters
in the equation governing the dynamics. In quantum mechanics it is the commutator, and
the dynamics, defined by a given operator H, on the algebra of observables is governed by
the Heisenberg equation

L,
~ifis A = [H, A

In classical mechanics it is the Poisson bracket, defined by the symplectic structure. And
the equations of motion on the algebra of observables for a given Hamilton function H are

da
— ={H,a} .
at { Y }
‘ quantum mechanics classical mechanics
observables
An algebra of operators on the ? An algebra of functions on 7" X.
Hilbert space L%(X, g). —
states
Continuous positive linear functionals on the algebra of observables:
7
Density operators — Measures
morphisms
?
unitary operators — symplectomorphisms
(canonical transformations)

Table 2.1: Comparison of the structures of quantum and classical mechanics.

The states can in both cases be described as continuous positive linear functionals on
the algebra of observables. Depending on the topology one gets different state spaces,
but typically one expects the states to be representable as density operators in quantum
mechanics, and as measures in classical mechanics.

Finally one has the group of morphisms, which are unitary and anti-unitary operators
in quantum mechanics, respectively, and canonical and anti-canonical transformations in
classical mechanics.

Our aim in the next sections is to describe the relation between these two structures.
Since quantum mechanics is more fundamental than classical mechanics, one expects that
there are maps, indicated by arrows in Table 2.1, which associate at least to a subclass of
the quantum mechanical objects a class of classical objects. One might not expect that
every quantum object has a sensible classical limit, and therefore we do not aim at a most
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complete description, but we will instead be satisfied if we find a suitable subalgebra of
observables which have a nice classical limit.

Finally we will return to the comparison of quantum and classical mechanics, and
present some examples to show how the technical apparatus developed can be used then.

2.2 Microlocal analysis

Partial differential operators are local operators, this means that they do not increase the
support of a function. This allows one to localize certain problems in space, e.g. , by using
cutoff functions and partitions of unity. Microlocalisation means to go one step further
and to localize in phase space. The term microlocal analysis refers to a set of methods for
the study of partial differential equations which uses the phase space structure of 7M.
For general references to this subject see, e.g., [Hor85, Tay81, GS94].

The point of view from which we will approach the theory is by classifying the opera-
tors according to their action on oscillating functions [Hor71, Dui73, Dui74, Gui94]. The
simplest oscillating function is a plane wave in R?, given by

ee(r) := &l @8) (2.18)

Physically the plane wave corresponds to a current of particles moving with momentum
£ € RY and the semiclassical limit corresponds to the limit || — oco. This will be our
heuristic guiding principle. This strategy is completely analogous to the short wavelength
limit in optics, and the corresponding transition from wave optics to geometrical optics.

2.2.1 Pseudodifferential operators

Following the principles formulated in the introduction to Section 2.2 we will look for a
classical counterpart of an operator. Let A be an operator A : §'(R?) — S'(R¢), we look
at the action of A on a plane wave e¢(z) = e where £ € R? is the “momentum” of the
wave. This action defines a distribution a(¢, z) € 8'(R? x R?) by

Aeg(z) = a(€, 1) 8 = a(€, 7)ee(x) , (2.19)

which describes how A alters a plane wave (2.18) with momentum £. By expanding a
function v in plane waves, i.e. representing it as the inverse Fourier transformation of its
Fourier transform 1, one can recover A from a,

1
(2m)?
In the literature a is usually called the symbol of the operator A. We will sometimes call

this a right-symbol in order to distinguish it from the Weyl-symbol which will appear later
on, see (2.26).

Au(z) =

/ g (€, z)a(€) dE . (2.20)
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Example 2.2.1. Let A be a differential operator,

A= Z a(z)DS
lal<m

1

where D, = i%, and the standard multi-index notation is used. Then the symbol of A is

given by

a(§,z) = Z ao ()€ .

la|<m
Example 2.2.2. Let A be the Laplace operator on R¢, and consider its resolvent
R() = (-A-N"",

for A € C\R™'. Then it follows from (2.20) that the operator A with symbol (£2 — X\)*
satisfies (—A—\)A = 1 and therefore A = R(\). Hence the resolvent R(\) has the symbol

r(A) =(&-N7".

The first example explains why a(&, z) will sometimes be called the right-symbol of
A, because if A(,z) is a polynomial in £ one gets the corresponding operator (2.20) by
writing all powers of £ to the right of the functions of z and substituting then D, for £.

Our heuristic guiding principle is that |£| — oo corresponds to the semiclassical limit,
so in order that A has a nice semiclassical limit one has to impose some condition on the
symbol a for large £&. A suitable space of symbols is given by the set of smooth functions
a(&,z) € C®(RY x RY) which satisfy

0200a(€,x)| < Cap(L+ €)™ P for all a, B € Z¢ (2.21)

for some real number m. The space of these functions is denoted by S™(R? x R¢), and m
is called the order of the symbol. Roughly speaking the condition (2.21) means that the
symbols behave very much like polynomials in £, or more general like sums of homogeneous
functions in . The smallest constants C,p in (2.21) define a family of semi-norms on
S™(R? x R?) with respect to which it is a Fréchet space, see [Hor85a.

A subclass of the space of symbols of order m is given by the symbols which have an
asymptotic expansion in homogeneous functions,

a(§,2) ~ Y ami(€,1) (2.22)

with

am—k()‘fa :L') = )‘m_kam—k(fa .I) ’
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for all A > 1 and |£]| > 1. Since homogeneity is only assumed for |£| > 1, this allows the
am—k(&,2) to be smooth around & = 0. The definition of the asymptotic expansion (2.22)
is

N-1

a(€,7) =) ami(,7) € S"V(R x RY) (2.23)

k=0

for all N € IN. These symbols are called classical or polyhomogeneous, and the space of
them is denoted by S7 (R?xR?). The leading term in the asymptotic series, i.e. am(, 1),
is called the principal symbol of a(§, x).

We will denote the class of operators with symbols in ST (R? x R%) by 7 (R%), and
the one with symbols in S™(R¢ x R%) by ¥™(R?). For an operator A in ¥™ (R%) one

phg
denotes the principal symbol often by

o(A) (& ) = an(&, x) .

In order to clarify the nature and meaning of the symbol and the principal symbol,
respectively, we apply A € ¥ (R?) to a function of the form e**(®) with ¢ € C*(RY)
and A € R, and consider the limit A — o0, i.e. , the highly oscillating or semiclassical limit,

AN () = (271r)d / / v TN g (¢ 1) dyde

d
_ (2)\—)d// ei)\[(z*y,f)+¥’(y)]a(/\§, .’13) dyd¢ .
m

Applying the method of stationary phase, see Appendix D, to this integral gives
Ae(z) = A" (A)(¢ (2), 2)e* D + O(A™ 1) . (2.24)

But (¢'(x),z) is a point in T*R%, because ¢'(x) is just the vector of coefficients of the
one-form d¢, so the principal symbol is a function on phase space T*R%. In contrast the
full symbol is not a function on phase space, and is only defined locally. Therefore the
principal symbol defines a map from the space of polyhomogeneous operators ¥y, (R?) =
Unmer ‘If;’ﬁg(]Rd) to the smooth homogeneous functions on phase space,’

01 Wpopg(RY) — C=(T*RH\0)
A — o(A) .
Hence the principal symbol o(A) is the natural candidate for the classical observable

corresponding to A; it is a function on phase space, and it determines the “semiclassical
limit” (2.24) of A.

INote that a homogeneous function p(¢,z) is usually not smooth at & = 0, so it can only be in
C>=(T*R4\0), where T*R%\0 means that the zero section is removed.
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We now want to discuss the algebraic properties of W.,,. Recall that we want the
observables to form an algebra, and therefore in order to be acceptable as observables W,
has to be an algebra. Before doing so we want to make a remark on the full symbols.
Although the most important part is generally the principal symbol, it is often useful to
consider the full symbol and to ask how well it reflects properties of the operator. E.g.,
it would be nice if a selfadjoint operator had a real valued symbol. But this is only true
for the principal symbol, not for the full symbol. A different convention for associating a
function to an operator is given by the Weyl convention [Wey28]|, see, e.g., [Fol89] for a
nice presentation. Weyl considered the converse problem of quantization, i.e. of associating
an operator to a function on phase space. His basic postulate was that to the function
el(@2)+B:8) one should associate the operator el(@®+{8D=)) By Fourier transformation
one then obtains for a function A(&, z) the quantization

A= 7(2;)211 //A(a,ﬁ)ei(m’m)J’(ﬂ’Dm)) dadf , (2.25)

where A(q,8) denotes the Fourier transform of A in both variables. The action of A
defined by (2.25) on a function v € S(R?) can be written as an integral operator of the
form

Auta) = g [ [ A (@ w/2ut) duee (2.26)

and A is called the Weyl symbol of A. Let K(z,y) be the Schwartz kernel of a given
operator A, then conversely the Weyl symbol of A is

A6, z) = / e WO K (x4 y/2,0 — y/2)dy | (2.27)

i.e. the operator A can be written in the form (2.26) with A given by (2.27). From the
definition it follows easily that the adjoint operator A* has as a Weyl symbol the complex
conjugate of the Weyl symbol of A. In particular, one sees that a selfadjoint operator has
a real valued Weyl symbol.

The expression (2.27) looks more complicated than the simple one for the right-symbol
(2.19), but it turns out that computations with Weyl symbols are often simpler than with
the symbol (2.19). Therefore we will in the following mainly work with the Weyl symbol,
and refer to it sometimes simply as the symbol.

A further interesting aspect of the Weyl convention is that the Weyl symbol of the
projection operator onto a state 9 is the Wigner function [Wig32| of that state [Moy49].
The kernel of the projection operator onto the state v is simply K(z,%y) = ¥(x)1(y), and
therefore (2.27) gives

/ e~ P + /2w — /2) dy = WI(E, ) (2.28)
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From (2.27) it is simple to obtain the relation between the two types of symbols. If A
has right-symbol a, then its Weyl symbol is given by

A z) = PP a(g, 7)., (2-29)

where the operator e {P=Pe)/2 ig defined by e P=:Pe)/2eill@m+Ew) = o=in)/2ei((zm+(Ew)
Operators of the form e'@P=Pe)/2 where @ is a quadratic form, are called Gauss operators
and occur quite frequently in the theory of pseudodifferential operators. Their properties
are for instance studied in [H6r85a|, where it is shown that they map symbols to symbols,
more precisely one has

e—i(Dx,Dﬁ)/Q . Sm(]Rd) — Sm(]Rd)

for all m € R, and for a € S™(R? x R?) one can expand the exponential in (2.29) to get
an asymptotic expansion in the sense of (2.23),

o0

~ Zl, (D, De)/2)Fa(€,7) - (2.30)
k

Note that (—i{D,, D¢)/2)%a(,z) € S™*(R? x R?) by the definition of S™(R? x R?) in
(2.21), and therefore the asymptotic series is well defined. A similar expression exists for
a in terms of A, and therefore the class ¥"(R?) and U7} (R?) can as well be characterized
as the operators with Weyl symbols in S™(R¢ x R?) and S (R? x R?). Furthermore,
it follows from (2.30) that if a is polyhomogeneous with a ~ a,, + @pm_1---, then A is
polyhomogeneous with the same leading term A ~ a,,, + a1 +1(0%, Og)am /2 - - -, and vice
versa. Therefore the principal symbol of A is given by the leading term of its Weyl symbol,
@y = 0(A). The next-to-leading term in the asymptotic expansion of the Weyl symbol is
called the subprincipal symbol,

sub(A)(§, 7) := Am-1(¢, ) -

We come now to one of the principal tools in the theory of pseudodifferential operators,
the product-formula. The main point in the theory of pseudodifferential operators is to shift
the computations from operators to symbols, and to express properties of the operators
through the symbols.

Theorem 2.2.3. Let A € U™(RY) with Weyl symbol A and B € U™ (R%) with Weyl
symbol B, then AB € W™ (R) with Weyl symbol A#B given by

>

A#B(E, 2) = exOrPe=D-DD A(e, ) B(n, )

(&2)=(n.y)
00 1 k
NZ,{,[ ({Dy, De) = (Dg, D)) | A(&; 2) B0, Y)le.)=(n) (2.31)
k=0

= A(6,2)B(E,7) ~ {4, B}(€,2) mod ST I(RY x RY)

where {A, B} = (0, A, 0¢B) — (0:A, 0, B) denotes the Poisson bracket.
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This is a basic theorem in the theory of pseudodifferential operators. A formula similar
to this one in the context of i — 0 asymptotics has been derived by Moyal [Moy49], who
also noted for the first time the relation between the Weyl symbol and the Wigner function.
Most applications use the algebraic properties of these operators. As a corollary we get for
the principal symbols of products and commutators:

Corollary 2.2.4. If A€ U7 _(R%) and B € U7 _(R%), then

phg phg

o(AB) = o(A)o(B)
sub(AB) = sub(A)o(B) + sub(B)o(A) — 2i{c(A),c(B)}

7(1A4,B) = £ {o(A), o(B)} .

Therefore the principal symbol map is an algebra and a Lie algebra morphism (if
we consider %{, -} as the Lie algebra structure of the classical observables) between the
algebras of quantum mechanical and classical observables.

Let us sketch a first application of Theorem 2.2.3, which was one of the motivations
for developing the calculus of pseudodifferential operators. Let A € U™ and assume that
o(A)(& ) # 0 for all (£, x) with £ # 0: such an operator is called elliptic.

Theorem 2.2.5. Assume A € U™ is elliptic, then there exist operators R, L € ¥~™
called a right and a left parametriz, respectively, such that

AR —T € U
LA—T€ T

and 0(R) = 0(L) = 1/0(A). Here I denotes the identity operator and W= := (), Y™

is the algebra of operators whose symbols decay faster than any power in & for |£| — oo.

A parametrix can be viewed as an approximate inverse, but it exists as well in the case
when the operator is not invertible. We will sketch the proof for the left parametrix L.
Choose an operator £; € ¥~™ with o(L) = 1/0(.A), then by Theorem 2.2.3 one has

LA=T+S

with S € 1. Now choose £, € U° with

o0

Ly~ ) (—1)ks*

k=0

where the asymptotic summation is understood on the symbolic level. Since (1 +z) ! =
ST (=1)kz* for |z] < 1 we get with £ = L,£; the result LA — I € U and the result on
the principal symbol follows from Corollary 2.2.4, 0(L;) =1 and o(£) = 1/0(A).

If A is polyhomogeneous, then it follows that the parametrices are polyhomogeneous
too. The algebra of polyhomogeneous pseudodifferential operators is basically the small-
est extension of the algebra of partial differential operators in which elliptic differential
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operators possess a parametrix. This was one of the motivations for mathematicians to
introduce this algebra [KN65].

As can be seen from Theorem 2.2.3 and Theorem 2.2.5 computations with symbols
based on asymptotic expansions lead to results modulo ¥~°°. In this sense ¥~ is the
residual set in W*°. The operators in W~ are the smoothing ones in ¥*°, which means
that they map distributions to smooth (C'*) functions, which is equivalent to the fact that
their kernels are C'°-functions.

Example 2.2.6. As a further consequence of Theorem 2.2.3 we note an important class
of operators that do not belong to ¥, the orthogonal projection operators P on L?(M),
for compact M, with dimIm P = dimKer P = oo . A projection operator satisfies the
relation

P’=P. (2.32)

Now assume that such an operator belongs to U™ for some m € R, then by Theorem 2.2.3
one gets 2m = m, so m € {—o0,0}. If m = 0 then the principal symbol has to satisfy

o(P)*=0a(P),

so it can only take the values 0 and 1, and since it is assumed to be smooth it can only be
a constant equal to 1 or 0. Therefore P is the identity plus some smoothing operator, or
it is in ¥~°°, But the operators in W~ are all of trace class if M is a compact manifold,
therefore any projection operator in W~ is of finite rank.

m

The set of points where a pseudodifferential operator A € Uie

the characteristic set of A,

is not elliptic is called

char(A) :={(&,z) |o(A)(&,2) =0} . (2.33)

It is clear from the definition that pseudodifferential operators map A : S(R¢) — S(R?)
and by duality we have A : S'(RY) — S'(R%). The characteristic sets can be used to
define a very useful set describing the singularities of a distribution, the wave front set.
Intuitively the wave front set of a distribution consists of the points where the distribution
is singular, together with the directions in which it is singular.

Definition 2.2.7. Let u € S'(RY), then the wave front set WF(u) is defined as
WEF (u) := ﬂchar(.A) ; (2.34)

where the intersection is taken over all A € W7 with Au € C*° (RY). This set is indepen-
dent of m.

The wave front set is a closed conic subset of T*R%\0, and the projection of WF (u) to
R? is the singular support of u. A more direct characterization of the wave front set of u
can be given as follows. WF(u) is the complement of the set of all (£,z) € R% x R? for



38 Chapter 2. Microlocal analysis and semiclassics

which there is a neighborhood U C R? of x and a conical neighborhood? V' C R? of £ such
that for all ¢ € C§°(U)

pu() = o(lg™") , (2.35)

for € € V and each N € IN. Thus the wave front set consists of the points where the
distribution is singular, together with the rays in which its local Fourier transform is not
rapidly decreasing.
Examples 2.2.8:

e For the delta distribution centered at xy one has WF(6,,) = {(z0,&) | € € R4\0}.

o Let u*(z) = lim,_o(z +ie) !, for z € R, and where the limit is taken in D’ then
WF(u®) = {0} x R*.

e Let u(z) = 0(f(x)) where f is smooth. Then u is concentrated on the submanifold
S;:={z € RY| f(z) = 0}, and the wave front set of u is the conormal bundle of S,
see fig. 2.5,

WF(u) = N*Sy:={(&, )| f(z) =0, = Af'(z)for A € R\O } . (2.36)

WF(u)

Figure 2.5: Visualization of the wave front set (2.36)
of a delta-function on a submanifold S; C R?. It con-
sists of the manifold Sy together with the rays perpen-
dicular to it. This set is called the conormal-bundle
N*S¢ of Sy. S

The projection of the wave front set to the z-space is the singular support, and it follows
immediately from the definition of the wave front set, that for all A € U (M)

WF (Au) C WF(u)
singsupp(Au) C singsupp(u)
WF(u) C WF(Au) U char(A) .

The first and second property are called microlocality and pseudolocality, respectively.
From the first and third property it follows that WF(Au) = WF(u) for an elliptic operator
A.

The notion of the wave front set suggests to define an analogous set for operators, which
characterizes the set in phase space on which the operator is not smoothing:

2A conical neighborhood of ¢ is a set V' 3 ¢ which is conical, i.e. with € V one has A € V for all
A > 0, and the set of p € V with || = 1 is open in the unit sphere in R<.
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Definition 2.2.9. For an operator A: §'(R%) — S'(R?) the wave front set, also called
essential support, is defined as

WF(A) := {(&,z) | there exists u € S'(R?) with (&,7) € WF(u) and (¢,7) € WF(Au) } .

It is clear from the definition that
WF(Au) ¢ WF(A) N WF(u) .

For pseudodifferential operators the wave front set can be characterized easily through
the symbol. It consists of the points where the symbol is not in S™°(R?¢ x R%) :=
ﬂme]R Sm(IR‘d X Rd)a

(€0, 70) ¢ WF(A) iff a(¢,2) € ST(R* x RY) in a conical neighbourhood of (&, 7o) -

A further operation which can be transferred from the operator level to the symbol
level is the trace. Assume that A is of trace class, then the trace can be expressed through
the kernel K (z,y) of A as

tr A= /K(w,x)dx :
The kernel can be deduced from (2.26) and if we insert it into this expression, we get

tr A= (271r)d //a(g,x)da:df,

where a is the Weyl symbol of A. A similar formula is valid for the trace of a product. Let
a and b be the Weyl symbols of A and B, then

tr AB = (217)01 / / o€, 2)b(E, ) dade

A special case of this relation is the well known expression for the expectation value of an
operator A with Weyl-symbol a in a state 1 € L*(M) through the Wigner-function (2.28)

of 1,

(271r)d // a(&; 2)W[Y](€, z) dzde .

(1, Ap) =

Finally, before turning to applications, we want to discuss L2-estimates of pseudodif-
ferential operators. From the classical-to-quantum correspondence one might expect that
operators which are mapped to bounded functions are bounded operators. For the algebra
P> this is true.
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Theorem 2.2.10. The operators in ¥° are bounded and their L?-norm is a continuous
seminorm in S° (see (2.21)).

Furthermore, if the symbol is positive one expects that this is reflected in the properties
of the operator. This is the content of the Garding inequality:

Theorem 2.2.11. Let A be an operator with Weyl symbol a € S+ and Rea > 0, then
Re(Au, u) > =Cl|ul[) ,
where ||u||m) denotes the Sobolev norm with index m, see e.g. [Hir85a/.

Pseudodifferential operators can be defined on manifolds basically in the same way
as on R%. The symbols are defined in local charts, which makes a slight modification of
their definition necessary. Let U C R¢ be an open set, we will from now on say that
a € S™(U x RY), if for each compact subset K € U there exists constants C,p x such that

10200 a(&, x)| < Cap (1 + €)™ P forallz € K, (2.37)

and for all o, 8 € Z¢.

It turns out that the transformation formula under coordinate changes is quite compli-
cated. But the principal symbols can be glued together to give a function on the cotangent
bundle, and the formula (2.24) applies globally to give an invariant characterization of the
principal symbol. Therefore the notion of a wave front set for distributions and opera-
tors can be transferred directly. And all the further results mentioned so far are valid on
manifolds, too. We refer to [H6r85a] for more precise statements and a detailed discussion.

2.2.2 An application: complex powers and the MP-zeta function

We want to discuss an application of the apparatus developed so far to spectral problems,
which is due to Seely [See67]. Let M be a compact manifold, and H be an elliptic polyho-
mogeneous pseudodifferential operator of order m on M with Weyl symbol H. We want
to study the complex powers of H,

H z€C,

and the Minakshisundaram-Plejel, or MP-zeta function [MP49], which is the trace of H?,
C(z) :=trH*.

If H is selfadjoint and positive, the complex powers can be defined by the spectral theorem,

He = Ailton) (Wl , (2.38)

where A, and 1, are the eigenvalues and eigenfunctions of H, and [),) (1, | is the projector
on the eigenspace spanned by 1,. We have used in the representation (2.38) that the
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spectrum is discrete, which follows from the compactness of M, see, e.g., [Hor85b]. For
the trace we then get

OEDIPSE (2.39)

so it only depends on the eigenvalues of H. Since the eigenvalues tend to oo the sum will be
absolutely convergent for — Re z large enough, and therefore (2.39) defines a holomorphic
function in a half space. The aim is to find a meromorphic continuation to the whole
complex plane, and to use information on the analytic properties and poles of ((z) to
obtain information about the spectrum of H.

Using the counting function (2.8), the zeta function can be expressed as

() = /0 TXEAN() | (2.40)
Assume now that N(\) has an asymptotic expansion for A — oo,

N(Y) = 22"+ 0()
with 8 < «, then by (2.40) ((z) is holomorphic for Rez < —a. Since we have assumed

that H is positive, the spectrum is positive and the lower limit of the integral (2.40) can
be shifted from 0 to some € > 0. Then we get

(@)= [Tt i i

a zZ+a
= ——F = —
z+ o +h() z+ o

+ fZ(z) ’

where fi(z) and fy(z) are holomorphic for Re z < —. So the first pole of the zeta function
gives the exponent of the leading term of N(A) for A — oo, and the residue determines the
pre-factor. The converse is the content of the Tauberian theorem of Ikehara [Wie32].

Theorem 2.2.12. Let N(A) be a non-decreasing function equal to 0 for A < 1 and such
that the integral ((z) = [° N*dN(X) converges for Rez < —a and the function

a

((2) +

zZ4+«

1s continuous for Rez < —a.. Then one has for A — oo

a
N(A) = =24 0o(A%) .
o
Unfortunately, more information on the analytic behavior of the zeta function does not
lead to a better remainder estimate for N()). The reason for this is that possible oscillating

contributions to N (), for instance of the form A cos(\?), give a holomorphic contribution
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to the zeta function. But nevertheless, we see that from a study of the analytic properties
of the zeta function we can determine the leading asymptotic behavior of the spectral
counting function.

Now the analytic properties of the zeta function can be determined with the help of
the calculus of pseudodifferential operators.

Theorem 2.2.13. Let H be an elliptic polyhomogeneous pseudodifferential operator of or-
der m, then H? is a polyhomogeneous pseudodifferential operator of order m Rez with
principal and subprincipal symbol given by

o(H*) = o(H)*
sub(H?) = zsub(H)o(H)* !,

respectively. If M is compact, then the zeta function ((z) = trH* has a meromorphic
continuation to the whole complex plane with possible simple poles at the points z = (k —
d)/m for k =0,1,2,3,---, but no pole at z = 0. The residues at the first two poles are
given by

res,__a (= —m/(S(a(H)(f,x) —1) dzdé
res,_i=a ( = (d—1) /sub(%)(f,x)é(a(?—l)(f,x) —1) dzdg .

The starting point for the derivation of this result is the following representation of H?
through the resolvent of 4 by a Dunford integral

W= — / N(H—N""d), (2.41)
2 Jp

for Re z < 0, where I is a path in C starting at —oo + ie surrounding the origin clockwise,

and tending to —oo — i€, see fig. 2.6.

A Imz
-

: . : : - Rez
Figure 2.6: The path of integration I' in -

the complex domain for the integral (2.41),
by which the complex powers H? are rep-
resented.

Furthermore we assume that # is positive. The expression (2.41) for #* can be contin-
ued to Re z > 0 by multiplication with integer powers of H, which are already known to be
pseudodifferential operators by Theorem 2.2.3. In order to use (2.41) we have to construct
the resolvent for #,
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for A away from the spectrum of H. We have already discussed a similar problem in
Theorem 2.2.5, i.e. the construction of a parametrix for an elliptic operator. The only
drawback of this construction is that it is not uniform in the parameter A\. In order to
achieve this we will make an ansatz for the symbol of R(A) which is an asymptotic sum of
functions which are jointly homogeneous in £ and A;

R(E,z,\) ~ ZR_mkg:cA (2.42)

with
Ry (t&, ,t™\) = t* R (&, 2, A) (2.43)

for ¢ > 0. We have already seen in the simple Example 2.2.2 that the symbol of the
resolvent of the Laplacian in R? was of this form. Note that % — X is of the same type,
since

o0

H— X~ (Hpi — Aog) (2.44)

k=0

and the terms in the sum are jointly homogeneous in (&, ) of degree m — k in the sense of
(2.43). The symbol of H?# will then be given by

H(z:6,2) ~ 3 Hyumi(2:6,2) (2.45)
k=0
with
Hy k(2&,2) = 2;T//\ZR_m k(& x, A) dA . (2.46)

Now the defining equation for the resolvent, R(A)(# — A) = I, reads on the symbolic
level

Rz, N#(H(E x)—A) =1,
and inserting the product formula for pseudodifferential operators, eq. (2.31), gives

[e%s) 1 l

Z—[— (D, De) — (D, D) | RIE . ) (H 1 9) — N

(€x)=ny) = 1 -

=~

Inserting the asymptotic series for H — A, and R, (2.44) and (2.42), and ordering by
homogeneity gives the set of equations

R—m(gaxa /\)(Hm(é-’ $) - )‘) =1
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and
11 "
2 ;{;@%DQ—U%J%»-Rm%@wﬁﬂﬁwﬂmw—kﬁw =0,
k+j+n=p (&z)=(ny)
(2.47)
for p =1,2,.... Since the sum contains no derivatives of R_,,,_,(&, 2, A) and only terms

R k(& 2,)\) with & < p, this set of equations can be solved recursively to get the
functions R_,, (&, x, ). The first two terms in the asymptotic expansion (2.42) of R
follow to be

R_pm(€,2,) = m

Hm—l (ga x)
(Hin(§,2) — A)?
The next terms become considerably more complicated, but can in principle be computed

by elementary algebraic manipulations. From (2.47) it can be deduced by induction that
they are of the general form

(2.48)

Rfmfl(ga €, )‘) = - (249)

Romi(&2,0) =) (Hm(vfl’,kg’f)»lﬂ ’ (2.50)

=1

where the functions 7, x(€, ) are homogeneous of degree ml — k in £ and do not depend
on .

Since the dependence on A is explicitly known for all R_,,_;, one can compute, with
the help of the formula

i N? 2(z—1)---(z—1+1) ,_
_ - = (—1) z—1
27T/F =y =D I =

the terms in the asymptotic expansion (2.45) for the symbol of H?. The first two terms
follow from (2.48) and (2.49) to be

Hm(z; &, ,’13) = Hm(é-a x)z
Hm—l(z; ga .73) = ZHm—l(é-a .Q’))Hm(é-, x)z—l ’

and for £ > 2 the terms are given by

Hool6.1) = Y nal o)) S E e e

Notice that

Hm—k (Z; tfa .I) = tmz_ka—k(Z; 65 ‘T) ’ (252)
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for ¢ > 0. Hence H? is a classical pseudodifferential operator of order m Re 2z, with principal
symbol o(H?) = o(H)? and subprincipal symbol sub(H?) = zsub(H)o(H)? !, as claimed
in the first part of Theorem 2.2.13.

From (2.52) it follows that for m Re z < —d the operator H* is of trace class with trace
given by

tr H? :/ H(z; &, x) ded€

and this function is holomorphic in the half plane Re z < —d/ m. In order to obtain an an-
alytic extension to Re z > —d/m we write H(z;¢, ) ZkN o Hnk(2:€,2) + [H(z €, 2) —

Zk o Hm-k(2; €, 7)], and note that [H(2; &, x) — Zk o Hm (26, 2)] € gmRez=N-1_ There-
fore the second term in

trH* = //ZHmszxdxd§+//H €, x) — kﬁ%[—[mszxdxdg

is holomorphic in the half plane Rez < —(d + N + 1)/m. Hence we only have to find the
analytic continuation of the first term,

//gHmk(zsi,x) dzde |

which can be done for each summand separately. The function H,,_x(z;&, z) is homoge-
neous of degree mRez — k for [£] > 1 and smooth everywhere. Choose a smooth cutoff
function x(A) which is 0 for A < 1/2, and 1 for A > 1. Then we get

//Hmkzgxdxdg // VHom k(25 €, ) dzd€
+//( X(Hm(&, ) Hmk(2; €, ) dad€

Where the second term is holomorphic in €. The first term gives, by introducing s =
,x) as new coordinate,

// (€, 7) a2 €, 7) dadg = / () [ Hoosless6.a) din(6.) 5 ds
Hyoa(z16,0) dul€,o) [ (o)™t ds
0

¥

where dy;(§,x) is the Liouville measure on 3, := {(&,z); Hp,(&,z) = 1}. The integral
over s defines for mz — k 4+ d < 0 a holomorphic function of z, which by partial integration
can be written as

o 1 o0
/ X(S)sz—k—i—d—l ds = — / XI(S) sz—k+d ds .
0

mz —k+d J,
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Since x'(s) has compact support the integral defines a holomorphic function of z, and we
have found the meromorphic continuation we were looking for; [[ Hy,,_x(2;&,z) dzd€ is
meromorphic with exactly one pole at z = (k — d)/m and its residue there is

—m | Hp i ((k—d)/m;z,&) du(é, ) .

P
Notice that because of (2.46) H,,_4(0;&,z) = 0 and therefore the residue at z = 0 vanishes.
Hence we have found that {(z) is a meromorphic function on C with possible simple
poles located at the points z = (k — d)/m for k =0,1,2,3,--- and k # d. The residues at

these poles can be computed explicitly from the symbol of H, and the first two are given
by

res,—_q/m C(2) = —m/ du(é, x) = —mvol(%;)
1

o5,y C(2) = (0= 1) [ Hoesl6,0) du(e,a)

By a closer inspection of (2.51) and the functions 7, ;(&,2) one can say more about the
residues; e.g., the residues at z = 1,2,... vanish, and if H is a second order differential
operator, then there are no poles at z = —d/2+ k, k = 0,1,2.... For more information
on this subject we refer to the literature [See67, DG75, Shu87|.

Example 2.2.14. Consider as an example M = S* and

d2
=—— 4P
H P + P,

where P is the projection operator onto the constant functions. The eigenvalues of H are
the squares of the natural numbers; n?, n € IN, with multiplicity 2 except for the first one
which has multiplicity 3. So the zeta function is given by

((2) =3+ 2n% =3+ 2(p(—22)
n=1

where (gr(s) =Y -, n~* denotes the Riemann zeta function. The symbol of H is

H(§2)=¢

modulo the smoothing part coming from P. The symbol of H#? turns out to be £2* modulo
S~ and so ((z) has only one pole at z = —1/2 with residue equal to —1. Therefore one
can conclude that the Riemann zeta function has only one pole at s = 1 with residue 1.
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2.2.3 Functions of pseudodifferential operators and applications
to spectral asymptotics
The Tauberian Theorem of Tkehara, Theorem 2.2.12; together with the results on the

analytic structure of the zeta function and its residues in Theorem 2.2.13 give an asymptotic
formula for N()).

Theorem 2.2.15. Let M be a compact manifold of dimension d, and H be an elliptic
selfadjoint classical pseudodifferential operator of order m > 0, then

1
N(}) = < vol (%) MM o(A™y N o0, (2.53)

where vol(X1) = [[d(o( — 1) dzd€ is the volume of the energy shell at energy
A=1.

The method used in the last section to construct powers of H can be extended to
construct more general functions of an operator. Let f(z) be holomorphic in a domain
containing the spectrum of H, then by the spectral theorem

)=%/F% dx, (2.54)

where I is a path surrounding the spectrum anticlockwise, and the function f should satisfy
the additional assumption |f(z)| = o(1) for z € T, in order that the integral converges.
Going through the calculations for f(A) = A%, one sees that f(?) is a pseudodifferential
operator with symbol

37) ~ Zmek(ga .’13) )
k=0

where

Gm—k (&, T) Z%k £, ) Hp(&,2)) , (2.55)

and the summation starts at [ = 1 for k£ > 1. The functions 7, x(£, z) are identical to the
ones in (2.50). This implies that if f satisfies a symbol condition of order &, like

fO@)] < G+ o)

for z € R, then f(#) is a pseudodifferential operator in W*™(M). For k < 0 this follows
from (2.54) and (2.55), and for k > 0 one uses the family H?* to define the family of functions
fs(2) == 2°f(2). For Res < k, fs(H) is already defined, and can be extended analytically
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to Res > k, and in particular to s = 0. The principal symbol and the subprincipal symbol
of f(H) are given by

o(f(H)) =f(o(H)) (2.56)
sub(f(H)) =sub(H)f'(c(H)) - (2.57)

The formula (2.54) is only one possibility to define and study functions of pseudodif-
ferential operators. Other methods use integral transformations, like the Fourier transfor-
mation,

f0) = o [ Foy @ ar,

where f(t) is the Fourier transform of f. Instead of a construction of the resolvent, a
functional calculus using this representation has to be based on a construction of e **. But
these operators are generally not pseudodifferential operators. For a first order operator
H, e "™ is a Fourier integral operator, a type of operator which we will discuss in the next
section. A further, more recent, powerful method of defining functions of operators is via
the method of almost analytic extensions, see [DS99].

The advantage of having other ways of defining functions of operators available is
that one can allow larger classes of functions, e.g., functions which are not analytic, like
smooth functions with compact support. They can be used for a different approach to the
asymptotic behavior of N(\), which is based on the representation

N\) =trO(A—H) ,

where O is the Heaviside step function, which is 0 on the negative half-axis, and 1 on
the positive half axis. By approximating © with smooth functions for which a functional
calculus is available, Tulovskii and Shubin [T'S73], and Hérmander [H6r79], have proven
asymptotic expansions for N(\) with better remainder estimates than the one obtained
with the zeta function method. To illustrate the idea we proceed as if the functional
calculus would be valid for ©(A — H), and get by using (2.56) and (2.57) that

trO( — H) = (217)d // (O — o(H)(€, 7)) — sub(H)(€, 2)O' (A — 0 (H) (€, 2))]dadé + ...

5/
= dzxd¢&
(2m)e o(H)(€,2)<A
1

(2m)¢ / / o (H)(€,2)= sub(H)(€,z) dp(€,z) + ... .

(2.58)

The first term is the same as in (2.53) as can be seen by the theorem of Stokes. In this
form it admits a nice interpretation: It is approximately equal to the number of Planck
cells of side-length 27 which fit into the ball {(¢,2) € T*M | o(H)(&,x) < A}. This is
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what one expects heuristically from the uncertainty principle, see [Fef83] for a beautiful
discussion of this point and much more. Under some mild additional conditions on the
flow generated by o(#) the second term is as well correct [DG75], i.e. the corrections to
(2.58) are of lower order in A. In the semiclassical context, which we will study in more
detail in Section 2.5, a similar result has been proven in [PR85].

In [TS73, Hor79] operators on R¢ are considered, instead of operators on compact
manifolds, as we do here. They show that, for a large class of operators H, (2.58) is true
with a remainder O(\2(4-2/3)/m+€) for every € > 0.

2.2.4 The Szego limit theorem and quantum limits

We continue to assume in this whole subsection that  is a first order elliptic selfadjoint
pseudodifferential operator on some compact manifold M, and we will study some general
properties of eigenfunctions of this operator.

Powers of ‘H can be used as well to draw certain conclusions on how the high energy
behavior of expectation values (¢, A1,) depends on the principal symbol o(A). Since the
operators in W°(M) are bounded, and H™™A € ¥°(M) for A € U™ (M), one has

[(Yns Apn)| < CaAY
for A € U™ (M). Now assume that A, A" € W7} (M) have the same principal symbol, then
A—A € ™ (M), and therefore

phg
Kwn: Awn> - Wn, «4'%)\ S C/\Zl_l - (259)

So the leading asymptotic behavior of the sequence (1, A, ) depends only on the principal
symbol of A. This is a further support for the interpretation of o(.A4) as the classical limit
of A, and the interpretation of the high energy limit as the semiclassical limit.

We can view the eigenstates as a sequence of bounded maps ¥°(M) — C,

V(M) > A (Y, Apy) € C

and by (2.59) the limit points of this sequence do only depend on the principal symbol.
Hence they define a classical state v : C*°(S*X) — C; these states are called diagonal
quantum limits. More generally, sequences of pairs of eigenfunctions can define classical
states.

Definition 2.2.16. A linear map v : C*(S*X) — C is called a quantum limit of H, if
there exists a sequence of pairs of eigenfunctions {{n;, Ym;} such that

jILTO<¢nj7 -Ad’mj) =v(o(A)),

for all A € YO(M). If mj = n; for all j, v is called a diagonal quantum limit.

The notion of a quantum limit is due to Zelditch [Zel90], who also has shown that these
are measures, i.e. they extend to continuous maps v : C(3;) — C.
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Proposition 2.2.17 ([Zel90]). Assume v is a quantum limit defined by a sequence of
pairs of eigenfunctions {1n;, ¥m, }jen of H € ™. Then the sequence of the differences of
the corresponding eigenvalues of H'/™ is convergent

Hm ((An,)"/™ — (Am,)' ™) =5,

j—o0
and the measure v is an eigenmeasure of the classical time evolution operator (2.12), V; =
exp t X, (3), with eigenvalue determined by s
v(Via) = e®v(a) .
In particular, the diagonal quantum limits are invariant measures.

The same techniques which lead to asymptotics of N(A) can be used to determine the
asymptotic behavior of sums of expectation values,

Na(A) =) (thn, Aty (2.60)

An<A

for A € WO, (M). A zeta function adapted to this sum is given by

phg
Calz) = tr AH® =) (thn, Atp) L .

n

Since AH?* has principal symbol
o(AH?) = o(A)o(H)",

the zeta function (4(z) has its first pole at the same point as ((z), with residue given by

te5emaym Cal2) = = [ ()€, 2)dule. )

We would now like to apply the Tauberian theorem, Theorem 2.2.12, but this requires
N4()\) to be real valued and non-decreasing. This is not the case for general A, but by
noting that N 4(A) is linear in .4, we can easily reduce the general case to the special case of
positive .A. By splitting A first into its selfadjoint and anti-selfadjoint part we are reduced
to real valued expectation values, and since A is bounded we can split A = (A+||Al|)—|[.A||.
The first term is positive, whereas N_j4/(A) = —||A||N(A) is known for the second term.
So an application of the Ikehara theorem leads to the following theorem which is called the
Szeg6 limit theorem [Gui79, Hor85b).

Theorem 2.2.18. Let ‘H be a selfadjoint classical pseudodifferential operator of positive
order with eigenvalues and eigenfunctions X\, and ,, then

. 1 1
lim T)%wn,wm - / o) du (2.61)

for all A € WO, (M).

phg
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This is an important semiclassical result. It means that quantum mechanical mean
values approach the classical mean value of an observable in the high energy limit. In
view of the notion of quantum limits, the Szeg6 limit theorem implies that the mean of all
diagonal quantum limits is given by the Liouville measure on ;.

In fact Guillemin [Gui79] gave a more general statement which can be deduced from
(2.61). Let E(A) = >, <\ [¥;){(¥;| be the projection onto all eigenstates with energy

smaller than ), then one has for all f € C(R) and all self-adjoint A € ¥, (M)

Jim it FEWABW) = o [ () du (2.62)

This can be used to draw conclusions on the non-diagonal quantum limits also. Take, e.g.,
f(t) = t%; in this case (2.62) leads to

) 1 s 1 2
Ah_g)low > (b, Athm)| —W/U(A) dp .

AnAm <A

The preceeding constructions can be used to introduce a further interesting concept, the
so-called residue trace, also called non-commutative residue or Wodzicki residue [Wod82,
Gui85|, see [Kas89, FGLS96] for overviews. The aim is to define a trace on the algebra of
pseudodifferential operators, even if these are not of trace class in the usual sense. Let H
be a positive elliptic selfadjoint pseudodifferential operator of first order, and A € Ul
then, as we have seen, tr AH? is well defined for m + Re 2 < —d and admits a meromorphic
continuation to C with poles at the points —m, —m +1,.... One defines the residue trace

of A to be the residue of tr AH? at z = 0,
res A :=res,_otr AH* .

A remarkable property of this expression is that it is a trace, i.e. it vanishes on commuta-
tors,

res[A,B] =0,

and furthermore it is independent of the choice of . Additionally, it vanishes on trace
class operators and res A does only depend on the term of order —d in the asymptotic
expansion of the symbol of A.

2.2.5 Fourier integral operators

Our characterization of pseudodifferential operators was based on their action on plane
waves, see (2.19). Their characteristic feature is that they do not change the frequency
of the wave, but only add a slowly varying amplitude. Now we are looking for a class
of operators which can be interpreted as quantizations of canonical transformations, and
for them one expects that they change the frequency of a plane wave according to the
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associated canonical transformation. So we make an ansatz similar to (2.19), with e¢(z) =
ei(ms'@’

Fee(a) = al¢, 1)) | (2.63)

where we assume that a(, z) is a symbol in S™(R?xR?) for some m, and 9 (&, z) is a smooth
function which is homogeneous of degree one in ¢ for |£| > 1. By linear superposition the
action of such an operator on an arbitrary distribution v € S'(R¢) is then given by

Fula) = ¢ 271r)d / UED (e 1)a(E) de . (2.64)

Such an operator is called a (local) Fourier integral operator. They were introduced in
this form by Hoérmander [H6r68, Hor71], but they have many predecessors and roots in
different areas of mathematics and physics, e.g., [Foch9, Mas72]. Some of their history is
discussed in [Gui94].

Examples 2.2.19:

e For (&, z) = (2,€), F is a pseudodifferential operator, so pseudodifferential opera-
tors can be considered as special cases of Fourier integral operators.

o Let ¥(&,2) = (p(x),£), where ¢ : R* — R¢ is a diffeomorphism, and a(£,z) = 1.
Then

1

@ / 0@ 4(¢) de = u(p(x)) (2.65)

Fu(z) = o

so F transforms functions to new coordinates, y = ¢(z). If one chooses instead
a(é,z) = |det ¢'|'/2, then

1 i{p(x
Fule) = b [ s

so u is transformed as a half-density, see Appendix A.

det ¢'[Y20(€) A€ = | det ¢ [V ?u(p(z)) , (2.66)

In contrast to pseudodifferential operators, a Fourier integral operator F is character-
ized by two functions, the phase function ¢ and the amplitude a. The question arises which
significance they have, and if the operator determines them uniquely. It turns out that the
most relevant object associated with F is the canonical transformation y generated by the
phase function 9, see Section 2.1.2, eq. (2.15). This was defined as

S:T"M -T"M
(& 2) = (& 2) = (n,9)
if and only if

n=v,&y), z=v&y) . (2.67)
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Notice that in order that a bijective map is defined by this prescription the matrix of mixed
second derivatives 1, (y, £) has to be nondegenerate.

The following theorem due to Egorov [Ego69], with a predecessor by Fock [Foch9], is
one of the main reasons for the usefulness of Fourier integral operators.

Theorem 2.2.20. Let F be given by (2.64) with ¢, := {63?;%} nondegenerate, a €
1 ij
S0

0 (RTXRY) with leading term ag = | det ¢ ,|'/* and B € W7 (R*), then one has F*BF €
v (RY) and

o(F'BF)=0(B)o®, (2.68)
where ® 1is the canonical transformation generated by the phase function v according to
(2.67).

So indeed Fourier integral operators can be viewed as quantizations of canonical trans-
formations. This theorem has a wide range of applications, a first one we note is that
it contains the invariance of the algebra of pseudodifferential operators under coordinate
transformations. This follows if we take F' from the second example (2.65).

It might illuminate the basic methods of the theory if we indicate a formal proof of the
result of Egorov on the principal symbol (2.68). According to (2.24) the principal symbol
of F*BF is given as the leading term in A of

e M) (F*BFe*) (1) . (2.69)
We will choose p(x) = (z, &), and call the oscillating function ey,
exg () = eiMato)
By (2.63) we have
Fexg(x) = @ a(2g, 2) |
and then (2.24) gives
BFeyg, () = X0 gy (A, 2)a (B) (ML (&9, ), 2) (1 + O(1/N)) .

Now from (2.64) it follows by inserting the definition of the Fourier transform of u that
the adjoint of F is given by

Frula) = Gz [ €000 G uto) dyan.

so modulo terms which are of lower order in \ we arrive at
.7: *BF € Ao (CC )

(27)d / / o (Win)—em=vO&D) g* (3, y)ag (Ao, y)o (B) (MY (o, ), ) dydn
)‘d —i —(z,n)— *
2mr)d // eI =@m =) i (An, y)ao (Ao, y)o (B) (M (&0, ), ) dydn -
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To evaluate these integrals further we use the method of stationary phase, see Appendix
D. The stationary points of 1(n,y) — (z,n) — (&, y) are determined by the equations

Un(n,y) —z =0
Uy (m,y) — ¥, (0, y) =0 .
Since 9, is nondegenerate, these equations determine an isolated nondegenerate station-

ary point n = & and y = y(&o, ). Evaluating the stationary phase formula together with
(2.69) gives

o(FBF)o0) = Lot

= ‘detfl[];’n(&),y” 0(8)(1/1;(50,?/),3/) )

and in view of (2.67) this gives the conclusion in the theorem of Egorov (2.68).

Definition 2.2.21. The class of operators on a manifold M which are given locally as a
sum of expressions of the form (2.64), where ¢ is a generating function for a canonical
transformation ® : T*M — T*M and a € S™(R? x R?), will be denoted by

I™(M,®) .

Since canonical transformations can be composed, one expects the same to be possible
for the corresponding Fourier integral operators. Indeed, let F; € I"™ (M, ®,) and F; €
I (M, ®,) and assume for simplicity that M is compact, then the product is a Fourier
integral operator associated with the composition ®; o ®, of &; and &,

F1f2 € Im1+m2(M, (I>1 0@2) .

Furthermore, if F € I™(M,®) then its adjoint F* is in I™(M,®~'). As for pseudo-
differential operators, Fourier integral operators of order zero on compact manifolds are
L?-bounded.

Due to the homogeneity of the phase functions v the canonical transformations are
homogeneous too. They form the automorphisms of the classical algebra of observables,
given by the smooth functions on ¥, or equivalently the functions on T*M which are
homogeneous of degree zero. So Fourier integral operators provide quantizations for the
whole classical automorphism group. But the converse is true as well. This is the content
of a beautiful theorem of Duistermaat and Singer [DS76].

Theorem 2.2.22. Let o : V3 (M) — VX (M) be an order preserving continuous auto-
morphism, i.e. a(AB) = a(A)a(B) for all A,B € V3. (M), and a(A) € Y5 (M) for
A € \Ifgflg(M ). Then there erists a unitary or anti-unitary® Fourier integral operator U

such that a(A) = U* AU, for all A € ¥ (M).

phg

3A anti-unitary operator is an anti-linear operator with U/*if = I.
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We now want to discuss some consequences of the theorem of Egorov. First it follows
directly from the definition of the wave front set (2.34), that for F' € I"™(M, ®)

WF(Fu) C &(WF(u)) ,

so the wave front set is transformed with the symplectomorphism. In the theory of partial
differential equations Fourier integral operators are used to transform equations to nor-
mal forms. By classifying the normal forms into which functions on phase space can be
brought by conjugation with a canonical transformation, one gets a classification for the
corresponding operators. As we have already noted, the theorem on the invariance of the
class of pseudodifferential operators under coordinate transformations is as well a special
case of the theorem of Egorov, because according to example (2.65) the pull back of a
coordinate transformation on M to C*°(M) is a Fourier integral operator.

Strictly speaking up to now we have only discussed the local theory of Fourier inte-
gral operators. The generating function which appears in the representation of a Fourier
integral operator is only defined locally, as well as the amplitudes a. The global object
corresponding to the phase function is the canonical transformation ®, and one can define
a principal symbol which is glued together in an invariant way from the amplitudes a for
such operators too. But there one additionally has to take the freedom in the choice of
the phase functions into account, which becomes rather technical at first sight, therefore
we refer to the literature for this subject [H6r85b, Dui73].

A prominent example for a Fourier integral operator is given by

U(t) = e

where H is a first order elliptic selfadjoint pseudodifferential operator, e.g., H = v/—A. If
we denote by ®! the classical flow generated by the principal symbol of H, then

Ut) € I°(M, d") .

U(t) is the time evolution operator for a quantum mechanical system on M whose Hamilton
operator is ‘H in units where A = 1.

Since this is an operator which one needs frequently we will describe its representation
as a Fourier integral operator more closely. We will denote the kernel of U(t) by K (¢, z,y).
It can be constructed from the Schrodinger equation,

(D1 + M) K (£, 7,y) = 0 (2.70)
together with the initial condition at ¢t = 0,
K(0,2,y) = d(z —y) .

Because H is assumed to be of first order and elliptic, eq. (2.70) is a hyperbolic equation,
and such equations can be solved with Lagrange distributions, which are the kernels of
Fourier integral operators. Inserting in the equations an ansatz of the form of the kernel of
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a Fourier integral operator leads to a set of equations for the phase function and the terms
in the asymptotic series of the amplitude. Solving these equations leads to the following
form of the kernel,

1 .
K(t2,y) = 23 / SWEDT WD (1, €, 3) de (2.71)

(2m)
where (¢, £, x) is a generating function for the Hamiltonian flow ® = exp(tX,(3,) of the
principal symbol of #, and a(t, &, z) is in S5, (R** x R?) with leading term

ao(t, &, x) = ™2 det Yl (t, &, 2)|'/? .

Here v is an integer, called the Maslov index. It is related to the fact that the gen-
erating function (¢, &, z) and the integral representation (2.71) are only defined locally.
Recall that a necessary condition for ¢ (¢, &, x) to be a generating function (2.67) was that
det ;¢ (t,§, x) # 0. At points where a generating function ¢); becomes degenerate the rep-
resentation (2.71) breaks down, but one can always choose different local coordinates, in
which again a nondegenerate generating function 19, and therefore a representation (2.71),
exists. It turns out that at these changes of the local representations the amplitude has to
be multiplied by a constant phase factor

ei(sign wlg’g—sign 1/12;'5)7T/4 (272)

in order that the kernels define the same operator. The number (sign v, — signay,) is
even because the signature will only change by an even number. The Maslov index v is
determined by the initial condition at ¢t = 0, together with the transition functions (2.72).

In case of the time evolution operator the theorem of Egorov implies that time evolution
for finite times and quantization commute in the semiclassical limit. Since

(0o, UE)" AU(E)Yn) = (n, Athn)

for eigenfunctions 1, of H, it follows from the theorem of Egorov that diagonal quantum-
limits v are invariant under the classical flow, i.e. they are eigenmeasures of the classical
time evolution operator

Viv=v.

The kernel of a Fourier integral operator in I"™(M,®) is a distribution given by the
oscillatory integral

1 ; _
L /el(w(ﬁ,w) Wea(€, x) de .

According to the discussion after (2.14) the phase (&, z) — (y,£) is a generating function
for the Lagrangian submanifold in 7*M x T*M given by the graph of ®. Generalizing this
expression, one calls a distribution of the form

u(z) = L @0 g (x
(@) = e [ €ata.0) as

K(x,y) =
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with a(z,0) € S™(R¢ x R*) a Lagrangian distribution associated with the Lagrangian
manifold A, generated by ¢ according to (2.13). Many of their properties are determined
by A, e.g., WF(u) C A.

The Lagrangian distributions associated to canonical relations between different man-
ifolds according to (2.16) define a larger class of operators than the one associated with
canonical transformations. An example is for instance the operator of restriction to a sub-
manifold N C M. As a further example let us consider the case that there is a fibration
of M by submanifolds N,, a € T', and on each submanifold a density p, is given such that
the dependence on « is smooth. Then the operation consisting of first restricting to N,

and then integrating against p,
U '_) /u|No¢ pa

defines a Fourier integral operator from M to I.

2.2.6 Microlocal analysis and the quantum-to-classical correspon-
dence

We now come back to the problem posed at the end of the first section, i.e. how the
classical and the quantum world are related to each other. We can now supply, with the
help of what we have learned about microlocal analysis, the missing relations in table 2.1.

First we consider the algebras. If we choose as quantum mechanical observables an
algebra of pseudodifferential operators W™ (M), then the map to the classical observables
is given by the principal symbol. It maps commutators to Poisson brackets, and has
therefore the desired algebraic properties. Furthermore, we have seen that in the high
energy limit the behavior of observables in leading order only depends on the principal
symbol, and the Szeg6 limit theorem told us that in the mean the quantum mechanical
observables approach the classical mean. Further properties like boundedness, positivity
or selfadjointness are preserved. But note that of course the principal symbol map is not
an isomorphism, it is not injective. This is not a flaw of our methods, but it reflects the
fundamental fact that there exists no quantization which exactly preserves the Lie-algebra
structures induced by the Poisson bracket and the commutator. This is the content of the
Gronewald-van Howe Theorems, see e.g. [AM78, Fol89).

A relation between the states on these algebras is given by the notion of quantum
limits. Convergent sequences of quantum states define a classical state. But notice that
pure states need not converge to pure states, even in the subclass of invariant states.

The automorphisms of the algebra of quantum mechanical observables are represented
by Fourier integral operators. Through the theorem of Egorov they define a canonical
transformation, i.e. an automorphism of the algebra of classical observables. For the case
of a first-order Hamilton operator the one-parameter group of automorphisms defined by
the Schrodinger equation is given by a family of Fourier integral operators, whose family
of canonical transformations is the classical flow generated by the principal symbol of
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\ quantum mechanics classical mechanics \
observables
An algebra of pseudodifferential o Homogeneous functions
operators W), (M) — on T*M: C*®(%,).
principal symbol
states

Continuous positive linear functionals on the algebra of observables:
quantum limits

eigenfunctions — eigenmeasures
Szego limit theorem
morphisms
Fourier integral operators — symplectomorphisms
I°(M, ®) Egorov d

Table 2.2: Comparison of the structures of quantum and classical mechanics with the
relations provided by microlocal analysis.

the Hamiltonian. Furthermore, the quantum limits generated by the eigenfunctions are
measures which are invariant under the classical flow.

2.3 Applications

In the last section we have described a considerable technical apparatus, and in order to
show that this was not just “l’art pour I'art”, we will now describe two applications of
this machinery to problems in semiclassical analysis. The first one is a theorem on the
asymptotic behavior of eigenfunctions in the case that the classical flow is ergodic. The
second one will be a discussion of the trace formula, a beautiful result which relates the
eigenvalues of a quantum mechanical system to the periodic orbits of the corresponding
classical system.

2.3.1 Quantum ergodicity

Let H be an elliptic selfadjoint positive pseudodifferential operator on a compact manifold
M. We are interested in the asymptotic behavior of the eigenfunctions

Hwn = /\nwn )

for A\, — co. Since the eigenfunctions are the same for all powers of H, it will be no loss
of generality if we assume that H is of first order, e.g. , H = v/—A. The corresponding
classical system is defined by the principal symbol (%), in case of H = v/—A it is conjugate
to the geodesic flow on T*M. We will study the case when the flow ®! is ergodic on ;.
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Ergodicity can be defined in a probabilistic way as follows: we start a trajectory at
t = 0 at a point (§,z) € ¥; and ask how often it will be in a given region D C ¥ of
the phase space. Then the relative time the particle stays in D will tend to the relative
volume of D, measured with the invariant measure p, in the limit ¢ — oo for almost all
starting-points (£, z) € ;. Or phrased in a different way, the probability of finding the
particle in D is vol(D)/ vol(X;), where vol(D) := [, du, independent of the position or
shape of D.

What could be the quantum mechanical analog of this behavior? The classical observ-
able just studied was the characteristic function of D, xp. This is not smooth, so there is
no pseudodifferential operator associated to it, but one might take a smoothing of it and
proceed with that. For the sake of simplicity we will ignore this point for the moment,
then the analog of classical ergodicity in the quantum mechanical system would be that
the expectation values of the observable associated with xp tend to the relative volume of
D, i.e., the classical expectation value. Generalizing this to all bounded observables gives
the expectation

(ton, Atpn) — o (A)

for n — oo and all A € ¥}, (M), where o(A) denotes the mean value

o(A) = ﬁ/z o(A)dy

The quantum ergodicity theorem states that this is true for almost all eigenfunctions /.
More precisely, one says that a subsequence {n,};en C IN has density a € [0, 1], if

- <
lim 7#{% =N =
N—o0 N

Theorem 2.3.1. Let H € \Il%)hg be an elliptic selfadjoint positive operator on a compact
manifold M, whose principal symbol generates an ergodic flow. Then there is a subsequence
of eigenfunctions {1y} of density one with

JIL%<wRJaA¢nJ> = U( ) ) (273)

for all A e ¥, (M).

phg

This property is called quantum ergodicity. In terms of quantum limits it means that the
Liouville-measure is a diagonal quantum limit of a sequence of eigenfunctions of density one.
It was first stated by Shnirelman [Shn74], and then proven for surfaces of constant negative
curvature by Zelditch [Zel87] and in the general case by Colin de Verdiere [Col85]. The
theorem is also valid for manifolds with boundary, e.g. , Euclidean billiards, [GL93, ZZ96].
In the semiclassical (i — 0) context the analogous result was proven in [HMRS87]. In order
to avoid confusion one should note that the notion of quantum ergodicity is not related
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to the older notion of (von Neuman) ergodicity in statistical quantum mechanics [BR79].
The assumption that the order of the operator is one is not very restrictive, since by taking
suitable powers we can reduce rather general operators to this case without changing the
eigenfunctions.

We will present a sketch of the proof, using some simplifications invented by Sunada
[Sun97]. Which tools we have to use is easy to see: first we have to implement the
dynamics, because we have to bring ergodicity into play. This will be done using the
theorem of Egorov. Secondly we need to take the high energy limit which we perform with
the help of the Szeg6 limit theorem.

Figure 2.7: The desymmetrized cardioid billiard
with the domains Dy, ... , D5 for which the rate
of quantum ergodicity is shown in the figures 2.8
and 2.9.

Let A be in \IIphg(M ); we will study the asymptotic behavior for A — oo of
[jp— 1 P— 2

An <A

where N () denotes the spectral counting function. Define

— 1 [T
Ap = T/ U (1)[A — o (AU() dt
0
and notice that because U(t)1, = e ™1}, we have

<wnaZT1/}n) = <wm A@%) - G(A) :

Using this and the Cauchy-Schwarz inequality we get

(o Atpn) = o (A)* = [(thn, Artpn) |
< ||"4T¢nH2 <¢nﬂATAT¢n> )

and therefore Sy(A, ) can be estimated as

SAAN) = 5757 22 [ Arti)* < 755 7 2 b A

An <A
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Applying the Szego limit theorem, Theorem 2.2.18, to the right hand side gives an upper
bound for the limit of Sy(A, \)

lim Sy(A,)) < ﬁ / o) oAr) du (2.74)

Now we have to estimate the right-hand side of (2.74). By the theorem of Egorov (2.68)
we have

_ 1 [T
o(Ar)e,z) = 7 [ o) 00(€,2) dt ~ oA
0
and since the flow ®! is ergodic it follows that

Jim (A1) (€.2) = o(A) — a4 =0,

for p-almost all (¢, z) € ;. Therefore, the right-hand side of (2.74) can be made as small
as one wishes by choosing T’ large enough, and so we arrive at the conclusion

lim N 7 2 M A) =0 (AP =0.

)\n<)\

This is a mean value of a sequence of positive numbers, and it is a simple lemma [Wal82]
that if this mean value is zero, then there exists a subsequence of density one which tends
to zero.

So we have shown that for every A € ‘Ilghg(M ) there exists a subsequence 1, of
density one which satisfies (2.73), and by a diagonal argument [Col85, Zel87] one arrives
at a subsequence of density one which satisfies (2.73) for all A.

The subject of quantum ergodicity is currently an active area of research. The two
main open problems are the questions on the existence or non-existence of exceptional
subsequences of eigenfunctions of density zero not tending to the quantum ergodic limit,
and the rate by which the quantum ergodic limit is achieved. For H = v/—A on surfaces of
constant negative curvature, Sarnak [Sar95] conjectured that unique quantum ergodicity
holds, i.e. all eigenfunctions tend to the quantum ergodic limit, and furthermore that they
approach this limit with a rate A\~1/%,

[(Yn, At) — o (A)] < CA, e (2.75)
for all e > 0.
For the Hecke eigenfunctions on the modular surface it was shown that
1 - €
W Z |<¢naXD¢n> - G(A)|2 S CE)\ 12+ 3 (276)
An<A

see [LS95, Jak97], which is consistent with (2.75). A similar result was for more general
systems derived from the so-called diagonal approximation in [Wil87, EFK*95|, which is
however not rigorous.
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Figure 2.8: The expectation-values of xp, minus the classical expectation value as a func-
tion of n, where Djs is shown in fig. 2.7.

In fig. 2.8 we show the quantity (v,,.Av,) — o(A) for the cardioid billiard with an
observable A = xp where D C M is a domain in position space. In order to see the rate
of quantum ergodicity more clearly, in fig. 2.9

ST W x0tn) — Xl (2.77)
M<VE

Si(E, xp) := m

is plotted, taken from [BSS98], which is only partially consistent with the expected rate
E~'/4_ A systematic study of the rate of quantum ergodicity for Euclidean and hyperbolic
billiards can be found in [AT98, BSS98].

The question of unique quantum ergodicity is related to the existence of scars. Since
quantum limits are invariant under the flow, for ergodic systems a quantum limit not
equal to the Liouville measure has to be singular relative to the Liouville measure, and in
particular has to have support of u-measure zero. Candidates for such limits are measures
concentrated on periodic orbits, the ones concentrated on unstable isolated orbits are called
scars. Such states have been observed numerically, e.g., in the stadium and the cardioid
billiard, but no proof of their existence up to arbitrary high energies exists currently.

A probably more accessible candidate for a non-quantum ergodic subsequence is pro-
vided by the so called bouncing-ball modes. They exist in billiards which possess two
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Figure 2.9: The quantity S;(F, xp), see (2.77), for the different domains D; shown in fig.
2.7. The inset shows a logarithmic plot together with the fits to CE'/4*+¢, [BSS98].

opposite parallel sections of the boundary, like the stadium or the Sinai billiard. Some
examples of them are shown in fig. 2.10. They are concentrated on the rectangular part of
the billiard and have a structure close to eigenfunctions of a rectangle. In [BSS97] heuristic
arguments were given that these non-quantum ergodic eigenfunctions survive the semiclas-
sical limit, and furthermore an estimate for their number was obtained and numerically
checked. It turned out that their number depends on the shape of the billiard, and that one
can find ergodic billiards for which this number comes arbitrarily close to the upper limit
given by the quantum ergodicity theorem. So the quantum ergodicity theorem appears to
be sharp.

2.3.2 The trace formula

The second application of the methods from microlocal analysis we want to discuss is the
trace formula. In physics it is called the Gutzwiller trace formula, and was derived by
Gutzwiller and Balian Bloch [Gut71, BB72]. It is an important tool in quantum chaos,
since it relates the quantum mechanical eigenvalues to the periodic orbits of the classical
system. The formulation we want to discuss here is due to Duistermaat and Guillemin,
[DGT75], and applies to first order pseudodifferential operators on compact manifolds. The
relation to Gutzwiller’s formula will be discussed in Section 2.4.

Let H be an elliptic selfadjoint first order classical pseudodifferential operator on a
compact manifold M, and U(t) = e7**. The trace formula gives an expression for the



64 Chapter 2. Microlocal analysis and semiclassics

L

- = - E_E_ 3 -
— - — - - -
- - — — — -
— - — — — ——
- - — — —
| . — R — —
. - - - E__J — .
o - E — - -
R — - - - -
— - - - - -
E — | - e —
— - — - —
— — — —

Figure 2.10: A series of bouncing-ball modes in the stadium billiard with Dirichlet bound-
ary conditions [BSS97]. Such eigenfunctions are conjectured to exist for arbitrary energies,
and therefore possibly form a non-quantum ergodic subsequence of eigenfunctions in the
ergodic stadium billiard.

trace of U(t),
trUd(t) =Y e

Obviously U(t) is not of trace class, but since by Weyl’s law, equation (2.53), A, ~ Cn'/¢
for n — oo, the trace can be viewed as a distribution on S(R),

S(R) 5 p s /p(t) trU(t) dt = 3 p() |

The trace formula is concerned with the nature of the singularities of this distribution. A
first beautiful result, called the Poisson relation, gives the position of the singularities of
the wave-trace. Let ®' be the flow generated by the principal symbol of H on ;. One
calls T a period of ®¢, if there is a point (£,z) € ¥; with ®7(£,z) = (£,z). The orbit
through (&, ) is then a periodic orbit with period 7. The set of all periods is called the
period spectrum and will be denoted by 7.

Theorem 2.3.2. The singular support of the distribution trU is contained in T. More
generally

WF(trif) C T x R, . (2.78)
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This was proven by Chazarain [Cha74]. So the periodic orbits determine the possible
positions of the singularities of this sum over eigenvalues. The original proof is based on the
wave-front set calculus and needs a representation of U(¢) as a Fourier-integral operator.

We will sketch a different proof, see [Wun99], which works via microlocalisation. Given
an interval [t1, 5] which contains no element of 7', we will show that tri(t) € C*°([t1, t2]),
which is the first part of the theorem. That there is no element of T in [¢1, t5] means that
there is no (§,z) € ¥; with ®(&,z) = (£, ) for t € [t1,t5]. Because 3 is compact we can
therefore find a finite open covering {Q;};c; with

0N =0,

for ¢ € [t1,5] and all j € J. Now one can find operators A; € ¥, (M) such that {A%};cs
form a microlocal partition of unity subordinate to {€;};c;. This means that modulo

smoothing operators

d AP=1 and WF(4;) CQ;.

jeJ
Therefore we get modulo smooth functions

trid(t) = Y trU(t)AT =) tr AU A;
jed jedJ
but since by the theorem of Egorov WF(U(t).A;) = ®*(WF(A;)), we have
WEF(AU(t)A;) = WE(A;)) N (WF(A4;)) =10 .

So AU(t)A; is smoothing for ¢ € [t1,ts], and therefore of trace class for all j € J. But
since J is finite tri/(¢) is smooth too for ¢ € [t1,%]. The fact that the wave front set
now contains only positive frequencies follows simply from the fact that the operator H is
assumed to be positive. Let ¢ € S(R), then

ptrld(N) =Y G\ = M) ~ AN

for all N € IN.

Is there equality in the Poisson relation (2.78)? That means, is the period spectrum a
spectral invariant? This question is not entirely solved, but for certain types of systems it
has been shown that equality holds in (2.78). In order to answer this question one has to
study the wave-trace trif(t) more closely near the periods 7. The structure there depends
only on the type of the periodic orbits with period 7', and for a large class of periodic
orbits it was studied by Duistermaat and Guillemin [DG75]. But before describing their
result, we want to study some examples.

Example 2.3.3. Let R?/Z? be the two dimensional torus, with Hamilton operator H =
v —A. The eigenvalues of H can easily be computed. They are given by

271"]{3‘:271'\/]47%4—]{3% y for k:(kl,kg)EZQ .
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The basic tool for the study of the wave-trace of v/—A will be the Poisson summation
formula,

Y ba—k)=) e, (2.79)

kez?2 keZ?2

for z € R?, see e.g. [Hor83]. Using this formula one can express the wave-trace of v/—A as

tru(t) =Y e M =" / e 2el§(y — k) da

kez? kez?

— § :/e—2n1t|$|827r1ka: dr .

ke72

But the integrals in last line can, upon introducing polar coordinates, easily seen to be
. . 1 o0 .
/ e el 4y = / Mo([k[A) M d) | (2.80)
™ Jo

where Jy(z) denotes a Bessel function of the first kind. Hence we have arrived at the
following expression for the wave-trace of v/—A

1 [ .
trU(t) = %/0 Ao(|E[N) e d

kez?

as an equality between distributions on S(R). Now the individual terms (2.80) have their
singularities at t = +|k|, which are exactly the periods of the periodic orbits of the flow
generated by the principal symbol || of v/—A.

By taking the Fourier transformation of the wave-trace tri/(¢t) = > e " one arrives
at a representation of the spectral density of # = v/—A,

o0

S 60— A) = %/\++% S A Jo(k) (2.81)

n=0 kez2\{0}
where A, =0 for A <0and Ay = X for A > 0.

At first sight it might appear that the crucial fact which allowed the derivation of (2.81)
in the preceeding example is that the eigenvalues are exactly known. But this is not quite
right, the main point is that the torus is a homogeneous space, i.e. the quotient of R?
by a discrete group. A similar situation occurs for compact Riemannian surfaces of genus
g > 2, they can be represented as the quotient of the upper half-plane H by a discrete
subgroup I' C SL(2,R), M = H/T'. Here the eigenvalues of the Laplace-Beltrami operator
are not known explicitly, but group theory allows to set up a similar formula as for the
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last example. Let H = \/—A — 1/4, and let A, be the eigenvalues of H, then the famous
Selberg trace formula [Sel56] reads

(o) AM oo 1 T# [e’s} .
Zh(An):E / Ah(A) tanh(m ) dA+ 5— > STsinb(T/2)| / h(A)e T dA |
- TeT\{0} -0

(2.82)

where h is assumed to be an even function which is analytic in a strip [ImA| < 1/2+ 0
for some § > 0, and decays faster than (1 + |\|)~27¢ for some € > 0. Here 7% denotes the
primitive period of T', and A,; denotes the area of M.

Now we turn to the description of the results of Duistermaat and Guillemin, which
generalize the results of the previous two examples to a much larger class of systems, but
only asymptotically in the high energy limit A — oo. In order to describe their results one
has to introduce some notions related to the periodic orbits. Let v be a periodic orbit or a
connected family of periodic orbits with period 7', that means + is a connected component
of the set

{(f,x) €3y | @T(gax) = (gﬂx)} :

Families of orbits appear for instance in integrable systems, where they are given by invari-
ant tori with rational frequencies, whereas in chaotic systems isolated orbits are typical.
We will denote the dimension of v by d,,.

Now choose a point (£, z) € v and consider the linearized flow d®* (¢, z) : Ti¢ 1) (1) —
Ti¢w)(X1). Since v is invariant under ®T the tangent space of v at (£, 1), Tie)Y, 18
contained in the kernel of d®T (£, z) — I. If it is equal to the kernel,

Ker(d®” (&, z) — I) = Tie.0)7 (2.83)

then v is called clean. The map d®”(£,z) has always one eigenvalue equal to 1 corre-
sponding to the eigenvector X, along the flow. By dividing the subspace spanned by
this vector out we get a reduced map P, : Ti¢4)(X1)/(R - Xoa) = Tie0)(Z1)/ (R - X))
called the Poincaré map of . If v is one-dimensional, then the condition that +y is clean is
equivalent to I — P, being nondegenerate, i.e.

det(I — Py) #0.

For an integrable system whose Hamilton function is homogeneous, the radial coordinate
can be chosen as one of the action variables. If we call the remaining action variables I’
then the torus 7 is clean if

0’H

for I on 7.
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Duistermaat and Guillemin have shown that on a clean vy a natural density |du,| can
be defined. For example, for an isolated nondegenerate orbit it is given by

1

du.| = dt 2.84
‘ N’Y| \det(I—P7)|1/2‘ ‘ ) ( )
and for a clean family in an integrable system with angle coordinates (¢1, ... ,®q) by
1
|dpy| = =777 |1 - - -deal - (2.85)
14

Now the result of Duistermaat and Guillemin [DGT75] is:

Theorem 2.3.4. Assume T € T and all orbits v with period T are clean (c.f. (2.83)),
then T is an isolated singularity of trU(t) and near t =T one has

trU(t) = % 3 /]R T g (1) d) | (2.86)

[v|=T

The sum is over all orbits with period T', and a,(\) is a smooth function with

dy—1 00
. 2
Ay (N) ~ e/ <%) kzzgagk)/\_k , for A — +oo, (2.87)

and ay(A) = O(JA\|™N) for A = —oc and every N € N, where v, € Z/2 is the so called
Maslov indez of v. The leading term of a,(X) is given by

i T
o = [T
Y

wheresubH ' (€, z) = = fOT sub Ho®! (¢, z) dt denotes the average of the subprincipal symbol
over one period.

E.g., for an isolated nondegenerate orbit one has d, =1 and with (2.84)

a® — ¥ iTsubH’
7 Tdet(I - P

For a family of periodic orbits in an integrable system one has d, = d and it follows from
(2.85) that

1 TR
0 iT'subH
ag)—W/e ngldQOd
v ol

Since every point is periodic with period 0, tri/(t) has always a singularity at t = 0,
which is called the “big” singularity. Here the “family of orbits” is given by ¥; which is



2.3. Applications 69

always clean, so this singularity is isolated. The corresponding density is just the Liouville
density p on Y, and the Maslov index is zero. For this singularity the first two terms in
the asymptotic expansion of a(A) have been computed,

ol = / dp =: vol(%) , al) = (d - 1)/ sub(#) du =: sub T
1 3

and d, = 2d — 1.

The informations on the singularities can be transformed by taking the Fourier trans-
formation of trif into information on the asymptotic behavior of this Fourier transform
for large . Take a function p € C*°(R) whose Fourier transform p has compact support,
and assume that all orbits with periods in the support are clean. Then multiplying (2.86)
with p, and taking the inverse Fourier transform leads to

Zp)\ An) ZZ/ (A= N)a, (N)eT d)' .

T rer =t

The individual terms in the sum give with (2.87)

dy—1

A

. 7 . 2 .
/I;p(/\ _ )\I)av(/\l)elT)\ d/\, ~ ell/»y’/T/Q (%) ﬁ(T) elT)\[a(VO) 4 agl) 4. ] )

> =

Let us consider as examples two types of two-dimensional systems, corresponding to
the two examples discussed above. The first type of system is one where the flow has
only isolated nondegenerate periodic orbits. This is for instance the case if the flow is
hyperbolic, e.g., in the case of a geodesic flow on a manifold of strictly negative curvature.
Then one has for p € C§°(R)

> o= = (’;(:))2 vol(3;) Hf’”)(?

(2.88)

iTsubH’ _iTA
WZ Z|de” Py © X+ 0(1/N) .
T

How does this compare with the Selberg trace formula (2.82)7 First of all in this case the
subprincipal symbol vanishes. Furthermore | det(1— P,)[*/? = 2|sinh(7’/2)| and the Maslov
indices are zero. If one chooses then for A in (2.82) a function of the form A(s) = p(A —s),
the formulas (2.82) and (2.88) almost coincide. All the remainder terms in the Duistermaat-
Guillemin formula vanish, except an exponentially small contribution to the 7" = 0 term,
given by

tanh(7)\) = 1+ O(e™™) ,

which has an interesting interpretation in terms of the dual to H as a symmetric space,
when one allows A to be complex, see [CV90, BO95].
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The second type of systems we want to consider are integrable systems in two dimen-
sions. Here the orbits come in two-dimensional families and the trace formula reads

p(0) P (0) 2
E p(A=XA,) = (2r)? vol(X1) A + (on)? subH
)\1/2 § iTsubH’ ivym i -
+W /eT b |d/j,7‘67/2€T)\+O(/\ 1/2).

=77

(2.89)

with the same conditions on p as before. We have furthermore assumed that there are
no one-dimensional orbits, which can occur in systems where the tori have bifurcations.
Let us compare this formula with the one obtained for the flat torus with the help of the
Poisson summation formula, (2.81). Again the subprincipal symbol is zero, the term b,
turns out to be equal to |T'| = |k| and the Maslov indices are +1. Upon expanding the
Bessel functions in (2.81) we get

1 1
272 /K]

giving the result (2.89). In contrast to the Selberg case the higher order corrections do not
vanish in this case. On might be tempted to think that this is related to the integrability
or chaoticity of the classical flow, but this does not seem to be the case. E.g., for the
Laplace operator on the sphere S% or on a three-dimensional torus there are no higher
order corrections, too.

The main difference between the two examples is that the oscillating contribution is
stronger by a factor A'/2 in the integrable case. The consequences of this will be discussed
in the next subsection.

One can use the trace formula to determine the periods and stabilities of the periodic
orbits of the classical system from the quantum mechanical eigenvalues. By shifting the
Fourier-transformed test function in the trace formula by ¢ € R one obtains

Jo(|k|X) = (e—iw/4ei|k\)\+ei7r/4e—i|k\)\) Lony

ithn _ _ p(t) pt (t) X1
Zn:e p(A =\, = @ vol(Z) A + @) sub H
1 . T#einm/? iTsubH iTA
+%Zp( Z|det[ P, |1/2e e 4+ Oy(1/N) .
T =T

for a system with only isolated and nondegenerate orbits. So if p is concentrated around
zero, the left hand side has peaks as a function of ¢ at the periods of the periodic orbits. In
practice it is hard to find a smooth function with compact support whose Fourier transform
can be computed explicitly, therefore for numerical checks on relaxes this condition and
takes, e.g., a Gaussian as test function.
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The numbers a(vk) are called the wave trace invariants at . The question how much

information they contain about the classical system has been studied recently in detail
by Guillemin and Zelditch [Gui93, Gui96, Zel97, Zel98|. In a nutshell, they have shown
that the wave trace invariants up to order N of a periodic orbit v and all its iterates,
determine the Birkhoff normal form of order N of the classical system. So already the
eigenvalues alone of the quantum mechanical system determine the Birkhoff normal form
at each periodic orbit.

The trace formula of Duistermaat and Guillemin was preceeded by a number of works in
physics and mathematics. Gutzwiller was the first who derived a trace formula for general
systems in a series of papers culminating in [Gut71], therefore the trace formula is in
physics usually called Gutzwiller’s trace formula. He worked in the semiclassical context,
i.e. studied the limit # — 0, and we will discuss this approach in Section 2.4. Almost
parallel to Gutzwiller’s work Balian and Bloch developed their trace formula for billiards
[BB72]. In mathematics, the first rigorous asymptotic trace formula was derived by Colin
de Verdiere [Col73]. The work of Duistermaat and Guillemin then was based on [Cha74].
They obtained the most complete result, in the sense that they obtained the contributions
of large classes of periodic orbits, namely all the ones which satisfy the cleanness condition.
The previous results covered mostly just the contribution of isolated nondegenerate orbits.

2.3.3 Spectral asymptotics

We have noted in the discussion of N(A) for the examples in Section 2.1.1, see figure 2.1,
that the fluctuations of N(\) about the Weyl term are much larger in the integrable case
than in the chaotic case. Can we use the trace formula to explain this behavior?

Already the Poisson relation gives a way for splitting spectral sums into two parts, one
giving the mean behavior, and the other one describing the oscillations around the mean
behavior. Let ¢ € C§°(R) be a cutoff function whose support contains only the singularity
at zero of trl(t), and with ¢(¢) = 1 for ¢ in a neighborhood of 0. Then one can split the
spectral density into two parts

40 = Y 00— ) = o [l irtdtie™ a5 [ plo] rta(e™ e

The first part will be called the mean part dy()), and by the trace formula we have

The second part is called the oscillatory part des.(A), because, according to the trace
formula, it is of an oscillatory nature. Its high energy asymptotics are determined by the
periodic orbits.

N2 (2.90)
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By integrating d()\) one gets a corresponding splitting of the counting functions into a
mean part and an oscillatory part,

N(A) = Ng(A) 4+ Nosce(A) -
The asymptotic behavior of the mean value follows directly from (2.90) to be

—
No()) = vol(X;) I subH

o0t ¥ Ta-nenit T

so in order to determine the behavior of N()) one has to estimate Nyg.(A). The trace

formula gives an expression for a smoothed Ny (A), if p has compact support and all
orbits with periods in that support are clean, then

1 A7)

P Now(N) = 523 537

TeT =T

dy—1

A 2 T
Z (%) elu»,7r/2elTsub7-L elT)\ ag0)+afyl)

1
A

where p x N,g. denotes the convolution of p with Nys.. This formula allows easily to give a
lower bound on Noge(A). Let Kmax = sup,{(d, — 1)/2} and define F'(X) := A7*max Nyo (A),
then we get from the inequality |p *x F'| < sup |F|||p||; that

lim sup Noge (A)A™"mex > C' (2.91)

so we have a lower bound for the order of the oscillations.
Unfortunately it is much harder to get upper bounds for Ny (). The best general
upper bound is due to Hérmander [Hér68, Hor85b],

Nose(N) = 0N .

This bound is sharp as can be seen from the example of the Laplace-Beltrami operator on
the sphere. There all orbits are periodic with the same primitive period, hence it follows
from (2.91) that their contribution is at least of order A~! because d, = 2d — 1. More
generally the behavior of Ny () is rather well understood if the classical flow is periodic,
as it is the case, e.g. , for Zoll-surfaces [Bes78], see [H6r85b, Sch95].

The reason that the general case is much harder is that one cannot take the limit p — 1
in the periodic orbit sum for p * Ny (), because the resulting series is not convergent in
general. Furthermore, one has no estimate on the remainder in the trace formula. The
best result known for the case that the flow is not periodic is the one by Duistermaat and
Guillemin [DG75],

Nose(A) = o( A7) .

For a generic integrable system, where not all orbits are periodic, the individual periodic
tori contribute a term of order A(=1)/2. Hence one will naively expect a behavior

Nosc()‘) — O()\(d—l)/2+6) ,
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for every ¢ > 0. This is in accordance with the Hardy Littlewood conjecture for the case
of the Laplace-Beltrami operator on the flat two-dimensional torus. In this system N()) is
the number of lattice points on Z2 inside a circle of radius )\, therefore it is often called the
circle problem. But the best general upper bound for a large class of integrable systems,
due to Colin de Verdiere [Col77], is

Nosc(/\) — O()\d72+2/(d+1)) )

In two dimensions the exponent is 2/3 and corresponds to an old estimate by van der
Corput for the circle problem. For the circle problem a rather recent result is Nos.(\) =
O(M*3/73(1n X)31%/146) " due to Huxley [Hux93].

Especially for chaotic systems the strong proliferation of periodic orbits makes the un-
smoothed version of the periodic orbit sum highly divergent. Therefore, the best upper
bound obtained so far for chaotic systems is probably far away from the real behavior. It
is the one proven for the Laplace-Beltrami operator on manifolds with negative curvature,

Nose(A) = O(X*"/In ) ,

see [Hej76, Bér77a, Ran78, Don78, DKV79]. The naive conjecture based on the trace
formula,

Nosc(A) = O(X) , (2.92)

for all € > 0 can only be true for a subclass of hyperbolic systems. Because Selberg [Hej76]
has proven a lower bound for a special type of system, a so-called arithmetical one, of the
form

Nose(A) = Q(A2/In))

roughly the same behavior as one expects for integrable systems. The reason for this
exceptional behavior is that the period spectrum is exponentially degenerate for arithmetic
systems. This means that the number of orbits with the same period equal to T € T grows
exponentially with |T|. But for non-arithmetical systems on might expect the behavior
(2.92) to be true. Lower bounds which strengthen (2.91) have as well been proven for
certain other classes of systems. E.g., for the circle problem Hardy has already proven
that Nosc(\) = Q(AY2(In A)¥/4) and for surfaces of constant negative curvature one has
Nose(A) = Q((In A/ Inln X)/?), see [Hej76].

Instead of searching for a pointwise upper bound on Ny () it might be easier to
study the quadratic mean of Nys(A) and the value distribution of a suitably normalized
Nosc(A). This direction of research has been initiated by Heath-Brown with a work on
the circle problem [HB92], which was followed by a number of works by Bleher, Dyson,
Lebowitz, Sinai and many others on integrable systems. A recent review can be found in
[Ble99]. The results they obtain are of the following type: They show that for the two-
dimensional systems which they consider, the normalized oscillating part of the spectral
counting function is in a space of almost periodic functions,

A Y2N (A € BP(R)
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500 1000 1500 2000 x 2500

Figure 2.11: The second moment D(z) = (£ [* | Nosc(A(z'))? dx’)1/2 of Nogsc(A) for three
different billiards. The quantity A(z'), defined by Ny(A(z')) = 2/, is introduced to make the
comparison between different systems possible, z’ is a rescaled energy. The system with
the largest fluctuations is the circle billiard, the one with the smallest ones is the cardioid
billiard and the intermediate one is the limagon with £ = 0.3. The data are from [B&c98].

for p =1 or p = 2. Here the spaces BP(R) are Besicovitch spaces, which consist of the
functions f(z) on the real line which satisfy

So these results mean that Ny ()) is of the order A2 on average. Furthermore, for these
systems estimates on the value distribution of P = A"/2N,(\) were obtained, which
imply that it decays faster than exp(—P*). This means that large values of A™*/2N. (\)
are rather rare.

For chaotic systems the question is much more difficult. Assume that one has a uni-
formly hyperbolic system with only isolated periodic orbits. Then heuristic arguments
based on the trace formula lead for non-arithmetical systems to

(N2 )(A) ~Cln\,

0sC
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where the brackets ( ) denotes an average over an interval around A [Ber85]. Further-
more it has been conjectured [Ste94, ABS94| that the value distribution of the normalized
fluctuations of the spectral staircase
NOSC )\
W(\) = % , (2.93)
(NGe)(A)

0sC

are Gaussian. This conjecture has been tested numerically, e.g., in [ABS97], and has been
confirmed for all systems studied up today.

In fig. 2.11 the second moment of Ny (A) is shown for three different systems, and in
fig. 2.12 the corresponding value distributions of W (\) are shown, [B&c98|.

The preceeding discussion gives an impression of the possible applications of the trace
formula. It should enable one in principle to compute spectral statistical measures in the
high energy limit, which should depend only on properties of the classical system, more
precisely on the periodic orbits. But doing such computations rigorously is a very hard
job, and has only been accomplished in rare cases.

2.4 The limit A — 0

We have discussed the semiclassical limit of quantum mechanics in a way which is rather
uncommon in physics. In the physical literature the semiclassical limit is usually worked
out by taking the limit # — 0. In contrast to this we have interpreted the high energy
limit, in the case of a system on a compact manifold, as the semiclassical limit. This has
the advantage that its physical interpretation is clear, whereas in nature 7 is a constant
and so taking the limit 2 — 0 has to be interpreted suitably . On the other hand, the
class of systems we have considered does not contain all interesting types of systems one
would like to consider. Although one often has quantum systems with symmetries, like
the periodicities in crystals, which allow to reduce a system to one on a compact manifold,
there are many important ones, e.g. , molecules, for which this is not possible.

In this section we therefore want to discuss the relation between these two limits and
their justifications.

There exists a complete calculus for pseudodifferential and Fourier integral operators
depending on a small parameter 7, analogous to the classical calculus described in the last
sections. For introductions see [Rob87, Hel97]. A typical example for the operators which
occur in this calculus is given by a one-particle Schrodinger operator

hZ
Hp = QmA + V(x) (2.94)
with smooth potential V. Here % is not treated as a constant, but the behavior of Hj is
studied in the limit # — 0. To a general symbol a(&,z) one associates an /i dependent
operator

Avila) = s [ [ 4 0al(a+ )2 uty) dyde (2.95)
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Figure 2.12: The value distribution of W (), the normalized fluctuations of the spectral
counting function (2.93), for three billiards, [Bac98]. The chaotic cardioid billiard shows
rather good agreement with a Gaussian, whereas the integrable circle billiard and the
limagon with mixed phase space show clear deviations.
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which corresponds to substituting for £ the differential operator hD, instead of D,. More
details on the symbols and properties of such operators will be discussed in the next section.

In a similar way Fourier integral operators depending on 7 can be introduced. A typical
example of such a Fourier integral operator is the time evolution operator

Up(t) = e 5n |

where Hj, is a Schrodinger operator of the type (2.94). In particular, there is a Poisson
relation and a trace formula for Schrodinger operators depending on £, in fact the original
trace formula of Gutzwiller [Gut71] was developed for such types of operators. In order
to formulate a Poisson relation one needs an analog of the wave front set, which takes the
dependence on the parameter into account; this is given by the frequency set [GS77].

Definition 2.4.1. Letuy € S'(R?) be a bounded family of distributions depending smoothly
on a parameter ki € (0, k) for some hy > 0. Then the frequency set of uy, FS(us) C
T*R4, is the complement of all points (xq,&) € T*R® which possess neighborhoods U > g,
V' 3 & such that for every ¢ € C(U) and £ € V

/ e 162 (z)up(z) dz = O(RY)

for all N € N as h tends to 0.

Notice that in case that u; = u does not depend on & the frequency set coincides with
the wave front set, compare (2.35). In contrast to the wave front set the frequency set will
in general not be conical. Consider as an example a family of functions of the form e#¥(®),
with ¥(z) € C®(R¢,C) and Im(x) > 0, then one computes easily with the method of
stationary phase that

FS(er?) = {(z,4'(z)) | Ime(z) =0} .

In the following we will denote by #y an operator on R? or some manifold of the form
(2.95) with symbol

H(h&,2) ~ Y HEH(E,x), forh—0,
k=0

which is real valued, has positive principal part Ho(&,z) > 0 (in fact boundedness from
below is sufficient), and where the H(, x) satisfy suitable symbol estimates (see [Hel97]
for more precise statements). A typical example is (2.94) with smooth potential which
is bounded from below. Then #j can be shown to be essentially selfadjoint for A small
enough, and one studies the eigenvalues and eigenfunctions
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which are functions of the parameter /. The Poisson relation for an operator of this type
was first proven by Chazarain [Cha80]. Let x be a smooth function with compact support,
define

Fenlt) i= tr [x(Ha)eh™] = 3 x(Bn(R))eh )

and let ®' be the Hamiltonian flow generated by the principal symbol Hy of Hp, then the
Poisson relation states that

FS(fxn) C{(t, E)|3(&,2) : Ho(§ ) = E and (&, ) = (§,2) } -

So FS(fy.x) is contained in the set of the graph of the periods of the periodic orbits of ¢*
as a function of the energy E. This set will usually not be homogeneous, in contrast to
the wave front set of the wave trace.

A Weyl type theorem, giving the number of eigenvalues in a fixed energy interval
as h tends to zero, is also valid. Let [Fy, F5] be an interval such that E is a regular
value of Hy(, x) for each E € [Fy, E5], then the number of eigenvalues in this interval is
asymptotically

1
Nu([By, Bo]) = s td
w(lE1, E2]) (2mh)d //ElgHO(f,w)SEz dodg + O ,

and under some additional conditions on the classical flow the remainder can be improved
to o(h'=%), see [PR85] and Chapter 4. Notice the similarity with the classical Weyl theorem
if one replaces i by 1/A. The Poisson relation suggests that there is a trace formula for
such operators too. Let F be a fixed energy value, such that F is a regular value of Hy (¢, x)
and the energy-shell

EE' = {(65 37) ‘ Ho(f,.’lf) = E}

is compact. We will state the trace formula only for the simplest case that all periodic orbits
of the Hamiltonian flow ¢! generated by Hy(£,z) on X are isolated and nondegenerate.
Let ¢ be a smooth function whose Fourier transform has compact support, then

E.(B)—E\ _$(0) vol(Sg)  ¢'(0)subHy
;@( h ) 27 (2wh)4! * 21 (2mh)4—2

(2.96)

#oivy /2,0 TH subHy '
LTee 7T s 4 o) .

[det(P,(E) — )[172 ©

(T, (E
i)

Here S,(E) := f7(E) &dz denotes the action of the periodic orbit v at energy E, and all
other quantities are the same as the one appearing in the trace formula of Duistermaat
and Guillemin. The dots in the first line indicate that there can be further terms of the
form a, A4~ for n > 3 coming from the big singularity at ¢ = 0. Notice that because of the
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factor 1/A in the argument of ¢ on the left hand side, the sum is effectively over a range
of eigenvalues lying in an interval which shrinks proportional to A. This trace formula is
the rigorous version of the original trace formula of Gutzwiller [Gut71], rigorous proofs
appeared in [PU91, BU91, Mei92] for the case M = R? and in [GU89] for the case of
compact M.

In a provocative way one could say that the main disadvantage of this formula is the
dependence on A. In the Duistermaat Guillemin case the physical meaning of the limit
taken was clear, here it is generally not, since 7 is a constant in nature. On the other hand
this formula is much more general, it is not only valid for systems on compact manifolds,
but on arbitrary manifolds and for a much larger class of operators.

To see the relations more explicit we take as Hamilton operator a first order operator,
Hp = hy/—A, on a compact Riemannian manifold. The symbol of H, is [£],. Let A, be the
eigenvalues of v/—A, then the eigenvalues of Hj are i),. For a Hamilton function which
is homogeneous, like |£|,, we will see below that the periods of the periodic orbits and the
Poincaré maps are independent of the energy, whereas the actions are proportional to the
energy. Hence, if we evaluate (2.96) for this operator at £ = 1, and if we call 1/ = \, we
arrive at the same expression as the Duistermaat Guillemin trace formula for the operator

= /—A. This example can be generalized: let H € \I’phg(M ) be a first order operator,
then Hy = hH is in 3 (M) with symbol

H(h € x) = hH(z,1/R€) ~ ZhHlkfx.

Therefore the principal symbols of the two operators coincide, and the general & dependent
trace formula for Hj; reduces to the Duistermaat Guillemin formula for .

2.5 Semiclassical operators

In the last section we have seen that when performing the limit 7 — 0 literally, one has to
study operators depending explicitly on & and the behavior for # — 0. In particular, the
asymptotic expansions for |£| — oo are replaced by expansions for # — 0. There exists
a pseudodifferential operator-calculus for these operators parallel to the the one described
in Section 2.2, and we will collect here some results which we will need in the following
chapters. Parts of this calculus have already been developed by physicists on a more formal
level in order to describe the semiclassical limit, see, e.g. [Wig32, Moy49]. Then Maslov,
[Mas72, MF81], was very active in this field. The techniques of microlocal analysis were
applied to this field by Voros [Vor76, Vor77], and later on spread out widely. For reviews
see [DS99, Hel97, Rob87]. Instead of calling the parameter % we use 1/\ as parameter and
study the case of large .

The explicit appearance of a semiclassical parameter A in this semiclassical calculus
of pseudodifferential and Fourier integral operators is an advantage which often facilitates
the computations and the performance of the semiclassical limit. The usual theory which
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we have outlined in the last sections has some limitations. In particular the results we
are interested in in quantum chaos are limited to systems on compact manifolds. Many
important type of systems, like atoms or molecules do not belong to this class. For these
systems the methods of the last section are applicable, but they suffer from the drawback
that they are only valid in the limit # — 0, whose physical meaning is not clear a priori,
since h is a constant in nature, although a very small one.

Intuitively, the semiclassical limit is the limit of large quantum numbers, meaning small
de Broglie wavelength, as far as eigenfunctions are concerned. For the eigenvalues, and the
time evolution, one usually needs that the mean spectral density becomes large. This can
be seen, e.g., in the trace formulas of the last sections. One can interpret this by recalling
that the spectrum of the classical time evolution operator is typically continuous, and in
order that the quantum mechanical time evolution should be close to the classical one, one
needs at least a high spectral density in order to simulate on short time scales a continuous
spectrum.

In the following we will describe a formalism by which these intuitive ideas are imple-
mented in order to give a physical meaningful version of the i-dependent calculus. This is
by no means the only way to arrive for physical problems at such type of calculi, and we
would like to mention for instance adiabatic problems and studies on stability of matter,
where similar techniques are used, see e.g. [HST01, FFG97].

We want to discuss now a method by which a rather large class of Hamiltonians can
be mapped to A-dependent operators. We start with scaling systems: let H be the Weyl
quantization of the classical Hamilton function H, then H is called scaling if there are
numbers «, 8 € R such that

H(\¢, \Pz) = NH (€, 1) (2.97)

for all A > 0. Typical examples are the Hydrogen atom with

1 (67))
H == —
€0)= 360+
where we have o = 1/2, f = —1, or the harmonic oscillator where « = 8 = 1/2. Such

an operator can be mapped to a A-dependent operator by conjugation with a unitary
dilatation operator of the form

Sx(@) = AT p(X'a)
with v chosen suitably.

Proposition 2.5.1. Let H be a pseudodifferential operator with Weyl symbol H (€, x), and
let

g B
8)\1/)(33) = )\2(a+ﬂ)1/)()\a+ﬁx) ,
then
S\HS; = Hy,
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where Hy denotes the \-quantization of the A dependent symbol

H(/\a/(a+ﬂ)§, )\ﬂ/(a+ﬂ)x) )

Proof. We have

S\HS ()

d
/ / OO f (¢, (W@ 4 y) 2) (AP @H)y) dyde

ei,\3/<a+3><m_y,g)H(§’ \B/(a+B) (z + y)/Q)w(y))\dﬂ/(a-‘rﬁ) dydé

Il
N 7N 7N N

)

) /]

)d// ei,\<z—y,€)H(/\lfﬂ/(a+,3)§’ \B/(a+B) (z +y)/2)7,/1(y)/\d dyde
) /]

¥ F[= F[= F|-

eMew:8) fr(\e/(@tB) g NBIeth) (1 4+ ) /2)0h(y) dydE

where we have used

1-8/(a+B)=a/(a+p5) .
O

So it follows that if H is scaling with exponents o and  in the sense (2.97), then the
symbol of H, becomes

/\1/(a+/3’)H(§’ ) .

Generally, a system need not be scaling, but a fairly large class of Hamiltonians is mapped
by conjugation with an dilatation operator S, to a A-dependent operator whose symbol
has an asymptotic expansion in A\. Before coming to precise definitions we want to discuss
some examples.

Examples 2.5.2:
We discuss the action of the scaling operator S, for some standard types of operators.

(i) Assume H € WL (M) with Weyl symbol H, then we can take
a=1/m, =0,

and get that SyHS; = H, is the A quantization of

H(AGz) ~ A" XN FH(E, ) .
k=0
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(i) Assume H = —3A + V(z) with V(z) ~ Y37 Va_g(z) for |z| — oo with Vo_i()
homogeneous of degree 2—k, that means V' is close to an harmonic oscillator potential
for large |x|. We choose

a=1/2, B=1/2,
and get that S\HS} = H, is the A\ quantization of

HOPEAN2) ~ A A2 H (6, 7)
k=0

with Hy(&,z) = %(f,f) + Vao(z) and Hy(&,z) = Vo () for k& > 1.
(iii) Assume H = —1A + V(z) where V() decays like 1/|z| for |z| — oo, such that, e.g.,
V(z) = ap/|z| + VO () with V(©(z) of compact support. Then we can choose
a=1/2, B=-1
and get that S\HS; = H, is the A quantization of

HOCe N) =32 (56,6 + 22 + VO ).

We see that the symbols which appear belong to the following type of symbol classes,
which we borrow from [DS99].

Definition 2.5.3. For a,b € R we define an order function
Map(€ @) = (1+ (€ E)(1 + (z,2))"* |
then we say that p(\; &, x) € C™ belongs to S®(myy) if
080N €, )| < Capmap(§, )

for all a, 8 € Z% and X\ > 0. Furthermore, for k € R, p(\;€,z) € C™ is said to be in
S5 (mag) if (14 22) 4% € $9(may).

These symbol classes have the standard properties which such objects usually pos-
sess. They are Fréchet spaces, and they are well behaved under multiplication and inver-
sion of positive elements. If p € S¥(m,y), ¢ € S (ma ) then pg € Sk““'(ma,bma:,y) =
SEH (Mgt w prw) and if p > 0 is in S*(my,,) then 1/p € S7*(1/mqy) = S~™*(m_q_p). We
also have asymptotic expansions; if there is a sequence p; € Ski (maqp) with k; > k41 and
k; — —oo then we say for p € S (my)

0
b~ Zp] ;
=0

if p— Z] o' pj € S*n(mygy) for all j € N. By Borel summation one can find for every such
sequence a corresponding p which is unique modulo S™®(mgp) = (Nyeg S*(Mayp)-
We now define the corresponding classes of operators by Weyl quantization.
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Definition 2.5.4. We say that A € U%(myy), if it can be locally represented as
A\,

Ay(z) = Op™ (A4 ( )// NI AN, (2 -+ 1)/2)b(y) dyde

with A € S¥(map).
If the symbol A of A has an asymptotic expansion
A~ o4y 04 4.
with Ay independent of A, then we will call
o(A) = Ag

the principal symbol of A. On calls A € ¥%(m,,) elliptic, if there are constants \g > 0
and C' > 0 such that

AN E, 2)| > CAemg,
| ( ? )

for A > )¢ and (&, z) outside some compact set. It is easy to see that the same estimate
for the principal symbol o(A) is already sufficient. For elliptic operators one can construct
parametrices in the same way as in the standard case, once one has established a calculus.

As one expects, the product of two A-pseudodifferential operators is again a A-pseudo-
differential operator.

Theorem 2.5.5. Let P € UX(m,;) and Q € V4 (ma p), with A\-symbols p and q, respec-
tively, then PQ € \IIIH"“ (Mapma p) = \I!’H' (Mata prtr) and the symbol of the product is
given by

p#q(N; €, x) = e (PP DDlp(\e € 1Yq(Xi 1, y)|ymamee

Nzkl'( [(Dy, De) — (Dan)]) P(X; & 2)a(Nm, Y) ly=om—¢

= P& DN E0) + 5 pah N 2) + OO )
for A — oc.

The validity of a product formula implies that the standard results from the classical
theory of pseudodifferential operators can be transferred to this case. E.g., the construction
of parametrices, a functional calculus and continuity on L? if a,b < 0. We refer to the
book of Dimassi and Sjostrand, [DS99], for a presentation of these results.

One final result in this calculus which we will often need is a criterion for selfadjointness,
see [DS99.
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Proposition 2.5.6. Let H be the A-quantization of H € S°(mgy), assume that H is real
valued, and, in case that mqy is not bounded, that H + i is elliptic in the sense that there
exists a constant C > 0 such that |H +1i| > C. Then there exists a Ao > 0 such that H
with domain S(R?) is essentially selfadjoint for X > ).

From now on we will denote the unique selfadjoint extension of H as well by H.

In the same manner as for pseudodifferential operators, one can introduce Fourier in-
tegral operators which depend on a parameter A\. We will discuss only the local case, so
we can assume that our manifold M is R

Definition 2.5.7. Let ® : R x R = R? x R¢ be a canonical transformation which has a
generating function p(€,x). Then we say F € I¥(®,m,p), if F is of the form

d
Fia) = (%) [ exeenmane i) ayc

with A € S¥(map).

The most important property of these Fourier integral operator is the validity of an
Egorov theorem, analogous to Theorem 2.2.20. Only one subtlety appears here, since
the canonical transformation ® need not be homogeneous anymore, it will in general not
respect the symbol classes. In order to avoid this problem we will restrict ourselves to
operators F whose amplitudes have compact support.

Theorem 2.5.8. Let ® be a canonical transformation with generating function ¢ and
X € C°(RY x RY), then the operator

d
U@ = (55) [[ 00 e gt 6.0 (e a)r) due

satisfies
U@)U®)* = Op™[x"x] + O(A ™)

and for every H € % (mg,y,) with symbol H(&,z), we have U(P)YHU* (®) € VE(1) with
symbol

H=x"YHod®+0O\N1).

The proof follows exactly the same lines as the one sketched after Theorem 2.2.20.

Now that we have collected some definitions and results on the semiclassical calculus,
we can return to our original question how to perform the semiclassical limit for a suitable
Schrodinger operator. By Proposition 2.5.1 and the examples 2.5.2 following it, we see
that many Schrodinger type operators are mapped by conjugation with a suitably chosen
dilatation operator to one of the classes W% (mg;).
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If we now assume that H is positive, we can take powers of it and get
S\VHEHAS: = \H,,
where
~ 1
Hy = <H\*TF
A= A0
and the Schrédinger equation for H(@+8),
0
i~ = H(ath) ’
Tid Y

becomes upon conjugation with Sy

i0 - -~
Xad)_%)ﬂ/)a
with
b =8\ .

Hence for the Hamiltonian #,, the semiclassical results with A = 1 /h are applicable. What
do we get if we express the eigenvalues and eigenfunctions of H, through the ones of #?
Let us denote the quantities belonging to #, with a tilde, then we want to compare Un,
E,, defined by

Hipp = Enihn
with ¢, E,, defined by
Hatn = Enthn .
By applying H, to ¢, we get
Hoib, = /\1/(a+ﬁ)E711/(a+ﬁ)q/}n ,
and inserting Hy = SxHS; gives
’HS,’{JJn _ /\1/(‘”’3)31/(“%)5,’{1/771 ’

hence we have

-1
Un=8n and B, =< E+h) (2.98)

So we see that if we fix the new energy E and perform the semiclassical limit A — oo, then
this is equivalent to E,, > o0 ifa+ >0 and E,, — 0 for a+ 8 < 0.

This determines the quantum mechanical input for the trace formula, and now we want
to determine the effect of the scaling property on the classical system.
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Proposition 2.5.9. Assume the Hamilton function H (&, x) is scaling with exponents c,

B, i.e.
H(\¢, \Pz) = NH (€, )

for all A > 0, and assume (p(t),q(t)) is a solution of Hamilton’s equations with energy E,
then

(B(1),d(t) = (A“p(A 1), APg(AT (> *P)yy)

15 a solution of Hamilton’s equations with energy AE. Furthermore we get for a periodic

orbit v = {(p(t), q(t)) ;t € [0,T,(E)]} with energy E, that
A-y = (A1), V(1) ; (p(1), 4 (1) € 7}
1S a pertodic orbit with
Syy(AE) = XIS (E) ,  Th,(AE) = XtA-IT (F) .
If ~ 1s isolated and nondegenerate, then
det(Py(AE) — I) = det(Py(E) — I) .
Proof. By differentiating the homogeneity relation one obtains

(OcH) (A€, Nz) = X170 H ) (€, )
(0 H)(A€, Mz) = MNP0, H) (€, z) .

Using this with (£(¢),z(t)) = (A\*p(\°t), APq(\°t)), where 6 = 1 — (o + f3), in Hamilton’s
equations gives

AP = 0, H (Ap(A1), Mg(Xt) = AP0, H (p(X’t), ¢(Xt))
ATUG(NE) = =9 H(X*p(At), N q(X°t)) = =A""*0H (p(\°t), q(A’1))
which proves that (A®p(A!=(@+8)¢), \Bq(A1~(e+8)t)) satisfies Hamilton’s equations. The be-

havior of the period T,(E) under scaling can be read off immediately, and for the action
we get

T)\,Y()\E)
Spy(AE) = / (AOp(AL=@B)) AI=ag(AL=(@+8)p)y
0

T (E)
_ y(@B) / (p(t),4(t)) dt

=\tAg (E) .
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To prove the last assertion we use the classical time evolution operator V;(F) : L*(Xg) —
L2(S5) defined by

Vi(E)p(€,z) = o(®'(¢, ) .

If v is nondegenerate with period 7,(E), then there is a neighborhood U of T),(F) and a
bounded function a € C* which is one in a neighborhood of (J,g A -~ such that for t € U

T#(B)

traVi(B) = 15t p,(B)  7)

5(t - T’Y(E)) 3

see [Gui77]. Now we introduce an isometry sy(E) : L*(Xg) — L*(Z\g) by
(SA(E)g) (&, ) = A MDA 2g, A Pa)
then we have
aVi(E) = s, (E)aVyats-1,(AE)sA(E)
and it follows that for t € U

T#(E)
[det(P,(E) = 1)

5(t — T,(E)) = traVi(E)

=tr S;lav,\a+6—1t()\E)S)\ (E)

= traVyat+s-1;(AF)

_rton
[det(Py, (\E) — )|

S\ — T (AE)) .

Now with Ty, (AE) = A**#~1T (E) the last expression can be rewritten as

va()\E) wih1 Tf(E))\a%—l i
et (P, 0B) -0 T O = ey Y )
LGB si—1m)

~ [det(Py,(\E) = 1)

and hence we arrive at

| det(Py,(AE) — I)| = | det(P,(E) — I)| .

By the functional calculus we know that the symbol of 7, is given by

H*P(&,2) + O\ %),
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hence the principal symbol defining the classical system which determines the classical
side of the trace formula for H, is H**#(&, x). This is scaling in the sense of (2.97) with
exponents o = o/(a+ () and ' = /(o + 3) which gives

o +43=1.
Therefore it follows from Proposition 2.5.9 that
S,(\E)=\S,(E) and T,(\E)=T,(F),

for all A > 0. Let us denote by T the set of periods T7(E), then the Poisson relation for
H, reads

FS (Z eWEn> cT xRT.

But with (2.98) and the remark after Definition 2.4.1 we see that the Poisson relation reads
in terms of the original eigenvalues E,

WF (Z eitEw&) CcTxRT.

Along the same lines of reasoning we can establish a trace formula (2.96) in terms of E,,
the left-hand side of which is

> e(\E,—E)=>_ @B - AE) .

For the classical side we then get from (2.96)

ng E©+6) _ \F) = ¢(0) A1 |Sp)|
2T (27r)d 1
T#(E) ifiym/2

ei)\S',,(E)_i_O()\fl)
27: 27T |det( y(E) — I)|'/?

Since the Hamiltonian vectorfield of H, Xy and the one of H**#, X a+s are related by

Xpyats = (a+ B)HOA1 Xy,

we get that at £ = E, defined by (a + B)Emw = 1 the two flows coincide and we can
express everything in terms of the original Hamiltonian . Therefore for scaling systems
the trace formula (2.96) now reads

S G(BCH) — \By) = $(0) A\ [Eg, |

o (27r)d_1
Z (,0 Tj&(EO)eiuA,wﬂ
27r | det(P, (Eo) — 1)[1/2

ei)\S.,(Eg) _f_O()\fl) ]
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We will now extend the previous discussion of operators with scaling symbols to more
general cases. As an example take the case of an operator

1
H = —§A+V($) y

where for large x the potential V' (z) is approximately quadratic, i.e. we assume that V (\x)
has an asymptotic expansion

V(z) ~ Y XNV ()

for A — oo, with Vo_(x) homogeneous of degree 2 — k in z. From the proof of Proposition
2.5.1 we know that the Weyl symbol of S;HS), is given by H(AY2£, A\Y/2z) and so we have

H\'26, M) ~ XY O NTPH|(E 2)
=0

with Hy(&,z) = (£,€)/2 + Va(z) and Hy(§,x) = Vo_y(x) for I > 1. To this kind of semi-
classical operators one can now apply the standard techniques. The physical meaning of
this construction is a kind of asymptotic perturbation theory, i.e. for large energies the
quadratic term of the potential is dominant, and we can treat the lower order terms as a
perturbation which is proportional to the inverse square root of the energy.

Definition 2.5.10. A smooth function H (£, x) is called polyhomogeneous with expo-
nents o, f € R, if there is a strictly monotonically increasing sequence {m;};en C R with
m; — 00, such that

H(A*E,Mx) ~ A N Hj(€, 7)
j=0

for A = oo where the H; are homogeneous of degree m; in the sense that
H;(A\*€,\Pz) = \"™ H,(€, )
for X > 0.

As in the preceeding example, operators with polyhomogeneous symbols can be mapped
by conjugation with the scaling operators Sy of Proposition 2.5.1 to semiclassical operators.

So assume that H is polyhomogeneous with exponents «, 8, and with m; = 0. The
conjugation of the Weyl quantization H of H with the corresponding scaling operator Sy
gives according to Proposition 2.5.1

S\HS, = Ao H,
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where H, is the A-quantization of
Awts H(Ae7 ¢, i) ~ Y A"aa Hy (€, ) = Ho(é, ) +
7=0

Assume now that #, is elliptic in the sense that Hy > 0, then the functional calculus for
A-dependent operators, see [DS99], allows to take the (o + /)’th power of S\HS3,

(S\HS;) ™ = M,
where 71, is the A-quantization of the symbol H € S°(m) with
Hom Hotoee .

So we have now extended the previously constructed mapping of a scaling system to
a semiclassical system to the case of a polyhomogeneous system. As the examples show,
this covers already a fairly large class of systems. The application of the techniques of
semiclassical analysis to the these scaled operators gives now asymptotic results which are
valid in the high energy limit.

Note that the results are different from the naive application of the standard semiclassi-
cal calculus. Let us illustrate this with the example of a potential system with asymptotic
quadratic potential

2

h
H=—g-A+V(), (2.99)

with
V(Az) = M Va(z) + A'Vi(z) +

for A — oo, where V; is homogeneous of degree 7. If we apply the standard semiclassical
calculus from Section 2.4 this operator is the i quantization of the symbol

H(Ew) =5 (66 + V(@) (2.100)

So the properties of the system defined by the Hamiltonian (2.99) are in the limit of & — 0
governed by the classical system generated by (2.100), and furthermore, no subprincipal
terms occur. If we compare this with the result of our scaling transformation, the operator
is mapped to the A-quantization of

H = (5 £) + ATV (\Y2x) ZA IRH(E, x)

where

Hof€,2) = 5 (€6 +Vale) . Hh(E2) = V(o)



2.5. Semiclassical operators 91

Hence the corresponding classical system differs from (2.100), it contains only the leading
part in the high-energy limit. Furthermore, there occur subprincipal terms.

So this second approach can be viewed as a kind of asymptotic perturbation theory. It
gives a precise meaning to the semiclassical limit and shows how the usual semiclassical
calculus naturally appears in that limit. A further nice property of this construction is
that the classical system defined by the principal symbol is always scaling, this facilitates a
lot the determination of the classical quantities one needs for instance in the trace formula.
But note that in contrast to the standard cases, we obtain typically non-integer powers of
the semiclassical parameter, depending on the scaling properties of the principal symbol.

We have sketched in this section how one can implement the intuitive idea of the
semiclassical limit as the limit of large quantum numbers, or small de Broglie wavelength,
and large semiclassical density, with a scaling transformation which leads to a semiclassical
calculus. The parameter is now no longer &, but a kind of effective energy. On the level
of states, the scaling transformation S, implements a parameter A which governs the de
Broglie wavelength. The observables are mapped to semiclassical A dependent observables.
Furthermore, we saw that in general also observables with expansions into non-integer
powers of the semiclassical parameter occur.

We have been rather brief, with the principal aim to show how the semiclassical limit can
be understood physically, and how it can be formalized in a mathematical language which
then leads basically to the known semiclassical calculus, but now with a more physical in-
terpretation of the semiclassical parameter, namely as a parameter which can be controlled
experimentally by preparing, e.g., suitable states at ¢ = 0. Certainly, this approach needs
a refined and a more careful study, in order to incorporate for instance decaying potentials,
like the Coulomb potential, which we have ignored in the last part of the section. But we
hope we have convinced the reader that it is worth it, and that the semiclassical limit can
be implemented in principle in a physically sound way.

In the following chapter we will only use that standard semiclassical calculus, where,
motivated by the results of this section, we will call the semiclassical parameter \ instead
of 1/h. But we will ignore the second lesson from this section, namely that one also needs
expansions into non-integer powers of the semiclassical parameter. This is just because it
is simpler, and in the future one should study the more general case, too.
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Chapter 3

Lagrangian states

We have argued in the preceeding chapter that the semiclassical limit is the limit of small
de Broglie wavelength, and have shown how this idea is implemented through the theory
of microlocal analysis. The basic idea was to study the action of operators on simple states
which oscillate as e®P) and we have studied how in the limit A\ — oo quantities belonging
to classical mechanics appear and govern the behavior of the operators. So the accuracy
of the semiclassical approximations is governed by the states.

The aim in this chapter is to describe a class of states with particularly nice semiclassical
properties, the Lagrangian states. They will depend on a parameter A which governs the
semiclassical limit. Basic examples are on the one hand coherent states of the form

A\ /4
(—) (det Im B)M/4eAPe—a+{(@—a)Ba—0)/2]
™

where (p, q) € R? x R¢ and B is a symmetric d X d matrix with strictly positive imaginary
part. Such states are concentrated semiclassically, i.e. in the limit A — oo, at the point
(p,q) in phase space, and can therefore be thought of as a quantization of the classical
observable ¢, 4. The other basic class of examples consists of functions of the form

ere(@) ’

with Im ¢(z) = 0, or, more generally, linear superpositions of such functions of the form

by K/2 )
< ) /e‘)“p(“"e)a(x,ﬁ)dﬁ, (3.1)

2

again with Im ¢(z, §) = 0 and some non-degeneracy assumptions on ¢. Such functions are
semiclassically concentrated on a submanifold of the phase space determined by the phase
function,

Ay ={(z, 04(2,0)) 5 wy(x,0) =0},

in fact these manifolds are Lagrangian.

93
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The more general class of functions we will consider is of the same form as (3.1), but
now ¢ is allowed to be complex, with Im¢ > 0. For such function the set A, will be
complex, so it cannot be considered as a subset of phase space. Instead, the function (3.1)
is semiclassically concentrated on,

{($7 (le(xve)); gp’a(x,ﬁ) =0, Imgp(.T,o) = O} )

which is an isotropic submanifold of phase space. Nevertheless its extension A, to the
complex domain will play an important role in the theory and, because A, can be thought
of as a complex Lagrangian submanifold, the set of states will be called Lagrangian states.

Their possible applications are manifold, but we will use them primarily for two pur-
poses. First they give a framework for studying the semiclassical limit rather generally. We
are in particular interested in the time evolution of these states in order to get sharp esti-
mates on the time up to which a semiclassical time evolution is valid. The second purpose
is the construction of approximate solutions to the eigenvalue equation, so called quasi-
modes. It is well known that Lagrangian states can be used to construct quasimodes on
invariant tori in integrable or near integrable systems. Furthermore, the Lagrangian states
with complex-valued phase functions can be used to construct quasimodes concentrated
on elliptic periodic orbits of the classical system.

Our second application of Lagrangian states will be the use of a special class, the so
called coherent states, as a basis for the method of Anti-Wick quantization which we will
discuss in Chapter 4. To this end we will study the geometry of families of coherent states.

We will start with a short nontechnical review of the main steps leading to a quasi-
mode construction based on real Lagrangian submanifolds, e.g., invariant tori in integrable
systems. This serves as a motivation to develop the necessary mathematical tools on a
rigorous basis in the next section. Especially for the case of complex valued phase func-
tions we need a rather large technical apparatus, but since we can use it for other purposes
as well, we take the time to go into some detail. Not all of this material is needed later
on in this work, but it is intended to use it for further applications and therefore we have
included it. The last two sections are then devoted to a study of the time evolution.

3.1 Quantization of real Lagrangian manifolds
Let M be a C* manifold of dimension d and H € ¥°(m,;) a selfadjoint pseudodifferen-
tial operator on M, see Definition 2.5.4 and Proposition 2.5.6. We look for approximate
solutions of the eigenvalue equation

(M- By =0, (3.2)
that is for a function ¢(\, z) and an E(\) € R, both depending on a parameter A, with

(H— BNy z) =00A"), (3-3)
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for some or all N € N, and a sequence of A — oco. The classical ansatz in W K B-theory is
(see e.g. [Dui74, BW97]) to choose (), z) to be locally of the form

M@g (N 1) (3.4)
where ¢(z) is a smooth real valued function, and a(\, z) has an asymptotic expansion in
powers of 1/,

a(A, x) ~ ZA’"an(x) for A = oo . (3.5)
n=0

A slightly more general ansatz is often preferred, given by a superposition of functions of
the form (3.4),

K/2
w(A,x):<i> / M @Ng (N z,0) db (3.6)

2T

where a(), z,0) has uniformly compact support in # and has an asymptotic expansion as
(3.5), and ¢(x, #) is assumed to be smooth and non-degenerate, i.e. the differentials

Op 9%
00,7 7 08,

are linearly independent on the set of (x,60) with ¢j(z,0) = 0. Furthermore, E()) is
assumed to have an asymptotic expansion for A — oo,

E(\) ~) X*E;.
k=0
At a point & where @) (z, ) = 0 has only one solution é(x) in a neighborhood of z, the
method of stationary phase, see Appendix D, applied to (3.6) gives
Y\, ) = MEI@)G(\ 1) |

with
ei% sign ¢ 5(z,0(z))

~ Tdet gy 4(z, ()72 Y

a(A, x) (z,0(z)) + O\, (3.7)

if the stationary point of ¢(z,#) is nondegenerate at x. So the function (3.6) is there of
the same type as the simpler one (3.4), but at the degenerate points, or if the equation
wy(x,0) = 0 has a whole manifold of solutions €, the asymptotic expansion is different.
The main point in choosing an ansatz like (3.6) is to treat all stationary points on the same
footing, and furthermore to get asymptotics which are uniform in z and possibly further
system parameters.
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If for a given x there is no # with (z,6) € suppa and for which ¢ is stationary, then
the non-stationary phase theorem, Theorem D.1, shows that

(A z) =0\N"),

so the function (3.6) is modulo O(A\~*) determined by the germ of a on the set of stationary
points

Ay = {(2,0) | gz, 0) = 0} .

When one inserts the ansatz (3.6) in the eigenvalue equation (3.2), one has to determine
the action of the operator H on an oscillating function e*¢a()\). We will do this in detail
in the next section, see Theorem 3.2.10, and quote here only the well known result, see,
e.g., [Dui73],

H(e™a(N\))(z) = eM@p(\, ) |
where b(\, z) is given by
b\, z) = e%((3y=<9§>+%<3§a<ﬂ"($)3§>)ei’\R($’y)a()\, r+y)H(z+y/2, N+ ¢ (2)))|y=0 =0 »

with R(z,y) = ¢(y) — ¢(z) — ¢'(2)y — 2y¢" (z)y, which has again an asymptotic expansion
in powers of 1/X if H is classical. More precisely, if the Weyl symbol H of #H has the

expansion H ~ Hy + H, +--+, and a ~ ag + A~ 'a; + - -- one obtains for b the expansion
b~ by+ A"1by + --- with the first two terms given by
bo(z) = ao(z)Ho(z, ¥},)
bi(z) = a1 () Ho(z, ¢) + ao(x) Hi(z, ;) + i(awao(fﬁ)agﬂo(% ¢'(x))
1 1
b S a0(@)2,0cHor, ¢!(2)) + a0 ()0 ()06 Holr, ' (2)))
Inserting the ansatz (3.6) into the equation (3.2) leads to
A K/2 .
= B = (5] [ OB 2,6) - BONa(z,0)] 06
s .

and the right-hand side is O(A™°) if b(A, z,0) — E(M)a(A, z,0) and all its derivatives are
O(A™>) on A,. For the first two terms we hence require

aO(xag)HO(xa()Olz(‘Tag)) —E0a0(37,0) =0 (38)
1 1
CL1H0 + CLQH1 + i(amaoagHo + iaoamagHo + an(?f(p"agHo) — E()&l — E1a0 =0 y (39)

where we have supressed the arguments in the second equation. The first one, (3.8), reduces
to an equation for ¢,

Hy(z, (2, 0)) = Ey (3.10)
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for ¢} (z,0) = 0. This is a classical Hamilton-Jacobi equation. The set

Ay ={(z, o5 (,0)) | y(x, 0) = 0} (3.11)

is an (immersed) Lagrangian submanifold of 7*X. From (3.10) it follows that the Hamil-
tonian vector-field Xp, is tangent to A, because by (3.10) one has dHy|s, = 0, and by the
definition of Xy, one has dHy(-) = w(+, Xy,) where w is the symplectic two-form. Therefore
X, is skew-orthogonal to every tangent vector of A,, which implies by the Lagrangianess
that Xy, is tangent to A,. So in order that our ansatz should work, there should at least
exist a Lagrangian submanifold of 7*M which is invariant under the Hamiltonian flow
generated by the principal symbol of H.

What we have just seen is an expression of a fundamental fact, namely that the basic
geometric object associated with an oscillating function like (3.6) is the Lagrangian man-
ifold (3.11). We will interpret the leading term of (3.7) as an object on A. The phase
function ¢ defines a density on A by d, = §(py(x, ))|dz||db]|, for let f be a function on A,
then the integral of f against d,, is given by

/fd //fx%xe 5(¢)(, 0)) dxde_/f ¢ (z,0(z))) (M(mdx.

So the factor W in (3.7) suggests that we should interpret the term as a half-

density. In fact, if we slightly modify our point of view, and choose the ansatz (3.6)

3 . .. . ao(z,0(z))
as a half-density, then this interpretation of the term ERCIORE

Working with half-densities instead of functions on M is well known to be more natural in
microlocal analysis. See Appendix A for the definition and an overview of the properties
and applications of half-densities.

Until now we have worked only locally, but now we want to see if such a function as
(A, z) can be defined globally. In order to decide that one has to study how different
local expressions of the form (3.6) can be patched together. From (3.7) it follows that if
we have two expressions of the type (3.6) with different phase functions and amplitudes
in different coordinate patches, and both admitting an expansion of the form (3.7), then a
necessary condition that they coincide is

is perfectly natural.

ei% sign ¢ 5 (x,0(z))

| det ¢f (=, 6(x))['/?

ei% sign @y »(Z,0(%))

| det gﬁ’e’ye(;ﬁ’ 0(z))[1/2 ao(7,0(2)) ,

eire(z,6(2)) ao(z,0(x)) = eiA(Z,0(2))

where z — Z(x) denotes the coordinate-change. So with every change of coordinates, the
half-density o7 |dz|'/? picks up a factor
6,6

elM0=@) o1 (sign ¢ —sign &) (3.12)
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<<y
S

Figure 3.1: On the definition of the Maslov index of a curve v on the Lagrangian subman-
ifold A of T*M. The Maslov index «(y) is defined as the intersection number of v with
the subset I' C A on which the projection 7 : A — M is singular.

Hence the leading term in (3.7) should be considered as section in the half density bundle
over A tensored with the bundle defined by the transition function (3.12), which is the
Liouville bundle tensored with the Maslov bundle of A.

We first discuss the Liouville bundle, see e.g. [Dui74, BW97|. By the definition (3.11)
of A the phase function ¢(z,(z)) satisfies

dol, 0(z)) = (gﬁ( 0(a)) + 22 0<x>)8§f)) dx = édal, |

therefore the difference p—¢ is locally constant and the line bundle defined by the transition
functions e*¥~9) is the one associated with the cohomology class of the Liouville one-form
&dxr on A.

The meaning of the Maslov bundle is well known, too, see, e.g., [GS77, BW97]. The
projection of the Lagrangian manifold A to the base space M might have singularities.
The set of singularities I" consists of a codimension-one submanifold, and possible further
points of codimension three; the codimension-one submanifold furthermore carries a natural
orientation. The value of the Maslov cohomology class «, which is the one associated with
the Maslov bundle, on a closed loop v on A is now defined as the number of intersections
of v with the codimension-one submanifold of singularities, counted with sign according
to the orientation, see figure 3.1. So the Liouville class takes values in R, and the Maslov
class in 27Z.

The basic condition on the existence of a globally defined oscillating integral associated
with A is the existence of a global section of the Maslov-Liouville bundle. This means,
that if we take a closed loop v in A and a covering of v with open sets A; C A on which
we have different local representations 1); of the same oscillating function, then after one
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traversal of the loop the amplitude has picked up a factor

elA 2 (vj(ej)—pj—1()))+§ X; (sign ¢j (z;) —sign ¢ _; (2;)))

This factor has to be one in order that the function is single valued. The first term is the
value of the Liouville class © = £ dx on 7,

S (i) - pimilep) = [ €dn=00),
j v

which is the classical action of the path «. The second term is the Maslov class evaluated
on v, a(y). Therefore we get the condition that

Y (0i(3) = i) + 7 D (sien () — sign @] ()) = AO(3) + Ja(y) € 202,

J

for all closed loops v C A, in order that the local functions ; can be patched together
to a single-valued function. This is the famous Maslov quantization condition on A. In a
more sophisticated way it can be expressed as
1
27
Therefore we have now found two conditions on a Lagrangian manifold A to serve as the
support of an oscillating function of the type (3.6) satisfying the approximate eigenvalue
equation (3.3). The first one, the Hamilton-Jacobi equation (3.10), is a condition on A
imposed by the classical system, and it implies that A is invariant under the Hamiltonian
flow. The second condition, the Maslov quantization condition (3.13), is a topological
condition to ensure the existence of a global function of the local form (3.6). This condition
will allow only certain values of A\, and therefore leads to a discrete set of approximate
eigenvalues E()).
So the first result is, that if there exists a Lagrangian submanifold A of 7*X which
satisfies Hyo|]n = Fp and a sequence of )\ satisfying (3.13), then there is a sequence of
functions (), z) with

(/\@ + %a) e HY(A,Z) . (3.13)

(H = EoA™)p(Az) = 0(A7) .

Now we come to the second equation, (3.9). If the first one, equation (3.8), is satisfied,
(3.9) reduces to

1 1
aO(H1 — El) + i((’)wao(?gHo + 5@06;585}:70 + an(')g(p"agH()) =0 ,

so it is an equation for ag. The last two terms can be written as 2ao29;Ho(z, ¢'(z)), hence
we get

ao(z,0) (H1(~T; 901(33)) - El)
0

+1(0ua0(z,0)0k Holwr, ' () + o(a, )5~ cHo(z, /() =0 .

(3.14)
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To interpret this equation we recall that we found it more convenient to interpret a as the
coefficient of a half-density. Assume that X is a vector field and b(z)|dz|*/? a half-density,
then the Lie-derivative of b(z)|dz|!'/? in the direction X is given by

1
Lxb(z)|dz| 2 = (X(b) + 5(divX)b) dz|V? .

The Hamiltonian vector field X, restricted to the Lagrangian submanifold A in the above
coordinates is given by 0¢Ho(z, ¢'(x)), so we see that we can write the transport equation
for ag, (3.14), in the invariant form

1
?ﬁxHoa() — (H1 — El)ao =0 (315)

on A, if we consider aq as a half density on A.
By Stokes theorem a necessary condition for the solvability of (3.15) is that

E1=/H1duA,
A

where duy is the invariant measure induced by the Liouville measure on A. Therefore the
subprincipal symbol determines E;. But this condition is not sufficient in order that the
transport equation (3.15) has always a solution, we will discuss this problem in detail in
Chapter 5.3. But if H; = 0, as is for instance the case if our Hamilton operator is the
Laplacian on a Riemannian manifold, then F; = 0 and the canonical invariant half-density
is a solution to (3.15).

To summarize, if, in addition to the previous requirements (3.10) and (3.13), ao and E}
satisfy the transport equation (3.15), then we can construct an approximate solution with

(H—EMN)Y(\z)=0(\2). (3.16)

To proceed one has to solve the higher order transport equations. We will discuss the
solvability of the transport equation (3.15) in detail in Chapter 5.3 and the consequences
for the construction of approximate solutions of the Schrodinger equation up to arbitrary
order in A=! in Chapter 5.4.

The procedure which we have described shows how one can associate with certain in-
variant Lagrangian submanifolds approximate solutions to the eigenvalue equation. In
integrable or slightly perturbed integrable systems such Lagrangian submanifolds are very
plenty. But in general other types of invariant sets very often occur, e.g., isolated periodic
orbits. So the question arises if one can associate with other invariant submanifolds ap-
proximate solutions of the Schrodinger equation too, maybe by modifying the procedure
for the Lagrangian manifolds.

For the motivation of the further developments let us discuss an example in d = 2
dimensions. Assume there is an elliptic periodic orbit v of the Hamiltonian flow generated
by the principal symbol of H. Let us choose local coordinates around v of the form
(s,03p,q), where (s,0;0,0) gives the orbit cylinder through v, i.e. ¢ is transversal to the
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energy shells Hy = const.. The normal form of the Hamilton function up to second order
in the vicinity of the orbit in these coordinates is given by

_w
)

1
H(s,o5p,9) = =(p® +¢°) + 502 :

We are looking for a Lagrangian manifold on which the orbit lies, and which satisfies (3.10).
If we consider a generating function ¢(s, ¢), then the manifold is locally given by

dp Oy
Ap=19 55,8 = eS'xR'} . 3.17
Since we require ‘;—f = 0 = V/2F = const., we get for the phase function

0(s,q) =V2Es+pi(q) -

This leads for ¢;(g) to the Hamilton-Jacobi equation

(&Palq(Q) ) ’ = g

which is solved by ¢1(g) = ig?/2. That is we get a phase function of the form

o(s,q) = V2E s+ iq2/2

which is complex valued, and therefore the corresponding Lagrangian manifold (3.17) is
shifted to the complex domain. But how should we interpret this? We have started from
a C' manifold M, and there is a priori no notion of complex continuation given. So
this construction does not seem to make sense, except we are working in the real analytic
category instead. But on the other hand, we note that the imaginary part of the phase
function is positive, which means that the class of oscillating function defined by it is well
behaved, and furthermore is for large A concentrated around the real part of A,. This
is exactly the elliptic orbit. So if we were able to deal with the global problems arising
because of the complex valuedness of ¢, we would expect to generate by these functions
approximate solutions of the Schrodinger equation concentrated on elliptic orbits. To
develop the necessary theory is the aim of the next sections.

3.2 Oscillating integrals with complex phase functions

Motivated by the last example in the previous section we will develop in this and the
following sections a global theory for functions on some manifold M, which are locally
given by integrals of the form,

K/2
¢(A,x):<i> / @O g (X z,0) db | (3.18)

2T
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where a(A, z, 6) is a smooth function with compact support in § and an asymptotic expan-
sion

a(\, z,0) ~ Z N, (2, 0) .
1=0

The phase function ¢ will be assumed to be smooth and complex valued, but with
Imep >0, (3.19)

in order that (3.18) is well behaved for large A. Furthermore, it should be nondegenerate,
i.e. the differentials

9y 9y

3.20
2. 96, (3.20)

should be linearly independent on the set of (z,6) where g—‘g =0 and Im ¢ = 0.

We start by developing some of the aspects of the local theory of functions of the form
(3.18) and study their dependence on the phase function and the amplitude.

Recall the definition of the frequency set of a family of distributions u, (see 2.4.1).

Definition 3.2.1. Letuy € D'(M) be a bounded family of distributions depending smoothly
on a parameter A € (Ag,00) for some A9 > 0. Then the frequency set of uy, FS(uy) C

T*M, is the complement of all points (x¢,&y) € T*M which possess neighborhoods U > xy,
V' 3 &, such that for every ¢ € C§°(U) and £ € V

/e_i)‘“"wcp(x)u)\(ac) dzr = O()\_N)

for all N € N, as X tends to oco.

This is the same definition as 2.4.1, but with % replaced by 1/\. The frequency set is
an extension of the wave front set for distributions, in case that u € D'(M) is independent
of \ we have

FS(u) = WF(u) .

The properties of the frequency set are therefore very similar to the ones of the wave front
set. Pseudodifferential operators remain pseudolocal with respect to the frequency set, i.e.
for any A € U¥(m, ) one has

FS(AU)\) C FS(U)\)

for every bounded family of distributions uy € D(M). Furthermore, the frequency set can
be characterized in terms of the action of pseudodifferential operators, analogously to the
wave front set.
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Proposition 3.2.2. For A € U%(m,;) define the characteristic set as the zero set of the
principal symbol char(A) := {(¢, z) |o(A)(&,x) = 0}, then we have

FS(uy) = ﬂ char A

where the intersection runs over all A € U°(1) with Auy = O(A™>).

We omit the proof since it is completely analogous to the one in the homogeneous case,
see, e.g., [Hor85a).

Physically speaking, the frequency set consists of the points in phase space on which the
semiclassical limit of the family of distributions lives. On all other points in phase space the
family of distributions is semiclassically negligible in the sense that for any (p, q¢) ¢ F'S(u,)
there exists a neighborhood U C T*M of (p, q) such that

.A’U,)\ = O()\ioo) s

for all A € ¥°(1) whose symbols A have support in U. Now the property that a symbol has
support in U is unfortunately not invariant under coordinate transformations, but since the
contributions of the transformed symbol from outside U are O(A~°), the support is almost
invariant. A suitable notion of a support modulo O(A~*) is introduced in the following.

Definition 3.2.3. Let A € V*(m,;), the frequency set F'S(A) is defined as the comple-
ment of all points (p,q) € T*M, such that there ezists a family uy € D' with (p,q) € FS(u,)
and

FS(AU,\) :@ .

The frequency set is sometimes also called essential support. It can also be characterized
by the symbol of the operator.

Proposition 3.2.4. Let A € ¥*(m,;) and denote the Weyl symbol in some local coordi-
nates by A(€,x), then (p,q) ¢ FS(A) if there is a neighborhood U of (p, q) such that

Al z) =0(A™)
for all (&,z) € U.

The non-stationary phase theorem, Theorem D.1, immediately gives the frequency set
of the oscillatory integral (3.18).

Proposition 3.2.5. Let (), ) be given by (3.18), where the phase function has positive
imaginary part (3.19) and is non-degenerate (3.20), then

FS(u(}) C {(z, ¢, (z,0)) | gy(x,0) = 0 ,Imp(z,0) =0} . (3.21)

We now want to study the dependence of (A, z) on a change of the amplitude and
phase function. If we we change the amplitude away from the set where the imaginary
part of the phase function is zero, we expect that the changes in u (), z) are small.
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Lemma 3.2.6. Assume Im ¢(z,6) > 0 and
la(@, )] < Cly(Im ¢(z, )", (3.22)
then we have for A > 1
‘e‘)“"(” a(z,0)| < CyaA™". (3.23)
Similarly, we have if a(X, z,0) ~ > 20 o X Fag(z,0) with
lag(z,0)| < Cyp(Imo(z,0))VF | fork <N, (3.24)
that there exists a Ay such that for A > Ay
| @ (N, z,0)| < CyA™ N . (3.25)
Proof. We can estimate e*¢@9q(z, 6) as
X5 a(, )] < e a(a, )] < Che 7 (Im ()

where we have used the assumption (3.22). Now the first result (3.23) follows from the
trivial inequality

ey < m%({e_sz} ANV
for y > 0. To show the second estimate (3.25) we write a(\,z,6) = ZN "k (x,0) +

r(\ z,0) with [r(\, z,0)] < CAX™ N, and apply the first result (3.23) to the terms in the
Sum- D

As an immediate consequence we get an estimate on the difference of oscillating integrals
whose amplitudes are equal on the set where the phase function is real.

Proposition 3.2.7. Assume a(\, z,0) and b(\, z,0) have compact support in 0, and the
difference a(X, x,0) — b(\, z,0) satisfies (3.24), then

‘/eﬂw"( (A, z,0) — b(\, z,0)) d§| < CA™N

More generally, the same ideas can be used to show that an oscillatory integral v is
determined modulo A™*° by the germ of the amplitude a on the critical manifold C, =

{(xae) ; 90,9(37’0) =0, Im QO(‘T’G) = 0}'
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3.2.1 The action of a pseudodifferential operator on an oscillating
integral with complex phase function

Next we want to determine the action of a pseudodifferential operator on an oscillating
function with complex phase function. As a first step we will look at functions of the form

U)\(.T)) = ei/\go(a:) ’

where Im ¢(z) > 0 and ¢(z) is smooth. Let P be a partial differential operator,

then we get
Pux(@) = X", @)™ + O(A™ )

where pi(§, %) = -4 Pa(2)€" is the principal symbol of P. For real valued ¢(z) we
have encountered this formula already several times, and its validity transfers to general
pseudodifferential operators. But now we have allowed for a complex valued phase func-
tion. This makes no problems for a differential operator P, because then the symbol is a
polynomial in £ and inserting a complex quantity for it causes no harm. But for a general
pseudodifferential operator the principal symbol is just assumed to be smooth, and need
not be polynomial or analytic, therefore it is not clear how one should evaluate it at a
complex &.

A way out of this problem is given by the method of almost analytic extensions, which
have been introduced by Hérmander and Nirenberg, see e.g. [MS75, Tre80].

Definition 3.2.8. Let f € C*®(RY), then an almost analytic extension of f is a
function f(z,y) € C*°(R?* x R?) which satisfies

f(ﬂf, 0) = f(x)
and

|5f(x,y)| < Cyly/¥, forallNeN, (3.26)

where 0 = 0, + id, denotes the Cauchy-Riemann operator.

If we had |0 f (z,y)] =0, f would be analytic, and therefore f would be an analytic
continuation of f. But this is only possible if f is already real analytic. The first questions
which arise are wether such an almost analytic extension always exists, and if it is unique
then. To answer the first question we consider the Taylor series of f around =,

J*z) o
> a(!)“’
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which need not converge if f is not analytic. But by the Borel theorem on the summation
of asymptotic series one can find a sequence {¢,} with £, — 0 for |a| — oo, and a smooth
function p(t), t € R, which is 0 for ¢ > 2 and 1 for ¢ < 1, such that

> P20y ul ey

is absolutely convergent and in C*®(R¢ x ]Rd). Then we claim that

1| o
=y SO ey

defines an almost analytic extension of f. The condition f(z,0) = f(z) follows from the
definition, and in order to show the almost analyticity we compute

)il
F(z,y) Zf J(lyl/e) |

Ha

which obviously satisfies the estimate (3.26), because p' has its support in the interval
[1,2].

Because the Borel summation is non-unique, it follows that the almost analytic exten-
sion of a smooth function is non-unique too. In order to describe the difference between

almost analytic continuations of the same function we introduce a further notion from
[MS75, Tre80].

Definition 3.2.9. Let S be a closed subset of R™. A function g which is defined in some
neighborhood of S, and is smooth there, is called flat at S if g and all its derivatives are
vanishing at S.

It follows immediately from the definition that g being flat at S is equivalent to
l9(z)| < C(dist(S, 2))"

for all N € IN, and where dist(S, z) denotes the distance from z to S. Furthermore, it is
clear that if g is flat at S, then all derivatives of g are flat at S too. Now the condition
that f and g are almost analytic continuations of the same function is equivalent to the
fact that f — g is flat at y = 0.

After this preparations we can return to our original problem to determine the action of
a pseudodifferential operator on an oscillating function with complex valued phase function.
We will state the theorem only for operators with symbols in S°(m, ), since the passage
to S*(mgyp) is just a multiplication with AF.

Theorem 3.2.10. Let H be a pseudodifferential operator with Weyl symbol H(\, &, x) €
S%(map), and a(z), ¢(x) smooth functions with Im ¢(z) > 0; a(x) shall moreover be com-
pactly supported. Then

H(ae?) (z) = b(\, 2)e™?@) 4 O(A™) |
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and the amplitude b(\, z) is given by
b(\, z) = o5 ((Dy;De)+5(De " (x) De)) oiAR(z,y) FT HOE+ ¢ (2), 24 y/2)a(z + y)|y—oeo , (3:27)

where ﬁ()\,f,x) denotes an almost analytic extension of the Weyl symbol H of H, and
R(z,y) is given by

1

=y, 0" (x)y) -

R(z,y) = o(z +y) — p(z) — (¢'(2),y) — 5

In the formula (3.27) the exponential can be expanded in a Taylor series to give the asymp-
totic expansion

?r-v—-
B

= 1 i T
2) ~ Y 755 Dy Do)+ (De, ¢ (@) D)) Fe ey 525
k=0 .

HX\E+ ¢ (), 2+ y/2)alz + y)ly=oe=o ,

for A — oo, where the k’th term is of order X™tk/31-k

In the A-independent homogeneous theory this result was proven in [MS75], but we will
follow mainly the proof in [Tre80]. In the context of Maslov’s canonical operator a similar
result was proven in [MS73, MSS90].

It can sometimes be useful to choose a different expansion of b(A,x) than the one in
(3.28). Note that the operator exp [4(Dg, ¢" (x) D¢)] acts only on H(\, €+ ¢'(2),z +y/2),
so with the abbreviation

H(\ € x,y) = enxPe?" @D () € 4+ o (z),2 +y/2) |
we can write for the amplitude b,

b(A,z) = e (DuDe) gIAR(wy H(\, & 7,y)a(x + ) ly=0e-0

2, ik (3.29)
~ ﬁ(D De)*e*FEN H (A, €, 2, y)a(z + y)ly=o,e=0 -
k=0
Due to the factor e*(=%) the k’'th term in the asymptotic sum is not a monomial in 1/\

of order k times some derivatives of H, but a polynomial of order [k/3] in 1/ times some
derivatives of H. This makes the ordering according to powers of 1/A more complicated.
In contrast, the asymptotic expansion of H is simple, if we furthermore assume that H has
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an asymptotic expansion H ~ Hy + yHy + 55 Hs + O(A™%). We then get
()"

0 El(2X)k
0§ +¢(2),2+y/2,)

A [Fh €+ (@), +u/2)

(De, ¢" () De)" H(X; € + ¢'(x), 2 +y/2)

hE

H(\E, 2,y) ~

i)

_|_

_;@wwwwﬁﬁ+whmx+W@}

£ X2 Eale + 0,24 4/D) = 300 P DONE+ (@) + /2
- 50" @0 (e + ¢ (0), 2+ /2]

+0(\7?),

and the k’th term in the sum is of order A\=*. Finally we can write down the first few terms
in the asymptotic expansion of b(A, z) for A — oo,

b(\, ) =Ho(¢'(z), x)a(z)

£ X7 Hu(g!(a), 0)ale) — (36, ¢ ()9 Hole!(2), 2)alz)

— 2al(){0:, 9 Fo( (), 7) — 0cFy (¢! (), ), Bua(x)
+O(™2) .

Before we come to the proof of Theorem 3.2.10 we state a lemma which allows us to
handle the contribution of e*#(#¥) to the asymptotic sums (3.28) and (3.29).

Lemma 3.2.11. Assume ¢ € C®(RY) satisfies 0%p(0) = 0 for all |a| < k, then

la

9%e™@)| o = O\FY)  for A = 0,

and for all o € Z‘i, where [I%I} denotes the integer part of |%‘

Proof. We first treat the simplest case that the phase function is a monomial, (z) = a,z%,
o € Z%, then

o . l
: : o i\a,
el)\cp(:c) — el)\aaz — 2 : ( C!) xal ’
{!
1=0
and so one can read off the derivatives as

| By AL
aﬁemm‘ﬂz:o _ { i (idag) el if B =l« for some [ € N . (3.30)

o if B is not an integer multiple of «
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To treat the general case we expand ¢ into a Taylor series. Since

9P eire(@) om0 = 0

if 0%p(x)|z—0 = 0 for all o < 3, it is sufficient to take the Taylor series up to order |3] if
one wants to study derivatives up to order |3|. So we can take

E aT%

k<|al<|B|
and then use the factorization

oA Lk<lal<|p) ST — H elraaz®
k<]al<|B]

The derivative of a product Hje ; [, where J is some index set, is given by the Leibnitz
rule,

110755,

HJEJ fYJ jeJ

(15)= >
jes {i}jes
jeg Vi= =B

see e.g. [Com74]. The sum is over all partitions of 8 € Z% into |J| multiindices ; € Z%.
In our case the index set consists of all multiindices o with £ < |a| < |5|, which we call
Ji,3- Then we obtain

8,8€i/\tp(;c) — Z H e iAo T
H

{'Ya}ae.]k a€Jk,p f)/a a€Jy,p
ZQEJk B

By equation (3.30) we know that 97?92 is not zero at x = 0 if and only if v, = l,a for
some [, € IN, therefore we get as a necessary condition that the whole product

[[ oee?e (3.31)

k<|a|<|B|

is not zero at x = 0, that

Yo da= Y laa, (3.32)

k<la|<|B| k<|a/<|B]
for some [, € IN. Now according to (3.30) the product (3.31) evaluated at = = 0 is of order

PRIL
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so we must estimate »_[l,. But by taking the absolute value of (3.32) (in the sense of
C . . d
multi-indices, i.e. || =Y ] ;) we get

Z lyo

k<|a|<|B]

6] =

= Y o>k L,

k<la|<|8|

and since Y I, is an integer we obtain the estimate

Dl < [%] :

and the proof is complete. O

Proof of Theorem 38.2.10. The action of H on the oscillating function a(z)e*® is given
by

Ha)(w) = () [[ P9 H05E @+ 02 s

d
_ (%) // M@0+ W (X; €, (x +y)/2)a(y) dydé .

The main contributions to this integral come from the points where the phase function
(x —y,&) + p(y) is real valued and stationary. The stationary points are determined by
the equations

—£+¢(y)=0, z-y=0,
so we get as stationary points
y=z, and &=¢'(z).
Now we introduce a smooth cutoff function x (&), such that x(£) = 1 in a neighborhood

of £ = ¢'(x) and with support in a larger neighborhood of £ = ¢'(z). Then we split the
integral into two parts,

H(ae™)(x) = L(\, ) + L(\ z) ,
with
L\ ) = (%) / / @V () H(X: €, (x +y)/2)aly) dyde ,
Bve) = (5] [[ eI M@ €, o+ /2)aly) dude



3.2. Oscillating integrals with complex phase functions 111

According to the principle of non-stationary phase, Theorem D.1, the second integral can
be estimated as *

LA 2)] < Oy

for every N € IN, so we are left with the integral I;(),x). Here we introduce the Taylor
series of ¢(y) around the stationary point y = z,

oly) = p(2) + (¢ (@), y = 2) + 5y = 2. @)y = 2)) +7(5,9)

which gives, together with a substitution y — y + =z,

d
L\, 2) = ePe0@) (i) / / oA~ (@)~ K" (@)~ Rl
’ 27

X(E)H\ &z +y/2)a(r +y) dyd

where
R(z,y) = r(z,y+ ) = p(z +y) — o) — (¢'(x),y) — %(y, ©"(x)y) -

A further substitution & — & + ¢'(x) would now be desirable, but since ¢'(x) can be
complex valued, we can not simply insert it into x(§)H (\; &,z + y/2). Instead we choose
an almost analytic extension Y(§)H(\; €,z + y/2). Then Stokes theorem in d-dimensions
gives for the &-integral

/e—u(y,g—w’(wnx(g)ﬂ(,\; &x+y/2) dE =
/e—iMy,&)X(g + P @NHNE+ ¢ (x), 2 +y/2,)) dE

_ / AP @ [y H €2+ y/2)] de)
D

where D is the d + 1 dimensional (over R) submanifold of €% which is bounded by R? and
R? + ¢'(z), and d¢ stands for the differential form d&; A - -- A d€;. Now the (d + 1)-form

1Strictly speaking Theorem D.1 is not applicable, because the support of the integrand of I is not
compact. But by using a suitable partition of unity, e.g., the one in the proof of [H6r83, Theorem?7.8.2],
one can extend the case with compact support to the case of non-compact support if the integrand satisfies
some symbol estimates, as the one in I, does.
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in the last integral is

d
d( —iA(y,E—¢'( f(ﬁ) d& A A dﬁd) = Z—iAyie—iM%ﬁ—%"’(w»f(g) d&; AdEL A - AdEy
=1
+ Z “IMwE e (@) L (é‘) dé; AdéL A - A dEg

3

=1 ?

PR
— o INmE( Z gg (6)dE, AdE A -+ N dEy

where we have used the abbreviation f({f) = )Z(f)ﬁ(/\;f,:c + y/2). Hence we get for the
integral over D

[ Ao [y g o +u/2)] d6)

= / e MWD Y AR H (N €, w +y/2)]/08 g A& A+ AdEy
D

=1

and if we insert the asymptotic expansion for the symbol, we obtain a sum of terms of the
form

d

Ky = \m* / e MEIENN "R (€) Hnk (X €, 7 +y/2)]/0E, dE; AdE A -+ A dEy
D

i=1
and by the almost analyticity condition and the fact that the integral is over a compact
domain, we can estimate this integral as

[Ki| < X" Oy Im ¢/ (z) |V

for all N € IN. But since |Im ¢'(x)| < CIm ¢(z)'/?, see [H6r83, Lemma 7.7.2], we have by
Lemma 3.2.6

‘ei)«pKk‘ < )\m—kCN)\—N/Q ’

for all N € N and each k. Therefore we have now arrived at

H(ae?)(x)

A d
_ vl (A / / e~ N6~ e (@)
2m

PENF (€ 4+ P (2)H(N €+ ¢ (x), 2+ y/2, )a(z + y) dydé
+0(A™).



3.2. Oscillating integrals with complex phase functions 113

To proceed we use Lemma B.1, the quadratic form is given by Q) = )\i( _OI (pi(lm) ), so we have

[det Q/2m] /2 = (2r/A\)% and Q="' = i/A(¥"™ ). Hence we can finally write H(ae'*?)(x)
modulo terms of order O(A~%) as

H(ae™?)(z)
= ei)«p(m)e%((Dy,Dg)-l—%(Dg,ip'l(m)D»s))ei)‘R(ﬂ%y)I;[()\; £+ (p'(x)’ T+ y/z’ )a(x + y)|y:0,£:0 ,

where we have furthermore used the fact that x(& 4+ ¢'(x)) is flat as a function of £ in the
neighborhood of £ = 0.

Finally, since 03 R(x,y)z—y = 0 for |o| < 3, we get from Lemma 3.2.11 that the k’th
term in the asymptotic sum (3.28) is of order A™*[k/3=k O

The result becomes much simpler if the phase function is quadratic, because then
R(z,y) = 0. This is in particular the case for coherent states of the form

d/4
Uf,q(/\,ﬂ?) = (;> (det Im B)Y/4eMpa—a)+(a—q,Ble=a)/2] (3.33)

where B is a complex d X d matrix with Im B > 0.

Corollary 3.2.12. Let H have Weyl symbol H € S°(mqy), then modulo O(X™ ™)

Huy (A, z) = e (BTN (Nin + p+ Bz — q),y + ¢+ (7 — q)) ln=y=0 U, (A, )

where H denotes an almost analytic extension of H.

What kind of classical states can be quantized as oscillating integrals with complex
phase functions? One might think that since every classical state is a superposition of
delta-functions, we just have to superimpose coherent-states like (3.33). But this will in
general not work, because the relative phase-factors cannot be chosen properly. To explain
this, we assume that we have a classical state which is concentrated on some x-dimensional
submanifold A of phase space which we assume to be locally parameterized by some subset
U of R”,

A={(p(6),q(0)) 10 € U C R"} .

Furthermore it should have relative weight a(f) € C§°(U), i.e. the value of the state on a
observable b(p, q) is

j/ib(p(ﬁ),q(ﬂ))a(9)110 . (3.34)
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Now a natural ansatz for a corresponding quantum state is

b\ 2) = / ) (N 2)al0) 40

L\ 4/ (3.35)
_ (_> / SO AP(O0)2—a(0)+3 (BO—a0)z—a0)] 4(9) d |

™

where we have inserted a not yet specified real valued function S(6), which determines
the relative phases with which the coherent states are superimposed. A minimal condition
that (), z) is a quantization of (3.34) is that the frequency set of (), z) should be an
open subset of A. According to (3.21) the frequency set of ¥(A, z) is contained in the set

{(p(6),4(0)) | p(0)qp,(0) + S5,(0) = 0,i=1,... .6} .

We therefore have to find a function S() which satisfies the equations
p(0)gy (0) +55,(0) =0, i=1,...,k,

in order that the frequency set has the desired property. But this equation for S can be
written in the form

dSy = —pdg/a ,
and a necessary and sufficient condition that this equation has a local solution is
d(—gdp)[x =dpAdgls =0,

i.e. the symplectic form w = dp A dgq should vanish on A. A manifold A with this property
is called an isotropic manifold, and its dimension cannot be larger than d and in case
it is equal to d the manifold is called Lagrangian. So we arrive at the conclusion that
with superpositions of coherent states in the simple form (3.35) with a relative phase of
the type €*5() we can only quantize classical states which are concentrated on isotropic
submanifolds of phase space. We will see that this is as well the case for all oscillatory
integrals with complex valued phase functions, the one with real valued phase functions
allow the quantization of Lagrangian submanifolds, and the more general ones with complex
valued phase functions allow the quantization of isotropic submanifolds.

On the other hand one can of course represent every state as a superposition of coherent
states, since, as is well known, the set of coherent states (3.33) forms a complete set of
states in L?(R¢) when (p, ¢) runs through R? x R¢. But the dependence of the coefficients
of the superposition of coherent states on the parameter A\ will generally be not of the
simple form e*9.

3.3 Coherent states and their geometry

An important special case of Lagrangian states are coherent states which are concentrated
in one point, and have quadratic phase functions.
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Definition 3.3.1. Let (p,q) € T*M and let B be a d x d matriz with strictly positive
imaginary part,

ImB >0,

then we will call a state which in some local coordinates on M around q € M is given by

1/4

a coherent state centered at (p,q).

Coherent states are well known, they have been introduced already in the beginning of
quantum mechanics [Sch26], and have been used in many areas since then, see e.g. [Per86].
In a semiclassical context they have been used for instance by Hagedorn, Combescure and
coworkers, and a more general class of coherent states has been used by Paul and Uribe,
see [Pau97] for a review. We will here concentrate on geometrical properties of them and
emphasise especially the link to complex linear symplectic geometry.

Since the phase function of the state (3.36) is quadratic, we expect the corresponding
Lagrangian manifold to be linear. In fact, if the phase function is

1
then the associated Lagrangian manifold is
{(0+ Bz —q),x); = € RY} = {(p+ B, q+2); 2 € R} ,

which is a d-dimensional subspace of the 2d-dimensional tangent space T(, ) (T*M). If B
is complex we have to pass to the complexification of the tangent space, and get a complex
Lagrangian plane in it.

The geometrical structures associated with this construction will be discussed in the
next subsection.

3.3.1 Complex linear symplectic geometry

We have to recapitulate some linear symplectic geometry with emphasis on the complex
case. Most material of this section has been collected from [Ho6r85a, Chapter 21.6], [Fol89,
Chapter 4] and [RZ84].

Let V be a symplectic vector space over R of dimension 2d with symplectic form w
and denote by V© its complexification. It is well known that one can always choose
coordinates (&1,...,&4,%1,... ,%4) in which the symplectic form is w = d& A dz; such
coordinates are called symplectic coordinates. Often the symplectic form is represented by
a skew-symmetric matrix, in symplectic coordinates this matrix is

0 I
jO:<_I 0> ;
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i.e. one has for all v,v' € V
w(v,v") = (v, Jpv') .

Recall that a subspace L C V, or L C V¢, is called Lagrangian if dimL = d, or
dim¢ L = d, respectively, and w|;, = 0, i.e.

wl,I') =0, foralll,l'eL.

Definition 3.3.2. The set of all Lagrangian planes in'V is called the Lagrangian Grass-
mannian A(V) and similarly A(V®) denotes the set of all Lagrangian planes in the com-
plezification V. A Lagrangian plane L € A(V®) is called positive if

iw(l, 1) >0
for alll € L, and totally real if
iw(l,) =0
for alll € L. The set of all positive Lagrangian planes in VC will be denoted by AT(V°).

Let Lo be a totally real Lagrangian plane in V° and consider the space of all positive
Lagrangian planes transversal to Lg

AF (VO ={LeA"(V®);LNnLy={0}}.

We can choose symplectic coordinates (£,z) in V' such that Ly is defined by = 0. Then
every L € A} (V®) can be written as the graph of a linear function on C

L ={(Bx,2); € C%.
That L is Lagrangian means that
0 =w((Bz,z), (B, x2")) = (Bx',z) — (z, Bx")
for all 2,2’ € €4, hence B is symmetric. Then the positivity of L gives
iw((Bz,7), (Br, 7)) =i({(Bz,z) — (%, Br)) = 2(z,Im Bx) > 0,

for all z € €% so Im B is positive. Therefore, the space A7 (V) is isomorphic to the
space of all symmetric d X d matrices with positive imaginary part. Notice that the scalar
product (-, -) is bilinear and not sesquilinear, hence B is not hermitian.

Definition 3.3.3. The set of symmetric dxd matrices B with complex entries and Im B >
0 s called the Siegel upper half-space X,.

Now one can ask how large the set in A*(V'®) is which is not covered by Af (V). The
answer is provided by the following lemma which can be proven exactly as in [Hor85a,
Lemma 21.6.3].
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Lemma 3.3.4. If Ly € AT (VC) then
{L € AT (V®); dim(L N Ly) = k}
is a submanifold of dimension d(d+1)/2 — k(k +1)/2.
Collecting the results on AT(VC) we have:

Proposition 3.3.5. The set AT (V®) is an analytic manifold of (complex) dimension d(d+
1)/2, which can be covered by a finite number of charts mapping the sets AELO(VC) onto the
set of all symmetric d X d matrices with positive imaginary part. Since the set of symmetric
matrices with positive imaginary part is contractible, A*(V®) is contractible.

Recall that the linear symplectic group Sp(d, R) consists of the 2d x 2d matrices with real
entries which leave the symplectic form w invariant; in symplectic coordinates S € Sp(d, R)
if

SIS =T, with Jp = <_OI é) . (3.37)

Some properties of Sp(d, R) which we will need below are collected in the following theorem.

Sll Sl2

Th 3.3.6. Let S =
eorem e <521 Sy

) € Sp(d, R), where S;; are d x d matrices, then

ST.85 = 53,811, 81,850 = 51,815, and S}, Se — S48 =1, (3.38)
and
S =-58"T € Sp(d,R) .

Furthermore, the following sets of matrices

I A A 0
v={(y 7) a=ath s o={(] ) sdeazof,

are subgroups of Sp(d, R), and Sp(d, R) is generated by DUNU {Jp}.

The first assertion (3.38) is just (3.37) written out in block form and the second assertion
follows from (3.37) by multiplication with S~! from the right and J, from the left. For
the remaining assertions we refer to [Fol89, Propositions 4.9 and 4.10].

The linear symplectic group Sp(d, R) acts on the set of all Lagrangian planes. Via the
representation of a complex Lagrangian plane by a complex symmetric matrix it induces an
action on these matrices which we will now determine. Let S = (g; gg) be a symplectic

matrix and B € Y4, then we are looking for a matrix S, B with

SLB == LS*B (339)
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where Ly = {(Bz,z), r € C%} and similarly Ls,g = {(S.Bz,z), = € C?}. Equation
(3.39) means that for every z € C? there is a y € C? such that

(S11B + Si2)z = S, By
(SuB+Sy)r=1y.

Inserting the second equation in the first one gives
8.B = (811B + S12)(Sa1 B + S33) 7", (3.40)

hence Sp(d,R) acts on ¥, by “linear fractional” transformations. Notice that since B is
invertible, (3.40) is well defined and it follows directly from the defining relation (3.39)
that S, (7.B) = (ST).B for all S, T € Sp(d, R), so it is indeed a group action.

We quote a theorem from [Fol89, Theorem 4.64] which collects some important prop-
erties of the action (3.40) of Sp(d, R) on Xg:

Theorem 3.3.7. (a) If B€ X, and S € Sp(d,R) then S§,B € ¥,.
(b) For any By, By € ¥4, there exists an S € Sp(d, R) with S,B; = Bs.
(c) {S € Sp(d,R) ; S.(il) =il} = Sp(d,R) N O(2d).

So by (b) Sp(d,R) acts transitively on ¥; and (c) means that ¥, is the quotient of
Sp(d, R) by its maximal compact subgroup Sp(d, R) N O(2d).

A strictly positive Lagrangian plane L C V% gives V a complex structure, i.e. an
endomorphism J with J2 = —1I, and a compatible Hermitian form whose imaginary part
is the symplectic form, see, e.g., [Hor85a, Proposition 21.5.7]. The real dimensions of L
and V are equal, and since for [ € L, [ # 0,

2w(Iml,Rel) = iw(l,1) >0,
the map

L—V
[ — Rel (3.41)

defines an isomorphism. The complex structure on V' is now defined as the image under
this map of the complex structure [ — il of L. The Hermitian form on V is then the
push-forward to V' under the isomorphism (3.41) of the form

%w(?, 1)
on L.

Proposition 3.3.8. Denote by Jr the complex structure on V induced by L under the
map (3.41), and by hy, the corresponding Hermitian form on V. Then we have for every

S € Sp(d,R)
Ts1 =S8T.S™'  and hgy=8"'h, S, (3.42)



3.3. Coherent states and their geometry 119

If one has chosen symplectic coordinates (C,z) in VC such that L is represented as L =
{(Bz,z2), z € C} with Im B > 0, then the complex structure is given by

_ (ReB[ImB]"' —(Im B + Re B[Im B] ' Re B)
‘7L_< [Im B —[Im B]"'Re B >

and the real part of the Hermitian form hy, is the positive definite real symmetric form
given by

_ [Im B]~! —[Im B|"'Re B
8.~ \ “ReB[Im B]"! Im B + Re B[Im B|"' Re B

(T 0\ ([mB' 0 \ (I —ReB
~ \—-ReB I 0 Im B 0 I '
Furthermore we have g1, € Sp(d, R) and in particular det gy, = 1.

Proof. The complex structure J;, is defined by
JrRel=Reil, foreveryle L. (3.43)

Since for any [ € L and S € Sp(d,R) one has ReSI = SRel and i§ = Si, we get (with
I'=8leSL)

Jsr.Rel' = Reil' = SReil=S8J, Rel = ST, S 'ReSl = ST, S ' Rel’

and hence Js;, = SJ;, S !. It is well known that for a given complex structure Jz on V
the unique Hermitian form h;, with h;(Jv, Jv') = hy(v,v") and Imh;, = —w is given by

hy(v,v") = w(v, Jpv') —iw(v,v') ,
see e.g. [LM87, Proposition 10.6]. Therefore we get

hsy(v,v") = w(v, Tspv') — iw(v,v")
w(v, SIS ') —iw(v,v")
w

(S, J1S™) —iw(S™', 87) = hy (S, ST

where we have used that w(S™'v,871v') = w(v,v’) since §~!

(3.42) is proven.

To prove the remaining part of the proposition we transform L by a symplectic trans-
formation to a simple normal form, for which we can simply read off the complex and
Hermitian structures. If L is given as L = {(Bz,z), z € €%}, then we can find an
S € Sp(d, R) with B = S,il because Sp(d, R) acts transitively on ;. Explicitly we have

().

is symplectic, and hence



120 Chapter 3. Lagrangian states

with B = AA'i + C. But for B = il one computes

. [iz —Rez 0 -1 1z
rei (2) = (Cnc) = (7 ) e ()
and hence we get J = —Jy. Now the explicit expressions for [J7, and hy, follow with (3.42)
for B = 5,11

J.=-88'7, and hy = (SSH)™ —iT,,

and inserting (3.44) gives the final expressions. The fact that g; € Sp(d, R) follows from
S,S8" € Sp(d, R). O

So every strictly positive Lagrangian plane L defines a positive definite quadratic form
g, i.e. a metric, on V', which is furthermore symplectic. We will call the space of these
metrics Gy,

Gi:={g€Sp(d,R) ;g' =g ,g >0} .

Then the question arises if every element of G; defines a Lagrangian plane. Let g € Gy,
then by [Fol89, Proposition 4.22] there exists an S € Sp(d, R) with

D 0
T _
SgS—(O D)’

where D is diagonal. And since S'gS € Sp(d, R) it follows from Theorem 3.3.6 that D = I,
hence there exists an S € Sp(d, R) with

g=(S18)".
Now assume we have two such representations, i.e. there are S, S € Sp(d, R) with
g=(5'8) ' =(5'9) ",
then § = TS with 7 = S§~! € Sp(d, R) and
TT=1,

hence T € Sp(d,R) N O(2d). So the metric g determines S modulo an orthogonal matrix
and together with Theorem 3.3.7 and Proposition 3.3.8 we get isomorphism between the
sets of positive Lagrangian subspaces, the set of symmetric matrices with strictly positive
imaginary part and the set of symplectic metrics on V:

Theorem 3.3.9.

Ed = Sp(d’ R)/(Sp(d, R) n O(2d)) = Gd :
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In connection with the action of Sp(d,R) on ¥, we will meet as well the so called
multiplier

m(S, B) = [det(Sng + 522)]71/2 s (345)

for Be Yyand S = (2; gg) € Sp(d, R), see [Fol89]. We will not fix the sign at this place,
but later on we will encounter the function m(S, B) for a path of symplectic matrices
starting at the identity, and then the sign will be fixed by continuity and the condition
that m(I,B) = 1. As can be checked by a direct calculation, the multiplier satisfies a
cocycle identity

m(ST, B) = m(S, T.B)m(T, B) . (3.46)

We will now compute m(S, B) for some simple examples. We introduce the totally real
Lagrangian subspace

Ly={(6,0)|€€ €Y} .

Lemma 3.3.10. Assume Lg is invariant under S = (g; gg) € Sp(d,R), i.e.

SLy = Ly ,
then we have for any B € ¥4
m(S, B) = [det Sop] 1/
Proof. That SLy = Ly means that § is of the form
s=(% 5
and so the result follows from the definition (3.45). O

Next we want to study the case that B is invariant under the action of S, §,B = B,
which means that § is orthogonal with respect to the Euclidean form g defined by B on V.
In order to simplify the calculations we transform B to the form i/ for which the Euclidean
form is the standard one. To this end we define

1. (Im B)'/?2 Re B(Im B)~'/?
o 0 (Im B)~'/2 ’

then 7 € Sp(d,R) and 7,7'il = B, 7,B = il and furthermore 7Ly = Ly. Then

m(TST 1,il) = m(TS, T, il)m(T 1,il)
(T, S:B)m(S, Bym(T ~,iI)

(T, BYm(S, B)m(T ~*,il) ,

I
3 3

I
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but since

(T, Bym(T 1) = m(T, T 50)m (T, 1)
=m(TT i) =m(L,il) =1,

we get
m(TST ',il) = m(S, B) .

Note that 787! € Sp(d, R) N O(2d), so we can restrict ourselves to the case that B =il
and S = O € Sp(d,R) N O(2d).
The behavior of O with respect to Ly plays an important role. Define

D(f) = LoﬂOLo 5

then Dy is isotropic and invariant under O. Furthermore, its skew-orthogonal complement
DY = {v € V|w(v,w) = 0 for all w € Dp} is invariant under O too, and therefore O
defines an orthogonal map on the reduced symplectic space

Vo := D%/Do ,
(;) : VO — V() . (347)

Lemma 3.3.11. Let O € Sp(d, R) N O(2d) and let O be the reduced map (3.47), then

A

m(0,iI) = m(O,il) .
Let furthermore

ip1 ipn o—ip1 —ip
(¥, .. e e L e )

be the eigenvalues of O with o; € [0,7) fori=1,---,n, where n = d — dim(Ly N OLy).
Then we have

m(0,il) = e 2 Xi=1%i |

Proof. Since B = il defines a Euclidean structure on V' we can choose an orthogonal

basis v1,...,vq of Ly, such that Dey is spanned by vy,...,v4_,, and complete it to an
symplectic and orthogonal basis v, ... ,vg, w1, -+ ,wq of V. The subspace D is spanned
by v1i,...,04, Wg—ni1,- - ,wq and therefore we can identify Vi with the subspace of V

spanned by the vectors

VUd—n+1;5 -+, Ud, Wd—n+1," " ,Wq -
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If we denote the orthogonal complement of V@, spanned by v, ... ,Vg_pn, W1, ** , W4q_n, DY
Vo we have a decomposition of the symplectic vector space V' into two symplectic subspaces

V=VaVo.

Now both subspaces are invariant under O, so O is in this basis block-diagonal
(O 0
o=(5 )

m(0,iI) = m(O,il)m(Oy,il) .

and therefore

Now we have Vo = Do @ Dg, where D denotes the orthogonal complement of Dy in
Vo. Since Dg is invariant under Oy, D3 is invariant under Oy too, and so Oy is block-
diagonal with respect to the splitting Vy = Dp @ D3. Because Dy and D are Lagrangian
in V we are in the situation of Lemma 3.3.10 with Ly = Dy and S5 orthogonal, therefore
we obtain

In order to compute the remaining term, we can assume that LoNOLg = {0}. We denote
by Ly the orthogonal complement of Ly in V, and it is easy to see that Ly N OL; = {0}.
Now V splits into two-dimensional O invariant subspaces V; on which

_ [cosp; —singp; S
O|Vj_<sin<pj cosg0j> J=1-d,

and since Ly N OLy = {0} and Ly N OLy = {0} we have dimV; N Ly = 1 Then we find

m(0,il) = Hm(O|Vj,iI) = He—i%w I D
J j

We can now give a general formula for the multiplier.

Proposition 3.3.12. For any B € ¥4 and S € Sp(d,R), there are T, P € Sp(d,R) with
P.il =8,B, T.B =il and T Ly = Ly, PLy = Ly such that

S =POT
with O € Sp(d,R) N O(2d). The multiplier is then given by

(det Im S, B)Y/*

S B) = et im B/

m(O,il) .
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Proof. Let T,P € Sp(d,R) be defined as

D (Im S,B)Y? Re B(Im S,B)~*/? 1. (Im B)'/?2 Re B(Im B)~'/?
. 0 (ImS,B) Y2 ) - 0 (ImB)~ Y2 )~
(3.48)

then P,il = S,B and 7 ',il = B and therefore there is a unique O € Sp(d,R) N O(2d)
such that

S=POT .
Now with the cocycle property (3.46) we obtain

m(S, B) = m(POT, B)

PO, T.B)m(T, B)
PO,iI)m(T, B)

P, 0,iI)ym(O,il)m(T, B)
P,il)m(0O,il)m(T, B)

= m(
= m(
= m(
= m(

and inserting the expressions (3.48) for P and 7T gives

m(P,il) = (detTm S, B)Y*, and m(T, B) = (detTm B) /4 .

3.3.2 Creation and annihilation operators

We have seen in the last section that a coherent state is associated with a complex La-
grangian plane L. Let v € V¢ = T T*R% and consider the linear form w(v, -) together
with its Weyl quantization

i

P, = —(a 3

where v = (a, b). Applying this operator to a coherent state uﬁ ; centered at (p,q) gives

Potty (A ) = [—(a, Bz — q)) + (b, — q)]uy (A, )
= w(v, lm)uiq()\,x) ,

with I, := (B(xz — ¢q), (x — ¢)). And since L is Lagrangian and I, € L we get that
Pouy (N, z) =0 (3.49)

if and only if v € L. As we Will see in Section 3.4.3, the validity of condition (3.49) for all
v € L characterizes the state u], (), z) uniquely. Because of relation (3.49) the operators P,
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with [ € L are called annihilation operators. The adjoint operators P} are called creation
operators.
From the product formula and the linearity of the symbols it follows immediately that

[Py, Py] = lw(v,v')
A
and furthermore we have
P: == P@ .

Now, since iw(l,!") is a nondegenerate Hermitian form on L, we can choose a basis [},
j=1,---,d, of L which is orthonormal with respect to this form,

i(,c)(li, ZJ) = 5ij .
For the corresponding annihilation and creation operators we then obtain the relations

[Pli7plj] = [,Pl; Plj] =0

. 1
[P, P] = 3 i
which are the classical commutator relations for annihilation and creation operators.
Given a basis l;, j =1,--- ,d,of L, and o € Zi being a multi-index, we define a higher
order coherent state
L . 1md prej, L
Upg(e) =TI PL Y uy, (3.50)

These states are orthogonal, more precisely, they satisfy

1
<U]I;’q(05),u£,q(al)> = W 6ao¢’ )

which follows easily from the commutation relations for the creation and annihilation
operators.

We finally want to study the representation of certain operators as polynomials in
creation and annihilation operators. Since the set of vectors i, ... ,lg,l,...,ls spans VC,
we can represent any v € V® as a superposition

d
V= Zlej + ,Ujlj ,
7j=1

and therefore the corresponding linear differential operator is a linear combination of an-
nihilation and creation operators,

d
Po=> viPy, + uiP, .

=1
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By iterating this procedure, it follows that for an operator A with Weyl symbol

a(z) = Z ao(z — 29)®

lal<m
one has a representation
A= E —— P*.
,\Ia\
al<m

Applying this representation to a state u(53) yields

Au(B) = 7 sfrula+8).

With some more work it is possible to get explicit expressions for the coefficients ¢, in
terms of the a,, see, e.g., [Com92]. But for later applications it is sufficient to know that
a state u(3) is mapped by an operator whose Weyl symbol is a polynomial of degree m to
a linear combination of states u(a + 8) with 0 < |3] < m.

3.3.3 Families of coherent states

We are now prepared for a closer study of the properties of coherent states. We have learned
in Section 3.3.1 that the proper geometrical object associated with a coherent state is the
complex Lagrangian plane L associated with the symmetric matrix B by

L:={(p+ Bz,q+2)|z€C%.

Therefore we will denote the corresponding state by

d/4
uzeq()" T) = <—) (det Im B)1/4ei>‘[(1’:$—q)+%(w—q,B(w—Q))] ,

™

where B is the matrix which generates L.
It is well known that in R? the usual set of coherent states form a complete set of states.
For sake of completeness we here give a proof of it.

Proposition 3.3.13. Let B be a complex symmetric d X d matriz with Im B > 0, then the

set of states

dj4
uiq()\’ ) = <;> (det Im B)1/4ei>\[(p,z—q)+%(w—q,B(w—q))] (3.51)

form a complete set of states in L?(R?) in the sense that we have

<27r) // pq( A 2) dpdg = 6(z —y) .
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One can give a straightforward proof by directly calculating the integral, one only has
to use Gaussian integrals. Since we will need the Wigner function of the coherent state
(3.51) later on as well, we now give a proof via the Wigner function.

Lemma 3.3.14. Let (p,q) € R?® and B be a complex symmetric matriz with strictly
positive imaginary part, then the Wigner function of the coherent state

d/4
uﬁq(A’ ‘/1:) = (_> (det Im B)1/4ei)‘[<paz_q)+%(J,‘—q,B(J;_q))]

™
s given by
A\ ¢
L _ —X(&—p,xz—q), —p,T—
Wpyq(g’x) — (;) e~ M(E-p2—q),81(6—p,x—q)) , (3.52)
with
B [Im B]~! —[Im B|"'Re B
8.~ \ “ReB[ImB]"! ImB + Re B[Im B]"' Re B (3.5
B I 0\ (/[mB]t o I —ReB '
- \—ReB I 0 ImB) \0 1 ’
and det g, = 1.

Notice that the quadratic form in the exponential of the Wigner function is defined by
the metric canonically associated with L by Proposition 3.3.8.

Proof. 1f we insert the expression for uﬁ’q(/\, x) in the definition of the Wigner function

M [ e
WPL,Q(S"T) = (2_) /e A(g’y)uiq()“x - y/2)u£q(/\,ac +y/2) dy,

s
we get
AN? /0 42
Wy.(€z) = (%) (;) (det Im B)*/?

o~ Me—gm B(z—q)) / o~ NI By =X ule-p-Re Bz-a)}) gy,

d
_ <i> o~ Me—aIm B(s—q)) q—Al{Im 5] (6~p—Re B(z—0)),é—p—Re B(z—)
m

where we have evaluated the Gaussian integral according to Theorem D.2. Now expanding
the product in the exponential leads to the result (3.52). O]
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Proof of Proposition 3.3.13. Since the Wigner function of a state u is by definition the Weyl
symbol of the corresponding projection operator |u){u|, the completeness of the coherent
states is equivalent to the relation

[ whie apa=1,

which follows by inserting the formula (3.52) and then using det g; = 1 in the evaluation
of the Gaussian integral. O

We will sometimes find it useful to let the Lagrangian plane L vary with the point (p, q)
on which the coherent state is concentrated. In other words, the metric tensor g defined
by L is now no longer constant. This does not affect the normalization of uﬁ,q()\,:v), but
the completeness relation is only true asymptotically.

Theorem 3.3.15. Let B(p, q) be a smooth function with values in the complex symmetric

. . . oy . . . d
d X d matrices with strictly positive imaginary part, and assume that for any o, € Z4
there exists a constant Cy 5 with

10565 B(p, q)|| < Cayp -

Then the states

d/4
p q()\ x) (_) (det Im B(p’ q))1/4eix[<paw7q)+%(.ﬁC*q,B(p,q)(wfq))]
’ T

satisfy the relation

A\ L 1
Py Uy ) (U | dpdg =1 — s

where s 1s a pseudodifferential operator in W°(1), with principal symbol given by the scalar
curvature s(p, q) of the Riemannian metric gr,,

o(s) = s(p,q)-

Proof. The Weyl symbol of the operator

d
(35) [ttt v
/ / ,(& z) dpdg (3.54)

is given by
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with

A\ ¢
L _ “M(p—E,q—),8(p,q) (—E,q—
Wp,q(gvi) = (;) e~ Mp—£€,9-2).8(p,9) (p—E:0—2))

being the Wigner function of ul’ (X, z), see (3.52). Introducing the abbreviations z = (¢, z),
z' = (p,q) we can write (3.54) as

d d
(i) / N2 —2) gyt — (i) / NG g
™ ™

A d
= (_) / oM 8(2)) oM [g(a+2) ()2 gy

™

We could easily evaluate the last integral using Lemma B.1, which gives

e_%<Dz’ ;g_l(z)Dz’)e_A<zly[g(z+Z’)_g(z)]zl) |Z’:0 I

and shows by the results of Appendix B that it defines a symbol in S°(1).

But in order to determine the next-to-leading part for A — oo it will be more convenient
to introduce Riemannian normal coordinates for the metric g centered at z. Recall that
(see, e.g., Theorem 2.17 and Corollary 2.3 in [Cha93]) in such coordinates the entries g;;
of the metric g are of the form

1 n_1m
g,-j(z + Z,) = (51-]- — ansz(Z)ZI Z, + O(‘ZI‘S) y

and for the determinant one has
1 n m
detg(z+2')=1- gRicnm(z)z’ 2™+ 0(7P) .
Here Ryim;(2) is the Riemann tensor of g at z, Ricym(2) := Ripim(2) := ¢YRinjm(2) is the
Ricci tensor, where the summation convention is used, and ¢/ are the entries of g . Since
the change to normal coordinates will typically not be symplectic, the property detg =1

is lost, and the Riemannian volume element becomes /det g(z + 2’) dz’ instead of dz'.
Hence we get by Lemma B.1 for the integral in the new coordinates

A d T ! !
<_> /e—A(z ") @~ AR(2,2") /detg(z+z’) dy = edx(0:0.0) detg(z+zf)e—AR(z,2)|z,:0 ,

™

with

1 n mm 1t 1j
R(z,7') = —ngmj(z)z' 2"+ O(7))
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and
detg(z 1) =1- éRicnm(z)z'"z'm +O(ZP) .
But since the Riemann tensor is antisymmetric in the first and in the second pair of indices,
i.e. Rpimj = —Rinmj and Rpim; = —Raijm, we have Ryim;(2)7’ nAM 2 = () and thus
R(z,2') = O(|2']") .

By Lemma 3.2.11 we see that therefore the exponent R gives no contribution of order 1/A
and so we get

d
(é> /G_MZI_z’g(ZI)(Z’_z)) df=1- 24)\<az’ O )RiCam (2)2" 2" 120 + O(A7?)

™

i —2
=1 12)\R1(: n(2) + O(A77)

and since the scalar curvature is defined as s(z) := Ric",(z) the proof is complete. O

If we want to retain the completeness relation, then we have to multiply the coherent
states with a parametrix of (1 —s/(12)))%/2,

P=(1—s/(12))"/2 ~ i( 1/2> (—%)k

k=0

More precisely, the states defined by
iy (A z) :==Pul (A )

(%)d [ [kt dma =1, (3.55)

but they are now no longer normalized. Instead we have

satisfy

I - 1 _
<u£,q’ uziq) = <u£,q’ uziq) + 12 (uiq, suﬁ") +O( 2)
1
=1+ -—s(p,q) +O(17?).

12\

Hence the scalar curvature of the metric induced by L is the leading order obstruction for
the corresponding set of coherent states to be simultaneously complete and normalized.

Since the completeness relation will be the more important property, we will often use
the modified coherent states

L — P, L
Uy o (N, ) i= Puy (A, @)
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Proposition 3.3.16. The Wigner function of a modified coherent state
iy (A z) :==Pul (A )

s given by

d
Wi (2) = A(A, 2) @) o~ Nz=20,81(270))
Vs

: Y (3.56)
= (14 2y 5+ 06—l 0 (2) e
where AN, z) € S°(1) and z = (&, ), 20 = (p, q).

Proof. We start by expressing the Wigner function of Pu through the Wigner function of
u, for an arbitrary state u and a pseudodifferential operator P. We have

Pulz) = (%) // @21 (i, (2 + 2) /2)u(z) dadn |

where p is the Weyl symbol of P, and the Wigner function of Pu is

W(Ew) = (21) [0 Pita — y/2Pua + /2) dy

_ (g)?’d///// SN Ha—/2— et/ (5 4 2)/2 — y/4)u(z)

p(n, (z +2)/2 = y/4)p(, (z + 2) /2 + y/Hu(Z) dzdZ'dndry'dy.

If we substitute now first z — z — 2'/2, 2’ +— z+2'/2 and afterwards y — y — 2/, we obtain

3d
W(g x ( ) ///// —iA[{y,&) Hx—2—y/2+2" [2n)—{z—2+y/2—2" /2,0 )]
’ 2T

p(n, (z+2)/2 —y/4 =2 [4)p(0, (x + 2) /2 + y/4+ 2'/4)
u(z — 2'/2)u(z + 2'/2) dzdz'dndn'dy

3d
///// —iA[(y—2" &)+ (z—2—y/2+2 m)—(z—2+y/2— 2" )]
27r

p(n, (z+2)/2—y/Hp(0, (z + 2)/2+ y/4)
u(z — 2'/2)u(z + 7' /2) dzdz'dndn'dy

= (L) [[[f e oo v bty (o 2y2 -y

p(n', (x+2)/2 +y/HWo(n +n' = £, 2) dzdndn'dy ,
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where Wy(&, ) denotes the Wigner function of u. A further substitution n — n — 7'/2,
n' +—n+mn'/2 leads to

(%) ; J[[[eenteatipy g2, @+ 2)2 - /)

p(n+1'/2, (x + 2)/2+ y/HWo(2n — &, ) dzdndr'dy |

and then 2n — & — n, y/2 — y finally gives

wie.w) = (o )//// Aokt + € — ) /2, (0 4+ 2 — 9)/2)

p((n+E+1)/2, (x+ 2z +y)/2)Wo(n, 2) dzdndn’dy .

For the further evaluation of this integral we introduce the abbreviations z = (£, ), 2’ =

(n,2) and 2" = (', y), and with

)\ d

d 2d
W(z) = (i) (;) / / S —20.8(2'—20))+(&" T (' =2)]
i 7r
p((z+ 2" =2")2)p((z+ 2 +2")/2) d2'd=2" .

With the substitution 2’ — 2/ + z this can be rewritten as

)\ 2d . '
W =Tl <%> / / oiNi(2',g2)+(=' 2ig(2—20)~T "))

p(z+ (' =2")/2)p(z + (& + 2")/2) d2'dZ"
so this gives (3.56) with

A 2d H H ! ! N5 H 1
A\ z) = (%) // iz g2") +(2' 2ig(2—20)~T 2 >];5(z (7 = 2" /2)p(z + (2 + 2")/2) d2'd2" .

A substitution 2" — 2" — 2iJg(z — z) followed by 2’ +— 2' + 2", 2" — 2’ — 2" gives

2d
A2 = (2#) // MEGE N (4 2 +1Tg (2 — 20))plz + 2 — 1T g2 — 20)) 4%d2'd2"
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with

— g g-iJ
6= (5, 57

Now using det G = 1, we obtain

A(A, z) = e_ﬁ<(6z' ;az”);G_l(az' ;az”)>p(z + Z” + 1jg(z _ ZO))p(Z + ZI _ ljg(Z _ ZO))|2’:2”:O

where
ci_( 8  8'+J
gfl + le gfl )

which can be easily seen using the fact that g is symplectic. By evaluating the leading
order terms we get

AN, 2)Wy(z) = (1 + %s(z)) Wo(z) + O

0

Proposition 3.3.16 gives a pointwise result. If one is only interested in weak results,
which is in some sense natural for Wigner functions, on can use the following lemma.

Lemma 3.3.17. Let u € L*(M) with Wigner function Wu], and denote by W[Pu] the
Wigner function of Pu for P € ¥°(1). Then we have W[Pu] = |P*W{u](1 + O(A7"))
weakly, i.e.

/ WIPU(2)A(z) dz = / PR()Wl(2)A(2) dz(1+ OO |

for all A € S°(1), where P denotes the Weyl symbol of P. If the symbol of P is furthermore
real valued then the error is in fact O(\?).

Proof. We just write down the equality
(Pu, APu) = (u, P* APu)

in terms of the symbols, which gives

/ WIPu|(2)A(2) dz = / W] (2) P4 A#P(2) dz

Since by Theorem 2.5.5
1

P*#A#P(2) = |P(2)*A(2) + ) [P*{A, P} + {P*, A}P + A{P*, P}| + O(\7?),

and the term in brackets vanishes for P* = P, the result follows. O
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In the situation in Proposition 3.3.16 we therefore obtain that the Wigner function of
a modified coherent state is given by

A

1 d
1 L _92 N —X(z—20,8L(2—%0))
Weol2) = < gy #E) o0 )) (W) ’

in the weak sense.

If one wants to expand a state 1 € L*(R?) into a basis of coherent states, one has
to compute the scalar product (uﬁ,q, ). The square of its absolute value, multiplied by a
normalization factor, is called a Husimi function of :

HEw0) = (5 ) e )? (3.57)

Since

()2 = tr [Jul ) | |9) (] // (6,0 Wig(E,2) dade

the Husimi function is a Gaussian smoothing of the Wigner function.
The normalization factor ensures that we have

/ Hj(p,q) dpdq = (1),%))

by the completeness relation for the coherent states.

Of special interest will be the scalar product of two coherent states located at different
points, which gives the deviation of the set of coherent states from being orthonormal.
Lemma 3.3.18. Let (p,q), (', q') € R* and let u, (), x)be the coherent state (3.51), then

L L \ _ iXp+p',a—¢')/2.—Agr(p—p'a—q')/4
(ul uly ) = PP 2o Ao oop = )/4
and hence the Husimi function is

A\ A\?
1 .0) = (e ) N i) = (55) oo,
where gr(p —p',q —¢') = ((p =10 —¢),g.lp—1',q — ¢)) denotes the quadratic form
defined by the metric gy, see (3.53).
Proof. The proof consists of a simple evaluation of a Gaussian integral, similar as in the

proof of Lemma 3.3.14. Inserting the expressions fur up o We get

a/2 B
Wk b )= (i) (det ImB)1/2/ (P —p.z)— (0,0 )+ (psa)+ 5 (Bla—q')w—q")— 5 (B(z—a).2—a)]
™

P97 TDyq

— oM3(Bd ¢~ 3(Ba,a)—(v',¢')+(p.q)]

(

(Bd'a')—1(

N>

d/2
) (det Im B)1/2/ A(Im Bz,z) oiXz.p —p—Bq'+Bq) .

0,9)—(p",¢")+(p,@)] o= M{[Im B] - Yp'—p—Bq'+Bq),p'—p—Bq' +Bq) /4

|

Al

N

Y
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where we have used Theorem D.2. Now splitting the exponent into its real and imaginary
part gives

(Uﬁ,q, “5’,q’> — ei)\[% (Re Bq',¢')— 5(Re Bq,q)+ (0" —p.d'+a)+ 5 (a+d Re B(g—¢'))—(p',¢') +(p,q)]
e~ A([Im B]~' (¢ =p),(p' —p)) /4—([Im B] ' (p'—p),Re B(q' —q))/4—([Im B]~" Re B(¢'—q).p'—p)/4]
o~ A3(Im Bq' ,¢')+5(Im Bg,q)—(Im B(¢'+4),4'+4)/4]
— NP +Pa—¢')/2
e~ A([Im B~ (p'—p),(p' —p)) /4+{[Im B]~* (p —p),Re B(¢' —q))/4+([Im B]~* Re B(p'—p),¢' —q) /4]
e~ A(Im B(¢'—q),q4'~q) /4]

— oMP'+P4=4") /2= A9(0' —p,d'=a)/4

In analogy with the definition of the Wigner function of a single function one sometimes
defines the Wigner function of a pair of functions f(z), g(z), by

Wirden) = (5) [P Ta- ety (39

see, e.g., [Fol89]. The usefulness of this function lies mainly in the fact that for a pseudo-
differential operator H with Weyl symbol H (£, ) one has

(f, Hg) = / / WIF. g)(€, 2) H(E, ) déda

We want to determine this Wigner function for two coherent states centered at different
points in phase space.

Lemma 3.3.19. Let (p,q), (p',q¢") € T*R%, and let p := (p+p')/2, ¢ :== (¢ + ¢')/2 and
op:=p—7p,dq:=q—¢, then

¢’ ~p'\q

d
™

Proof. By inserting the expressions for ) and ul, , into the definition 3.58 of the Wigner
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function we get

Wity 16 = () [ ety 00—yl 0+ 07) ay

— M 2—d")~(p2—q)+{z—q',B(z—¢'))/2—(2—q,B(—q)) /2]

A\ /) 92 i
<_> (_> (det Im B]-/? / o~ (p+')/2-Bla—)2- Blo—0)/2)
2 T

ef)\(y,lm By)/4 dy

d

= <é> AP 2—¢")~(px—q)+(z—¢ . B(x—q'))/2—(z—q,B(z—q))/2]
T

e~ ME=(+1)/2-B(z=0)/2=Bla—¢')/2.[Im B]"H(¢~(p+p") /2= Bl —9)/2=B(2~d)/2))

where we have used Lemma D.2. Rewriting this expression in terms of p, ¢ and dp, dg gives
AN o L B}
Wiy ’ - iA[(P,0¢)—(dp,x—§)+i{x—g,Im B(x—q))+i{dq,Im Bdq) /4+(dq,Re B(z—q))]
[pq pq(fa:) (7?)6

e—)\(ﬁ—ﬁ—Re B(z—q)—iIm Béq/2,[Im B]~1(é—p—Re B(z—q)—ilm Bdq/2))

A d
— <_> el)‘Kp_v(SQ)_<Jp7m_q>+<JQ7£7ﬁ>]
™

e A(¢—P—Re B(z—7),[Im B]~*(§—p—Re B(z—7)))+(z—,Im B(z—7))]

d
™

O

This lemma can be used to derive an asymptotic expansion of the matrix elements
between coherent states of a pseudodifferential operator.

Proposition 3.3.20. Let H be a pseudodifferential operator with Weyl symbol H € S°(m, ),
then we have

where fI denotes an almost analytic extension of H, Z = (p,q) = ((p +9')/2, (¢ + ¢')/2)
and §z = (0p,dq) = (p—p',q—¢).
Proof. We introduce the abbreviations z = (p,q), 2’ = (p/,¢'). We need to compute

(uF, A, (%) [ Xeratie, o+ ) /2m o o) dodya
- (%> J[[ 00 .o -yt +ur2) drayag
- / W, (€, ) H(E, o) dade |
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with
N T
Wes(an) 1= (g2 [0 (0 = u/2husta + 9/ dy
A\ ¢
= (2] er(p:I9)—(02,T0(20-2))) o= A9(20—2)
v
Hence we get
A\ ¢
<u;l€qa HuzI;’ ql><Z; H ZI> = ei)\(ﬁ,éq) <—> /ei)\((Jz,joz”)+i(z”,gz”))H(Z + Z”) dZ” .
b b 7-‘-
The stationary point of the phase of the integral is given by
i
2 = ngljodz ;
and the substitution 2" — 2" + 2, gives
d
’ T
— elA<ﬁ’5q>e_)‘<6’z’gdz>/4e_ﬁ(Dzag_lDi)ﬁ(Z + ZO) ,
where we have used Lemma B.1 and that
Jog =g,
which follows from the fact that g is symplectic.
O

3.4 Global Theory

3.4.1 Lagrangian ideals

In Section 3.1 we have seen that the appropriate invariant object associated with an os-
cillating integral of the type (3.18) with a real valued phase function is the Lagrangian
submanifold in T*M generated by the phase function. But if we now have a complex
valued phase function we face the problem that we do not know how to immerse a com-
plex Lagrangian manifold into 7*M. A way out of this problem can be found by using a
more algebraic formulation. Following Hérmander [H6r85b], we consider for a Lagrangian

submanifold A C T*M the corresponding vanishing ideal in C*(T*M, R), defined by

Jy:={feC®(T*"M,R) |f=0o0n A} .

(3.59)

The following proposition says that there is a one-to-one correspondence between La-

grangian submanifolds in 7*M and certain ideals in C*°(T*M, R).
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Proposition 3.4.1. The ideal Jy = {f € C®(T*M,R) | f = 0 on A} has the following

three properties:
(1) Ju is closed under Poisson brackets, i.e. for f,g € Jy one has {f,g} € Ja.

(i) Ja is locally generated by d functions, that is for every point in T* M exists a neighbor-
hood U and d functions f1,..., fqg € Ja withdfy,... ,dfs linear independent on every
point in U, such that every g € Jy with support in U can be written as g = Y a; f;
for some a; € C*°(U,R).

(153) If af € Jp for every a € C®(T*M,R), then f € Jj.

Conversely, assume that an ideal J C C®°(T*M,R) satisfies the conditions (i) to (iii),
then the set of common zeros A := {(& x)|f(&,x) = 0 for all f € J} is a Lagrangian
submanifold in T* M.

Proof. Assume f,g € J,, then they are constant on A and therefore their Hamiltonian
vector-fields Xy, X, are tangent to A. Thus {f,g}/a» = w(Xy, Xy)|a = 0 because A is
involutive.

As any d-dimensional submanifold, A can locally be represented as the common zeros
of d independent functions, ANU" = {(&,z) |f1(&,2) = - - f4(§,x) = 0} for some open set
U' C T*M. In a neighborhood U of A N U’ one can choose new coordinates (yi, - .- ,¥oq)
such that y; = f; fori = 1,...d, because of the independence of the f;. By Taylor’s formula
we have for any g € Jj with support in U,

d d
g= Zajyj = Z%‘fy‘
j=1 j=1

with a; = 01 5—;(111, o W, - Yoa) At € C°(T* M, R). This proves (ii), and (iii) is obvi-
ous.

Now the converse; assume we have an ideal J which satisfies conditions (i) to (iii), and
let A be the set of common zeros. Because of (ii) A can locally be represented as the set
of common zeros of d linearly independent functions f;, ANU = {fy = -+ f4 = 0} for
some open set U, and is therefore a d-dimensional submanifold of T*M. Moreover, the
Hamiltonian vector fields X, are tangent to A and span the tangent space at every point
in ANU; but because of (i) 0 = {f;, fi}a = w(Xy,, X;), therefore A is Lagrangian. Finally,
condition (iii) ensures that J consists of all functions which vanish on A, i.e. J=Jy. O

We will call an ideal J with the properties (i) to (iii) of Proposition 3.4.1 a real La-
grangian ideal. It seems now natural to remove the condition that the functions are real
valued.

Definition 3.4.2. An ideal J C C°°(T*M,C) which satisfies conditions (i) to (iii) of
Proposition 3.4.1, where now the independence in (ii) is meant over C, is called a complex
Lagrangian ideal.
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The set
Jr ={(& ) |f(&,z)=0for all f e J}

is now no longer a Lagrangian manifold. But if it is smooth, the following discussion will
show that it is an isotropic submanifold then.

One can define a tangent space T .J for every z € Jg as the subspace in the complexified
tangent space to T*M at z € T*M which is annihilated by all df},

TET = {X € TST*M ;{df;(2),X)=0,j=1,...,d}.
Algebraically the complexified tangent space to T*M at z € T*M, TET*M, is given as the
dual to I,/I%, where
L:={feC®T*M,C), f(z) =0}

is the vanishing ideal of z € T*M. To see this, note that the elements of I,/I? are
equivalence classes of functions whose differentials d f coincide at z, therefore

L2 =TT M ,
and the dual space is the tangent space

T T*M = (1,/1%)* .
Hence the tangent space to J at z € Jg can be identified with the dual of J/I? C I,/IZ,

TEJ = [J/ I .
The Poisson bracket gives a natural identification of TCT*M with I,/I?, every f € I,
defines via
L/} > g {f,9}(z) €C

a linear form on I,/I?, which depends only on the equivalence class of g in I,/I2, and gives
therefore an identification of these two spaces. Furthermore, the Poisson bracket defines a
symplectic structure on I,/I? by

(f,9) = {f 9}(2),

and since {f,g} € J for f,g € J we have {f, g}(z) = 0 for z € Jg and {f, g}, hence J/I?
is Lagrangian in I,/I2. Since the Poisson structure is dual to the symplectic structure on
TET*M this implies that the complex tangent space TCJ to J at z € Jg is Lagrangian in
TET*M.

So there is a complex Lagrangian tangent space to J at every z € Jgr and since the
tangent space to Jr at z is a subspace thereof,

T,Jr CTET

it follows that Jg is isotropic.

Lagrangian manifolds can always locally be represented by generating functions, and
therefore the natural question arises, if complex Lagrangian ideals admit such a simple
local representation, too.
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Example 3.4.3. Take for example a function ¢(z) on M, which is complex valued. If it
were real valued, A = {(z, ¢'(z))} would define a Lagrangian submanifold. So let us take
the ideal generated by the functions & — 0¢/0x;(x) instead, that is the one locally given
by

1) = {62 (6 - 52@) | € CxTM,0)}

In order that condition (ii) is fulfilled the &; — 0p/0x;(x) have to be linearly independent,
which is equivalent to

det ¢"(z) #0 . (3.60)

Then condition (i) and (iii) are easy to check, so J(p) is a complex Lagrangian ideal if
the non-degeneracy condition (3.60) is fulfilled. The zero set is determined by the critical
values of the imaginary part of ¢(x),

Jr(p) = {(z,¢'(z))| Im¢'(z) =0} .

If we take, e.g., ¢(&,z) = (z,p) + i(x — ¢)?/2, then the zero set

Jr(p) ={(p,9)}

consists of one point.

The following theorem gives the existence of a generating function for arbitrary complex
Lagrangian ideals J close to their real parts Jgr. It is the non-homogeneous version of
[Hor85b, Proposition 25.4.2].

Theorem 3.4.4. Let M be a C*® manifold and let J be a complex Lagrangian ideal in
C®(T*M). For every zy € Jg the local coordinates x at the projection o € M of zy can
be chosen, with the corresponding coordinates (§,x) in T*M, so that the Lagrangian plane
defined by d¢ = 0 in T;COT*M is transversal to T,y J. If zo = (x0,&), one can find a C*
function F () defined in a neighborhood of &, such that J is generated by x; — OF(£) /0§,
in a neighborhood of zy. Conwversely, such functions always generate a complex Lagrangian
tdeal, and if F(&) s another function with the same properties, then in a neighborhood of
& we have for every N € N

|F'(€) — F'(€)| < On|Tm F'(€)|V .

Proof. If L is a complex Lagrangian plane in 7*C%, then by [Hor85a, Corollary 21.2.11],
see also Lemma 3.3.4, it follows that one can find a real Lagrangian plane L; which is
transversal to L and to the Lagrangian plane L defined by dz; =0, j =1,... ,d. Hence
we can find, as in the proof of [Hér85a, Theorem 21.2.16], local coordinates x such that
xg = 0 and L; is the tangent plane to the zero-section of T*M at z.
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With such coordinates let u](f x), j =1,---,d, be local generators of J at z,. Since
T,,J is defined by du; =0, j = ,d, the transversahty of T,,J and the plane Ly defined
by d§;, 7 =1,...,d, means that the equations du; =0, d§; =0, j =1,... ,d, imply that
dz; =0,j=1,...,d, hence det du;/0z; # 0. Therefore, by Theorem C.3, one can find in
a neighborhood of z, new generators of J of the form z; — h;(§), i =1,... ,d.

Since J is Lagrangian, we have

Oh;(§)  Ohi(§)
0&; 9€;
and we are looking for a F(§) € C*(R% C) with F(£)/0¢; — h;(§) € J, j=1,... ,d, so

that we can take z; — OF(€)/0¢;, j =1,...,d, instead of z; — h;(&) as generators of J.
Set

9i3(&) = A{zi — hi(&), x; — h;(§)} = €J, (3.61)

1 d
- /0 S hi(te)gsdt |
=1

then we get with (3.61) and partial integration

OF(€) _ /Olzd: Oh;

1
2, 2%, (L)t dt+/ h;(t€) dt

1 d 1
/ a : T (te)t&; dt — /0 ; i (tE)t&; dt + /0 h,(t€) dt
1
= hy( /Zg”tgtg,dt

But according to Theorem C.4 the fact that g; ;(§) € J is equivalent to

|9i,;(€)] < Cn|ImA(&) ¥

for every N, where h(£) denotes the vector with components h;(£). So we get

‘agg(j ‘ ‘/ Zgw it < sup S Z|g” 1) < G Tm h()|

in a neighborhood of &, since Im h(§) = 0 for £ = &,. Therefore, Theorem C.4 gives =5 A

13
BF (é)

h;(€) € J, and we can choose z; — ,j=1,...,d, as generators for J. Assume now that

we have another function F(£) Wlth this property, then the components of F'(£) — EF'(€)
are in J, and hence the remaining part follows again from Theorem C.4. O
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This theorem gives the existence of a special type of generating functions. In practice,
as we have already seen in the last sections, the phase functions which occur in oscillating
integrals are of the following form.

Definition 3.4.5. Let M be a C™ manifold, zo € M, and let o(x,0) be a C* function in
a neighborhood U C R% x R* of (z¢,0) with Im ¢(x9,0y) = 0. Then ¢(z,0) will be called
o non-degenerate phase function of positive type at (xo,6,), if

(i) py(0,60) = 0;
(i1) the differentials d(0p/06,), ... ,d(0¢/06,) are linearly independent over the complex
numbers at (zo,6p);
(i1i) Tmp(z,0) >0 in U.
Such a phase function of positive type always generates a complex Lagrangian ideal,

and we can ask how two phase functions which generate the same Lagrangian ideal differ.

Proposition 3.4.6. If p(z,0) isa non-degenerate phase function of positive type at (20, 60),
then & := ¢l (x0,600) € Ty M. Let J be the ideal generated by

9%

80(3;’0)’ i=1,...,K; aﬁ(x,a)—gj, j=1,...,d,

00;

then the tdeal J formed by the functions in J which are independent of 0 is a complex
Lagrangian ideal in C®°(T*M). Furthermore, T,J is a positive Lagrangian plane. If the
local coordinates and F (&) are chosen as in Theorem 3.4.4, then Im F(£) <0 and

o(z,0) — ((&,z) — F(&) € .

Proof. The proof is identical to the proof of the analogous homogeneous result [Hor85b,
Proposition 25.4.4], and therefore we will only give a sketch. From Im ¢(xg, ) = 0 and
Ime > 0 it follows that Imdp(zg,6y) = 0, and therefore ¢y(xy,0y) = 0 implies that
Im ¢/ (29, 6p) = 0 and hence ¢/ (2, 0) € T, M.

As in the the proof of Theorem 3.4.4 one can show that one can choose local coordinates
x such that

" n
det (%w 9059) £0

Pox  Poo
at (o, 0p), and then it follows from Theorem C.3 that there are generators of .J of the form
z;— X;(8), 0, —0;(¢) .
By (C.8) there is a function F'(§) with

p(z,0) — ((&,2) = F(§)) € J*, (3.62)
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in the notation of (C.8) F () is —[¢(z,0) — (£, z)]°, and by Lemma C.5 there is a constant
C > 0 such that near 0

—ImF(§) 2 C(|Tm X (§)* + [Im ©(¢)[*) > 0 . (3.63)

Hence one can replace the generators z; — X,;(£) by z; + 0F(£)/0¢;. Now according to
the Malgrange preparation theorem, every smooth function g(£,z) can be written in a
neighborhood of (zo, &) as

9(& ) = qu(f,x)(l‘j —OF(§)/0¢;) +1(€)

and if g € J then r(€) is in .J and by Theorem C.4 follows
r(€)] < Cn(ITm X ()] + [ Tm O™ ,
for every N € IN. But from (3.63) together with | Im F(¢)| < C|Im F'(¢)|'/? we then get
(&) < Cx[Im F'(§)|V

for all N € IN, hence by Theorem C.4 r(£) is in the ideal generated by x; — 0F (§)/0¢;.
Therefore J is generated by

z; — OF(§)/9¢; -
The positivity of the tangent plane is now straightforward by the fact that Im F” < 0. O

The theorem implies that the property that a complex Lagrangian ideal is generated
by a phase function of positive type is invariant under a change of the generating function.
Hence this property can be used to define the positivity of a complex Lagrangian ideal.

Definition 3.4.7. A complex Lagrangian ideal will be called positive, if every z € Jr
possesses a neighborhood in which J can be parameterized by a phase function of positive

type.

Recall that a Lagrangian plane L in a complex symplectic space V is called positive,
if iw(l,1) > 0 for all I € L, see Definition 3.3.2. It follows from Theorem 3.4.6 that the
positivity of J implies that the tangent space T J is positive for each z € Jg. It is tempting
to think that the converse holds as well, i.e., that the positivity of each tangent plane is
already sufficient to imply the positivity of J. But this is generally not the case, only in
certain situations one of which is covered in the next proposition.

Proposition 3.4.8. Assume that the complexr Lagrangian ideal J is non-degenerate in
the sense that it satisfies

T,Jg =TS NTXT*M) (3.64)

for all z € Jg, then positivity of all TEJ implies positivity of J.
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Proof. One always has
T,Jr CTCINTXT*M) ,

so we have to study the consequences if there is equality. By Theorem 3.4.4 we can assume
that locally there exists a generating function of J of the form (£, z) — F(§) and then the
tangent space to J at zg = (0, &) € Jr is given by

Ty J = {(F"(&)p.p); p € C},
hence we get
TP INTHT*M) = {(F"(&)p;p); p € RY, Im F"(&)p = 0}
= {(Re F"(%)p,p); p € R* Nker Im F" (&)} .

The positivity of TC.J implies that Im F”(&) < 0. Let us choose a splitting of the coor-
dinates & = (¢,&") such that Jy is parameterized by (£',0), then we get Im F'((£',0)) =0
and by (3.64) and (3.65) we have (p”,Im F"p") < 0 for p"” # 0, hence Im F/(§) < 0 in a
neighborhood of &. Therefore J is positive then. O

(3.65)

In general it could for instance happen that F" (&) = 0. Then the tangent space to J
is totally real, but unless we have no information on the higher order terms of F' in the
Taylor series around &, we cannot conclude anything on the positivity of J.

3.4.2 Invariant definition of Lagrangian states

Since by Theorem 3.4.4 we can always find a simple generating function of the form (£, z) —
F (&) in suitable local coordinates, it is important to study the corresponding representation
of Lagrangian states using such a function.

Theorem 3.4.9. Let ¢, J, J and F be as in Proposition 8.4.6 and let a(\, x,0) € C°(R%x
R*) have support in a small neighborhood of (xo,6) and be of order \™, and consider the

function
A K/2 '
u(\, z) = (—) / M@ g (N z,0) db .
27
Then one can find a v(\, €) € C(RY) with support in a neighborhood of & such that
ANY2
u(\, z) = (2—> / AE=F©O)y (), €) dE + O(N™) (3.66)
s
and

1
)\m
in a neighborhood of (xg, 6y, &). Here ® is the matriz given by

(P (2,0) o y(x,6)
(z,0) = (so’e’,x(wﬂ) o(z.0)) -

(w(A, &) — a(A, z, 0)(det B/i)~H?) € J |
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Proof. We start by computing the A-Fourier transformation of v defined as

d/2
WA\ €)= (i> / e MEDy (N, z) dz . (3.67)

2

Inserting the integral representation for u gives

A (d+k)/2 )
(€)= (2—) / / Pe@O=EDNg (X 2. 0) dzdd |
m

and we will use the stationary phase formula, Theorem D.4, to determine 4*(), ) up to
order O(A~*). The stationary points as functions of £ are determined by the equations

@Q(m,@)—fzo, 90’9(15,9):0,

and by the assumptions of the theorem the matrix of second derivatives

P = (@g,m(x’e) (Pgﬁ(xae))
Poo(2,0)  ©hg(x,0)

is non-degenerate. By Theorem C.2 there is a smooth function F'(§) with F(¢§) + ¢(z,0) —
(¢,2) € J and Im F(§) < 0. Thus Theorem D.4 gives

i\, &) = e M Ey(X €) + O(A™) (3.68)

with

1 - m—Fk
v(A, §) ~ [det & /i1 ;)\ vk (§)

where the functions v (§) are smooth and compactly supported. If we now take the inverse
A-Fourier transformation we get for u the desired representation

d/2
u(\, ) = (;) / & =F©)y (A €) dE + O (M) .

™

0

This simple representation of an oscillating function associated with a complex La-
grangian ideal J can now be used to derive further properties of the set of all such func-
tions. First we want to determine the action of an operator A; € ¥°(m,;) with principal
symbol in J on such a function. Since J is locally generated by

ﬁE]—aF(f)/aé-J, ]:1, ,d,
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we will assume that A; has symbol z; — 0F (£)/0¢;. Then we get with (3.68)

— i 0 oF
“Aju)\(/\ag) = ( - %8—@ - 8—&(§)>/&’)\()‘a§)
_ (19 OF \\ _ire oo
(5o * 5 © )« ™ @un 0+ 00)
iav()\,f) —iAF

- _ 3] —oo
N0 e +O(N™) .

Hence, A;u(), z) is given by

. d/2
Aju(\,z) = —§ (%) / MED=FE Gy (N, £) /0€; dE + O(A™)
and has therefore lost one order in A compared to (3.66).

We will now give an invariant definition of the space of oscillating functions associated
with a given positive complex Lagrangian ideal, analogous to the definition of real La-
grangian distributions in [Hor85b]. Based on the preceeding example we will define them
as the set of functions which loose one order in A under application of a pseudodifferential
operator with principal symbol in the complex Lagrangian ideal J.

First we need to define the notion of order for A-dependent functions and half-densities.

Definition 3.4.10. Let M be a C* manifold. We will denote by HY*(M) the space of
functions (half-densities) u(\) on M which depend on a parameter A € Rt and satisfy

lu(A)]] < CA™

for all X, where ||-|| denotes the L?> norm on M. By HY'; (M) we will denote the subspace
of HM(M), where

T~ Y A" Fay(u)

and the ag(u) depend smoothly on w.

According to Theorem 3.2.10 the application of a pseudodifferential operator on an
oscillatory function leads to the multiplication of the leading term of the amplitude with
the principal symbol evaluated on the corresponding Lagrangian manifold. If the principal
symbol vanishes on this Lagrangian manifold, then the order of the oscillating function
is reduced by one. But the fact that the principal symbol vanishes on the Lagrangian
manifold means that it belongs to the corresponding Lagrangian ideal. We will now use
this property to give an invariant definition of the set of oscillating functions associated
with a given positive Lagrangian ideal.
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Definition 3.4.11. Let M be a C'*° manifold and J be a positive complex Lagrangian ideal
in C®(T*M,C). We will denote by IY*(M, J) the set of smooth functions u(\) on M which
depend smoothly on the parameter X € R and satisfy for all N € N and A; € U (mqyp),
j=1,... N,

A Ayu(\) € HN(M), if o(A;) € J forj=1,...,N . (3.69)

Analogously we say that u()) belongs to I, (M, J) if (3.69) is valid with HPN(M)
replaced by HZL&IZ(M). The elements of IT*(M, J) are called the Lagrangian functions
associated with J.

The conceptual advantage of this rather abstract definition of the spaces I{*(M, J) and
IV g (M, J) is that it characterizes them in terms of observables, i.e., in terms of physically
meaningful quantities. The set of pseudodifferential operators A with the property o(A) €
J form an ideal in W, which can be thought of as the quantization of J, and the set
of functions in H) which is mapped by this ideal to H; ! a set of function which are
semiclassically vanishing, can be thought of as the analog of Jg. So in this sense the
Definition 3.4.11 resembles on the classical side the definition of the complex Lagrangian
ideal. It has furthermore some technical advantages, because it allows to transfer easily
properties of pseudodifferential operators to Lagrangian functions. E.g., the theorem of
Egorov gives immediately the behavior of I3"(M, J) under the action of Fourier integral
operators.

Theorem 3.4.12. Let M be a C* manifold, x : T*M — T*M a canonical transforma-
tion, and J a positive compler Lagrangian ideal on M. Then J o x is a positive complex
Lagrangian ideal and for every U(x) € I*(M, x) we have

Ux): I7Y (M, J) — I/(’H'k(M, Jox),

and similarly operators in I*

kg (M, x) map IT (M, J) to IR (M, J o x).

»phg

Proof. 1t is obvious from the definition that J o x is a Lagrangian ideal; what remains to
be shown is that it is positive. By Theorem 3.4.4 we can assume that J has the generating
function (&, z) — F(§); let ¢(x,n) be a generating function for x in the sense of (2.67), then
one can check that

o(y;z,m,&) = (& z) — F(§) —¥(x,n) + (¥, m)

is a generating function for Joy, where (z,n, £) are now considered as auxiliary parameters.
It is obvious that it has positive imaginary part, and therefore J o x is positive?.
The remaining part then follows simply from the fact that by the Theorem of Egorov

o(U"AU) € Jox
if o(A) € J. O

2We have been cheating a little bit, because the function o(y; z,n, £) is not non-degenerate in the sense
of Definition 3.4.5, but it is clean, see [H6r85a, Definition 21.5.15], and it can be shown as in [H6r85a,
chapter 21.2] that clean phase functions as well generate Lagrangian ideals.
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Our next aim is to show that the elements of IT'(M, J) and I}, (M, J) can locally
be represented as oscillating integrals. Since the generating phase functions given, e.g., by
Theorem 3.4.4, are defined only locally, we have to localize the study of I{*(M, J).

Lemma 3.4.13. Let u(\) € I{*(M,J), then FS(u(N)) C Jg and Au(N) € IV (M, J) for
every A € U3 ,.(1) and every A € W°(1). Conversely, u(\) € IJ*(M,J) if for every
(0, &) € T*M one can find an A € W3, (1) with o(A)(zo,&) # 0 such that Au()) €
(M, J).

We omit the proof, since it is almost identical to the one of [H6r85b, Lemma 25.1.2].
This lemma reduces the study of I¥*(M, J) to the case that FS(u())) is contained in a
small neighborhood of some point z; € Jr. In view of Theorem 3.4.4 we may therefore
assume that the local coordinates are chosen in a such way that in a neighborhood of z,
J is generated by z; — 0F(§)/0¢;, j = 1,...,d, with some smooth function F(£) which
satisfies Im F'(§) < 0. We will furthermore restrict ourselves to the case that J satisfies
the non-degeneracy condition (3.64). This is not essential, but it will facilitate the proof
at some points and make the determination of the order of the functions simpler.

Theorem 3.4.14. Let M be a C'*° manifold, and J a positive complex Lagrangian ideal
satisfying (3.64). If u(X) € IY(M, J) has support in some small neighborhood of zy € Jg,
then

d/2
u(\ ) = ( A ) /eu«s,x)F(o)a(A,f) d¢

2

with a(\, &) satisfying |6§’Ba(/\,§)\ < CgA™ for all B € Z%. If u(N) € I{,. (M, J) then
a(A &) ~ D0l A Ry (&) with a, € C®(RY).

Proof. Since the ideal J is locally generated by z; — 0F(§)/0¢;, j = 1,...,d we choose
A; € U°(1) with symbols z; — OF(£)/9¢; in a neighborhood of z;. Then we have

00 = (50 - 0F(©/06 ) P

where U*()\, £) denotes the \-Fourier transformation defined in (3.67). Since ||a*()\, £)|| =
[[u(N)|| we get, if we define a(\, £) by T*(A, &) = e M Eg() &), that

(506 — or©)/05,) 0.6 = e MO 0500 €) € B (R

Iterating this procedure we obtain for every § € IN

N\ Bl
(i) e—i)\F(g)agﬂa(/\’g) c F;n—lﬂl(]Rd) :
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and therefore
[} E9a(N)|| < CpA™ .

In the same way we get for u(\) € I, (M, J) that for all 8 € Z9

o
HeMmFafa(A)H ~ me*kaﬂ,k .
k=0

Let us assume first that J is real, then Im F' = 0 and we have in the case that v € IT*(M, J)
18ga(N)]] < CpA™

for every 8 € Z%. By the Sobolev inequalities we can pass from the L? norms to sup-norms
and get

0Fa(A, €)| < CpA™

for every 8 € Z%. In the case u()\) € I (M, J), we start by studying the sequence
a(A, &)/A™ for which we get for every a € Z% and every fixed § > 0

10¢ (a(A, ) /A" =a(A +6,£) /(A +8)™)]
< CallOf (a(N)/A™ = a(A+8) /(A +8)™)|| = 0

in the limit A — oo, where |8| > |a| 4+ d/2. Hence a(),&)/\™ is a Cauchy-sequence in
C*(R?) and there exists a smooth a,,(£) with

Jim a(A, €)/X™ = a,n(€)

By applying the same procedure to a(\, &) — \"a,,(£) and iterating this we get a sequence
of smooth a, (&) giving an asymptotic expansion of the amplitude.

Now we come to the case that Im F' is not zero, but that J satisfies the non-degeneracy
condition (3.64). This means that there exist a splitting & = (¢',£") such that Jg is
parameterized by (£¢',0) and Im F” is non-degenerate when restricted to the complementary
space. Then we can evaluate the L? norm |[e}™F 8? a(N)|| in the limit A — oo, giving

AMm F o8 2 o\ (- dim M/2 #1-1/2| 98 1 2 et
e 5 0ga(NII" ~ { 5 [det(Im F)7]7/%|9a(A, (€',0))|° d¢

for A\ — oo. The integral is nothing but the L? norm of the restriction of the amplitude
to Jr. Now, in the same way as for the real case we can use the Sobolev inequalities to
see that a defines a unique C* germ on Jg, and similarly in the second case there is a
unique germ of an asymptotic expansion. Hence choosing a representative gives the desired
conclusion. O
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Let us discuss as an example the coherent states in the light of this invariant charac-
terization. The quantizations .A; of the generators of J in this case satisfy

Ajur (A, x) =0,

hence they are the annihilation operators. The adjoints are then the creation operators.

The existence of creation operators is characteristic for complex ideals. Since in the
real case the algebra generated by quantizations of J is self-adjoint, in leading order no
such phenomenon occurs there.

We will now consider the problem of defining a principal symbol of a Lagrangian func-
tion. The principal symbol will determine the leading asymptotic behavior of the oscillating
function, and will furthermore play an important role in the quantization conditions which
we will encounter in the study of approximate eigenstates. As a preparation to the general
case we will first study the linear case, i.e. M = R? and where the complex Lagrangian
ideal is generated by linear generators, so J can be identified with a positive complex
Lagrangian plane in 7*C¢.

3.4.3 The linear case and the Maslov bundle

We will now discuss the special case of Lagrangian function defined on some Lagrangian
subspace of a symplectic vector space.

In case that the symplectic space is the tangent space to a cotangent bundle at some
point, V' = Ti¢ ,)T* M, there is a distinguished real Lagrangian plane given, the kernel of
the projection

dm : T(g,w)T*M — TwM .
Therefore, we will in the following assume that there is a distinguished real element L, €
A(VE) given.

Let us now choose a real Lagrangian plane L; € A, (V®), that is L; N Ly = {0}. Then
the symplectic form defines a non-degenerate bilinear map

Lo x Ly 3 (IL,1) = w(l, 1) (3.70)

which gives an isomorphism of L; with the dual space of Ly, Ly — Lj, and hence can
be used to identify half-densities in L; and Lj. We will call symplectic coordinates (&, x)
adapted to Ly, if t = 0in Ly and £ = 0 in Ly, hence L; is identified with the base of
T*R® and Ly with the fiber of the projection. Given a linear form P on V and let, in
symplectic coordinates adapted to Ly, P(D,,x) be the operator Z?Zl a;T; + Z?Zl b-iaxj,

7ix
when P = Z?Zl a;x; + Z?Zl bi&;.
Definition 3.4.15. With the previous notations, let L € AT (VC) and define

I(L, Ly) == {u(X) € S'(Lg, Qu/2) ; P(Dr,z)u(A) =0

for all linear forms P vanishing on L } .
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This is the linear analog of Definition 3.4.11 where we have allowed the oscillatory inte-
grals to take values in the space of distributions, in order that we can allow the amplitudes
to be constant.

In this definition the auxiliary space L, appeared, and we want to study the dependence
of I(L, Ly) on L;. So let Ly be any other real element in Az,(VC). In the coordinates (&, x)
adapted to L; it can be written as

Ly = {(Az,z)}

where A is a real symmetric matrix. Hence the new coordinates (7, y) given by y = = and
n = £— Az are symplectic and adapted to Ls. Now, if P(£,2) = 0 on L then P(n+Ay,y) =0
on L in the new coordinates, but if P(D,, z)u;(\) = 0, then P(Dy + Ay, y)us(A) = 0 if

us (A, ) = ur (A, y)e MAN2 (3.71)
Hence the map
I(L,Ly) 3 ui(\) = us(N) = uy (\)e MA4/2 € [(L, Ly)

is an isomorphism which allows to identify the two spaces.
There is clearly a description of the space I(L, L;) analogous to Theorem 3.4.14.

Lemma 3.4.16. If L N L = {0} and (§,z) are coordinates adapted to Ly, then every
u(A) € I(L, Ly) is an oscillatory integral

d
u( @) = ¢ (i) / DEN—(BEO/D) e |dp|1/2
J 2 )

™

where B 1s a symmetric matriz with negative imaginary part defining L by

L={( B¢},

and c s a constant depending only on .

Notice that iw((BE,§), (BE,€)) = i((€, BE) — (BE,€)) = —2(¢, (Im B)¢) > 0, so L is
indeed positive. The pre-factor in front of the integral is just a matter of convention; it will
turn out to be convenient later on. We omit the proof, since it can be found in [H6r85a,
Lemma 21.6.4] and is analogous to the proof of Theorem 3.4.14, but simpler.

The distribution u(\) is uniquely determined by the factor ¢, so the question arises how
it changes if we change L, i.e. the coordinates on the base. First we note that with

AN, c A\,
N 1 ((&,SL‘)—(BE,E)/Q) 1/2 — N 1A(<€7$>_(B§7§>/2)
¢ (2%) /e dg ] = |dz|1/2 <27r) /e d¢|de|

we get

¢ |dz| /2 = / w() [dz] /2 | (3.72)
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so ¢ can be naturally identified with a —3 density on L;. By the duality (3.70) this —

2
density on L; is mapped to the 1 density c|d¢|*/? on Lo, and since L; is transversal to L,
the projection

7TL1§L—>L0

of L to Ly along L, is bijective. Hence, the half-density on Ly can be pulled back to a
half-density on L,

u()\)zi‘&1 =} c|d¢[? (3.73)

This is an object on L which characterizes uniquely the distribution in I(L), it only depends
on Li. Now let Ly € Az, (VC) be totally real. According to (3.71) the element u(\) € I(L)
is in coordinates (y,7), which are adapted to Ly, given by

A

d
’ 27

Now the same reasoning which lead to (3.73) leads to a half-density
u(N), := 7, ol |

on L, where according to (3.72) ¢, is given by

- MY ([ inwer—see 2
co |dy| 12 _ /ug()\,y) \dy|1/2 —c <%) //ek((yé) (B&.£) /2= Ay0)/2) qedy

1 /=B 1\] "
el (P
#

In order to complete the determination of the transformation property of u()\)i’g1 to u(A)7,
we have to compare the densities 7 [d¢| and 77, |dn| on L. In the (£, x) coordinates £
parameterizes L via (£, B) € L. In the (1, y) coordinates the same point is parameterized
by n=§&6— Ay =& — ABE, since y =x = B on L, so

Tramp € = (I — AB)E |

But since det(] — AB) = det £ (_IB _IA), we get

u(N)F, = eimsbolilul) Ay, ()% (3.74)
with

1 1 /-
s(Lo, L; Ly, Ly) := — - arg det i ( IB _IA)
3.75
) ) B (3.75)
=— —argdet(I — AB) = ——argdetmp,m, .
T T

1
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This number s(Lg, L; L1, Lo) is defined modulo 27Z for each four Lagrangian planes Ly, L,
L1, Ly such that the two former ones are transversal to the two others, and L is positive
while all others are totally real. The definition can be extended to the case that Im A < 0,
i.e. Ly is negative, and since the space of complex matrices with negative imaginary part
is simply connected, there is a unique choice of arg det 7TL27r;11 such that

S(LO,L; L1,L1) =0.

This number is the generalization of the Hérmander index [Hor71, GS77] to the case of
a complex Lagrangian manifold L and it has been studied in [Mei94, RZ84]. It follows
immediately from the representation as s(Lg, L; L1, L) = —% argdet 7rL27T£11 that it satisfies
the following cocycle conditions

$(Lo, L L1, Ly) + s(Lo, L; Ly, L) = 0
S(Lo, L, Ll, LQ) + S(Lo, L, LQ, Lg) + S(Lo, L, L3, Ll) =0. (376)

ims(Lo,L;L1,L2)/4

These cocycle conditions imply that the transition functions e define a com-

plex U(1) bundle on A™.

Definition 3.4.17. The complex U(1) line bundle on A* defined by a covering with the
open sets Af (V®), Ly € Af (V®), and the transition functions

gri,Ly, = eiWS(LoyL;LhL”/AL ) Le Azl(vc) N AZ2 (VC) )
with s(Lo, L; L1, L) defined in (3.75), is called the Maslov bundle M(A™) of AT.

The Maslov bundle additionally depends on Lg, but in the applications there will be a
canonical choice for it, so we have not mentioned it explicitly in the definition.

Therefore (3.74) means that u()\)* gives rise to a section of the Maslov bundle M (A™)
over AT. We will view the quantity u(\)* as the principal symbol of u()): it is a section
of the Maslov bundle tensored with the half-density bundle on L,

D/2(L) ® M(AT) .

The representation s(Lg, L; Ly, Ly) = —% arg det 7rL27rgll suggests that we might repre-
sent s(Lo, L; Ly, Ly) as well as s(Lo, L; Ly, Ly) = —Xargdetn,, — (—= argdetmy,) if we
could make sense of the expression argdetny,. This is done in the following definition
taken from [RZ84].

Definition 3.4.18. Let Ly, L; € A(VC) be real, L € AT (VC) with LN L, = {0} and let
7L, : L — Ly be the projection along Ly, then

Lol w(l,m,l)

defines a quadratic form on L with positive imaginary part. Let ) be the matriz representing
this quadratic form in some basis, then we define

1
s(Lo, L, L) := - sign, @ ,

where sign . Q is defined in Appendiz D, eq. (D.2).
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That w(l,7,l) has positive imaginary part will be shown in the proof of the next
proposition, which gives the desired decomposition of the Hormander index.

Proposition 3.4.19. Let Ly, L, Ly € A(V®) be real and L € AT(VC) with LyN Ly =
LoNLy={0} and LN L; = LN Ly = {0} then

s(Lo, L; Ly, Ly) = s(Lo, L, L1) — s(Lo, L, L) .

Since the right-hand side is defined without any restrictions on L € A (VC), it defines an
extension of the function s(Lg, L; L1, Le) to the case that L N Ly # {0}, L N Ly # {0}.

Proof. Let (£, x) be symplectic coordinates in VC adapted to Ly, i.e. Ly = {(0,2); z € C%}
and Ly = {(£,0); £ € C?} in these coordinates, then there is a complex symmetric matrix
B with Im B < 0 such that L is given as L = {(&, B); £ € C¢}. Since Lo N Ly = {0} they
span V° and each element [ € L can be uniquely decomposed into | = Iy + I; with Iy € L,
and ly € Ly, then 7y, = in the coordinates (£, z). This means that

(&, BE) = (£,0) + (0, )
with z = BE, hence 7z, (&, B) = (£,0) and
<£: Q£> = w((é-a Bf), 7TL1(§5 Bf)) = w((é-a Bf), (S: 0)) = _<£a Bf) :

Therefore we have found that the quadratic form w(l,7;,l) has positive imaginary part
and that

1
s(Ly,L,L,) = - sign_ (—B) . (3.77)

In the same coordinates Ls is given by (Az,z) for some real symmetric matrix A and to
determine the corresponding decomposition of an element of L into a sum of elements from
Ly and L, and to find 7y, we have to solve the equation

(&, BE) = (£,0) + (Az, z)

for £'. From the second component we get B¢ = x and inserting this into the first com-
ponent gives £’ = & — Az = (I — AB)E, hence 7, (&, BE) = ((I — AB)¢,0). This leads to
w((&, BE),mr, (&, BE)) = —(&, B(I — AB)E), and therefore

1
s(Ly, L, Ly) = - sign, (—B(I — AB)) .
By taking the difference of s(Lg, L, L1) and s(Ly, L, Ly) we get
1 1
s(Lo, L, L1) — s(Lo, L, Ly) = —sign, (—B) — —sign_ (—B(I — AB))
T T
1 . -
=~ sign, [(~B( — AB))(~B)™
_ 1 sign, (I — AB)
7T

= S(LO, L; Ly, LZ)
by (3.75). ]
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The meaning of this result is that the functions e™s(Lo:L-L1) define local trivialisations
of the Maslov bundle.

For a real Lagrangian space L, the indices s(Ly, L; L1, Ly) and s(Lg, L, L1) and their
properties have been studied intensively in the literature, see, e.g., [Hér85a, GS77, Dui76]
and [CLM94] for a review. We will now show that if L € AT(V®) contains a real subspace
D,ie. DN D = {0}, then we can represent the index s(Lg, L, L;) as a sum of two indices
s(Lgy, L', L) + s(Ly, L", LY) on different spaces, with L" real, so we can use the known
results for part of s(Lg, L, L1).

If DC Land DN D = {0}, then D is isotropic in V and we can study the reduced
space

V':=D*/D .
It is a symplectic vector space, and there is a map of Lagrangian subspaces

A (VE) = AT (V')
L~ L' :=(LNnD*)/(LND), (3.78)

see, e.g. [Hor85a]. On the other hand, if we choose a subspace E C V which is comple-
mentary to DY, E N D = {0} there is a projection along F, mg : V — D“, and the space
V4 defined by

0=Ve-sV B DYV =0,
is symplectic. The exact sequence furthermore induces a map of Lagrangian subspaces
AV L—-LL,=LNnVieAVy),
where L7, is the pre-image of L'.

Proposition 3.4.20. Let L € AT(VC), Ly,L; € Ag(VC) with Lyn L, = LN L, = {0}
and D C L be real, then in the notation just defined

s(Lo, L, L) = s(Lo, L', Ly) + s(Lg, L", L7)

where s(Lj, L', L) is the index on V' and s(Lj, L", L) = s(Log, L'y, L1') is the index on
Vg and is independent of E. For the Hormander indez then follows

S(LO’ L; Ll’ L2) = S(Lz): L,; Llla Ll2) + S(Lg, LI,; Lllla LIQI)
if Lo € Ag(VC) with LyN Ly = LN Ly = {0}.

Proof. Let (&, ) be coordinates in V€ adapted to Ly and Ly, i.e. Ly = {(&,0) € € C%} and
Ly ={(0,z); = € C}, then L can be represented as

L={(§Bg); £eC’}.
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Assume furthermore that the coordinates are chosen such that there is a splitting £ =

(€',€") with
D = {((0,£"), B(0,£")); €" € C*},
and write B in block-diagonal form corresponding to the splitting (&', £"),
_(B1 0
B= (O B2> ’
which can be achieved with a change of coordinates respecting the splitting (£',£") cor-

responding to D. That D is real is equivalent to By being real. By (3.77) we therefore
have

1. 1. L.
s(Lo, L, Ly) = - sign, (—B) = - sign, (—Bi) + - sign, (—By) . (3.79)

Now we come to the computation of s(Lj, L', L}). In the preceeding coordinates we
have

D = {((0,£"),(0, Bxg")); € € €},
D” ={((¢,€"), (2", Bx")); o' € CTF (£,€") e CTF @ €},

so V' = D¥/D can be identified with the subspace
{((€,0),(a,0); 2’ € CF g e €} ={(,2); (£,a) eCTFBCTF} =S
of V. Furthermore, we get in the coordinates (2, ') of V'

Lh={(€,0); € €C™*}, L ={0,a); & €C*}, L'={(¢,Bg); & € C*}

and therefore by (3.77)
1
s(Lo, L', L) = —sign, (—=B) . (3.80)
T
The second index s(Ly, L", L) can be computed similarly. The space
E={((0,0),(0,2"); 2" € C*} ,

in the same coordinates (§,z) as above, is complementary to D* and Vj can identified
with a subspace of V,

S” o~ ((0,5”)5 (0,$//)) : 33” c Ck 5” c @k} )
The Lagrangian subspaces Ly, L, Ly, are mapped to
Loy ={(",0); €' €T}, Lip={0,2"); 2" €C*}, Ly={(¢",B:g"); € € C*},
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in the coordinates (£, 2") of V4, and hence we get by (3.77)

1
s(Lops L, Lig") = —sign, (=B1) - (3.81)

Therefore, by (3.79), (3.80) and (3.81) we have arrived at
s(Lo, L, L1) = s(Ly, L', L) + s(Lof, Ly, L)

and since s(Lg, L, L;) and s(Lj, L', L)) are independent of E, s(Lo%, L', L1') is indepen-
dent of E too. O

Of special interest will be the case D = L N L. This is the largest possible D, then L'
is strictly positive.

We will now study representations of elements of I(L) with arbitrary quadratic phase
functions. Let Q(z,6), (z,0) € R x R®, be nondegenerate and positive, in the sense that
the differentials
oQ d oQ

da—el,..., 29,

are linear independent on the set 9Q/00 = 0, and that Im @ > 0. Then one can show as
in [Hor85a, Chapter 21.6] that the integral

Y (d+k)/2 .
u(z) =a <%> /e‘)‘Q(“’a) do |dz|*/? (3.82)

is well defined as an oscillatory integral. We have for any linear form P

by (d+k)/2 )
P(Dy,z)u(z) =a (%) /P(@Q/ax,x)e"\Q(“ﬁ) de |dz|'/?

and so if P(0Q/0z,z) =Y t;0Q/00; we obtain by partial integration
P(Dy,z)u(z) = 0.
Hence we get for such P, that P(¢,z) = 0 for
(&, 2) € L:={(0Q/0z,z); 0Q/90 =0}

sou € I(L, L), where Ly = {(0,2)}. If LN L; = {0} we have for u a representation as in
Lemma 3.4.16, with ¢ given according to (3.72) by

eimsign Q" /4

R R v 1
c=al|— e dlidx = a =a ,
(2W> / / V/det Q" /i /| det Q"]
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where we have used Theorem D.2 and eq. (D.3). We are now going to interpret the term

1/+/]det Q"]. The exact sequence
0—>C’Q—>]Rd><lR"“i’9>lR“—>0
together with the Lebesgue densities in R¢ x R* and R” induces a density og on
Cq = {(2,0) ; 0Q/00 =0}
defined by
0g |d0Q/00y A ... ANdOQ/D0.| = |dz1 A ... Adzg AdO A ... AdE, .
Since () is nondegenerate, the map
Co 3 (z,0) = (0Q/0z,x) € L

is an isomorphism, hence defines a bijection between the densities on these two vector-
spaces. If L N L; = {0}, we can identify the densities on L with the densities on Ly via
the projection along L; and a density p on L can be written as p = b|d¢|. In order that it
coincides with the push-forward of the density og to L, its pullback to Cg, b|d0Q/0z1 A
... AN dOQ/0xz4|, has to coincide with og, hence we get the condition

b[doQ/0x1 A ... ANdOQ/[Ox4| |[dOQ/0OL A ... A dOQ/Db,|
=ldzy A...Adzg AdO AL AdE,|

and therefore b = 1/|det Q"|. If we recall that ufl = c|d¢[Y2, we can summarize that we
have found

it = aolfPem @ (3.83)

If we have another representation

)\ (@R)/2 L
a(\z) =a (—) / Q@0 49 |dx|'/?

2

of the same element as in (3.82), then () must parameterize the same Lagrangian plane L
then @, and it follows from (3.83) that we have
ao.ée/Qei'n'[sign_,_ Q" —sign, Q"]/4 _ ao_é}/Z .
This gives another description of the Maslov bundle M (A1) on A™. For a fixed L; choose
an open cover of AT with sets A such that L is defined by a non-degenerate quadratic form

Q@ depending continuously on L € A. Then for another @, with L € A we get the
transition functions

einlsigny Q7 —sign Q71/4 [« AMA (3.84)
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which define the Maslov bundle.

We will now extend the definition of the Maslov bundle to the global case, i.e. to
symplectic vector bundles. A symplectic vector bundle is a vector bundle with a symplectic
vector space as a fiber, such that the symplectic form varies smoothly, see, e.g., [MS98]
for details. The basic examples which we will encounter is the tangent bundle T'(7*M)
of the cotangent bundle of a smooth manifold M, and the restrictions of this bundle to
submanifolds A C T*M, T(T*M)|x, where the fiber at each point in A is given by the
tangent space of T*M at this point.

In T(T*M) there is a distinguished Lagrangian subbundle L, defined as

Lo(p,q) :=kerdn(p,q) ,

where m : T*M — M is the canonical projection of 7*M. The set of positive Lagrangian
planes £ (T(‘g, o(T"M)) in the complexification T(‘g, o (T M) of the tangent space to 7" M

t (p,q) € T*M for each (p,q) € T*M defines another fiber bundle £*(T°(T*M)) over
T*M with fiber A™. The Lagrangian subbundle Ly defines a section in this bundle, which
in turn defines on every fiber £+(T(‘E’ o(1"M)) a Maslov bundle M (L* (Tt (T*M))). The

(p9)
resulting bundle
M(T(T*M)) — LY(TC(T*M))

is called the Maslov bundle of T*M.

Now let J be a positive complex Lagrangian ideal on T*M, and denote by L(p,q) =
T(p,q)J the positive Lagrangian plane in T(‘g, oM at (p,q) € Jr. Furthermore, let M — Uy
be a local chart of M near g and (£, z) the local coordinates then Li(p,q) = {(0,z) ;2 € C¢}
is a real Lagrangian plane in T(‘Ij ol M which is transversal to Ly. Let M — Us and Lo
be another such pair. Then a complex U(1) line bundle on Jg is defined by a covering of
a neighborhood of Jg by open sets A; with 7(A;) = U; and the transition functions

9i(p,q) = el s(Lo(Pa),L(Pa)iLisLs) /4 (p,q) € AiN A, .

This is called the Maslov bundle of J.

One can give as well a description of the Maslov bundel in terms of generating functions,
analogous to (3.84). Cover a neighborhood of Jg in 7*M with open sets A; such that on
each A;, J is can parameterized by a nondegenerate phase function ¢;. Then the Maslov
bundle on J is defined by the transition functions

eiﬂ'[sign+ @y —sign 4,0;!]/4 on AZ N A] N J]R . (385)

3.4.4 The principal symbol

Now we will turn back to general Lagrangian states and use the facts we have learned
on the linear case to define a principal symbol in the general case. Let M be a smooth
manifold, J C C*°(T*M,C) be a positive complex Lagrangian ideal on M, u € I{*(M,J)
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and (p,q) € Jgr, then by Theorem 3.4.14 and Theorem 3.4.9 in a neighborhood of ¢ u can
modulo A~ be represented as

A K/2
u(A x) = (%> /el)“pma a(\, z,0) dé

with ¢(z,0) a non-degenerate generating function for J and a € S7*(R¢ x R¥). Since
(p,q) € Jr, there is a 6y € R* with

p=¢(a,00) and @y(g,00) =0.
Let us now consider the Taylor-expansion of ¢(x,#) around (g, 6y) up to second order,

o(z,0) = (g, 00) + ¢, (q,00) (x — q) + (g, 00)(0 — o) + Q(z — q,0 — ) +
=(q,0) +p(x —q) +Q(r — q,0 — ) +- -+,

1 o 2, 600) @Ila(q’%)) (33)
0) = =(x,0) "2~ "
Q((E’ ) 2(37’ )<(plﬂl,z(Qa90) SOIHI,G(q’ 00) 0 ’

and the corresponding “linearized” state around (p, q),

with

A I{/2 ) )
Up,g) (A g+ T) = (g) a(, g, 0p) e (#e0) ) / eAQ@0) g | (3.86)

This state is in I(L) with L = Tpgd C T(‘g "
with the full state u.

Proposition 3.4.21. Let M be a smooth manifold, J C C®(T*M,C) be a positive com-
plex Lagrangian ideal on M, uw € I{*(M,J), (p,q) € Jr and upqg € 1(T(pqJ) be the
corresponding linearization (3.86) of u at (p,q), then

(o), Up)) = O™ 1) and (u = ), ufy ) = ON™ 1)

T*M, and we want to compare it at (p,q)

for all L with LN Ty,gJ = {0} and ug, , given by (3.33). Hence ug,q) determines the
leading order behavior of u at (p,q) € T*M for A — oc.

Proof. The proof is a straightforward application of the stationary phase theorem. We
start by computing (u(p,q), u ( o) With (3.86) and (3.33) we get

L AN (AN —iX(@(q,00)+pq) 1/4
<U'(Pa‘I)’u(p,q)> =\ 3 - a(A, q,6)e ’ (det Im B)
/ / ~AQ(r—0.0) () HBl—00—0] o
A I‘.‘,/Q )\ d/4 L
= <—> (—) a(\, g, 0p)e %@ (det Tm B)'/*

2w m
/ / e N(0.2),000:2))/261Mw:0) qgdz
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where we have introduced the matrix

Q — <_951019(q, 00) _@gz(q, 00) ) .

—@ge(% 00) _gbgw(Qa 00) + B

Recall that

L={(Bz,r); v € C%
Tipg)) = {(@ra + Dol ) ; Dol + Py =0},
hence if there is a (0, z) with Q(%) =0, i.e.

— —I

—Pget) — Pz =0

then the vector (@,z + @0, z) is in LN T, 4 J. Therefore LN Ty, »J = {0} implies that
the matrix @ is non-degenerate.
So we can apply Theorem D.2 and (D.3) and get

A\ . (det Im B)'/* _. 1
L _ iAG(g,0 —iM(0,p),01(0,
<U(p,q)a U(p7q)> (7) a()\, q, 90)@ ola 0)‘— P ;‘1/28 {(0.p) (©.p))

On the other hand the evaluation of the stationary phase formula (D.8) gives

(U, u, ) = (Ugpg), Uy g) + O™~

O

By this proposition we can transfer the notion of a principal symbol from the linear
case to the general case, and it will characterize the Lagrangian state in leading order. In
contrast to the linear case an additional phase factor appears, due to the so-called Liouville
class.

In order to determine the nature of the leading part of u at (p,¢) we have to study
its behavior under a change of the representation of u. So let ¢(z,0) € C®(R% x RF) be
another phase function parameterizing J in a neighborhood of (p,q) and @(), z,8) be a
corresponding amplitude, such that the same u is given by

A ”%/2 . B - ~ ~
u(A, r) = <2—) /em“"(w’a)a(x\,xﬁ) dé

™

in a neighborhood of x = ¢q. Then we get for the linearized u at (p,q) the expression

)\ Iﬁl/2 B . . _ .
U (A g +2) = <%) (), q, Bo)e P00 00 / =D df
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and comparison with the linear case and (3.84) shows that in order that it coincides with
(3.86), @ and a have to satisfy

(g, fo)oy” = ePNelao)=pladolleiniien. Q" siens. "1/ g g, fo)oref”

The new term which appears here in contrast to (3.84) is

eiA[cp(q,@o)—@(‘LéO)] , (387)

and we will now interpret it. For comparison see Section 3.1, where we have discussed it
already briefly for real Lagrangian manifolds. Recall the map

by - C(p — J]R
(,0) = (, (. 0)) ,

where C, C R? x R¥ is defined as
Cyp:={(2,0); ¢y(z,0) =0, Imp(z,0) =0} .

The phase function ¢(q,0(p, ¢)) on Jg is the push-forward ¢, ¢ of the function ¢(z,#) on
C,. Now we have

dele, = (¢ + @p)lc,dz = 4 (¢dz) (3.88)

so dy|c, is the pullback of the Liouville one form {dz on Jg to C,, and we get

dltp, — 15,0l =0 .

Therefore the phase factor (3.87) is constant. The U(1) line bundle on Ji which is defined
by choosing these functions as transition function will be called the Liouville bundle £ (Jg);
note that it depends on the parameter \.

We can interpret the preceeding constructions now as providing a map

o ];\n(M, J) — COO(J]R, Ql/Q(J) RM;® ,C,\(JR)) s (389)

which in local coordinates z € R? and with a generating function o(x,0) € C®(R¢ x R¥)
for J is given by

)\ /2 D) eiA(¢(g,00)+pq)
u(z) = (§> /e AN, z,0) df — o(u) = (det 7" (q 00)/i)1/200(q,90) . (3.90)

Definition 3.4.22. Let M be a C*® manifold and J C C®(T*M, C) be a positive complex
Lagrangian ideal, then the map (3.89) is called the principal symbol map, and o(u)
defined in local coordinates by (3.90) is called the principal symbol of u.
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By (3.90) every generating function ¢ defines a local trivialization of the bundle
C®(Jr, Quy2(J) ® My ® L(JR)) ,

because
eir(@(a.00)+pq)
(det ©"(q,600)/1)'/?

is a local section of this bundle. Using these local trivializations one can show that the
principal symbol characterizes a Lagrangian state up to leading order.

(3.91)

Proposition 3.4.23. Let M be a C* manifold and J C C*(T*M, C) be a positive complex
Lagrangian ideal, then the principal symbol map provides an isomorphism

LN (M, J) /I (M, J) = C®(Jg, Qupa() @ My ® La(Jr))

Proof. What remains to do, is to construct an inverse of the principal symbol map, i.e. to
an arbitrary element of C°°(Jg, Q/2(J) ® M; ® L(Jr)) we have to associate an element
of I™(M, J)/ I (M, J).

So let there be given an element 0 € C*®(Jg,Q/2(J) ® My ® Li(Jr)), and choose a
cover {A;} of a neighborhood of Jg in T*M such that near each Jg; := Jg N A;, J is
generated by a non-degenerate phase function ¢;. Each phase function ¢; defines a local
trivialization by which o is mapped to an element of C*°(Jg) which we will call a;. Now
pulling this back to Cy,, by ¢, and choosing a smooth extension to R¢ x R gives an
element of C*(R¢ x R*) which we will call a;(z, 6;); it defines an element of S™/S™~1.
If we choose for each j one representative a;(A, z, ;) of this equivalence class and define

A Kj/2 .
u;(z) = ( ) /el’\“’j(z’ef)aj()\,x,ﬁj) do;

2

then these functions are unique modulo I{* ' (M, J) and coincide on the intersections of
the covering {A;} modulo I{*~"'(M, J), hence they define the unique element of

MM, )/ 1P~ (M, )
which we were looking for. O

The inverse of the principal symbol map which we constructed in the proof is called
the canonical operator, or Maslov’s canonical operator. It was first introduced by Maslov
for the case of real Lagrangian manifolds [Mas72], see as well [MF81], and later extended
to the case of complex Lagrangian manifolds also, see [MSS90] for an exposition of the
theory. In our exposition we have followed more closely the theory of Fourier Integral
Operators and the way Duistermaat presented the theory of oscillatory integrals with real
phase functions along these lines [Dui74].
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3.5 Time evolution

In this section we will study the time evolution of Lagrangian states in the semiclassical
limit. Special emphasis will be put on the time dependence of the remainder terms, since
this is the place where the stability of the classical system manifests itself. For systems
with positive Lyapunov exponent typically the remainder term will grow exponentially with
time, whereas for regular systems it will only grow polynomially. We will concentrate on
coherent states, since on the one hand they are sufficiently simple to treat, and on the other
hand by their completeness we can use them to get information on arbitrary states. We
will follow mainly the work of Combescure and Robert [CR97], with some minor changes.
The time evolution of coherent states was also extensively discussed from a more physical
point of view in [Lit86].

3.5.1 Time evolution of coherent states

We will now study the time evolution of coherent states. As we have learned in Section
3.3, a coherent state is characterized by a point (p, ¢) in phase space and a strictly positive
Lagrangian subspace L of the complexified tangent space at (p,q). Given these data the
state is

d/4
L 1/4_iA((p,x—q)+ % (B(x—q),(z—
Az = (2 det Im B)/4eM(Pz—a)+35(B(z—9)(z—q)))
(A, ) <7r) (detIm B) /e ,

where the matrix B is determined by L through
L={(Bx,z) ;2 € C%} .

Let H be a selfadjoint pseudodifferential operator of A-order zero on M with Weyl
symbol

H()\,f, $) ~ Z/\_ka(gax) )

k>0

principal symbol o(H) = Hy and subprincipal symbol sub(#) = H;. Let (p(t), q(t)) be the
solution of Hamilton’s equations
. _ 0Ho(p,q) . _ _0Hy(p,q)

_ - 3.92
with initial conditions (p(0),¢(0)) = (p,q). We know from the propagation of frequency
sets that a state centered initially at (p, ¢) will after time ¢ be centered at (p(t), q(?)).

In order to determine the semiclassical time evolution we have to solve the Schrodinger
equation

io
(X& —H) Y(t,z) =0,
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. . .. . _ L . . . .
with initial condition (0, ) = u, () in the limit A — oc. Since we expect that (t, z)

will microlocally be concentrated around (p(t),q(t)) we will approximate the operator H
microlocally around (p(t), ¢(t)) with a simpler operator %® () such that
(H—H> (t))uL’t),q(t) =07,

D(

for every I'. The time evolution generated by #H® (t) can be computed directly, and the
error we make with this approximation will then be estimated using Duhamel’s principle.

The approximate Hamiltonian (% (t) is obtained by taking as its Weyl symbol all terms
in the Taylor expansion of H (), &, z) around (p(t), ¢(t)) which contribute to ’Hulf('t), oty Up to
order A !. So we need the Taylor series of Hy up to order 2 and of H; only the zeroth-order
term. Hence we will start by discussing the time evolution of a state with quadratic phase
function generated by a quadratic time dependent Hamiltonian.

Let us denote in the following the points in phase space T*M by z = (£, z). The Weyl

symbol of ”Hi?(t) (t) then is

H®(t, z) =Ho(t, 20(t)) + (H(t, 20(1)), 2 = 20(t)) + %(z — 20(t), Ho (¢, 20(£)) (2 — 20(2)))
1

+ XHl(t’ 2(t)) ,

(3.93)

where zy(t) = (p(t), ¢(t)) denotes a solution to Hamilton’s equations (3.92) with initial
conditions z,(0) = (p,q), and H](t,20(t)) and H{(¢,20(t)) denote the gradient and the
matrix of second derivatives of Hy at 2y(t), respectively.

By S, (t) we denote the linearized flow along the trajectory zy(t), i.e.

Soo(t) : T T"M — Ty T M
is the solution of the differential equation

0S,,(t)
ot

where J, = (PI 5) S, (t) is a one parameter group of symplectic matrices, and the map

T*M x T,)T*M 3 (20,v) = (20(t), Sz (t)v) € T*M X Ty T* M

= JoH{ (t, 20(1))S,, (t) , with S,,(0) =1, (3.94)

is the standard skew-product defined by the linearized flow, see, e.g., [BDD*00].
By the action on the Siegel upper half plane, see (3.40), the family of symplectic
transformations S(¢) defines a family of matrices

B(t) :== 8(t)+By = (S11By + S12)(S21By + Sa2) ™" . (3.95)

Recall that by Proposition 3.3.12 there exist unique symplectic matrices P(t) and 7 (t) with
P(t).il = B(t), T(t)«Bo = iI, and wich leave the vertical space Ly = {(£,0)} invariant.
So there is a unique symplectic orthogonal matrix O(t) defined by

S(t) = POOMDT () . (3.96)
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By the correspondence principle one expects that the coherent state centered at zy =
(p, q¢) with Lagrangian L is mapped under the time evolution in leading order to a coherent
state centered at zo(t) = (p(t), ¢(t)) with Lagrangian S(¢)L. Modulo a phase factor this is
indeed the case.

Theorem 3.5.1. Let Hgi)(t) denote the Weyl-quantization of the symbol (3.93), then the
unique solution of the differential equation

ioyu(t,x
X% =HD Ut z) (3.97)
with initial condition
/4 _ )
¥(0,z) = ul (N z) = <;) (det Im B)Y4eA(pa—at3(Ble=0).c-q)) (3.98)

s given by

d/4
( ) (det Tm B(#)) /46~ 1000~0(0) gAl(p(t).—a(0) + §{BO)(—a(1)2~4()]
(3.99)

/\G(t)—l—a S(t)L
Up(ty.g(y (A Z) -

Here (p(t), q(t)) are the solutions of Hamilton’s equations with initial condition (p(0), ¢(0)) =
(p,q), B(t) is the image of B under the action of S(t), B(t) = S§(t).By, O(t) is the classical
action along the path (p(t), q(t)),

o(t) = / [Ho(p(t) o(t'),¢) — (p(t), d(t))] dt’

and
/H1 (1)) Y + 2o'(1)
where the Maslov phase o'(t) is defined by the multiplier, see (3.45),
m(O(t),iI) = ¢z ®

with O(t) given by (3.96).

Proof. We only have to check that the function (3.99) satisfies the equation (3.97). This
will be a tedious but straightforward computation. If we make an ansatz

d/a
= i / —ixO(t) HiA(p(t),z—q(t)+ 5 (B(t)(z—a(t)),(z—q(1)))]
Y(t, x) a(t)e e
m
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we get for the left hand side of (3.97),

SR [ Lafa+ 0+ () — (s — ) + (B 0 0)

1 .

- 3B - 0, -y weo).

where the dot denotes a derivative with respect to time. For the right-hand side of (3.97)
we get

HDyY(t,z) = [Ho + <%,x - q> + <6H° B(z — q)>

oz o€’
1 " 1 "
+ 500 = ¢ Hog o (v = @) + {2 = ¢, Hog . B(z — q))
1 1 1
+ 5(33 — ¢, BHy{ ,(v — q)) + Y tr Hog , + 5(33 — ¢, BHy{ :B(z — q))
1 1
+ 20N tr Hog ¢ B + XHl]Qﬁ(t, z) ,

where we have used the relation

(0, Q)Y (x) = tr Q () + (0,9 (x), Q)

for a matrix (). By equating equal powers of A and of (z — ¢) we get the following set of
equations

1
Gfa = —g[tr Hy, + tr H{ B] — iH, (3.100)
© = —(4,p) + Ho (3.101)

. . OHy 0H,
—p+Bj=——-+B— 3.102
p+Bi=5"+B (3.102)
—B = H,),+ Hy/,B+ BHy, + BHy B . (3.103)

The second equation (3.101) is just solved by integration and the third one, (3.102), follows
from Hamilton’s equations (3.92), so we are left with the first and the fourth one. In order
to determine the derivative of B it is useful to write out the differential equation (3.94) for
S more explicitly. A short computation gives

(5:'11 Sm) _ <—Hog,$511 - Hog,wsm —Hog,;CSu - Hog,;CSzz)

3.104
So1 Sa2 Hog ¢S+ Hog ,So1 Hog ¢S12 + Hog ;S22 ( )

Now differentiating (3.95) with respect to ¢ gives
B= (5113 + 512)(5213 + Sgp) !

- (SllB + 512)(521B + 522)71(521B + SQQ)(SQlB + 522)71
= (S11B + 512)(S21B + S22) ™' — B(S21B + 52)(S21 B + Sa2) 7" .
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But with (3.104) we get
SuB + S1p = (—Hy{ ;S — Hylf ,S21) B — Hyf ,S12 — Holh S
= —Ho{ ,(S11B + S12) — Hoy ,(S21B + So)
and

So1B + Sop = (Hog,,gsn + Hog,xsm)B + Hog,gslz + Hog,zsw

_ H " S B S " (3105)
= 05,5( 1B + Si2) +H0§,z(521B + S99)

which together lead to the desired result (3.103),
B =—Hy,B— Hy., — BHy{.B— BH,{, .
In the first equation (3.100) we make an ansatz
at) = e o Hdl gy
which leads together with (3.105) to

0 1
por Ina = -5 tr[Hog , + Hog ¢B]

1 . .
= —5 1[(SnB + 52)(Su B + S) ']

10
=55 trIn(So: B + Sa) ,

hence we get with the initial condition a(0) = (det Im By)*/* and the definition (3.45) of
m(S, B())

a(t) = (det Im By)"/4e 2 trIn(S21Bo+522)
= (det Im By)**[det (S5 By + Saz)] /2
= (detTm By) *m(S. By)

But m(S, By) was determined in Proposition 3.3.12 to be

(detIm S, By)*/*
(det Im B0)1/4

m(S, B()) = m((’),ll) s

and so we get

a(t) = (detIm B)*m(0O,iI) .
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In the following we will denote the time evolution operator generated by ’Hi?(t) (t) by
U (t,ty). Tt is the solution of the Schrédinger equation

i du® (t,t0) _ ,H(Q)

a = Mt WU ()

with initial condition
Z/{(Q)(t(),to) =1.

Corollary 3.5.2. Let WZLO(z) be the Wigner function of the coherent state uﬁo, see Lemma
3.3.14, then the Wigner function of UP (¢, 0)uls is given by

I

d
WSO (ﬂ) o= z=0(0) 8020 ()

20(t) p
with

g(t) =57 (g5 (1)
and g1, was given by, see (3.53),

_ (InB+ReB[ImB]"'ReB —[ImB| 'ReB
8L = — Re B[Im B~} [Im B]~! '

Proof. Since the phase factor e '*®®=o()) in (3.99) drops out in the definition of the
Wigner function, we get by Lemma 3.3.14

d
WL () = <§> oMozt gseon e ()

20 (t) T

So the result follows from the fact that the symplectic group action on g; takes the simple
form,

gsr = SfﬁgLS_1

for every symplectic matrix S, which we have shown in Proposition 3.3.8.
O

This result shows that the Wigner function is localized at z = z(t) as long as A||g(t)||
is sufficiently large, so the condition

Nls@l>C

introduces a time scale Tg()), sometimes called the Ehrenfest time, up to which a localized
state stays localized under time evolution. We want to discuss this time scale more closely
for different examples. First of all, it mainly depends on the linearized flow S(t) along the
trajectory z(t). For later use it is more convenient to state an estimate in the norm of

g (1)
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Lemma 3.5.3. We have

_ tr S(t)ST(¢)
lg ' ) < —7 -

| trg(0)]
Proof. By Corollary 3.5.2 we have

g(0) = S'(Hg(t)S(1) -
Taking the trace on both sides gives
[trg(0)] = [trST(1)g(t)S(t)| = | trgt)SHS(1)] < llg(t)|| trS(#)S(2) ,

and therefore

tr S(t)ST(t)

&~ 0l = )™ < “L0

O

For Hamiltonian systems the tangent space splits into two subspaces at every point,
T,(T*M) = Vi & V;l), where V. is spanned by be the Hamiltonian vectorfield and a
vector transversal to the energy shell, hence dim VO = 2, and VY is a complementary

subspace. Furthermore the splitting can be chosen such that it is invariant under the

linearized flow S,(t), i.e. S,(t)Vi” = V;(((g and S, (t)Vi" = V;((lt)); so S,(t) is block-diagonal

with blocks 8§1)(t) and S (t). The part Sgl)(t) has always two eigenvalues one, and can

be brought to the normal form
1 tT'(F)
W (4) =
s = (5 TP

whereas the behavior of S (t) reflects the stability properties of the orbit z(t). We will
discuss the different cases that can occur and the corresponding time scales.

(i) The unstable case: The orbit is unstable if S@) (1) has an eigenvalue of absolute value
larger than 1. The Lyapunov exponent y(z) of the trajectory through z, defined as

(@) = tim LS OSP ]

t—00 t ’

is then positive. So we get an Ehrenfest time

In )\
27y(2)

up to which a coherent state stays localized in phase space.

Tg(N)
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(ii) The stable case: If all eigenvalues of S (¢) lie on the unit circle and are # 1 for some
t, then tr S(Z)T(t)S(Q) (t) < C and so by tr S(I)T(t)S(l)(t) < 2+ 1? we get as Ehrenfest
time

Te(X) ~ A2

So the state stays a much longer time localized around z(¢) as in the unstable case.
Furthermore, note that the state remains localized in the transversa direction for all
times. The delocalization takes only place along the orbit, where the system behaves
like a one-dimensional free system.

(ii) The marginally stable case: If at least two eigenvalues of S () are one, we expect
the same behavior as for S()(¢) and get the same result as for the stable case, since
there dominated alreadythe S)(t) part,

Te(A) ~ X2,

The approximate time evolution uz((? ) (t) can also be determined exactly on observables.
The result is already suggested by Corollary 3.5.2.

Proposition 3.5.4. Let P be pseudodifferential operator with Weyl symbol P(z) € S%(ma),
then Z/{z(g) (t)TPUZ(g) (t) is a pseudodifferential operator with symbol

P(t,z) = P(z + Sz_ol(t)(z —2(t))) € So(ma,b)
for finite t.

Proof. Since H®(t) has a Weyl symbol which is a quadratic polynomial in z the asymptotic
series for the symbol of the commutator [, P], which follows from 2.5.5, terminates after
the first term. So the quantum mechanical differential equation 192 = [} P] reads in
terms of the Weyl symbols

dP

— ={H® p}. (3.106)
dt

The ansatz P(t,z) = P(z + S;;'(t)(z — 2(t))) satisfies of course the initial condition

P(0,z) = P(z), and for the left-hand side of (3.106) we get

dP(t, z)
dt

= —(P'(t,2), 8, ()82 (1), (1) (2 = 20(1)) + S5, () T H' (20(t)))

where P' := V,P and H' = V,H, and we have used dS, ' (t)/dt = —S,. (t)S,,(t)S;.} (t)
and Zp(t) = JH'(20(t)). For the right-hand side of (3.106) we obtain

{H®, P} = (H(a(t) + H" (20(t)) (= — 20(t)), TS5 (1) P'(t,2))
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where we have used the relation V, f(Az) = A f’(Az) valid for an arbitrary matrix .A. By
comparing the two expressions and using J t=—7g (3.106) reduces to

S5, ()8 (1S5 (t) = S (1) TH" (0(1)) -

Multiplication by S,,(t) from the left and right then gives (3.94), and so the proof is
complete. 0

Since U (t) is unitary, the norm of P(t) is preserved for all ¢, but the pseudodifferential
operator class to which it belongs depends on the derivative of the symbol, and here the
matrix S(t) forces them to diverge for ¢ — oo.

As a corollary we get the evolution of creation and annihilation operators, and the
higher order coherent states defined in Section 3.3.2.

Corollary 3.5.5. Let v € C? and let P,(s) be the Weyl quantization of the linear form
w(v,z — 2(s)), then we have

U (2, 5Py (5)UP (3, 1) = Py (2)

where v(t) = S(t)v. Hence, if u(a) = Pg )(/\ x) is a higher order coherent state, see
(3.50), then

UP(t, 5)u(a) = OO0 Ps Bz(t)u ( ) (/\ z) .

In order to estimate the time evolution generated by a more general Hamiltonian #(t)
we will compare it with its quadratic approximation H(? (t), the following lemma is then
essential;

Lemma 3.5.6. Let H(V(t), HP(t) be two time dependent self adjoint operators and UV (t, s),
UP(t,s) the unitary operators generated by them, i.e.

io
iy Y10 = H® =
2\ Ot ( ) (t)uk(ta 8) ) Z/{k(S, 8) I ’

for k =1,2. Then for v in the intersection of the domains of HV(t) and H® (t) we have

DL, )% — UO (1, 5)6]| < At - 5) sup IO (r) = HO (U (r, )9

rE[s,t]

Proof. The estimate is an immediate consequence of Duhamel’s principle (see e.g. [Tay96]),
which can be stated as follows

U (t,s) —UD(t,s) = é/t UD () HD(r) = HO()UP (r,s) dr .

L Js

By using that () (¢, 7) is unitary, and hence | (¢,7)|| = 1, we get the result. O
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Now we can come to our main result, the time evolution of a coherent state generated
by a general Hamiltonian.

Theorem 3.5.7. Let H(t) be a selfadjoint pseudodifferential operator on M which satisfies
the conditions in Proposition 2.5.6 and let U(t,s) be the corresponding time evolution
operator. Let 1, be the state (3.98) centered at 2o = (q,p) and let HP(t) be the Taylor
expansion up to second order of H around zy(t) = (q(t),p(t)), i.e. the operator with Weyl
symbol (3.93), and 1 (t,x) be the state (3.99), then

3 (3-3)/2
ot s = 50 < A=) smp 003 (PE5EE) T

rE(t,s] j=

with g given by (3.53) and

. B p 1/2

The proof of this and the next theorem will be based on the estimate obtained in the
following Lemma.

Lemma 3.5.8. Let P(t) be a pseudodifferential operator with ||P(t)|| < C for all t, with
symbol P(t, ), z) € S%(may) for finite t, and

P(t, A, 2) Pi(t,z) + Rn41(t, A, 2)

1
A

Mz

7=0

where P;(t,z) has a zero of order N — j at z = 2(t) and Ry11(t, A, 2) € STV (m,,).
Then we have

(N=j)/2
1P () QWHKCZM<M;W> |

Proof. We first show that we can restrict our attention to a neighborhood of z(¢). Choose
a symbol A € S°(1) which has compact support in a neighborhood of z and A =1 in a
further neighborhood of z, and denote by A its Weyl quantization. Then we have

11 = Aug|| < CpA™
for all N € N, and hence

IPOUPE, to)ur || = [POUP (¢, o)A+ (1 = Auz|]
< [[POUP (, to) Auz | + || PEU (¢, t0) (1 — A)ur||
< [[POUP (&, to) Auz | + || PEU (2, to)[|]](1 — A)us]|
< [[POUP (¢, to) Auz|| + COnATY
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for all N € N. If we now define P'(t) := P(t)UP (t,1,)AUP (ty,t), then by Proposition
3.5.4 the symbol of P’(t) will have compact support in a neighborhood of z(t), and satisfies
the same conditions as P concerning its zeros. So we can assume from now on that the
symbol of P(t) has compact support in a neighborhood of z(t).

We use the representation

IPOUPE, to)uz||” = (POUP (¢, to)uz, POYUP (¢, to)uz)
= Ut to)uz, P(t) POU (¢, to)ur)

— / PHP(t,\, )W, )(2) dz

where WZL(S)(z) is the Wigner function of the state U (¢, to)ul. With Corollary 3.5.2 we
then obtain

N[
[POUP (t, to)ul|?> = <;> / P#P(t, )\, z)e Mem2D8rwn=20) g, (3.107)

By the assumptions on P(t, A, z) we have
2N

PAP(EA2) =Y = byt 2) + rawsa (A, 2) (3.108)

[ EAY) - )\] p] 9 2N+1\ly Ay .

=0

with roni1(t, A, 2) € S™@N+Y(m, ) and where p;(t, 2) is positive and has a zero of order

2N — j at z — 2(t), which means that
pi(t, 2 = 2(t)) < Cj(t)((2 = 2(t), 2 — 2(t)) ¥ 772 (3.109)
Furthermore, all functions have compact support. Inserting (3.108) and using (3.109) gives

d
(3> / PHP(t, ), z)e Mo 20 8(20) g,
T

2N d
C' l A —7 —A(z—=2 2—z
SZ# (_) /((z—z(t),z—z(t)})N 320 Ma—20. 81 (=)
=0

™

d
+ (é) /T2N+1(t, A, 2)e M08 E=20)) 45

™

Using |ran41(t, A, 2)| < CA=@N+1) and that it is compactly supported we can estimate the
remainder term as

d
(ﬂ) / pr(dy(z = 2(1)) o s (£ A, 2)e= MO BL0E=20) 4y < CA=EN+D)

™
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For the terms in the sum we substitute variables in the integral and use det gg = 1 to get

d
<é> /((z —2(t),z — z(t)))N—j/Qe—)\(z—z(t),gL(t)(z_z(t)» ds
Y d

m

(
) ()
(Hgi(lt)\\)m_j (%)d/«z’ 2)N2g=)

and so the proof is complete.

Proof of Theorem 3.5.7. According to Lemma 3.5.6 we have to estimate

I[#(t) = HO )] (0] -

To this end we note that # —H(? () satisfies the assumptions on P(¢) in Lemma 3.5.8 with
N = 3 and so the remainder estimate in Theorem 3.5.7 follows from Lemma 3.5.8. O

One often needs also information on higher order approximations for the time evolution.
These can be obtained by iterating Duhamel’s principle,

UD (t, o) = U (t, 1) + A u1>(t 1) AH (t)UP (t,10) dt

lto

=UD(t, o) + A/ U (t, 1) AH(t)UD (11, to) dty

( ) / / (t, 1) AR (1)U (ta, 1) A (0)UP (11, to) dbodty
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with AH(t) := HV(t) — HP(t). By further iteration we obtain the so called Dyson series
UD(t,t0) = UP (¢, 1)

j4 by Jj pt pt t @ )
+Z i) )] U (L, 1) AR (LU (5, 85-1)
o /11 -1

X AH( (tj 1,t] 2) A%(tl)u( )(tl,to) d dtgdtl

( )p+1/t0/tl /tp V(t, tper) AH (s )UP (tpi1, 1)

X AH( )I/{ (t t ) A”H(tl)b{ (tl,to) dtp+1 dthtl

for every p € IN. Notice that the terms in the sum contain only the approximate time
evolution #® and only in the remainder term there appears a contribution of (M. If we
introduce the shorthand

H(t;) == U (to, t;) AH (U (t;, o)

we can rewrite the Dyson series as
P
UD(t,10) = D Py(t, 1) UP (2, 10) + Ry (1, 10) UP (2, 1)
§=0

with Po(t, to) = ]_,

P;(t, to) : ( ) // 7—2 DH(t_y) - H(ty) dt; - - - dtypdty
to vt ti—1
pt1 )
Rp41(t, to) ( ) / / / V(s tp )UP (b1, ) H 1)
t1 tp

H(t,) - H(ty) dbypy - - - dydty

and

Therefore, we get for the time evolution of a coherent state
P
(¢, to)ul = ZP] (t,t0) U (t, to)ul + Rpys(t, to) U (8, to)ur
j=
Theorem 3.5.9. Under the same conditions as in Theorem 3.5.7 we have

Pt to) UP (t, to)ul + Rppi(t, to) UPD (L, to)ul

M-

<
Il
)

Ut to)ul =



3.5. Time evolution 177

where Pj(t,ty) € W (mgy) is given by

P;(t, o) <)// 7% DH(E1) - H(ty) dt; - - - diadty (3.110)
to J11 ti—1

for 7 >0 and Py(t,t0) =1, and
H(te) == UD (to, t) [H (tr) — H(tx) PUD (b4, t0) -

Furthermore, the terms in the sum and the remainder satisfy the estimates

37 _ i—
||79-(t t )L{(Q)(t t ) L|| < C)\j(t—t )j : i M b
g\t L0 Y Lo)UL || = 0 Z)\k A ’
k=0

and

sl _ k
R (£, 10) U (8, to)ul || < CAPFL(E — t)P+L pz g™ @)l (3(p+1)—k)/2 |
P ’ ’ PRI 2 )\k )\

Proof. The proof follows again from Lemma 3.5.8, the operators A\™/P;(t,t,) satisfy the
assumptions of that Lemma with N = 3j, and the remainder \™"7'R,,,1 (¢, o) with N =
3p+1). O

Notice that for ¢ in a finite interval we obtain
1Pt t0) U (2, to)uz || < OX I/
and
[[Rya(t, t0) U (2, to)ul || < OX7F

so we have indeed an asymptotic expansion in powers of \.

Let us discuss the time scales up to which the remainder terms stay small for the
different types of behaviors of the trajectory, in analogy to the discussion after Lemma
3.5.3. The leading term in the upper estimate is always given by the 7 = 0 term.

(i) If the trajectory is unstable with an Liapunov exponent 7y(z), then for

In A\
67(2)

t <<

the error term remains small.
(ii) In the stable and marginally stable case, we obtain that for
t << AL/

the error term remains small.
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The observation that the time up to which the quantum dynamics follows the classical
dynamics, i.e. the Ehrenfest time, depends on the dynamical properties of the system is
not new, see e.g. [Zas81]. The main new thing in the work of Combescure and Robert is
a rigorous proof for the Ehrenfest time.

Since the main ingredient in the proof of the remainder estimates was the localization
of the Wigner function of a coherent state, it is quite likely that the above time scales are
specific for the time evolution of coherent states. The first time that in a chaotic system a
larger time scale was explored rigorously, is in the recent paper [BDBO00]. There it is shown
that for the discrete time evolution of a quantized cat map, the semiclassical time evolution
of a coherent state is valid up tot = In A\/. Up to t = In \/27 it stays localized as discussed
after Lemma 3.5.3, and for In A\/2y < ¢ < In A/~ it becomes ergodically distributed on phase
space, as predicted by the classical dynamics. Probably this continues to be the case for
all times up to some multiple of the Heisenberg time.

With Proposition 3.5.4 and Theorem 3.5.1 we can in principle determine all the con-
tributions to the time evolution. The results on time evolution we presented here have
been recently improved and generalized. In [HJ99, BGP99] exponentially good estimates
for the remainder terms in the time evolution of coherent states and observables have been
derived in the caseof analytic Hamiltonians.

The time evolution for more general states than coherent states can now be obtained
by expanding them into coherent states. As a special case we mention without proof that
for Lagrangian states we obtain

Theorem 3.5.10. Let ‘H be a selfadjoint pseudodifferential operator satisfying the same
conditions as in Theorem 8.5.7 and denote by U(t) = e ™ the corresponding time evolu-
tion. Assume u € I°(M,J) has compact support and principal symbol o(u), then U(t)u is
in I°(M, ®J) and has principal symbol

ocU(t)u)(z) = oAO(t2)+ [ Hi dt,+%al(t’z)]a(u) 0 dI(2) |

with the same phase factors as in Theorem 3.5.1. Furthermore, if u’(t) denotes an element
in I°(M, ®'J) with principal symbol o(u) o ®!, then

e " IEOlN
Uty — (1)) < p()m( ) .

zZ€supp o(u /\

3.6 Time evolution: Remarks on the non-semiclassical
case

In the last section we have discussed the time evolution of Lagrangian states for semiclassi-
cal Hamiltonians, i.e. for Hamilton operators which depend on the semiclassical parameter
A. We have discussed at the end of Chapter 2, in Section 2.5, the physical interpretation
of this limit. We want to complement the considerations there by a concrete example of
a non-semiclassical case, the time evolution of coherent states where we set A = 1. States
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can be experimentally prepared in various ways, and one expects that when one studies,
e.g., the time evolution of an initial state with small de Broglie wavelength, that it is
approximately governed by a classical Hamiltonian flow. In this section we will study the
time evolution from this different perspective.

In order to simplify the exposition we will only study a simple type of system. Let

1
be a Hamiltonian on R? with smooth potential V' (x). We want to study the time evolution
generated by this Hamiltonian for the initial state
Yo(z) = (det Im Bo)1/4ei[<;00,w—CIoH—(Bo(w—qo),w—qo)/2] :

that is we have to solve the differential equation

N
Yot

If we insert the ansatz

(t,x) = Hp(t,z) , with ¥(0,z) = o(z) .

D(t, 7) = at)e@D et a—a®)+BO) E—a).aa®)/2

into the equation we get

(ia/a— 6 — (p,a) + (Bd, (v — @)~ (B — q), (z — 0))/2)¥
= (~itrB/2+ (p+ Bz — 9)*/2+V(@)v .

Since the state is concentrated at x = ¢ we will order this equation by powers of (x —¢) and
treat each power separately. Up to second order we then get the following set of equations

id/a— 0O — (p,q) = —itr B/2+ {(p,p)/2 + V(q) (3.111)
—p+ B¢=Bp+V,(q) (3.112)
—-B=B+V!(q) . (3.113)

If we compare this with the classical system defined by the Hamilton function

H(p,q) = (p,p)/2+V(q)

leading to the set of Hamilton equations

i=p, p=-V/(0), (3.114)

we see that the second equation (3.112) is fulfilled if we choose ¢(t) and p(t) to be the
solutions of (3.114) with initial conditions (go,po). If S(¢) is the solution of the linearized
Hamilton-equations

S=TJH"S = (2 _V”(()q(t))> S, with §(0) =1
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then it follows as in the proof of Theorem 3.5.1 that
B(t) := S8(t). By

is a solution of (3.113) with initial condition B(0) = By. Finally the choices

O(t) = _/0 (B(s),q(s)) + H(q(s),p(s)) ds
and
a(t) = (det Im B0)1/4e—% [l r[S(s)« Bo] ds

give the solution to (3.111).
Summarizing, what we have found is that our ansatz (¢, z) with the above choices of
(p(t),q(t)), B(t), ©(t) and «(t) inserted in the Schrédinger equation gives

(i0/0t — H)w(t,z) = Ryp(t, )
with

R=V(z)= Y V*g®)(x - q(t))*/a! = O((z - q(1))®) .

la|<2
In view of Lemma 3.2.6 this implies that
|Ri(t, )| < C|Im B(t)|~%/?

where the constant only depends on V' but not on (¢, x). So we have found an approximate
solution to the Schrodinger equation and the error is controlled by the norm of the matrix
Im B which describes the sharpness of the localization of the state ¢ (¢, z) and acts therefore
as a semiclassical parameter.

This result illustrates the general philosophy that the semiclassical limit is performed
by preparing the system in suitable states, for which then the system behaves almost
classically, and not by changing some parameters of the system like . A semiclassical
parameter can then be introduced a posteriori, as we have sketched in Section 2.5.
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Operators localized in phase space

The theory of pseudodifferential operators gives a correspondence between a certain class
of quantum mechanical observables, and smooth functions on phase space. It provides a
flexible mathematical framework in which many intuitive physical arguments can be made
rigorous, and has led to beautiful results in semiclassics and quantum chaos as we have
discussed in Chapter 2.

But occasionally one would like to quantize non-smooth classical objects, which do not
fit into the framework of classical pseudodifferential operators. The example which was
our motivation for the development of the formalism in this chapter is the case of the
characteristic function of some open subset D of phase space. One of our aims is to study
the influence of invariant domains of the classical system on a corresponding quantum
system, for instance, if eigenfunctions are concentrated on them. Given such a domain
D, one would like to associate a kind of projection operator with it, whose image is then
the part of Hilbert space associated with D. A natural candidate for such an operator
would be a quantization of the characteristic function of D. The characteristic function of
an invariant open subset of phase space defines an invariant measure on phase space and
one is then as well interested in studying more general measures on phase space associated
with the classical system.

A way of quantizing non-smooth objects on phase space is provided by Anti-Wick quan-
tization. Anti-Wick quantization uses a complete set of coherent states u,; the properties
of such states have been studied in chapter 3.3. Let |2)(z| be the projection operator onto
the state u,, then the Anti-Wick quantization of a € C*°(T*M) is defined as

O0p*"[a] = (%) [a)x a

and this prescription can be extended to arbitrary distributions. So Anti-Wick quantization
allows to quantize very general objects, but the price one has to pay for this is that the
algebraic properties are less pleasant than for usual pseudodifferential operators.

In Section 4.1 we give a review of some of the basic properties of Anti-Wick operators.
We then restrict ourselves to the quantization of measures, and study estimates for the Anti-
Wick quantizations of measures in the following Section 4.1.1. A general version of Cotlar’s

181
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Lemma allows to derive very precise estimates on the norm of Anti-Wick quantizations of
measures in terms of fractal dimensions of these measures. Since many measures appearing
in dynamical systems have fractal properties this might have some interesting applications.
We then proceed to study the multiplication of Anti-Wick operators with pseudodifferential
operators, and commutators with them.

The Egorov theorem on time evolution of operators and the Szego limit theorem on
the semiclassical limit of expectation values are extended in Section 4.2 to the case of
Anti-Wick quantizations of measures. The Egorov theorem is a simple consequence of the
time evolution of coherent states, Theorems 3.5.7 and 3.5.9. For the Szeg6 limit theorem
we can use a simplified version of the standard proof in the literature for the case of
pseudodifferential operators with smooth symbols.

We then turn to our main application of the formalism developed so far, the construction
of approximate projection operators associated with open invariant domains of phase space.

They are of the form
d
mo=(g) [ Il a,

and we first discuss to what extent they can be viewed as approximate projection operators.
Our main aim then is to show that one can construct such operators in a way that they
commute with the Hamilton operator up to a semiclassically small error. For an arbitrary
open domain with piecewise smooth boundary the error is of order A=%/2, but with the
additional assumption that the domain is stably invariant we can improve the result and
obtain an error of order A= for every N € IN. The condition of stable invariance will
play an important role in the next chapter, too. It means that any sufficiently small
perturbation of the classical system possesses an invariant domain close to D. This result
will then be applied in the last section, Section 4.4, and in the next chapter, Chapter 5.

The two applications in Section 4.4 are a discussion of almost invariant subspaces of the
Hilbert space and a local quantum ergodicity theorem. If the classical system has an in-
variant open subset D, we have a decomposition into two systems, D and the complement
of D, which are invariant under time evolution and do not interact. The correspond-
ing approximate projection operators induce a similar approximate decomposition of the
quantum mechanical system. The image of 7r is approximately invariant, and we give an
estimate of the time a state remains in this subspace. If the flow on D is ergodic, then
we furthermore can prove a local quantum ergodicity theorem, which states that in the
semiclassical limit the eigenfunctions microlocally become constant on D.

4.1 Anti-Wick quantization

The Anti-Wick quantization provides an alternative way of describing the quantum-to-
classical correspondence. Instead of classifying operators by their action on plane waves,
one chooses coherent states for the classification. This quantization was introduced in
the early seventies by Berezin, [Ber71], and then used in semiclassics by Voros [Vor76,
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Vor77] and later for the proof of quantum ergodicity by Helffer, Martinez and Robert
[HMR87]. Some aspects are also treated in [BBR96], and the procedure is related to
Friedrichs symmetrization [Tay81].

We start by recalling some results for the case M = R, see, e.g., [Hel97, Pau97|. Let
A be a pseudodifferential operator of order m and ), a coherent state, see (3.33), then
by Theorem 3.2.10, or Corollary 3.2.12, we have approximatly

Aul =~ o(A)(p, Qul,

where o(A)(p, g) is the principal symbol of A, up to a remainder of order O(A™~'/2). Using
this and the completeness relation, Proposition 3.3.13, we get an approximate decomposi-
tion of A in projection operators onto coherent states,

A= () [ il amia = ()" [ oip. ) o) et + 00717

This formula motivates one now to turn it into a prescription of how to associate with a
large class of distributions a an operator:

Definition 4.1.1. Let L be a distribution of positive complex Lagrangian planes on T* M
and ui o be a corresponding set of coherent states, which satisfies the completeness relation
(3.55). Then for a € D'(T*M), we call the operator

ovla = (1) [ ottt o

the Anti- Wick quantization of a. Conversely, a distribution a is called the Anti- Wick
symbol of the operator A if A= Op7"]a].

Since we will in the following only need some special classes of distributions, especially
measures, as Anti-Wick symbols, we will not discuss the general mapping properties of
Anti-Wick operators. We only remark that for instance in the case M = R¢ an Anti-Wick
operator with symbol in S'(T*R%) maps S(R?) to S'(RY).

The Anti-Wick quantization has some nice properties. It reflects very well the properties
of the symbol a, e.g., a positive symbol a leads to a positive operator Op7" [a]. Explicitly
we have the lower bound

Op;™[a] > infa ,
which follows from the fact that for ¢ € L?(R¢)
3\ O\ @
(1, Opz" [alyp) = (g) / / a(p, q)|(ul ,, ¥)|* dpdg = / / a(p, q)Hy(p, ) dpdg

where Hy(p, ¢) is the Husimi function of ¢, see (3.57).
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In the other direction it follows directly that
1 Opz"[a]l| < sup |a| -

From the knowledge of the Weyl symbol of the projection operator |u} )(u},|, see

Lemma 3.3.14, we can infer the Weyl symbol of an Anti-Wick operator. If Op£"¥[a] is the
Anti-Wick quantization of a, then the Weyl symbol a" of Op"[a] is given by

/ / 00§ 7)a(p, q) dpdg
— (_) // e—A(gL(f—p,w—q),(i—p,z—q))a(p’ q) dpdq ,
T

hence the Weyl symbol is a Gaussian smoothing of the Anti-Wick symbol. The stationary
phase formula gives for a smooth Anti-Wick symbol

Y& 2) = alg2) + O,

(4.1)

hence the principal symbol of the Anti-Wick operator Op+" [a] is given by the leading part
of a.

Similarly as in the case of Weyl quantization one can express the trace of an Anti-Wick
operator in terms of the Anti-Wick symbol,

tr OpAW[a] = (%)d/a(z) dz

where we have used the abbreviation z = (p, q).

Since by (4.1) the Weyl symbol is given by a convolution of the Anti-Wick symbol
with a Gaussian, we can immediately transfer the product formula from the Weyl calculus,
and obtain for a product of a Weyl operator H with Weyl-symbol H with the Anti-Wick
operator Op2"[a],

H Op;"[a] = Op " [H#a] ,

if L is constant.
In order to treat the case that L is not constant it will be useful to introduce the
abbreviations z = (£, z) and 2’ = (p,q). Then we can write (4.1) as

i(2) = [ al)We(2) d

with
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and we get for any pseudodifferential operator H with Weyl symbol H(z)
Heta(z) = / o(VHAW, (2) 4

and
GHLH () = / a( YW H (2) 2

Proposition 4.1.2. Let H(z) be a symbol in S¥(mgp) and W, (2) = (%)d e~ Mz=2"8(z)(z=27)
the Wigner function of a coherent state, then we have

H#W,(z) = eﬁ<‘9Z”’g(zl)_laZ”>1fI(z" + 2z —1J0g(z — 2'))| =W (2) + O(A™™)
and
WZ,#H(Z) — eﬁ(@u,g(z')—lazu)f{(zu P i%g(z _ Z’))|ZH:0WZI(Z) + O(/\foo) ’

where H denotes an almost analytic extension of H.

Proof. By the product formula of the Weyl calculus in its integral form, see, e.g., [H6r85a,
DS99|, we have

A 2d H 171 1"
H#sz (Z) = <;> //H(Z-i-Z")Wzr(z-}— Z///)eZ1A(z ,Joz'") dZ"dZ"'
3d
- (é) / / H(z + 2")e e 42" 8()e=2'+2")) 2N Joz") 11 "
T

3d
= (é) //H(z+le)e—)\(z”’,g(z’)z”’)eZi)\(z”’,Joz”)e—Qi)\(z—z’,Joz”) d2"dz" .
™

The 2" integral can be evaluated, giving

d
(i) /e—)\(z’",g(z’)z”’)eQi)\(z”',joz”) dZ”, — e—A(JOZ”,g(Z’)_IJOZ"> )
™

Since g is symplectic, we have Jig(z') 'Jy = g(2') and hence we arrive at
A\ 2
H#W, (2) = (_) / Hi(z + #")eNe" 8" NI E=)2") g
T

Now the stationary point of the phase 2(Jy(z — 2'), 2") + i(2", g(2')2") is given by

2 = —ig(') " (2 — ) = —i%g(¢)(z = ) ,
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and substituting 2" — 2" + 2, gives together with Lemma B.1

)\ d ! ! ! )\ d ~ n AP/
H#WZI(Z) — (}) e—)\(z—z ,8(2)(z=2")) <;) /H(Z 42" Zo)e—)\(z ,8(2")2") dz" +O()\—oo)

— Wz:(z)eﬁ@z"’g(z’)flawﬁ(z 42 4 20) |y + O(A)

The almost analytic extension has entered because z, is imaginary. The price we have
to pay for this is that, as in the proof of Theorem 3.2.10 , the result is only determined
modulo O(A™%).

The case W,#H(z) is completely analogous with J replaced by Jf = —J, which
then gives z = 1Jog(2')(z — 2'). O

4.1.1 Estimates of Anti-Wick operators and fractal dimensions

The most important classical objects which we want to quantize using the Anti-Wick pre-
scription are measures on phase space. As the example of a delta function 6, concentrated
at z shows

o

ORI e ) 2]

the quantization of a measure will not necessarily yield an operator which for A — oo is
bounded.

To be precise we will consider complex Radon measures. A complex Radon measure is
a distribution of order zero, i.e. a linear map on the set of continuous functions

p:C(T*M) — C
p = u(f)

which is continuous in the sense that for every compact set K C T*M there is a constant
Ck such that

[1(p)| < Cresup [p(2)]

for all p € C°(T*M) with supp p C K. We will usually write

following the conventions in the theory of distributions, and not in measure theory.
Any complex Radon measure can be decomposed into its real and imaginary parts

p=Rep+ilmypy,
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which are signed Radon measures. Any signed Radon measure in turn has a unique de-
composition into the difference of two Radon, i.e. positive, measures,

B= g — pe

ey >0, >0, and its absolute value is defined as

pl = py +pe

Furthermore, any Radon measure p defines a unique Borel measure on T*M which we
denote by u, too. By the decomposition 4 = pu, — p— we get that any signed Radon
measure defines as well a signed Borel measure. For more details see, e.g., [Mal95].

In the following we will always assume that the measures which occur are real signed
Radon measures. The case of complex measures can always be reduced to this situation
by the decomposition into real and imaginary parts.

The main tool for estimating the norm of an Anti-Wick operator is Cotlar’s Lemma,
which we state here essentially in the form given in [Fol89].

Lemma 4.1.3 (Cotlar’s Lemma). Let yu be a measure on T*M and A(z), z € T*M,
be a family of bounded operators on L*(M), such that the function z — {(u, A(z)v) is
measurable for all u,v € L*(M) and

AR < M

for p-almost all z € T*M. Suppose there exists a measurable function h : T*M x T*M —
[0,00) such that

1A AR Y2 < h(z,2) (AR AR < bz, ')

for u x p-almost all (z,2') € T*M x T*M, and

/ h(z, #) |u(2)]d? = C < %
*M

for p-almost all z € T*M. Let {K;}ien be a sequence of compact subsets of T*M with
K; C Ky for all i and | J, K; = T*M, then

A(K;) = /K A(z) p(z)dz

is well defined, and the sequence A(K;) converges to an operator A with
Al <C .

Since this Lemma is the main tool for estimating norms of Anti-Wick operators we give
a proof. We follow [Fol89] almost verbatim, with the only extension that we put more
emphasis on the fact that we need all estimates only p-almost everywhere.
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Proof. For any bounded operator B on L?(M) one has
18]I = [1B°B|| = ||(B*B)"||'/" (4.2)
and for a set of bounded operators By, ... Bs,

[B1By - - - Bag|| < ||B1Ba|| || BsBal| - - - || Ban—1Banl|
[B1By - - - Bag|| < ||Bul| || BaBsl| - - - || Ban—2Bon 1| || Banl| -

Taking the geometric mean of these inequalities yields

|B1By - By || < [||Bu|||BiBa]| [|B2Bs|| - - - ||B2n—1Benl| || Baall]

1/2

(4.3)

Now consider

AEY A" = [ [ A1) A Al - Alean )" Ale)

p(zan) (220 1) - - - p(21)" d2gp - - - dzy
By (4.3) and the hypothesis on A(z), ||(A(K;)*A(K;))"|| is bounded by

/ / MY2h(z1, 20) - - h(22n—1, 220) M"? | 1(20m) || 1(220-1) | - - - | (1) Az - - - d21

and by the hypotheses on h this can be estimated by M |u|(K;)C?"~'. Thus we obtain
together with (4.2)

LA = [[CAGK) AR 2% < (M |u|(F))/mgen=n/on
and taking the limit n — oo then gives
A < C .

The proof of the convergence of A(K;) will be only given for the special case that u(z)
and A(z) are positive, for the general case we refer to [Fol89]. Under these conditions the
sequence A(K;) is non-decreasing,

A(Kit1) =2 A(K:)
and since it is bounded, it converges to a bounded operator A. O

In the case at hand, the family of operators is given by

A= () Pl

and therefore we have to estimate

[AGAGY 7 = A ADIY = (2 ) 2@ = () a2
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Lemma 4.1.4. Assume that the distribution L is constant, then we have

1\ * * ! A ‘ —XNz—2' g(z—2
AR ARV = [|AG) A2 = (g) o Mo a8

where g denotes the metric defined by L, see (3.53). If the distribution L is not constant,

then there exists a constant C > 0 such that
A d ' ! '
[AGARY | = [AG AR < € (5 ) e,
T

Proof. In the first case the result follows directly from Lemma 3.3.18. In the second case
one has to use an asymptotic version of Lemma 3.3.18 which follows from the method of
stationary phase. The details are left to the reader. O

So the function A can be chosen as

A d
h(z,7') = C’( ) M= B(e=2) (==)/8

2
where C' is the constant from Lemma 4.1.4.
To determine the bound on the norm of Op7" [x] we therefore have to estimate

A 4 —XNz—2 g(z—2") (z—2'
prlul(e) = [ (51 ) e e g g (4.9

for large A, where py(2) := (%)de_Mz’g(‘z) #)/8_ For the case that u belongs to an LP space,

a bound on the norm follows immediately from Young’s inequality.

Proposition 4.1.5. Let pu be in LP(T*M), 1 < p < oo, then there is constant Cyp,
independent on i, such that

A d/p
1098l < i (52 ) il

So the quantization of a bounded function has a bounded norm, and the quantization
of an integrable function has a norm which grows not faster than \°.

Proof. Young’s inequality, see, e.g., [RS80], yields

[px# pal [z < [loallzel|pll e
with 1/p+1/¢ = 1, so we only have to determine ||p,||z.. But this gives

y o [ (AN rateg) s
ol = [ () eaesn g

=0 (5;) a0 izt 00 )
:m<§)q0wa%wwu+OGMDv

™
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where we have used the stationary phase formula and the fact that det g = 1. Taking the
¢’th root leads to

A d/p
loslls < G (5]

0

For more general measures p a more refined analysis is necessary in order to get good
estimates on the norm. As a preparation we will now discuss some fractal dimensions asso-
ciated with general measures, see [Fal90, Fal97] or the contribution of Pesin in [BDD*00]
for an introduction and more details.

Definition 4.1.6. Let p be a (Borel-) measure on T*M, fiz some metric on T*M and
denote by B(z,r) := {7 € T*M ,dist(z, 2') < r} the ball of radius r around z. Then the
local lower dimenston and the local upper dimension of i1 at z € supp u are defined
as

In pu(B(z, 7))

dim(p, 2) := hgl_)lglf

Inr ’
- In u(B
dim(, z) := lim sup Inpu(B(z 1) :
r—0 Inr

If they are equal the common limit is called the local dimension dim(u,z) of p at z.
Furthermore,

dimpy (u) := sup{s ,dim(y, z) > s for u—almost all z € supp u} (4.5)
is called the Hausdorff dimension of j.

The local dimensions describe the power law behavior of the u-volume of the ball B(z, )
for r — 0 and thus describe, roughly speaking, how concentrated the mass of y is at z.
The smaller the local dimension is, the higher is the concentration of the measure at z, as
the following examples show.

Examples 4.1.7:

1. Let pu(xr)dz = a(x)dz, where dz denotes Lebesgue measure on R? and a € L>(RY).
Then

uw@m»suwm/ do = [[al|wcar®

B(z,r)

so we have for z € supp a dim(y, 2) = dim(u, 2) = d and dimg(u) = d.



4.1. Anti-Wick quantization 191

2. Let pug be concentrated on a submanifold S C R" of dimension k, in the sense
that ps(z)dz = a(z)d(f1(x)) -« - 0(fu_k(z))dz where the f;(z) are smooth functions
which locally define S through S = {z; fi(z) = - fu_r(z) = 0}; a € C*°(R?) and
dz denotes Lebesgue measure on R?. Then one obtains for z € S Nsuppa

ps(B(z,r)) ~ 85

and so dim(u,z) = dim(u, z) = dim S. The Hausdorff dimension of jg then equals
the dimension of S, dimy (ug) = dim S.

3. To get an impression of what other types of measures can occur, we give an example
where we expect a non-integer dimension d,. Let f(x) be a continuous, but nowhere
differentiable function, for instance the Weierstrass function

o0
fs(z) == Z 2=k in 2k - |
k=1

with 1 < s < 2, then the graph of fs(x) has fractal box dimension equal to s and one
expects that its Hausdorff dimension also equals s, see [Fal90, Chapter 11]. Therefore,
we expect by (4.6) that the measure py on R?, defined by [ p(z,y) dus(z,y) =
J p(z, f(x)) dz, has Hausdorff dimension dimp py = s, too.

We want to compare the Hausdorff dimension of a measure with the Hausdorff dimen-
sion of the sets of positive u-measure. For completeness we recall the definition of the
Hausdorff dimension of sets. Let E be a subset of some metric space X; a countable open
cover {U;} of E is called a d-cover if |U;| := sup{d(z,y), z,y € U;} < 6. Then for a given
s > 0 and all § > 0 one defines

H3(E) = inf { Z \U:|* , {U;} is a d-cover of E} ,

and then the s-dimensional Hausdorff measure of E is defined as
H(F) =limH;(F) .
6—0
The Hausdorff dimension of E is now defined as the smallest s such that H*(F) is finite,
which is equivalent to
dimy E :=inf{s : H*(E) =0} = sup{s : H*(E) = oo} .

Now the relation between the Hausdorff dimension of a measure and the Hausdorff di-
mension of sets is given in [Fal97, Proposition 10.2]. For a finite Borel measure u one
has

dimy p = inf{dimy E : E is a Borel set with u(E) >0} . (4.6)

We now want to relate the asymptotic behavior of (4.4), which determines the norm of
the Anti-Wick quantization of u, to the Hausdorff dimension.
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Lemma 4.1.8. Let i be a positive measure on T*M, and

d
) = (2) e

™

be a Gaussian, where g is a positive definite symmetric matriz and d = dim M. Denote by
Px * i the convolution of py and p, then

1
li}{ggf% = d— 5dim(u, 2) (4.7)
. Inpyxp(z) . 1—
hf\ri)soljp = d idlm(,u, z), (4.8)
and
: In py * p(2) 1
ATV g — = ]
hi\n_)sogp ) <d 5 dimg p (4.9)

for u almost every z.

Proof. Let us denote by x(,,1(2") the characteristic function of the ball B(z,) and intro-
duce

ﬁ)\ = e—)\(Z,g2> i

We have for € > 0

1

1. . 1 -
5'0/\(2 — ) = §X[z,1/,\1/2—e1(zl)l)/\(z — )+ 5(1 - X[z,1/,\1/2—e}(zl))/)/\(z —7)

< Xpuare<(2) + Ce™¥
with some constants C, ¢ > 0. On the other hand, there is a Ay such that for A > X
Zﬁ)\(z - Z,) > X[zyl/)\l/2+e](zl) .

Now, by taking the convolution of the two inequalities with x4 and noting that u(B(z,7)) =
X[z, * #(0) we get for X sufficiently large that

Inp(B(z, 1/AY**))  Inpy*p(z) _ Inp(B(z,1/X*7))
< <
In A In A In A

Therefore we get
1 Inp
—Edim(u, z) —2e < li/\n_l)glf%)’fj(z)

1— Inp
—Edim(u, z) — 2 < liir;s;ip %ﬁ(z)

1
S _édl_moj’, Z) + 2¢

1
< —Edim(u, z) + 2¢ ,
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for any € > 0, and hence

Inp 1
ipnt 2D — i
Inp 1—

By substituting py for gy, this proves the first of the relations (4.7) and (4.8). The second
one, (4.9), is then a direct consequence of the definition of dimg u, (4.5). O

By a small variation of the proof we can obtain the following result, which will be useful
later.

Lemma 4.1.9. Let i be a measure, and
PV (2) 1= [o[re o8
where g 1s a positive definite symmetric matriz. Then we have
[k o571 < CXT ) )

Proof. In the proof of Lemma 4.1.8 we have seen that we can replace the Gaussian by
the characteristic function of a ball of radius A='/? without changing the order in A of the
convolution. But on a ball of radius A~/? around 0, the function |z|™ can be estimated by
A2, O

We can now put all the pieces together to obtain a description of the behavior of the
Anti-Wick quantization of a measure on phase space. Cotlar’s Lemma 4.1.3, together with
Definition 4.1.6, and Lemma 4.1.8 gives the following theorem.

Theorem 4.1.10. Let i be a measure on phase space T*M such that for u-almost every
z

2

d
( A > / e~ Me—2g(z=2")(2—2"))/8 pw(z')|dz < C < o0,
M

then Op™W (] is well defined and
1Oopz" W]l < C .

Furthermore, we get for large \ that

1 AW
s 1082 4]

1
<d-—=di 4.1
. ) <d 5 dimg p , (4.10)

where dimg p denotes the Hausdorff dimension of u, defined in (4.5).
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Roughly speaking, (4.10) means that
1 OpA™ [u)l| < Cat-3 diman (4.11)

but one has to be careful: If we multiply for instance powers of In A on the right-hand side
of (4.11), (4.10) remains true. So (4.11) is generally only true modulo logarithmic terms,
and (4.10) is the more precise statement. Alternatively we could reformulate (4.10) in the
following form; for every € > 0 exists a constant C, > 0 such that

—1dim
1OpA™ [ull] < Cpd-bmunte

For the first two examples in 4.1.7 we obtain for their Anti-Wick quantizations:
Examples:

e If du(z) is of the form a(z)dz, with a bounded function a(z), then we get of course

[10pz" [a]l| < supla(2)] .

e Let S C T*M be a submanifold of codimension &, and let du = a(z)dus(z), where
is(z) is the measure on S induced by the symplectic measure dz, then

A K/2
lont bl < (5)  supla@)]
™ 2€8

4.1.2 Algebraic properties of Anti-Wick operators

The general algebraic properties of Anti-Wick operators are less pleasant than the ones
of pseudodifferential operators. For instance, they do not even form an algebra. But for
certain special cases products can be studied without too much work. Proposition 4.1.2
allows to draw some conclusions on the semiclassical behavior of Anti-Wick operators under
multiplication with ordinary pseudodifferential operators.

Theorem 4.1.11. Let pu be a measure on T*M with compact support, then we have for all
A € \Ilg(ma,b)

1.4 0pz" (] = Opz" [0 (A)p]l| < C| Opp™ [u]|| A2
1 Opz™ [ulA = Opz" [o(A)pl| < C|| Opp™ [u]|| A2,

where the constants depend on A and p.

Proof. We have

AOpi™ ] = (%) [ wte) Al a
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and according to Corollary 3.2.12 A|z) is given by
Auy (A, 2) = 0(A)(2)up4(A, z) +7(X; 2, )
with
r(X%2)) = O((& = 0)tpg(\ ) + O F(A 2, 0)p(M2) s (412)

where f(), z,z) = O(A\°) uniformly in 2z and z. So we get

A\
AOpE" ] = On oyl = (5) [ e e

and we will estimate the left-hand side with Cotlar’s Lemma. The family of operators is

in this case given by

56) = (5 ) )

2
and we get with (4.12) and Lemma 4.1.9

C / ! ! /
||B(Z)B(Z,)*H1/2 < W e—)\(z—z 8(z—2'))/8 HB(ZI)B(Z)*HI/Q < % e—/\(z—z 8(z—2"))/8

bl

which then yields the first estimate. The proof of the second relation is identical.
]

The next quantity we want to discuss is the commutator of an Anti-Wick operator
Op7"[u] and a pseudodifferential operator A. If dyu is of the form b(z)dz with b € S(1),
then by (4.1) the Weyl symbol % (z) of Op#"[u] is in S(1), too, and has an asymptotic
expansion of the form

bW (2) ~ b(z) + %bl(z) +e

So the commutator [A, Op7" [u]] has the Weyl symbol L {o(A4), b} + O(1/A?), and hence
we get for A € S(1) that

1 A _
1A, Opz™ [u]] = 5 Opz™ [{o(A), B}][| < CA™*.

But for more general measures, which are not smooth relative to Liouville measure,
additional terms can enter the expression for the commutator. The reason is the presence

of the metric g whose derivative along the Hamiltonian vector field generated by o(.A) we
have to take into account. It will enter through a kind of covariant derivative,

D)8 = [Xo)8] + (To(A)") g+ gT0o(A)", (4.13)

where [X, (48] := (Xo(4), 0;)g denotes the application of X,(4) to g.
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Theorem 4.1.12. Let p be a measure on T*M and A be a pseudodifferential operator
with symbol in S(mgy), then

0D 1), A] = == Opi™ [{1, o (A)}] +1 Opf[ul + R
with

IR < CllOp2" [l A2,
and where Opf}g[u] denotes the operator with Weyl symbol

d
[ = aDange) - 2y (5) O 0, (g

7r
with D,4)g(2) defined in (4.13).

Here the Poisson bracket {u,c(A)} is defined in the sense of distributions. Of course
{u,0(A)} is then generally no longer a measure, but Anti-Wick quantization is well defined
for general distributions.

Proof. We will make a Taylor expansion of the Weyl symbol of A around z, writing
Au, = APy, 4+ [A — AP]u,

where A'? has Weyl symbol

AP () = dg(2) + (A(2), 7 = 2) + {7 = 5 A4(2)7 — 2) + 3 Ai(2)

where Ay denotes the principal symbol of A and A; the subprincipal symbol. By Corollary
3.2.12 we have

[A = APJu (A, 2) = [0((z — 0)*) + Oz — ) /A + ON?)uz(A, 2)
and so the same argument as in the proof of Theorem 4.1.11 gives
114, Opz™ [u]] = [A®, Opz" [u]][| < C|| Opz™ [l A2,

where [A®, Op?"[u]] is a shorthand for

(%)d/[v“f’, |2)(el] (z) dz .

Hence we are left with the determination of [[A®, Op2™ [u]].
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The Weyl symbol of AP[2)(z| — |2)(z|.A” can be computed with Proposition 4.1.2 to
be

ba() = (5) 214 (2), o) — 2))

m
+ 210 — 2, [A7 (2) Jog ()] 4 (2 — 2))]e 7 =2

_ (é) [~ 20(X 4y (2), 8(2) (2 — 2)

™
+ 21z — 2, [A5(2) Tog(2)]+ (' — 2))|e N B2

where X 4,(2) = JoAj(2) denotes the Hamilton vector field of Ay, and [Af(2) Jog(2)]+ :=
(A5 (2) Tog(2) — g(2) JoAj(2)]/2 denotes the symmetric part of Aj(z)Jog(z). With

1

o Xty 0)e 28D — | (1 g (2) (2"~ 2)

(2 = 2 [Xagg] () (2 — 2)) e =)

1
2

where [X 4,8](2) := (Xa,, 0,)8(z) denotes the application of X 4, to g, we can rewrite this
as

A\ i : :
b, (Z’) — (_) §<XA0; az>e—)\(z —2,8(2)(2'—2))

n (%)d [i(z' — 2, [X4,8](2) (2" — 2))

L9 — 2, [AL() g () (7 — z>>] o =) )

A 1

d
=i (;) |:X<XA0, 9,y + (2" — 2, D4,8(2) (7 — z))} e M —28(2)(2'=2))

Now the Weyl symbol of Ops" [{o(A), u}] is given by

A\ M g
- 7~ -2 —2,g(2),2"—2
(3) [ra@ame (2) 1
d d
—(55) [ 1) a0 (3) e g
2 T

where we have used partial integration. Hence we get that the difference

LA®, 0p" )] = = Op™ [{or(A), 1}
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has Weyl symbol

W)= [ o) (§)< — 2 Dag() () (&' — 2))e N B g

O

The first term in the expression for the commutator, Ops" [{x,o(A)}], is the one
expected from the corresponding results on classical pseudodifferential operators. The
second term, (4.14), is related to the smoothness of the measure p as the following corollary
shows.

Corollary 4.1.13. Assume that the measure yu on T*M satisfies
0,1 € L®(T*M) , (4.15)

fori=1,---,2d, then we have for A € U(myy)
1
[I[A, Op™" [u]] - o\ Op™"[{o(A), u})l| < CA*2

Proof. We have to estimate the second term, (4.14), in the expression for the commutator
in Theorem 4.1.12. With a Taylor expansion, D,(4g8(2) = D,(4)g(%') + O(z — 2'), and
g(z) = g(#) + O(z — #'), we get

0 = 1) () i = 2 (Daag)()E = e D dz 1+ 00V

Using —55 g 10,6 M¥ 28N 2D = (5 — 2f)e M ~28(=)("~2)) together with partial inte-
gration gives

W) == [ W@ - 2 5 (Dawg) (g ().

d
(i) N —28EE -2 d (14 O(1/VN)

™

:% n(2) tr((Doa8) ()8 () <%> o N2 8EE2) 45 (14 O(1/VA))

i

Tox [<Z’ — 2, (Do()8) (Z’)g‘lazm(z)}

™

d
(i) e A =2eEE =) 42 (1 4+ 0(1/VN)) .
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Since
tr[X a,glg™" = [X 4, tring] = [X4,Indetg] =0,
because det g = 1, and
1
tr[A5(2) Jog ()48~ = Sltr AG(2) o — tr JoA5(2)] = 0,

we have tr(Dy(4)g)(2')g ' (') = 0 and hence

i A d ’ ! ’
b = 55 [ 6= 2 e (aua)| (2) e a;
T
x (14+0(1/VN) .
Now the result follows from Lemma 4.1.9 and Cotlars Lemma 4.1.3. O

If the measure does not fulfill the requirement (4.15), then the second term, (4.14), in the
expression for the commutator will in general not be smaller than first term containing the
Poissonbracket. One application we have in mind is the case that A = H is an selfadjoint
operator, and 4 is an invariant measure, i.e. {o(H), )} = 0. Then the naive expectation
that the commutator of the operators should be semiclassically small, is spoiled by the
term (4.14), which measures the change in the metric g when transported along the flow.
But one might hope that one can adapt the metric g to the Hamiltonian o(#) and the
measure 4, such that for this special choice of g the term (4.14) indeed becomes small. In
Section 4.3.1 we will show that this can be done for the case that p is the characteristic
function of an open smooth and invariant domain in phase space. It would be extremely
interesting if one could extend these procedures to more general invariant measures.

One can also consider situations where the measure is only almost invariant, i.e. where
the Poissonbracket {o(#), 1} is small in the sense that it is of smaller fractal dimension
than p. A situation we have in mind, where such a behavior could appear, is the case of
a domain in phases space which is bounded by a cantorus. A cantorus is a torus in phase
space where only a cantorsubset is invariant under the flow, so if we take in this case for
the measure ypdz where xp is the characteristic function of a domain D which is bounded
by the cantorus, then {o(H), u} will be a measure which is concentrated on the cantorus,
and hence its quantization will decay with a rate governed by the fractal dimension of the
cantorus. If one could adapt the metric again to this situation, such that the term (4.14)
is smaller than the quantisation of the Poissonbracket, then we could made for instance
estimates on the time evolution through such a partial barrier, similar to the estimates in
Section 4.4.

4.2 Time evolution and semiclassical limit of Anti-
Wick operators

The results on the time evolution of coherent states, Theorem 3.5.7, allow to derive an
Egorov type Theorem for Anti-Wick operators.
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Theorem 4.2.1. Let pu be a Radon measure on T*M and let U(t) = exp(—iAtH) be the
time evolution generated by a selfadjoint pseudodifferential operator H which satisfies the
conditions in Theorem 3.5.7. Denote furthermore by ®' the Hamiltonian flow generated
by the principal symbol of H, and by ®' L the distribution of complex positive Lagrangian
planes whose element at z € T*M is given by S;'(t)L(®*(2)) where S,(t) : T,T*M —
Tei()T*M denotes the linearized flow. Then

U (t) Opy" [uU(t) = Opaly[u o @' + R(t)
and the remainder R satisfies
IR < Cl[Op™ [u]| A1/

Proof. The result is a consequence of the time evolution of coherent states, Theorem 3.5.9.
With

Opi™ [u] = (i) [ ) 0z

2T
and
U (tyuy (A z) = PN (U (—t)ul (A, 2) + Ry 2 (U (~t)ul (A, )

where

PM(—t) =14+ Pi(-t),

see (3.110) for the definition of the P;, we get

0 ot ) = (5-) [ WU D)) dz + RO

2% 1 71
~ () [t e+ =

~(5) [ @Gl s ax R
= Opgﬁ [ o @' + R(t)

A\ ~
R(t) = (%) /,u(z) (Z/{(z)(—t)|uf>(uf| [ij(t) + ’RN+1] U (t) + c.c.) dz .
n=1
By Theorem 3.5.9 the term containing Ry, is of order

)\d—N—l

I’



4.2. Time evolution and semiclassical limit of Anti-Wick operators 201

so by choosing N > d it becomes semiclassically small. The terms containing the operators
P;(t) can be estimated with Cotlar’s Lemma. From the fact that they have a zero of order
3j at z = z(t) we can deduce that we can choose

d
h] (Z, Z,) f— <é> A]'Z — ZI‘3je—)\<z—zl,g(t)(z—2,))
™

Y

and for j = 1 this gives with Lemma 4.1.9 the loss of A~'/2 in the order of the norm. [

A Szeg6 limit theorem for Anti-Wick quantizations of measures is as well valid. Let
H € UO(myy) be selfadjoint, and assume that the spectrum is discrete in the interval [, (],
B > «, then we are interested in the asymptotic behavior of

> (tn, O™ [ult)) (4.16)

a<lE,<p

for A — oo, where E, and 1, denote the eigenvalues and eigenfunctions of H, and p is
a general measure. In case that Op*"[u] is a bounded pseudodifferential operator, the
behavior of this sum is well known, see, e.g., [DS99], and we want to extend the known
results to the case of an Anti-Wick quantization of a measure.

We will first derive an a priori estimate for a smoothed form of (4.16). Choose
f € C§°(R), supported in a neighborhood V' of [«, 5], which satisfies f = 1 on [a, §].
Furthermore, assume that H has discrete spectrum in V. A sufficient condition for this is
that Hy (V) is compact. Since by the functional calculus, see [DS99], f(#H) € ¥°(1) with
principal symbol f(Hj), we obtain

57 1), O™ ) = tr (1R 09 ) = () [ £(H) s+ 001
' (4.17)

So by multiplication with f(#) we can make traces finite. We follow the usual ap-
proach to estimate (4.16), and study a localized Fouriertransformation of the wave trace,
tr (Opg" [a] f(H)U(t)), where U(t) = e~** denotes the time evolution operator. Since

tr (Opal (o) = (5-) [ (ks Ov" s GoU(OE) a¥

- (%) J[ ket oty aza:
o

_ ( A ) / a(2) (Wl FLUB D dz

where we have used the completeness relation, we will first study (%)d (ul, FH)U)uL).
This quantity can be expressed in terms of the Husimi functions

1) = () ot
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of the eigenfunctions as

(%) <u£af(7'l)2/{(t)u£) = Zf(En)H,f(Z)e_i)‘tEn .

We will study a smoothed inverse Fouriertransformation of this quantity. Let p € C§°(R)
then

[ o0 (i)dwi, (OO i = 3 (BB~ E).

2T

Proposition 4.2.2. Let H be a selfadjoint pseudodifferential operator in U°(mygyp). As-
sume that the Hamiltonian vector field Xy, of Hy := o(H) is nondegenerate at z € T*M,
that ®'(z) # z for all t # 0 in the interval (=T(2),T(z)), and that f € C(R) with f =1
in a neighborhood of E, and f(Hy) has compact support. Then there are smooth function
a,(z) with

Zf )A(A(En — E))

= p(0) (%)d_l O (2 (1 + Z A" an (2 ) + O\ N2

for all p € C((=T(2),T(z))), where

(4.18)

A)l/Q 1 )\(HO(Z)*E)z

E) = (2 T I Xg,y 13
b B)i= (2) e

T
18 concentrated on the energy shell X g, and approaches the Liouville density on Xg in the
limit A — oo. Moreover,

[Xiylg(2) = V(X (2), 8(2) X1, (2))

denotes the length of the vector Xpg,(z) measured in the metric g(z).
Proof. For t # 0 and t € (—T(2),T(z)) we have FS(ul) NFS(U(t)ul) = (), and therefore

2T

(i)d (Wb Uty = O =),

so we only have to care about a neighborhood of t = 0. Now we get

(ul, U(E)u) = eNPHPO0=a0)/2+[5 Hol2(t)~(p(0)d(0) dtg=M{z—(0).8(2) (=== /4.

and up to order 2 in the exponent this is
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Therefore we obtain by the stationary phase theorem, Theorem D.4,

i 4\ 2 p(0) e MXr0()8(2) X (2))  (Ho(2) B
[ et uwutie e ar - (7> P

<1+Z)\n” ) O\N-1/2) .

By integration of (4.18) we will now get an estimate of the sum (4.16).

Theorem 4.2.3. Assume H € V°(m,y) satisfies the same conditions as in Proposition
4.2.2, then

Z HL( ) = (;ﬁ)d/f Son(2, E) dE+0O(NY) | (4.19)

a<lE,

and if the set of periodic points with period # 0 has p-measure 0, then

> 00 ™) = () [ [ lomat ) aw

alBn(N)<B

B
+)\1/ (a8 (-, E)) dE| 4+ o(A) .
) (4.20)

The proof will be based on the following simple Lemma, whose proof is left to the
reader.

Lemma 4.2.4. Let x[o5 be the characteristic function of the interval [, B], and let p €
C((—1,1)) with p(0) = 1, such that the Fouriertransform satisfies p > 0. We then define
pr(t) := p(t/T) and note that pr € C((—T,T)) and pr(E) = Tp(TE). Then there are
constants c,C' > 0 such that

/[He A s (ME — B)) dE + S > yian(E') > /B_E A s (\E' — B)) dE — ¢
. mT 9t = XU = | onPT 9°
(4.21)
for e >0 and all X with
C1
N> (4.22)
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H

BT Lo | 10 e

X

Figure 4.1: Sketch of the three functions in the inequality (4.21)

Proof of Theorem 4.2.3. In Lemma 4.2.4 we choose T smaller or equal to the smallest
nonzero period T'(z) of z, then we choose in (4.21) E' = E,,, multiply (4.21) with f(E,)HE(z),
where f is chosen as in (4.17), and sum over n. This gives that

>, Hiz)
alb,<p
can be estimated from above by
B+e A . X c .
[ S B B B, — ) dE + 5 Y F(E)HE )

2T
e <

and from below by
[ S e B~ ) 4B~ e 3 B
By using (4.17) with p = 6, we obtain
ey f(E)H(2) =0\,
and integrating (4.18) yields n

Bte
/ ] S FE) - HE o (ME, ~ E)) dE

-(2 ) [ nae X (2 4B 00

2m Te

d B
B (ﬁ) / Sz B)(1+A1ai(2)) dE(1+ O(e)) + O(A72)
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So by choosing the smallest possible € according to (4.22), e = %)\*1, we get

lim sup
A—00 Ad=1

S H) - (%)d/fém,\(z,E)(l+)\_1a1(z)) dE| < 0'% ,

alEn<pB

which implies (4.19). Now, if there is no periodic orbit through z we can choose T as large
as we wish, and obtain

a<§<5 Hy(2) = (%)d/aﬁ Sux(z, E)(1+ A 'ay(2)) dE + o(A1) |

which is (4.20) for the case y = ¢,. Define now for § > 0

Y

T (2) {T(z) if z is periodic with minimal period 0 < T'(2) < 3
s &)=

1
5 else

then Ty (z) is lower semicontinuous and we have, since the set of periodic points has pu-
measure 0, that

/f(Ho)T;(Z) u(z)dz < C6 .

Therefore, if p is positive we obtain

> (6, 0D [ulthn)

a<En<p

lim sup

A—00 )\dil

2

_ ( A )d/j w(0sa(z, B + A Lay(2))) dE| < C'5

and since we can choose 0 as small as we wish, we obtain (4.20). The general case of
non-positive p is reduced to this one by decomposing it into a difference of positive ones
and using that (4.20) is linear. O

By taking y = 1 we get the standard two-term asymptotics for the counting function
of the energy, see [Ivr98, DS99,

Nogs(A) i=#{n;a < E, < B}

d
1
= <i> U dz+—/ Hy(2) dz| +o(X* 1)
2m a<Ho(2)<B A Ja<mo(z)<p

if the set of periodic points with period # 0 has measure zero. Here we have used the
additional fact that a; = H; in Theorem 4.2.3, which we have not proven since we do not
need it later on.
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Corollary 4.2.5. Assume that the energy shell ¥y := {z; H(z) = E} is compact, that
the Hamiltonian vector field s nondegenerate on Xg, and that the set of periodic points on
Y with period # 0 has p-measure zero, then

M\ o

> on i) = (5) (R o)
B <B(N<E &

for all o > 0.

The form in which the formula in the corollary is often presented is

lim ! > (¥, OP™" [utpn) = w¥e)

Aooo Np_ o a (A
B g )E—%gEn()\)SE-I-%

1
vol(Xg)
where vol(Xg) denotes the Liouville measure of Xg.

The condition that the set of periodic orbits should have p measure zero is necessary.
For instance, for the case of a two-dimensional isotropic harmonic oscillator and p the
Liouville measure, the result in Corollary 4.2.5 is not true. The same holds true for an
arbitrary system, if we choose p to be a delta function of a periodic orbit, see [PU98a,
PU98b].

4.3 Approximate projection operators

In this section we will use the Anti-Wick quantization to construct approximate projection
operators associated with subsets in phase space. Similar ideas have been developed by
Omnes, see [Omn94, Omn97]. Closer to the applications we have in mind is a construction
of approximate projection operators for a perturbed torus by Shnirelman [Shn], but he
does not use coherent states.

Let D be a domain in phase space T*R¢%, then we can associate the selfadjoint operator

A d
L._ [N L\/, L
mh=(5) [ bt a:

with it. This is the Anti-Wick quantization of the characteristic function of D. By the
symbol calculus one expects that it behaves like a projection operator onto the set D. In
order to make this idea more precise we test this operator on coherent states. Fix a point

z = (p,q) € R? x R% and consider the action of 7% on ul,

A d

L, L L I\, L 3.0
™ = s u, dz' .
DU (2 > /Q(uz u,)u,

One expects that approximately

mpuy & Xp(2)u;

bl
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where xp(z) denotes the characteristic function of D. The next proposition says that this
is true away from the boundary 0D.

We will in the following assume for simplicity that M = R¢ and L is constant, so
the metric g defined by L on T*R¢ is constant. This will facilitate the proofs but it is
not necessary, the result in Proposition 4.3.1, Proposition 4.3.2 and Theorem 4.3.3 remain
true in the general case. In Section 4.3.1 we will need to introduce non-constant metrizes
explicitly.

Proposition 4.3.1. Let D C T*R® be an open domain in phase space and let w% be the
Anti-Wick quantization of the characteristic function xp of D,

A d
b (—) [ byt a.
27T D

|l mhul — xp(2)ul|| < Ce apE /4

Then for z ¢ 0D one has

where d5p,(z) denotes the distance of z to 0D measured in the metric g defined by L, i.e.

@ho () = min (2 — 2/, g(s — 2)) (4.23)

Proof. We first treat the case that z ¢ D, and estimate

A 2d
mbul? = (—) [ [ by ) i a2 a2
27T DJD

We have by Lemma 3.3.18

L

INp+p',4'=a)/2 o= Agr(p—p',q—4d') /4
V4 )

(ub,uk)y = e

hence |(ul, ul)| < e 292(:=2)/4 50 we get

2!

2d
it (L) [ [ om0
2T DJD

< e MR/

2d
(QA) / / oML (=)= (4 ()P 491 (=)~ ki ()46 =ML "~/ 4,1 G
n DJD

where d};(z) denotes the distance of D to z measured in the metric defined by g, as

defined in (4.23).
Since (\/7)%e2r(z"=2)/4 tends to §(2" — ') as A — oo, we get

|mwbuk|| < CeMNdp()I*/4
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with some constant C' depending on D.
The case that z € D can be reduced to the previous one by using that 75 = 1 — 7%,
with D' = T*M\D,

('l — Dul|] = ||whul|| < Cle NGpGI/A
O

What remains to be determined is the behavior of whul for z in a neighborhood of
0D.

Proposition 4.3.2. For z close to 0D one has
1
(ul, whuly = 2[1+erf(()\/2)1/2(5ap(z)) (1+0(1/N)

where 0gp(z) is the signed distance from z to 0D,

_)dap(2) forzeD
ton(2) = {—daD(Z) forz¢D

Proof. We have

(uz,ﬂ'%u (2 ) / | 2, Z |2 ds = (_) /e—Ag(z'_z)/Q ds
™ 2T D

Now we introduce a boundary defining function f(z) for 0D, i. e. ,
f(z)=0 forzedD ,f(z) >0 forze D ,and f(2) <0 forz¢ D,

and f'(z) # 0. Then we can write

() =07) = [ o s ds= [T 5 [t ayas

and hence

)\ d d+1
(2_) feweomae= [0 (2 ) [ e s qgaz as
™ D 0 7

The inner integrals can be evaluated by the method of stationary phase. Since the phase
function has positive imaginary part for z’ # z, we will consider only stationary points in
a neighborhood of z. The condition for a stationary point then reads

—n(f'(2) + f'(2)(7 — 2)) +ig(z' —2) + O((+ — 2)*) = 0,
s—f(2) = f'(2) (2 —=2) + O((¢' = 2)*) = 0
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where g is defined by g(z) = (z,g2). So only for s = f(z) the integral is not exponentially
decreasing, and we want to determine the behavior of it in a neighborhood of s = f(z).
The stationary points can be computed to be

5_22<ﬂgﬁ;$2mg*f@%HX@—f@D”
i (5= 1)
(f'(2),871f'(2))

and we then get for the integral

(2_> / / N5~ () o —2)/2] !
™

A\ Y2 N0 L 3

+0((s = f(2))")

2T

with some nondegenerate matrix ®(s). Inserting this in the final integral over s then gives

<f'<z>,g—1f'<z>>>”2
det[®(f(2))/i]

! +‘°’rf(@>l/2 <f’(2),gf—(1zj)“(2)>1/2>

It remains to determine the prefactor and the argument of the error function.
The distance is defined as [dpp(2)]? = minycap(z — 2/, g(z — 2’)), and in order to find
the 2’ € 0D for which the distance is minimal we look for the extremum of

(z— 4, g(z =) +1f(«)

where the Lagrange parameter [ is determined by the condition f(2') = 0. We find

(ul, sy = (

1+00A™).

l l
s i == g () =~ () + 00— )

and then the condition f(z') = 0 gives

Putting the pieces together leads to

[don (2)]” =
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which gives the argument of the error function. To determine the prefactor we observe that
we have for z € D\@D whul = ul 4+ O(e~Mdor(2)*/4) 5o in this case by the normalization
of ul we have

(ul, whuly = 14 O(e Ador@IF/1) |

hence we must have

<<f'(z), g‘lf’(2)>>1/2 _
det[®(f(2)) /1] |

We can now determine to what extent 7% is a projection operator.

Theorem 4.3.3. Let wk be the Anti-Wick quantization of the characteristic function of
a smooth open domain D C T*M. Then we have for z ¢ 0D

[(75)2 — whlul|] < Ce=Ndop()P/4

so away from the boundary the error is exponentially small. For compact D we have

trl(h)? — 5] = ‘ffj' A V2 tafk] (14 O 1) |

Proof. The first relation follows immediately from Proposition 4.3.1.
To prove the second relation we write

2d
w2 —7wp=(wp—1)p = —mpTp = — (%) /E / |2)(z, 2/} (2| dzd2" ,
pJbp

where 0D denotes the complement of D in T* M.
Then by the completeness relation the trace of (75%)? — wk is given by

tr[(wg)z—wa:—(%)m/ [ ey azas.
(%)d/Duz, A2 de

is nothing but (uZ, whul), a quantity which we have computed asymptotically in Propo-
sition 4.3.2. Inserting that expression gives

tr[(wg)Z—nLD]:—<i)d/CD%[1+erf —/A2d(2) ] dz(1+0(1/)\)

2T

Now
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where d(z) denotes the distance of 0D to z. We now introduce new coordinates in a
neighborhood of D = 80D, such that

dz = dugp dd ,

where dugp denotes the volume element on 0D induced by the metric g. Then finally

1
/ - [1+erf( VA/2d(2)) dz—/ d,uaD/ 1+erf \//\/Qd)] dd
D 2 aD
= |0D|,(27)) 1/2,
and with

tr{mh] = (%)dwb(l +0(\)

the proof is complete. O

4.3.1 Stably invariant approximate projection operators

This section is devoted to the construction of an approximate projection operator associated
with an invariant set in phase space, whose commutator with the Hamiltonian vanishes
up to arbitrary order in A. This is not possible for every D and we have to pose some
conditions on D, the most important one being the stable invariance which we now define.

Definition 4.3.4. Let H € C*(T*M,R) and let D C T*M be an open subset which is
wnwvariant under the Hamiltonian flow generated by H. D will be called stably invariant
under the flow generated by H, if there exists a neighborhood F C C®°(T*M,R) of H and
a smooth family of embeddings

®:FxoD—-T"M

such that for every H' € F, ®(H') : 0D — T*M is an embedding, ®(H,0D) = 0D, and
such that the image in T*M,

®(H',0D) Cc T*M
is invariant under the Hamiltonian flow generated by H'.

Here C*°(T*M, R) is assumed to be equipped with the standart Fréchet topology.

So this definition means that we require stability under small perturbations, D should
not only be invariant under the flow generated by H, but for small perturbations H' of
H there should be a domain D’ close to D which is invariant under the Hamiltonian flow
generated by H'.

Example 4.3.5. If 0D is a union of energy shells, then 0D is stably invariant if the
Hamiltonian vectorfield Xy is non-degenerate on 0D, i.e. if H is a Morse function. This
follows from the implicit function theorem.
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-
S

Figure 4.2: Sketch of a possible domain D allowed in Theorem 4.3.7. D is the intersection
of the domain D; bounded by the two energy shells X and X g with the interior Dy of
the orbit zylinder Z.

Example 4.3.6. If dim M = 2 and 0D is a union of invariant tori which satisfy a Dio-
phantine condition, see e.g. [AKNO97] and the discussion in Section 5.3, then 0D is stably
invariant. This follows from KAM Theory, see e.g. [AKN97].

The notion of stable invariance is further discussed in Section 5.3. The reason why this
notion is important for us is that stable invariance guarantees the solvability of certain
transport equations. In the construction of the approximate projection operators there
will appear equations of the type,

LXH(Z =b (424)

on 0D, with b € C*(0D), and we need a solution ¢ € C*°(0dD). It is shown in Section
5.3 that a sufficient condition for the solvability of (4.24) is that the mean of b over 0D
vanishes, and that 0D is stably invariant.

The domains D we consider can have piecewise smooth boundary, more precisely, we
assume that D can be represented as the intersection of a finite number of invariant domains
D; which have smooth boundary in a neighborhood of D. An example is given by a domain
D which is bounded by two energy shells and some families of invariant tori, see fig. 4.2.

Theorem 4.3.7. Let H be a selfadjoint operator on L*(M) with Weyl symbol H € S°(m, ),
and let D C T*M be an open subset of phase space which can be written as an intersection

J
D= ﬂDj
j=1



4.3. Approximate projection operators 213

of a finite number J of open subsets D; € T* M which have smooth boundary in a neighbor-
hood of D and are invariant under the Hamiltonian flow generated by the principal symbol
Hy of H. Assume furthermore that D is compact. Then there exists an approzimate pro-
jection operator wg) associated with D such that

1[H, ® D] < oA 32

If the D; and hence D are furthermore stably invariant under the Hamiltonian flow gen-
erated by Hy, then there is for every N € IN an approximate projection operator 7r(DN)

associated with D such that
1[4, 7500 < CyA=3/2N

We recall that an approximate projection operator associated with D is an operator
7 p which is microlocally 1 in D, and 0 in the interior of the complement of D.

The compactness assumption on D is not really necessary, but it facilitates the proof,
since we don’t need to prove any boundendess of solutions of transport equations at oo.

The proof of this theorem will be rather long, and we will split it in several steps. We
start by introducing suitable local coordinates.

Lemma 4.3.8. Let X be a symplectic manifold and S C X a submanifold of codimension
1 which is invariant under the Hamiltonian flow generated by H € C*(X), and assume
that the Hamiltonian vectorfield X g is nondegenerate on S.

We have to distinguish two cases.

(i) If H is constant on S then there exist local symplectic coordinates z = (£,1) € R¢xR?
around zy € S on X, such that

H(z) — H(z) = 1 ,

and S is determined by the condition ;1 = 0, S = {z € R?* ;x; = 0}. This is the
only case which can occur for d = 1.

(11) If H is not constant on S, then there exist local symplectic coordinates z = (£,z) €
R¢ x R on X around zy € S, such that

H(Z) — H(Zo) = T9
and S is again given by S = {z € R ;z; = 0}.

Proof. The first case is a standard result in symplectic geometry. By the nondegeneracy
of Xy we can take x; = H — H(z) as a new coordinate, which can according to [Hoér85a,
Theorem 21.1.6] be completed to a set of symplectic coordinates of X.

For the second case we start as in the first one by choosing symplectic coordinates in
which

H(z) — H(z) = 2 .
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Now choose locally a boundary defining function f for S, i.e. a function which is zero on
S and with f’ # 0 in a neighborhood of S. Since Xy = 0,, and S is invariant under the
flow generated by Xy, we can choose f to be independent of &, which means

{H,f}=0.
With [H6r85a, Theorem 21.1.6] we can extend the set of functions z; = f and 2z, = H
therefore to a set of symplectic coordinates near zy in which S is given by x; = 0. O

We will apply this Lemma to the case that S is given by 0D, where D and hence 0D
is invariant under the flow of the principal symbol Hj of the given Hamiltonian . Notice
that here we assume 0D to be smooth. We will first compute the Weyl symbol of the
approximate projection operator 7rp in the coordinates close to z; introduced in Lemma
4.3.8.

Lemma 4.3.9. In local symplectic coordinates z = (€,x) such that D is given by x; > 0
the Weyl symbol of wp is of the form

1/2 00
w(A, z) = <%) va(z) /0 a(\, 2, @1 — )e @ s (4.25)

where a(A, z,8) ~ 32, 50 A "an(2, s), and

1
- >0,
olz) vdet gap

where gop denotes the Riemannian metric on 0D induced by the metric g on T*M. The
amplitude a(\, z, s) furthermore satisfies the relations

ap(z,0) =1

and

< 1
Zwagkam_k(z,s)‘s:():o’ m:1’2’ .
k=0

Proof. The Wigner function of the coherent state centered at z' = (¢, 2') is of the form

A\ ¢
Wa(z) = (-) b(\, 2'; 2)e A (#3)

™

with

p(22) = (2 — 2, 8() (2 = 2)) + 7(¢; 2)
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with 7(2';2) = O((z — 2')*), where g(2') is a nondegenerate positive symplectic matrix,
and b € S(1) with

b(\, z;2) =1+0(\71),

see Proposition 3.3.16. The Weyl symbol of 7 is given by
w(A, 2) :/ / W, (z) dz'dx)
0 R2d—1

AN\ [
== / / b(\, 2'; 2)e 22 dz'dat |
™ 0 R2d—1

where Z = (2,&) with 2 = (&, - &4, 22 ---24) and D is locally defined by z; > 0. We
will determine the inner integral by the method of stationary phase; notice that since
g(7') = g(z) + O(z — 2') we have

according to the splitting of the coordinates z = (Z,z1). The stationary point of the phase
function as a function of z’ can now simply be determined to be

Z=2+8(2) " h(z) (2 — 7Y)
and the substitution 2’ +— 2’ + Zj yields a phase function
p(Z,2132) = (2, 8(2)2)) + [90(2) — ((2), 8(2) "h(2)](21 — 21)* + 7(2' + 20; 2)
with z{ = (Z],0). So we obtain for the inner integral
/b()\, 'y z) e MEE) g7

_ (E)‘“/ Tl a2 — 3y)e M) ) N - )2
A det g(2)

with
115, &(2)-15. gl (o ol
a(\, 2,2} — 21) = ex O BE) ) M H2032) g (N o 4 2l 2) s

and so a € S(1) by the discussion following Theorem B.2.
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Now we want to relate the two factors det g(z) and [go(2) — (h(2),&(2)"*h(z))] with
each other. To this end we first note that

_ (g O\ (I g'h

and since for 3,7 € R™ and § € R one has
I By _

as one can show easily by induction, we obtain

_ _ g 0 I g'h _ ~ B -1
1—detg—det(0 1>det<hT o =detg [go — (h,& h)] .

If we therefore define

we get a(z) > 0 and

and so the representation (4.25) is proven.
In order to obtain information on the amplitude a, we use the completeness relation
for coherent states. For any £ > 0 we have for z > ¢

)\ 1/2 [ee]
w(A,z) = <%> v O‘(z)/o a(A, z,x1 — S)G_Aa(z)(xl_s)zﬂ ds

A\ ¢
= (—) W, (z) dz' + O(A\™)
T R2d

=14+0(\).
On the other hand, we get for z > ¢ that

3\ 172 % .
(—) Va(z) / a(\, z, 71 — s)e Q@12 g5 — et aga(/\, 2,8)|s=0 + O(A™) ,
0

2T

and comparing the two expressions we obtain
ap(A, 2,0) =1

and
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We now have to study the asymptotic behavior of a function of the form (4.25). The
factor a(z) can be thought of as a local rescaling of the semiclassical parameter A. We will

in the following study the case o = 1, the general case then follows by the substitution
A= a(z)A.

Lemma 4.3.10. Let b € C®(R) with |b®)(s)| < Ci(1 + s2)™? for some fived m € R and
all k € Z4 and define

1/2 poo
Fr(A,s) = (i) / (s — '")ke A=907/2 g4 | (4.26)
0

2T

then we have for any K € N

2

A 1/2  roo / K-1 (k)(o)
(—J ‘/ b(s — s)e M2 g = }: o (A s) + O
0

where b¥)(0) denotes the k’th derivative of b at s = 0.

Proof. The expansion is a simple consequence of the Taylor expansion of b(s),

(s — 8V 4+ (s — )5 fx(s, s')

where fr(s,s') is smooth and polynomially bounded by the conditions on b. Inserting this
expansion into the integral and using

A\ V2 e )
(7) /‘@—ﬁﬁkwﬁk“W“”d#
vin

= (27r1)1/2 /000(\/_8 — ) fr(s, s/ [VN)e V22 4

— ]- o _512
= \"K/2 e /_ﬁs(_S,)KfK(S’ s'/VA+s)e™ /2 ds'

gives the desired result, since

‘/ VE fic(s, 8 VA + s)e" 12 ds'
Vs

_/ 1815 | fx (s, s'/\/X—|-s)|efs’2/2 ds’
< Cg .
]

The functions Fy(\, s) provide a tool to express uniform asymptotic expansions close
to the boundary dD. In the next lemma we collect some properties of these functions.
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Lemma 4.3.11. Let Fy(), s) be defined by (4.26), then
|Fi(X, 5)| < CATF2
For s < 0 we have
Fi(\,5) = O(e ™72

and for s > 0

F(ns) = O(e™5°/2) for k odd
B %—FO( “As%/2) for k even

Furthermore, one has
|s™ Fop 1 (N, s)| < € X~ (kF1/24m/2) (4.27)

Explicit expressions can be obtained from

Fy(\ s) = %[1 — erf(\/ms)] . Fi(\s) = W o522 ,

and
k k
Fk+1 (/\, 8) — X Fk—l(/\; 8) =S Fl (/\, S) . (428)
For odd k = 2k' + 1 one has
K’ (/C')
F2k1+1 A S Z )\k’ 82l Fl(A 8) (429)
1=0
with al(k’) = %ﬁ'!, and for even k = 2k’
(k') K’ (k'

ngl()\, S) = /\k:’ FO /\ S Z)\k' 2l lF )\ 8) y

. K 211 (2K")!
with f*) = 2’“'k(’!(2l))!'

Proof. The asymptotic behavior for s < 0 is obvious. For the case s > 0 we use

A 1/2 poo by 1/2  poo
(2—> / (s — s")ke 6=/ g = (2—) / (s — §')ke A=97/2 g4
™ 0 ™ —00
by 1/2 0
- <—) / (s — s')ke’)‘(s’slw2 ds’" .
2m —o
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The first integral can be computed explicitly, and the second can be estimated as in the
case s < 0. The explicit expressions for Fy(A, s) and Fi (], s) follow by direct computations.
A substitution s’ — s’ + s yields

F _ (A V2 pee nk_ —xs'2/2 3.1
k(A 8) = (§) /_8 (—s')"e ds
and hence
dFy(\,s) B (i
ds 2m
On the other hand one has

1/2 oo
dFk()"s) — ( A ) / ]{3(8 _ Sl)k—le—A(s—s’)2/2 ds'
0

ds o
A\ V2 oo
Y (_) / (8 _ Sl)k+lef)\(sfs')2/2 dSI
27T 0

= k‘Fk_l()\, 8) — )\Fk—f—l (/\, 8) y

1/2 )
) she™ /2 = _XSFF()s) .

and comparing the two equations gives the recursion formula (4.28). The explicit expres-
sions for Fy (A, s) for £ > 1 can be checked by inserting them into the recursion formula. O

The recursion formula (4.28) can also be interpreted as providing an expansion of
s¥F1 (), s) into the set of functions Fi(),s). By using Taylor expansion this can be used
to expand the function g(s)Fi(A,s) for smooth g(s) into a series ), arFj(A,s). We will
state the result for arbitrary £ in the next lemma.

Lemma 4.3.12. Let g € C®(R) with |g®)(s)| < Cr(1 + s%)™?2 for some fivred m € R and
all k € Z, then

N—-1 (n) 0 n
9(s)Fi(A, s) = g n'( ) [Fn+1(/\; s) — N Frq (A s)] + O\ /2y
n=0 ’
More generally,
N gm(0) ES P
g™ (0 o 20+n
9(s)Far41(A, 5) :;) n'( ) ;A,i_l [F2l+n+1(/\, s) — 3 F2l+n1(/\;5):|
+ O\ WDy
and
B
g(S)FQk()\a 5) :g(S) V F()()\, S)
N-1 (n) k (k)
9" (0) s 20+n+1
+ nz::o a4 N Forinia(A; s) — szHn()\, s)
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Proof. We will show the case for odd k, the case of even k£ works similar. We write

g(S)F2k+1()\, S) = SnFQk_H()\, S) + TN(S)F2k+1()\, 8)

S F2k+1()\ 8) + O()\ N+1)/2)

since rx(s) = O(s") and sV Fyry1(), 5) = O(A~V+D/2) Now

(k)
s"For1(A, 8) Z = 2 (), 5)
1=0

2l +n
Z/\k . |:F2l+n+1(/\: s) — ) Foin1(A )|

and putting the equations together yields the result. O

Combining Lemmata 4.3.9 and 4.3.10, we get an asymptotic expansion of the symbol
w(A, 2)

NZ/\_k' (2,0) F(a(2)A, 1)

)\n Qk (z,0)For(a(2) A, 21)

1
(2k+1)
+ Z T 1) a4 (2,0) Fae 1 (a(2), 1)

1
= Fo(a(z)A, z1) + Z ﬁm al*t (2, 0) Fapyr ((2) A, 71)
n.k ’

The functions Fi(a(z)\, z1) provide one way of studying uniform asymptotic expan-
sions across a boundary. Since in the higher order terms of the asymptotic expansion
only Fi(a(z)A, z1) with odd index occur, they are all concentrated in the vicinity of the
boundary dD. It will be convenient to rewrite the expansion as

N-1

w(A, z) = Fola(z)A, z1) + Z wp (A, 2)2¥ Fy (a(2) A, 11) + Rec(2) Fi(a(2)\, 1)

k=0
where |Rx(z)| < CxzX and hence by Lemma 4.3.11
|Ric(2) Fu(a(2) A, 1) | < CreA= D2
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of course this is valid for every K € IN. The functions wg (A, 2') then have an asymptotic
expansion in powers of 1/; for every N € N

Zwkn IAFELoNN).

Our aim in the following now is to determine the functions wy,, (') on 0D such that
the symbol of the commutator of H and 7rp becomes as small in A as one wishes.

Therefore, we first have to determine the symbol of the commutator of H with the Weyl
quantization of a symbol of the form

7Tk+1(Z) = W ()‘a Z’)xllcFl (O!(Z))\, xl)
for k£ € N, and with
mo(2) = Fo(a(z)A, 21) -

Since we have chosen our coordinates such that the principal symbol is linear, we first treat
the case of a linear symbol.

Proposition 4.3.13. Let Hy(z) = (Xo, Joz) be given with Xy constant, and assume that
Hy(z) does not depend on & . Then we have for mo(z) = Fy(a(2)A, z1)

Ho#mo(z) — mo#Ho(z) = —iz1 [Lx,a(2) ] Fi(a(z), z1) ,
and for mp1(2) = b (22X Fy(a(2) A, 21), with by (2') smooth and with compact support,

= [Lxobe()] 2 Fi(a(2)A 21)

A
! 1 [[’Xoa/(z)]
A2 alz)

[Ho#’ﬂ'k+1 - ’/Tk-f—l#HO] (Z)

+ A[Lxoa(z)] 27| b (22t Fi(a(2)A, 21) -

Here the Lie-derivative Ly, o enters through the relation £x,a = {Hy, a}.
Proof. By the linearity of Ho(z) the product formula gives for any smooth function a(z)
i
Ho#ta — a#fHy = N {Hoy,a},

and then the result follows by direct computation. The condition that Hy(z) does not
depend on &; implies that no derivative of @ with respect to x; occurs. O

The leading part in A of the symbol [#, 7 p] is therefore given by

—iz1 Lx,0 [1 + 2 Z be(2)2 + 0N | Fu(a(2)M, 21) ,
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for all N € IN. If we expand «(z) in a Taylor series in z; around z; = 0,

with on(2) = 03 &fz,=0, then we see that in order that the leading term in X of the
commutator vanishes up to all orders in z;, all the coefficients of the Taylor series of «
have to satisfy the transport equation

EXOQ’n =0.

This equation is always solved by a constant multiple of the canonical invariant Liouville
density on 0D, which in our local coordinates is just constant.

So we conclude that « has to be a function of x alone. In the case that the Hamiltonian
is not constant on 0D we can therefore choose x4/« (x) as a new variable without changing
any of the other assumptions. On the other hand , if the principal symbol is constant on
0D we again choose z4/a(x) as a new variable, but then we have to allow the Hamiltonian
to be nonlinear, so we assume Hy(z) = Hy(z).

Since we assume in Theorem 4.3.7 that D is compact, we can restrict ourselves to the
case that H has a symbol H in S(1). Because Hmp is exponentially small in A in the
complement of D for every approximate projection operator 7p associated with D, the
behavior of H outside D is not important for us.

Proposition 4.3.14. For H € S(1) and for mo(z) = Fo(X, x) we have

LRI ~
H(e) =) =53 o O 5 6 () + 1102

for every L € N, where the remainder satisfies
097 (), 2)| < Cp A~E/2H

for any o € Z2* and H(\, 2, €, z) = eéagﬂ(z’,ﬁ,x).

Proof. We first treat the case d = 1 since it contains already the main difficulties; the
general case will then be a simple consequence. We start with the first term. Let z = (£, x),
then it is given by mo(z) = Fy(A, x), and we have to determine H#m(2). The integral form
of the product formula for Weyl symbols then gives

A 2 H " !
Hetmo(2) = <;> // H(z + 2)mo(z + 2")e? M52 q4'd"

A\ 2 poo £y 2
N <_> / (_) // H(z + ZI)e_)‘(mﬂu_5)2/2e2i)‘(§”z’_$"5') dz'dz" ds .
2T 0 m
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Now the substitution 2’ — 2’ + 2§ with 2§ = 1((z — s),0) leads to

H#ﬂ'o(z)Z(%)l/Q/ ()/Hz—i—z-i—zo)

e~ A(s—2)? /2ei,\[2(g"x'—x”§’)+i$"2/2] d2'd2" ds
A\ A2 N
= <_> / e—)\(S—z)Z/Z (_) / H(Z+ZI +Za|—)elA<z,Bz) dZIdZ” ds ’
27 0 T

with 2 = (2/,2") and

0 Jo
B= ; (0 0 : (4.30)
=T 3 (0 1)
So by Lemma B.1 we get with
i (1 0
detB=1, B'=|[ 2 (0 0) RO
Jo 0
that
A\ e 29 A [20,1,700,)— 102
H#’]TO(Z) = (%) /(; e*)\(sfl‘) /265[ (0,11, J00,1)—3 ﬁl]H(Z+Z,+Zg_)|ZI:zH:() ds . (431)

Since there is no z”-dependence we can determine the integrand very simply
Qax [X0.1 Oa"">_%8£2’]H(z + 2" 4 20 )| srmpr—0 = eﬁaezH(z +2)=H(z+z2),

where we have defined

H(z) = 5% H(z) .

A Taylor expansion of H(z + 2 ) around z; yields

H(z + 20) j 111—,6 (%)l(x—s)l-i-O((x—s)L),

and inserting this into the integral then gives

L—1 Ny
1, -~ 1
H#my(2 E l_'a H(& x <§> Fi(\ ) +O(/\7L/2)
1=0
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for every L € IN. In the same way we can determine my#H (z) which yields

N\ !
T H (2 le,agﬂ ( ) Fi(\z) + O(\~L12)

for every L € IN. So putting both formulas together then gives for the symbol of the
commutator

H#tmo(2) — mo#H (2) le‘aéH{f, [( )l <2i>l

[L/2]—1
(-1’

=1 ; A2+ 1)% O H (€, w) P (A, ) + O(AT1/%)

F(\z)+ 0\ "2

for every L € IN. This completes the discussion for the case that d = 1. The general
case d > 1 follows immediately by noticing that the product formula factorizes, hence all
formulas remain the same, just with H (&, z) now replaced by H(z; &, x).

U

Now we will study the commutator of H with the Weyl quantization of
Tri1(2) = bp(2)F1(\, ) .

Proposition 4.3.15. Let H be a pseudodifferential operator in ¥°(1) and
Tr1(2) = be(2) F1(\, 2)

with by, € S°(1). Then the Weyl symbol of the product of H with the Weyl quantization of
Tri1 1S given by

H#Wk—l—l(z) %\<3 11,7001 >H(Z+ P + z(}L)b(z + Z”)|z’:z”:O Fl(/\,l') ’

where z§ = 1(0;2,0) and H(z) denotes an almost analytic continuation of eéaﬁzH(z).
Similarly one has

Mo #H(2) = e 5 @endo0) (5 4 o — 28Vb(2 + 2") | ymsr—o FL (N, T)
and for the commutator one gets
Hetmy41(2) — M1 #H (2)

=2icos (%(azu, j08z1)> s1n(x18§f) ()\ Z2+z )bk (Z +z )|zI:zH:0 F1 (/\, ﬁU)

1
+ 2isin <X<azu, ‘_706Z1>) COS(xlagl) (/\ Z+z )bk(z +z )‘z’—z” =0 Fl()\ m) .
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Proof. The proof follows the same pattern as the proof of Proposition 4.3.14. The integral
formula for the product gives

A d 1 1 H " !
H#Wk+1(2) _ (;) / H(Z + Zl)b(Z + Z”) We_)\(z+$ )2/2621)\(2 ,Joz") d2'dz"

and if make again a substitution 2’ — 2’ + 2§, now with zj = %(0; x1,0), we obtain

H#tmp (2 <>/H2+z + 25 )b(z + 2")

1

—Ax2/2 iN[2(2" oz Y+ 2 J2] 3 0 g M
CINE e dz'dz

(S

A\ ¢ o
- <;> / H(z+ 2 + 2)b(z + 2")e*®B2) 4/d2" Fi(\, ) |

with Z = (2/,2"), and B the matrix (4.30). Therefore, we obtain in complete analogy with
the previous case (4.31) that

eﬁ[Q(azu,Joazl>_%6§2/]H(z + + Z(—)l—)b(z + ZH)'z’:z”:O Fl()\,:v)
= e2x (0ar:Jod VH(z 4 2"+ 28)b(2 + 2")|yegn—o Fy(\, ) .

Hefmpq(2)

By a standard argument, scetched after Theorem B.2, it follows that the prefactor
a® (N, 2) = eax (921,700, DH(z 4 2 + 25)b(2 4+ 2") | yr—ar—0

is a symbol.
In the same way as for the first case, we get for the second product

Thm#H(2) = D\, 2)Fi(\ )
with
(A, 2) = en @ TN F (2 4 2 — 25 )b(z + 2")|w—an— -
If we rewrite

+iz10 1

H(z+7 +zf)=e "1 H(z 4+ 2')

we can write the commutator as

1
H#mp 1 — me1#H = 2isin (X@zu, Jo0) + x18§,> (24 2)b(z + 2") | yesreo Fr (N, 21)

and expanding the sine gives the final result. O
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In the course of the proof of our theorem we will have to solve a set of transport
equations. Their solvability will then be assured by the following lemma. The solvability
of general transport equations is discussed in detail in Section 5.3. There are two conditions
which ensure the existence of a solution, the first one is the stability of 0D under small
perturbations of the Hamiltonian, and the second one is the vanishing of the integral of the
inhomogeneity over dD. The first condition is assumed in the conditions of the theorem
we set out to prove. The second one follows from the fact that the trace of a commutator
vanishes, as the following lemma shows.

Lemma 4.3.16. Assume that the symbol of H has compact support, and consider my :=
Fo(\, 1) and w1 := b(2)F1(\, x1). Then all terms in the asymptotic series for A — oo and
x1 — 0 of the symbol of the commutator

1
Htm, — m#H ~ E wn,k(zl)ﬁ o Fi(\ z)
n,k

satisfy

/ Wy, ditap =0 .
aD

Proof. Since the symbol of ‘H has compact support, H is of trace class and we get on the
one hand that

tI‘[H,ﬂ'Z’] =0 y

where 7; denotes the Weyl quantization of ;. On the other hand the trace is given by the
integral of the symbol of the commutator over phase space. With

/ " Fi(\, z) doz = CpA™1 k2

we therefore get

1
0=tr[H,m;] ~ ZCk/apwn’k dum :
n,k

In the case 1 = 0 we have wyo = 0:H and w, = 0¢H, ), where H,, j consists of derivatives
of H, so the leading term in A gives

85H d,u= 0 >
oD

and since H is arbitrary, we can especially replace H by H,,; to obtain

/ Wy dp = OcHyp dp=0.
aD aD
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This can also be understood more geometrically, since 0, is the Hamiltonian vectorfield of
the boundary-defining function, which is of course tangential to dD.

In the second case ¢ = 1 we use the fact that b is arbitrary, so we consider the Taylor
series of b around x; = 0 and by varying all coefficients independently, we obtain the
result. O

We now need only one more ingredient for the proof of Theorem 4.3.7. The following
lemma allows to estimate the remainder terms in our construction.

Lemma 4.3.17. Let a € S™(1) and denote by Ay, the operator with Weyl symbol
ar(M, 2) = a(\, 2)s" B (N 1) .

Then the L?>-norm of Ay, satisfies the estimate

k+1

Al < CX™ 5

Proof. By the Calderon-Vaillancourt Theorem the norm of an operator B with Weyl symbol
b(A, z) can be estimated by the first 2d + 1 derivatives of the symbol,

1Bl <C Y supagh(A.2)|

laj<2d+1 *

see, e.g., [Fol89, Rob87]. If we make a Taylor expansion of a(), z) around z; = 0, we get
ax(\, 2)z"F (X, 21) Z —0a(\, 2, 0)z K p (A 21) + Ry(\, 2) Fi (), 2)

with Ry(),z) € S™(1) and R(\,2) = O(2*™™). Therefore we obtain with (4.27) from
Lemma 4.3.11 and the Calderon-Vaillancourt Theorem that the Weyl quantization of the
remainder term Ry (A, z)Fi(A, z) can be estimated by

EEN41
C)\2d+1—|—me ]

The terms in the Taylor series can be represented as Weyl symbols of the Anti-Wick
quantization of a surface density on 0D, and hence our general estimate on the norm of
Anti-Wick operators can be applied, which yields an upper bound by

k+n+1
2

CA™™

for the n’th term in the Taylor expansion. By choosing N > 2(2d + 1) we are therefore
done. O

We can now collect all the pieces together, to give a proof of Theorem 4.3.7
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Proof of Theorem 4.3.7. We assume that the local coordinates have been chosen accord-
ing to Lemma 4.3.8. Then we make an ansatz for the Weyl symbol of the approximate
projection operator as

N-1

N)(/\, z) = 7T0(/\, Z) + Z )\_nﬂn—kl(/\’ Z)

n=0
with
7T0()‘7 Z) = FO()‘a .’E1) ) 7Tn+1()‘7 Z) = bn(z)Fl(/\a .1'1)

where b,(z) € S°(1), and determine its commutator with 4. H has an asymptotic expan-

sion
Z) ~ Z )‘_lHl(z) )
1

and in our local coordinates Hy(z) is linear and independent of £. Then we have
Ho#mo — mo#tHo =0,

and so the leading contribution to the commutator with 7y comes from the H; term, which
is by Proposition 4.3.14 and with (4.29)

)l

m 82l+1H1.Z' Fl()\ .Tl) + O()\ )

_[H1#7T0 — mo#tHy] = 2\ Z

Lemma 4.3.17 therefore implies that
|[H, 7Y < CA*2,
and the first part of the theorem is proven for domains with smooth boundary.

The commutator of m;(z) = by(2)Fi (A, 1) with Hp is

Ho#tm — m#Hy = ['XHObl(Z)} Fi(A\ 1),

i
N
and the leading part of the commutator of H; with m; is of the same order in )\, see
Proposition 4.3.15,

H1#7T1 — 7T1#H1 = 21b1(2) sin(xlagl)Hl( )Fl()\,l'l) + O()\_l)

iy o O Y@ (e R () + 00

So the term of order 1/) in the symbol of the commutator [H, w(M)] is given by

1) 20+1 2l 1 ) 20+1 2l
|:EX0b1 +Zma + H + b +Zma + H F]_()\ fEl) y (432)
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and the conditions that it vanishes can be translated into a set of transport equations for
bi. To this end we expand b;(z) in a Taylor series in z; around z; = 0,

1
bi(z) = D b ()ah
i

with bgk)(z’) = 0F b1(#',0), and insert it into (4.32). Then the condition that (4.32) has to
vanish in every power of x; gives a set of transport equations,
Lx, 0\ +0:H, =0
Lx, 0" + 0. H B =0
1
2 1
Lx, b + 0cHy b — 081 =0

By Lemma 4.3.16 all these equations satisfy the quantization condition in Theorem 5.3.7,
and hence all of them can be solved to give the Taylor series of b; around z; = 0. So by
choosing b; = by i, with

Ki—1
1

bl,Kl = Z Ebgk)(zl)xllg ’

k=0
we have obtained
i

H#nW —aOppg = X

i, (2) FL (N, 21) + O(1/X%)
with
ri, (2) = Oz .

Now we can add a further term my = $by(2)Fi(), 1) and choose by(2) in the same way,
such that the term in the commutator of order 1/A? vanishes up to order 22>, By repeating
this procedure, after a finite number of steps we arrive at a function 7V with

NI
! ! ]_
H#rWN) —a(Np g = E ﬁrKk(z)Fl(/\axl) + Ryi(X, 2)

k=1

where
ri(2) = O(21*) |
and the overall remainder Ry (), z) satisfies

%Ry (N, z) = O~V ~1Hlely
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for all « € IN??. By the theorem of Calderon-Vaillancourt the quantization of the remainder
has therefore a norm which can be bounded by

—N'+2d
CA :

and the quantization of the terms rg, (2)Fi(A, z1) have by Lemma 4.3.17 a norm which
can be estimated by

A Ke/271

Therefore, by choosing N’ and the K}, large enough, we can make the commutator [#, (Y ')]
as small in A as we wish. This completes the proof for the case that 0D is smooth.

If D can be represented as an intersection of J, J finite, invariant domains D; with
smooth boundary,

D=()D;,
jeJ
then we take
N N
7\'5j ) = H “Sjj) )
jet
So with H7rgj)H < C we obtain
N _ N _
[, 75 Nl < G771 ([ H, ) Il < AN
jeJ
and this proves the theorem for piecewise smooth boundary. O

Remark: Strictly speaking, we presented only the local part of the proof of Theorem 4.3.7,
because we have been working in one fixed system of local coordinates. But the passage
to a global proof follows from standart techniques by patching together different local
solutions, using Fourier integral operators as quantizations of the symplectic coordinate
transformations, see e.g. [H6r85b, Rob87, DS99).

4.4 Applications: Invariance and local quantum er-
godicity

In this section we want to discuss two applications of the approximate projection operators
that we have constructed.

In the first subsection we want to exploit the idea that a splitting of the classical
phase space in several invariant subspaces of positive measure induces a corresponding
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asymptotic splitting of the quantum mechanical Hilbert space into approximately invari-
ant subspaces. Of course these subspaces are determined by the approximate projection
operators associated with the classical invariant domains.

In the second subsection we then derive a local quantum ergodicity theorem, which
states that if the classical motion is ergodic on some invariant subset of phase space
with positive measure, then almost all quantum mechanical eigenfunctions become equidis-
tributed on that domain. The general question, wether these eigenfunctions are concen-
trated in that domain or its complement, will be discussed in Chapter 5. This is an open
question. What we can show here is that the part of a wavefunction which is microlo-
cally concentrated on an ergodic component becomes for almost all eigenfunctions locally
constant on that part of phase space.

4.4.1 Almost invariant subspaces of the Hilbert space

Let H be a selfadjoint pseudodifferential operator on L?(M), with principal symbol Hy,
which determines an Hamiltonian flow ®® on T*M. In the theory of dynamical systems
one often decomposes a system into its ergodic components, which form the elementary
building blocks of the system. Since these different components do not interact with
each other, one can determine the properties of the full system from the properties of
its ergodic components. From the correspondence principle it seems natural to try a
similar decomposition of the quantum mechanical Hilbert space into invariant subspaces,
at least in the semiclassical limit. One of the first formulations of this idea on the level
of eigenfunctions was given by Percival [Per73]. An extensive study and review of the
properties of a quantum mechanical system with corresponding classical system of mixed
type, i.e. with many invariant sets, has been undertaken in [BTU93].

A weak form of this decomposition can be achieved with the frequency set. Recall the
definition of the space Hy(M), see Definition 3.4.10, which consists of all maps Rt —
L*(M), X — ()), which are uniformly bounded in A. Of course we can identify L?(M)
with the subspace of H)(M) consisting of the A-independent elements. To any subset
D C T*M we can associate the subspace of HY(M) consisting of those functions whose
frequency set is contained in D,

H; p(M) := {(\) € HY(M) ;FS(¢)) C D} .
It is clear that HY ,(M) is a linear space and one easily sees that
H?,D(M) = ng(M) ’

where the bar denotes the closure. Hence, if D is closed, then HY ,(M) is also closed. By
the properties of the frequency set we furthermore know that

(Y1, 12) = O(A™)
if Yy € HS,Dl(M)a Yy € H/(\)’DZ(M), and
D1 N D2 = Q) .
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So the subspaces corresponding to disjoint sets in phase space are semiclassically orthog-
onal. By the general behavior of the frequency set under application by Fourier integral
operators, we have for the time evolution operator U(t) that U(t)HS (M) C HY 4. (M),
and by multiplication with U/ (—t) we get the other inclusion, hence

L{(t)Hf\),D(M) = Hg,rth(M)

for finite times. Therefore, if D is invariant under the classical flow, the corresponding
space Hj (M) is invariant under the quantum mechanical time evolution.

Next we want to estimate how large the space HY (M) is. Of course its dimension will
be oo, but we can estimate the relative fraction of states up to a certain frequency, which
live in that space. More precisely, let pp be a smooth function, which is 1 on D and has
support in a neighborhood of D. Let H be any selfadjoint pseudodifferential operator, such
that D is contained in a compact union of energy shells of o(?), and denote by %, and
E,, the eigenfunctions and eigenenergies of . Then the number of eigenfunctions living
semiclassically on D can be estimated by

Z f 1/}715 OpAW[pD]wr)

where f € C§°(R) satisfies f(o(H))|p = 1. By using the Szeg6 limit theorem, Theorem
4.2.3, we obtain that the relative number of states in HQ’D(M) is proportional to the volume
of D.

A more explicit way of splitting the quantum mechanical Hilbert space into subspaces
corresponding to classically invariant domains can be obtained by using the approximate
projection operators constructed in Section 4.3.1. First we will study their time evolution.
Since the domain D is invariant, we expect that the corresponding approximate projection
operators are approximately invariant under time evolution.

Theorem 4.4.1. Let D be an open subset of T*M which is invariant under the time
evolution generated by the principal symbol of H. Assume furthermore that D satisfies the
assumptions of Theorem 4.3.7 and let w‘f,v) be the operators constructed in that theorem.
Then we have

U 70U — 79 < o2 |
D D
and if D is stably invariant the stronger estimate
o ()7 U (t) — || < Owta™H27
for any N € N is valid.
Proof. We have

w o) - w = [ O u) s

m/w Vi, 7N (s) d
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and so
[ (8)mp U (t) = 7| < M|, w0 )]
And since by Theorem 4.3.7 the commutator satisfies
[, 7 11| < CxA=/2
the results follow. O

This result means that the image of 7 p, which consists of the states which semiclassi-
cally live on D, is almost invariant under time evolution, where the time up to which the
theorem ensures that the state stays on D can scale like any power of A. So compared
with the timescales obtained for the time evolution of coherent states, see Theorem 3.5.7,
we here have a much larger timescale.

4.4.2 Local quantum ergodicity

We have discussed in Section 2.3.1 the quantum ergodicity theorem on compact manifolds.
A similar theorem in the semiclassical setting was proven by Helffer, Martinez and Robert
in [HMR87]. Here we want to discuss a local version of quantum ergodicity. Assume
D C T*M is an open subset which is invariant under the Hamiltonian flow, and on which in
addition the flow is ergodic. In this case one would expect that in analogy with the quantum
ergodicity theorem, the part of the eigenfunctions which live on D become semiclassically
constant on D. This is indeed the case, as we will show in the next theorem.

We will choose a slightly broader setup. The reason is that it seems very likely that for
typical systems, which have a mixed phase space, ergodic components do not seem to be
of the simple type of an open set. One expects that typically on gets ergodic measures of a
quite complicated and maybe even fractal structure, so we formulate the result for general
measures whose Anti-Wick quantization approximately commutes with the Hamiltonian.

Theorem 4.4.2. Let H € V°(m,p) be a selfadjoint operator such that the energy shell X
of the principal symbol Hy is compact for E. Assume that the restriction vg of the measure

v to the energy shell X g is normalized and ergodic with respect to the Hamiltonian flow of
H,, and that

17, Op™™ []]]| = o(A™") - (4.33)

Let for some ¢ > 0, I.(E,\) := [E —¢/2\, E — ¢/2]] be the interval of width c¢/\ around E
and denote by Ni(A) := #{E,()\) € I.(E,)\)} the number of eigenvalues in I.(E,)\), then
we have

lim S [t O AV — (0, 0D [Ultha) vis(o(A)e) = 0, (4.3)

A—00 NI()‘) En(Nel.(E\)

for every A € ¥°(1), where o(A)g denotes the restriction of o(A) to the energy shell Yp.
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Proof. We will basically use the proof in [Col85], with some minor modifications. It has
the advantage that we do not have to use powers of Op*"[v], like Op*™[V]?, which is
necessary in the proof sketched after Theorem 2.3.1. We will assume that the observable
A is given as the Anti-Wick quantization of some classical observable

A= 0p*"]q] .

Since the Weyl quantization and the Anti-Wick quantization of an element a € S°(1)
differ by a term of order A~ this choice doesn’t affect the result. But since the Anti-Wick
quantization preserves positivity and v is assumed to be positive, the map

S9(1) 5 a / advn = (tn, Op™ [1] OpW [a]ufr) € ©

is a positive distribution, hence a positive measure, for each eigenfunction.
Now the Szego limit theorem, Theorem 4.2.3, gives

lim L Z (Y, 0P 1] Op*™ [a]yp,) = /z a dvg =: vg(a)

A—00 NI()‘) En(A\)eI(EN)

where vgp denotes the restriction of v to the energy shell Xg. So this means that the
sequence

L > dv,, (4.35)

1(A) En(VeL(E,N)

converges weakly to dvg for A — oo.
Now define

BT = %/0 u*(t) Op™ [v](0p*"[a] — ve(ap))U(t) dt ,

and note that on the one hand

(s BT60) = (s ODM [ AYn) — (i, ODA™ 1185} v (A)p)
and on the other hand we have by (4.33)
B" = 0p*" [v]AT + 0(1)
with
1 T
A= 1 [ (00 o] - viar) )

If we define

1 [T
al = —/ ao® dt —vp(ag) ,
T Jq
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we can rewrite this as
B" = 0p*™[v] Op*™[a] 4 o(1)

and obtain

(s BT = ‘ / o dv,

+o(1) < / la’'| dv, +o(1) .

Summation over n then yields

1
lim

A 00 NI(/\) Z ‘(1/}7“ OPAW[V]A¢n> - <1/Jn, OpAW[l/]wn> VE(O'(.A)E)| < / |aT| dvg ’

En(N€el(E,N)

for every T'. But by ergodicity of vz we have vg-almost everywhere that

al =0

/ |(LT| dl/E

as small as we wish by choosing T" large enough. Therefore the relation (4.34) follows. O

for T'— oo, and hence we can make

Now one can use the standard arguments [Col85, Wal82] to show that one can extract
a subsequence of density one which satisfies

(tn;, OD™ [V A, ) = (tn;, OD™ [V]ihn, )i (0 (A)) + (1)

for every A € W°(1). Notice that the factor (v, OpAW[Z/]wnJ.) does not depend on the
observable A. It measures the weight which the eigenfunction 1, has relative to v.

The main application of this theorem we have in mind is of course the case that v is
the characteristic function of some open domain D on which the flow is ergodic. The term

0 S <¢na OpAW[XD]dJn) S 1

can then be interpreted as measuring the relative fraction of the state t,; which lives in
D, more explicitly

(s OP™ [x0thn) = / xo(2)HE(2) dz |

where H(z) is the Husimi function of %,. Since HZ(z) is interpreted as a probability
density, this expression gives the probability of finding the system in D when it is in the
state t,. It seems likely that generically almost all of the factors (1/,,, Op™ [xp]¢,) tend
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either to zero or to one. Hence the eigenfunctions would split into two subsequences, one
of which is concentrated on D, and one is concentrated on the complement of D. Then our
result would imply that the eigenfunctions in the subsequence localized on D are quantum
ergodic on D, hence tend weakly to xp. We will discuss these points further in Chapter 5.

In the case at hand we obtain the slightly weaker result, that the part of the eigenfunc-
tion which is concentrated on D tends to a constant on D in the limit A — oc.

Corollary 4.4.3. Assume H satisfies the same conditions as in Theorem 4.4.2, and as-
sume that D C T*M is an open domain with piecewise smooth boundary such that the flow
s ergodic on X g N D. Then there exists a sequence of subsequences

{En, (M)} C{ER(N) € L(E, \)}

of density one, i.e.

1
lim

A—00 N[(/\)

{En; (N} =1,

such that for A — oo

1

AW = AW S A Dl
(thn;, O™ [XD]Athn;) = (¥n;, OP™" [XD]n,) Xz N D] Js,np

o(A) dpg +o(1) .

Since (Yn,;, OpAW" [XD|tn;) is bounded, we can furthermore choose subsequences Ey, (A) for
which

khm <¢njk’ OpAW[XD]wn]k> =a,
— 00

A—00

with 0 < a <1, and then we have

kli_)rgownjk,opAw[XD]Awnjk) =« / o(A) dug .

A—00 LgnD

In the case that the classical system is ergodic, we can take of course D = T*M and
obtain the classical quantum ergodicity theorem in the formulation of [HMR87]. Unfortu-
nately, this is the only case where examples of ergodicity are known. In the more general
case of a Hamiltonian system which is not ergodic, no example has been constructed so
far of an open ergodic subset. It seems that the dynamical structure is too complicated
to allow such a simple type of ergodic subset. It seems much more likely that the ergodic
components have a very intricate structure, maybe of some fractal nature. At least if one
perturbes an integrable system, then KAM theory shows that the system stays integrable
on a cantor like subset of phase space, and this suggests that the ergodic components, if
there are any of positive measure, should have a fractal structure, too.

So one should consider the above results as first steps, which show what can be done
in principle, but it seems that in order to be able to cover realistic situations some more
work has to be done.



Chapter 5
Stable quasimodes

“©

. to obtain positive results stating that this or that type of dy-
namical system must be accepted as one of the essential, not “excep-
tional”, systems, that cannot be “neglected” from any sensible point
of view (similar to the way in which we neglect sets of measure
zero), we shall use the concept of stability in the sense of conserva-
tion of a given type of behavior of a dynamical system when there
is a slight variation in the functions [defining the system]|. An arbi-
trary type of behavior of a dynamical system, for which there exists
at least one example of its stable realization, must from this point
of view be considered essential and may not be neglected.”

A. N. Kolmogorov in [Kol57], translation from [AMT78].

Semiclassical methods can often be used to construct approximate solutions of the
stationary Schrodinger equation, and in this chapter we want to study some of these
approximate solutions and discuss their meaning. Such approximate solutions have been
called quasimodes, and in the first section we discuss some basic properties of them. The
most important one is the observation that quasimodes generally need not be close to
eigenfunctions, but can be represented as a superposition of eigenfunctions with nearby
eigenvalues. This implies that they are approximately invariant under the time evolution
for long times, but one cannot deduce directly any information on the eigenfunctions
themselves.

The known examples where quasimodes with a sufficiently small error term do not tend
to eigenfunctions in the semiclassical limit are connected with discrete symmetries of the
system. Since small perturbations generically destroy such symmetries, one might expect
that for almost all perturbations of the original system quasimodes indeed converge to
eigenfunctions in the semiclassical limit. These matters are discussed in Section 5.2 where
more precise conjectures are formulated. The perturbations we consider are of lower order
in the semiclassical parameter, which means that the classical system is not perturbed.

237
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So one can view the perturbations as perturbations of the quantization. The appropriate
notion of genericity in this context is then the topological one. This approach has some
similarity with the ideas and results from the theory of decoherence. There it is shown that
the coupling of a system to its environment leads to very fast decoherence, which means
that mixed states tend to pure states, even if the coupling is very weak. In the semiclassical
limit it could happen that pure quantum mechanical stationary states, i.e. they are pure
in the set of invariant states, tend to classically mixed stationary states. The genericity
conjecture implies that almost all perturbations would destroy this behavior, resulting in
a pure classical invariant state as a quantum limit, where again pure is meant in the set
of invariant classical sates (E.g. a delta function on an periodic orbit is pure in this sense,
but not a delta function supported by two periodic orbits.)

In order that quasimodes become close to eigenfunctions under small perturbations,
one has to demand that the quasimodes themselves are stable under these perturbations,
and do not disappear. The notion of stability we introduce means that the quasimode
can be extended to a family of quasimodes depending smoothly on the perturbation, and
such that the order of the discrepancy does not change. Such quasimodes are called stable
quasimodes and the remaining parts of this chapter are devoted to a study of the stability
properties of quasimode constructions. In a nutshell, our main result is that quasimodes are
stable if and only if the classical structure on which they are semiclassically concentrated
is stable under small perturbations of the classical system.

In Section 5.3 as a preparation for the remaining part the solvability of certain transport
equations is discussed. These transport equations occur in the construction of quasimodes,
and their general solvability will be the main condition on the stability of the quasimodes.
In the simple example of a transport equation on a Lagrangian torus we see that the general
solvability is equivalent to a Diophantine condition on the frequencies of the flow on the
torus. But by KAM theory this Diophantine condition in turn implies the stability of this
torus under small perturbations of the classical system. We then use a linear response
argument to give a direct proof, without refering to KAM theory, that stability of the
classical invariant submanifold under small perturbations implies the general solvability of
the transport equations.

In Section 5.4 we then study the construction of quasimodes associated with invariant
tori and with elliptic orbits. The case of invariant tori is well known in the literature,
and we only give a short review, where we put special emphasis on the fact that classical
stability is necessary for the stability of the quasimodes.

The quasimodes associated with elliptic orbits are given by Lagrangian states associated
with complex Lagrangian ideals, whose theory we developed in Chapter 3. We consider two
approaches. The first one, due to [PU93], uses the time evolution of coherent states and
allows a very simple construction of a quasimode with discrepancy of order A~%/2. In order
to get smaller discrepancies we consider an approach using the local Birkhoff normal form;
here we sketch a proof of the fact that if the orbit satisfies a non-resonance condition of
order L, then one can construct a quasimode with discrepancy O(A~"). The non-resonance
condition is exactly the condition of classical stability. The methods from Chapter 3 could
probably be used to derive similar results near bifurcations and for other type of orbits,
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e.g., lower dimensional tori.

In the last section we finally discuss a different class of quasimodes which can be asso-
ciated with every open stably invariant domain in phase space. Such kind of quasimodes
have been considered by Shnirelman for the gaps between invariant tori in a KAM situation
[Shn]. Their construction relies on the approximate projection operators of Chapter 4. The
construction is not explicit, and in contrast to the quasimode constructions from Section
5.4 gives no formula for the eigenvalues. One only knows that they are concentrated in
the given invariant domain, and that their relative number is bounded from below by the
relative volume of the domain. But if the genericity conjecture of Section 5.2 were true,
then we would obtain a proof that generically the set of eigenfunctions can be split into
subsets of eigenfunctions concentrated on invariant domains in phase space, and thereby
confirming the picture of Percival, [Per73].

In case that the flow on the invariant domain is ergodic, the local quantum ergodicity
Theorem from Section 4.4.2 implies a quantum ergodicity Theorem for the quasimodes
concentrated on the domain.

5.1 Preliminaries on quasimodes

Semiclassical constructions can often be used to obtain approximate solutions of the sta-
tionary Schrodinger equation, such approximate solutions have been called quasimodes.

Definition 5.1.1. Let H be a Hilbert space and H a selfadjoint operator on H with domain
D(H). A pair (¢, E) with v € D(H), ||[¢|| =1 and E € R is called a quasimode with
discrepancy 6, if

(H—E)Y)p=r, with |r]|<§. (5.1)

One might hope that v is close to an eigenfunction with eigenvalue close to F, if § is
small enough. But this need not be true, generally only E' is close to an eigenvalue.

Example 5.1.2. Take as quasimode a superposition of two eigenfunctions, ¥ = a9, +
ase, with |ai|? + |ag|? = 1. Then

(H—E)Y = (E1 — E)aryr + (By — Eagpy =1,
and the remainder 7 can be estimated as
I7|[* < (B = B)* + (B, — E)* .
Soif E; and E, are close to E, ||r|| will be small but ¢ need not be close to an eigenfunction.

That approximate solutions of the Schrodinger equation need not be close to the true
eigenfunctions has been pointed out by Arnold, [Arn72], who also invented the name
quasimodes for them. In the following we review some well known properties of them,
see [Col77, Laz93] for related material.
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Proposition 5.1.3. Assume that (1, E) is a quasimode of H with discrepancy § and that
the spectrum of H is discrete in a neighborhood of [E — 6, E + 6]. Then there is at least
one eigenvalue of H in the interval

[E—6,E+6].

Proof. The proof follows from the well known estimate for the resolvent Ry (F) = (H —
E),
1

HR%(E)H < dist(E, speC(H)) ’

(5.2)

where spec(#) denotes the spectrum of H, and dist(E, spec(H)) is the distance between F
and the spectrum, see, e.g., [HS96]. Choose E’ ¢ spec(H), close to E, and apply Ry (E')
to (5.1). This gives, together with the splitting H — £ = (H — E') + (E' — E),

Ry(E")r = Ry (E')(H — E')¢ + (E' = E)Ry (E")¢
or
= Ry (E)r — (E' — E)Ry(E')¢ . (5.3)
Taking the norm of both sides, together with the resolvent estimate (5.2), leads to

< [I]] 4 |E'— B
~ dist(E",spec(H))  dist(E’, spec(H)) ’

and multiplying by dist(E’, spec(H)) yields finally
dist(E",spec(H)) < ||r|| + |E' — EI ,
which gives the lemma in the limit £’ — E. O

What the example 5.1.2 suggests is that a quasimode is a superposition of eigenfunctions
whose eigenvalues are mainly in the interval [E — 0, E+§]. The following proposition shows
that this is true if the interval is far enough away from the remaining part of the spectrum.

Proposition 5.1.4. Let (¢, E) be a quasimode of H with discrepancy 6, and assume that
the spectrum of H is discrete in a neighborhood of [E — §, E + §]. Denote the distance of
[E — 0, E + 0] to the part of spec(H) outside of [E — d, E + §] by . Furthermore, let my be
the spectral projection corresponding to spec(H)\([E — 6, E + 6] Nspec(H)), then

o
[lmatp|| < =
€
Remark: Since 75 is a projection one has the trivial inequality

lmeyl| <1,

so the proposition becomes useful in the case that € > ||r||.
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E En—l E n E n+1 E n+2

n-2 €

E-0 E E+90

Figure 5.1: Illustration of the arrangement of the different quantities entering Proposition
5.1.4.

Proof. We again use the formula (5.3) now with E’' € C\spec(#), and divide through
(E' — E), which gives

1 a1
gl T RuEN = 0

Ryu(E')r . (5.4)

Let T" be a circle in € around E with radius s larger than ||r|| and smaller than ||r|| + .
Integrating the left hand side of (5.4) along I' gives

1 1 , ;L
o [ (rmpe + Bu(E)) 4B = mw.,

and for the right hand side one gets, using the parameterization E' = E + se'¥, with
l|Ir|] < s < ||r]| + €, of T, the estimate

The conclusion of our discussion of quasimodes up to now is that in general they allow
to draw conclusions about the spectrum, but not on the eigenfunctions. From Proposition
5.1.4 it follows that if we were able to give lower bounds on the spacings between adjacent
eigenvalues, and construct quasimodes with discrepancy much smaller than these spacings,
then these quasimodes would be close to eigenfunctions.

Il

€

1 [ .
s—i/lmmE+%WNdw<
2w Jo

1 1 , ,
2—m/F e R(E)r dE

O

From the practical point of view, quasimodes are as important as eigenfunctions, since
in typical experimental situations where the energy resolution is not infinitely sharp, one
cannot distinguish between eigenfunctions and quasimodes. From this point of view, their
most striking property is their almost invariance under time evolution. We will state the
result in the semiclassical A-dependent case.

Theorem 5.1.5. Let H be a semiclassical Hamiltonian, (¢, E) a quasimode of H with
discrepancy 6 and U(t) = e MM the time evolution operator, then

Ut — e || < Mo
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Proof. We have

Z/{(t)w _ efit/\Elﬁ — efit/\E[eit)\Eu(t)w _ 1”

t -
— _i)\e—it)\E/ %61:’ (eit’)‘EZ/{(tlﬁﬁ) dt'
0

t
= —ide™ P / " MUY (H — E)p dt!
0

and taking the norm of both sides gives the desired estimate. O

So if the discrepancy is sufficiently small, the state 1 remains stationary for a fairly
long time. Especially, if we have

§< Oy Y,

as will be the case for many quasimode constructions, then the state 1 remains almost
stationary for ¢t < T with
T* ~ )\N—l—s

3

for every € > 0.

5.2 Small perturbations and genericity

We have learned in the last subsection, that the main obstruction for a sufficiently good
quasimode to be close to an eigenfunction is the possibility of quasi-degeneracies of eigen-
values, i.e. the existence of consecutive eigenvalues whose distance is much smaller than
the mean level spacing.

A typical example where such a behavior occurs is the symmetric double well potential.
This is a one dimensional system with Hamiltonian

where, e.g.,

Here the eigenfunctions occur in pairs of symmetric and antisymmetric functions whose
eigenvalues are almost degenerate, the distance between them is of order e}, see, e.g.,
[HS96]. Therefore, suitable superpositions of the even and odd eigenfunctions produce
quasimodes concentrated in one well with a very small discrepancy. Nevertheless they
are obviously not close to the eigenfunctions. The special structure of the eigenfunctions

is of course related to the symmetry. Simon has shown in [Sim85] that if one perturbes
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the potential slightly, in a way which breaks the symmetry, then the structure of the
eigenfunctions changes immediately; they are then all concentrated in one well only.

This example suggests that even if a quasimode is not close to an eigenfunction it might
be close to an eigenfunction of a small perturbation of the system. We will develop this
idea somewhat further now.

First of all, we do not want to change the classical limit, so we will study perturbations
with semiclassically small operators. So let H € ¥%(m,;) be selfadjoint, then we will study
perturbations of the form

H+ATA,

with A € ¥%(1) and m > 0. The subscript R denotes that the symbol of A should be real
valued, then H + A~™A is selfadjoint since A is bounded and symmetric.

If we now study quasimodes for such families of Hamiltonians, we get an additional
condition, namely that a quasimode for H can be extended smoothly to a quasimode for

H -+ A ™A for all A. Such a quasimode will be called stable.

Definition 5.2.1. Let H € U°(my,y) be selfadjoint. A quasimode (E, ) with discrepancy
of order A=V

|(H - B)p|| < OnA™Y
is called a stable quasimode, if it can be extended to a family of quasimodes
A= (E(A), 9 (A))
with discrepancy of order A=
[(H+A""A) — E(A)p(A)]| < Cn(A)ATY
for all A € ¥(1), and if
[(A) = ()] < CA™||A = A| .

We will study a number of explicit examples of quasimode constructions in the next
sections and find that there exist quasimodes which are stable, and quasimodes which
are not stable. Roughly speaking, it turns out that quasimodes concentrated on classical
structures which themselves are stable under small perturbations of the classical system
turn out to be stable.

A further reason for believing that small perturbations can lead to the convergence of
quasimodes to eigenfunctions is that quasidegeneracies of eigenvalues are unstable under
small perturbations.

Example 5.2.2. As a model to study the effect of a perturbation on two quasi-degenerate
eigenvalues we consider the case of a two by two matrix,

_ (Ey+4/2 0
”‘( 0 E0—5/2>
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and a perturbation

1/0 «
ar(n .
Then the eigenvalues of H + A are easily computed to be
EL =Ey++/62/4+ |a?/4,

hence the difference between the two eigenvalues is given by

E,—E_ =+ [a?>|a.

So a perturbation which has non-vanishing off-diagonal matrix elements will remove a
quasi-degeneracy. This is essentially the example von Neuman and Wigner used to study

avoided crossings, [vNW29].

Unfortunately, it is not easy to extend the previous example of a two-level system to

an infinite dimensional system. The problem is that at the

same time when one removes

a quasi-degeneracy with a small perturbation, one might create a new one somewhere else

in the spectrum, and this is hard to control.

By Weyl’s law we have for the spectral counting functions of a selfadjoint operator

H € \Ilo(ma,b)
N(A) =ca)+ 0\ 1)

and therefore we can have clusters of eigenvalues which contain up to O(\¢"!) eigenvalues.

Now we have

Lemma 5.2.3. Let E,(A) be a continuous family of eigenvalues of H + A\™™A, then

|En(A) — En(0)] < A7™[|AJl -
Proof. Consider H, :=H +eA™™A, and let

Hy(e) = E(e)y(e) ,

with ||1(¢)|| = 1. By the Feynman Hellmann theorem we have

dE(e)
de

= A""™((e), AY(e))

and integration gives

1

En(A) — En(0) = A / (), Ap(e) de |

0

and so the result follows.



5.2. Small perturbations and genericity 245

This result tells us that in order to straighten out a cluster of eigenvalues of order
O(\%1) we need at least a perturbation of order A™!.

Given an interval I = [a, 8] such that the spectrum of # is discrete in I and let us
denote the smallest level spacing by

ST, N) == inf{|E,(\) — En(N)| ;n#m, E,()\),En(\) €T} .
From Weyl’s law we know that

lim sup s7™(H, A4 < C

A—00

and in order to get information on quasimodes we need a lower bound on sP"(#, \). For
d > 0 denote by X(H) the set of A € ¥O(1) such that

lim inf ST + ATEA NN > ¢ (5.5)

for some ¢ > 0.

We will conjecture that (5.5) is the generic behavior, so we first have to discuss the
notion of genericity which is appropriate in this context. Let X be a complete metriziable
space, e.g., a Frechet space or a Banach space. A subset Y C X is said to be a set of
second Baire category in X if it can be represented as a countable intersection

Y:ﬂn

leEN

of dense open subsets Y; C X. A property is said to be generically true, if it is true on a
set of second Baire category, see, e.g., [AR67] for more details.

Conjecture 5.2.4. Let H € V°(m, ;) be selfadjoint, and assume that Hy ' ([, B]) is com-
pact, where Hy denotes the principal symbol of H. Then the set X3(H) of perturbations
satisfying (5.5) is of second Baire category in W°(1) for any § > 0.

This conjecture would of course imply that every stable quasimode with discrepancy
o(A~47%) would converge to an eigenfunction.

Conjecture 5.2.5. Let H € ¥(my;) be selfadjoint and assume that Hy'([a, B]) is com-
pact, where Hy denotes the principal symbol of H. Let (¢, E) be a stable quasimode with
discrepancy

O()\—d—d)

for some 6 > 0. Then the set QY(H) of perturbations for which ¥(A) converges to an
eigenfunction is of second Baire category in W9(1).
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As we mentioned already, Conjecture 5.2.4 implies Conjecture 5.2.5. But as the example
of the double well potential shows, there can be more perturbations for which quasimodes
tend to eigenfunctions, than for which quasi-degeneracies are removed. So even if Conjec-
ture 5.2.4 is wrong, Conjecture 5.2.5 could still be true.

In the literature there exist some studies on general generic properties of eigenfunctions
and eigenvalues. In [Uhl72, Uhl76, Alb78] it was shown that certain properties of eigen-
functions and eigenvalues are generic, for instance that critical points of eigenfunctions are
simple and some facts on nodal lines. In particular, it is shown that generically eigenvalues
are simple, which can be viewed as a first step towards a proof of conjecture 5.2.4.

In [AK99] a result very similar to Conjecture 5.2.5 is proven. There a Schrédinger
operator on R? with smooth periodic potential is considered. This is by Bloch theory
equivalent to a family of operators on the torus indexed by the Bloch vector, which de-
termines the subprincipal symbol. For large energies the potential can be considered as
a small perturbation of the free particle, and so one is in a KAM situation with plenty
of quasimodes. They showed then that for a set of Bloch vectors of full measure in the
Brillouin-zone quasimodes converge to eigenfunctions semiclassically.

The idea of genericity of stable properties in the above sense is close in spirit to the
ideas and results in the theory of decoherence, see, e.g., [GJKT96]. The theory of decoher-
ence attempts to explain the fact that although in quantum mechanics entangled states
between different subsystems are possible, they are not observed on a macrscopic level.
This phenomenon is explained by the coupling to the environment, which induces a rapid
decay of coherence. What is especially remarkable, is that already a very weak coupling
to the environment is sufficient to destroy coherence effects. In order to make the anal-
ogy with our situation clearer, we consider for a given Hamiltonian the set of invariant
states in quantum mechanics and in classical mechanics. In a situation like the symmetric
double well potential, we find that the quantum mechanically pure states, the eigenfunc-
tions, tend in the semiclassical limit to classical states which are not pure, but are sums
of two pure states (pure in the convex set of invariant states) which are concentrated in
each well. This would mean that even in the classical limit the particle remains to be in
both wells with equal probability. But by the result of Simon, stating that by a small per-
turbation the eigenfunctions become semiclassically concentrated in one well, the classical
limits are therefore pure, too. So a small perturbation of the Hamiltionian has a similar
effect as a weak coupling to some environment, and so from the theory of decoherence we
expect that the semiclassically observable quantities are the ones which are stable under
small perturbations, which by our conjectures should in turn be the generic properties of
a system.

Motivated by Conjectures 5.2.4, 5.2.5, and by the general philosophy expressed in the
citation of Kolomogorov at the beginning of this chapter, that properties which are stable
under small perturbations are the essential ones from a physical pint of view, we will study
a number of quasimode constructions in the following sections more closely. Our emphasis
will thereby be on the question of stability or non-stability of these quasimodes.
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5.3 Solvability of transport equations

In this section we want to discuss the solvability of certain transport equations which occur
in semiclassical constructions of quasimodes and approximate projection operators. The
main result of our discussion will be that the solvability of the transport equations is closely
related to the stability of the underlying classical structures under small perturbations.

Let X be a symplectic manifold, H a smooth function on X, and Xy the corresponding
Hamiltonian vectorfield. Let S C X be a compact submanifold of X without boundary,
which is invariant under the Hamiltonian vectorfield, i.e.

Xu(s) eT;Sforallse S,
and on which H is nondegenerate, i.e.
Xpu(s)#0forallse S .
The question we want to study is, for which b € C*°(S) does the equation
Xnya="b (5.6)

on S has a solution a € C*(S). This is the general form to which the usual transport
equations can be reduced. E.g., the equation Xy f = fb is reduced by the substitution
f =exp(a) to this form.

One can easily give a necessary condition on b for the existence of a solution a, which
in practice will occur as a higher order quantization condition. Recall that the Liouville
density dp on X induces an invariant density on S which we will denote by dyus.

Lemma 5.3.1. If the equation (5.6) is solvable then

bdpus =0 . (5.7)
J

Proof. The result is a simple consequence of Stokes theorem, and the fact that S has no
boundary. Since dug is invariant under the Hamiltonian flow we have

Lx,adps = (Xga)dus =bdus ,

and integrating this equation yields

/bdﬂSZ/EXHad,U,SZO.
S S

O

Before proceeding further we want to study two examples which will contain already
the typical features of the general problem.
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Example 5.3.2. Let us assume that X is two dimensional, then the invariant submani-
folds are just the lines of constant energy, so assume that

S={zeX, Hz) =1}

is compact and non-degenerate. The Hamiltonian flow then is periodic on S, and we can
choose the time ¢ € [0,7"), where T is the period, as new coordinate on S. In this coordinate
the Hamiltonian vectorfield is given by % and the invariant density on S is dug = dt. The
general transport equation now reads

da_

—=b.
dt

The functions on S can be represented by periodic functions on R with period 7', and if
we insert for a and b their Fourier series,

a(t) — Z aneZﬂint/T ’ b(t) — Z bn627rint/T ’

nez nezZ
then we obtain
2min 2mnit/T
Z Tan — bn e =0.
nez

So we see that if the condition

is fulfilled, the choice

an = B n
2min

for n # 0 determines a solution of the transport equation. Since

1 T
%:TAb@&,

we see that the condition (5.8) is exactly the condition (5.7) from Lemma 5.3.1. So in this
case no other conditions on the solvability appear.

Example 5.3.3. : The second case we want to study is that X is 4-dimensional and S is
a 2-dimensional torus on which the motion is quasi-periodic. This is a typical structure
which appears in integrable systems and in small perturbations thereof. These tori serve as
semiclassical supports of quasimodes which can be constructed on them if certain conditions
are fulfilled, one of them being the solvability of a transport equation. One can choose
action-angle coordinates on X in a neighborhood of the torus S, such that ¢ = (1, p2) €
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[0,27) x [0,27) parameterize S and the restriction of the Hamiltonian vectorfield to S is
given by

0 0
Xg = (k,Vy) ' Doy + K2 Dy

with k = (ki, ko) € R? being the frequency vector, see, e.g., [Laz93]. The invariant measure
on S is of course given by dug = dyp1dys. We will again expand the functions b and a in
a Fourier series,

alp) =Y ae ™ b(p) =Y buel™)

nez.? neZz2

and then the transport equation reads

Z [i(k, n)a, — b,)e!™¥ =0 .

nez?

Of course all coefficients have to vanish simultaneously in order that the transport equation
is fulfilled, so we get

i(k,n)a, — b, =0

for all n € Z2. The equation for n = 0, by = 0, is the now again the condition from Lemma,
5.3.1, since

bo = / b(p) dus -
s
The equations for n # 0 can only be solved for those n € Z? for which

(k,m) #0,

where we get

So if the frequencies are linearly dependent over Z, then the transport equation is not
solvable for all inhomogeneities b which have mean zero. But even if the frequencies are
linearly independent we have to assure that the the scalar product (k,n) stays sufficiently
far away from zero, in order that the resulting function a is smooth. Recall that smoothness
of a is equivalent to the condition that

jan] < Cn(1+[n])™"
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for all N € IN. Therefore, we must assume that 1/[(k,n)| grows at most polynomially in
|n|, i.e. there should exist constants Cx > 0 and K € R™ such that

< Cx(1+n|)*

(K, n)

for all n € Z2. This is a so called Diophantine condition, which is more frequently stated
in the form

[(k,m)| > C(1+ In)~*

for n # 0. So the validity of a Diophantine condition on the frequency vector £ is a
necessary and sufficient condition for the transport equation to have smooth solutions a
for all smooth functions b which satisfy the quantization condition (5.7).

Of course, the results of our discussion remain valid in arbitrary dimensions; we collect
them in the following theorem.

Theorem 5.3.4. Let X be a 2d-dimensional symplectic manifold, H a smooth real valued
function on X, and S a d-dimensional Lagrangian torus in X which is invariant under the
Hamiltonian vectorfield Xy. Let us choose action-angle coordinates in a neighborhood of S
such that the vectorfield is Xy = (k, V), with a constant frequency vector k € R%. Then
the transport equation

XHa:b

has for every b € C*°(S) which satisfies the condition (5.7) a smooth solution a € C*°(S), if
and only if the frequency-vector satisfies a Diophantine condition, i.e. there exist constants
C >0 and K > 0 with

[(k,n)| > C(1+ [n|)™",
for all n € Z4\{0}.

This example of invariant tori suggests an important idea. The Diophantine condition
on the frequency-vector is the same condition which appears in KAM-Theory, see, e.g.,
[Laz93, AKN97]. The main result of KAM-Theory is that a torus whose frequency-vector
satisfies a Diophantine condition is stable under small perturbation of the Hamilton func-
tion. This means that for all sufficiently small perturbations of the Hamilton function,
there is an invariant torus close to the original one. So the idea which emerges from our
discussion is that for a general invariant submanifold S, the stability of S under small
perturbations of the Hamilton function ensures the solvability of the transport equation
on S, up to the universal obstruction (5.7).

In order to develop this idea further we first have to make the notion of stability of an
invariant submanifold under small perturbations more precise.
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Definition 5.3.5. Let X be a symplectic manifold, H a real valued smooth function on
X and Sy C X a compact submanifold without boundary which is invariant under the
Hamiltonian flow of H, and on which the Hamiltonian vectorfield is non-degenerate. We
call Sy stably tnvariant, if there exists a manifold S and a neighborhood F C C*(X) of
H together with a smooth family of embeddings

P:FxS =X,
such that ®(H,S) = Sy, and for every H € F S; := ®(H,S) is invariant under the
Hamiltonian flow generated by H.
Examples 5.3.6:

e By KAM-theory any invariant torus whose frequencies satisfies a Diophantine con-
dition are stably invariant.

e Any compact energy surface on which the Hamiltonian vectorfield is nondegenerate
is stably invariant.

For a stably invariant Sp, each Sy carries an invariant density ugs,, which we can pull
back to the manifold S,

pi = Phus, (5.9)
and similarly the Hamiltonian vectorfields X5 can be pulled back to S,
Xg=05X5 . (5.10)
The invariance of ys. means that
Lg pz=0 (5.11)

for all H € F. Now, by differentiating this equation with respect to H at H = H we can
get solutions to certain inhomogeneous transport equations. What we then have to show
is that the inhomogeneities obtained in this way cover all smooth densities which satisfy
the universal condition (5.7). This is a kind of linear response theory.

Theorem 5.3.7. Let X be a symplectic manifold, H a smooth real valued function on X
and S a submanifold which is invariant under the Hamiltonian flow generated by H and
on which the Hamailtonian vectorfield Xy is nondegenerate. If S is stably invariant in the
sense of Definition 5.3.5, and S s either a Lagrangian submanifold, or has codimension 1,
then the transport equation on S

XHG =b
has for every b € C*(S) which satisfies
/ b us =0 (5.12)
s

a solution a € C*(S).
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Proof. We will first study the consequence of the condition on b more closely. By choosing
an orientation on S, we can interpret b dug as a differential form on S (If S is not orientable,
we still can interpret b dus as a differential form. However, its coefficients are sections in
the line bundle which is associated with the orientation covering). Now by Poincaré duality,
see, e.g., [BT82], it follows that for a closed compact S and a dim S-form w the equation

/w:(]
S

implies that there exists a (dimS — 1)-form o with w = do. Hence the condition 5.12
implies that there exists a (dim .S — 1)-form o, with

b/,LS:dO'b.

This will allow us to localize the problem.
Now let H; € C*°(X) be a perturbation term and let us study

ﬁZH()-i-é“Hl,

which will be in F for for sufficiently small . Let us expand the quantities (5.9), (5.10)
and the equation (5.11) in ¢,

i = o +ep +O(%)
X5 =Xo4+eX, +0(?),

and
»CXOIUO + ‘5([’X0:u1 + EXll'l’O) + 0(82) =0.

So with Xy = Xy, uo = ps and Cartan’s equation Lx = dex +¢xd, where tx denotes the
contraction with X, we obtain the equation

Lxp,br = —Lx, pro = —dix, pio -
So if we can find for any (dim S — 1)-form o a perturbation H; such that
—tix, o =0 +dw

for some (dim S — 2)-form w, then we are done. But this is a local problem and basically
linear.

Let us now come to the two special cases. We start with the case that dim S = dim X —1.
We can introduce local coordinates z = (2;&, z) such that S is defined by z = 0 and & is
symplectically dual to z, where 3 are symplectic coordinates in R2=2. That S is invariant
under the flow generated by Hy means that Ho'g = 0. For a sufficiently small perturbation

H.(z) = Hyo(2,z) + eH(%2,&, x)
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we can write S, as a graph
Se ={(%¢, f-(£,€))}
with f.(2,&) = O(e). Therefore, we get that
! = (a1, f1) ,
where f! denotes the gradient with respect to (2,£). The Hamiltonian vectorfield on S, is
Xn. = Xno (% f) +eXm (%€, )
and therefore
O Xy, = Xuo (35 f2) + e | Xa (8 €,0) + HiL(2€,0)0¢ | +O(e?)
where X m, denotes the part of Xy, in the symplectic subspace spanned by Z. Hence we
get
X1(28) = X, (456, 0) + Hig(2€,0)0 -
Since the invariant density on S is dZ A d§ and £ R, dz = 0, we obtain
Ly;dz A d€ = Hyjy ((2;€,0)d2 AdE = d(HyQd2)
so we have found that we can take
o=H,d2.

Now we will study the case that S is Lagrangian. We choose local coordinates (§,x) €
R? @ R? such that S is given by = 0, and the Hamiltonian is Hy(¢,2) = (k,z) with
k € R¢ constant. We furthermore choose a family of perturbations of the form

HE(Z) = <k7$> + EHl(gvx) )
and for sufficiently small ¢, S, can be represented with a generating function,

Ss = {(65 (p(gag)l)} )
with ¢(e,£) = O(e). Then the linearized embedding is given by

@7 = (Is, ¢(e,8)")

and the Hamiltonian vectorfield on S,
XHE = <k’ aﬁ) +é€ <81H1(§ax)’ 85) - <(9§H1(§,33), 81) ’

and therefore
O Xy, = (k,0) + (0, Hi(£,0),9) + O(e?) .
So we have X; = 0,H1(&,0), and this can be arbitrary. O
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We have until now only discussed the existence of a solution to the transport equation,
and not the uniqueness of the solution, if it exists. Since the difference of two solutions of
the inhomogeneous transport equation is always a solution of the homogeneous transport
equation, the dimension of space of solutions ist determined by the set of solutions of the
homogeneous transport equation. The space of solutions is always at least one dimensional,
since any constant multiple of the invariant measure is as well a solution. In the case of
the Lagrangian tori which satisfy a Diophantine condition, these are all solutions, since
the flow on the torus is uniquely ergodic then.

5.4 Construction of quasimodes

5.4.1 Quasimodes concentrated on invariant tori

In this subsection we will discuss some aspects of quasimode constructions on invariant
tori, mainly with respect to the question of stability. Collecting the results from Section
3.1 and Section 5.3 we immediately get the following result.

Theorem 5.4.1. Let H € ¥°(mgy) be a selfadjoint operator with principal symbol Hy.
Assume that there exists an Lagrangian torus A which is invariant under the Hamiltonian
flow ® generated by Hy and which satisfies the quantization condition (3.13)

% (r0+Ta) € H'(A,2).

Then there ezists a stable quasimode (1(A), E(A)) concentrated on A,
I[(H + AT A)p(A) — E(A)p(A)]] < C(AN*

for all A € 9°(1), if and only if the frequency vector k of the flow on A satisfies the
Diophantine condition

[(k,n)| > Ci(1 + |n])~"
for some C, K > 0.

This theorem is an immediate consequence of the results of Section 3.1, especially
equations (3.13), (3.15) and (3.16), and the discussion of the solvability of the transport
equation (3.15) in example 5.3.3.

The main point we want to stress in this theorem is that if the Diophantine condition
is not fulfilled, so if the frequencies are for instance linearly dependent over Z, then there
exist no stable quasimodes concentrated on A. Of course, this raises the question what
happens with eigenfunctions or quasimodes concentrated on a rational torus when we add
a small perturbation. If the subprincipal symbol of H is zero, which is for instance the
case if we consider the Laplacian on some Riemannian manifold, and if A = 0, then the
transport equation can be trivially solved, and we get a quasimode of discrepancy ~ A\72.
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The question how such states react to small perturbations have been studied for a class of
systems in [FKT90, FKT91].

If the Diophantine condition on the torus is fulfilled, then Theorem 5.4.1 can be
strengthend in at least two directions. First, the construction in Section 3.1 can be con-
tinued in order to compute higher order terms of the quasimode, and therefore we can
obtain a discrepancy of order A= for any N € IN. Secondly, a more important observation
[Col77, Laz93] is that we can relax the quantization condition. It is sufficient that there
exists a 6(\) with

1 U 1
§;O®+Za>—NMEH(mZ%

and

for some o > 0. Then the remaining constructions can be adapted to yield quasimodes
with discrepancy of order A= for any N € IN. This is especially important in the case of
a slightly perturbed integrable system, where by KAM theory a cantor set of invariant tori
has survived, but maybe not the one satisfying a quantization condition, but some nearby
ones.

5.4.2 Quasimodes concentrated on closed orbits

We will now discuss the construction of quasimodes concentrated on elliptic orbits. We will
be sketchy, and mostly indicate the main ideas. The possibility of constructing quasimodes
on elliptic periodic orbits is well known, see the part of Babich in [Fed99], for an overview
of the work by the Russian school, and [GW76b, GW76a, Ral76, Ral79, PU93| for some
other works.

We can use the results on the time evolution of coherent states to construct approximate
solutions to the stationary Schrodinger equation which are concentrated on a periodic orbit.
The basic idea is simply to launch a coherent state on the orbit and average over the time
evolution. This is expected to yield an approximately invariant state, see also [PU93].

So let H € ¥%(m,,) be selfadjoint with principal symbol Hy and choose ¢ € L*(M)
with FS(¢) = {z}, where z € T*M is periodic under the Hamiltonian flow generated by
H, with period T'. We associate with ¢ a state

1

T .
wm:TAemmwwa, (5.13)
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where E = H(z). Then we obtain

T
/ (H — E)eMEY (1) dt
0

Ti d
Jo X

= 73 [PTUT) — ]

and so our aim will be to choose the state 1) appropriately in order that the right hand
side becomes small. If we choose % to be a coherent state centered at z, ¢ = u(\), then

by Theorem 3.5.7 and Theorem 3.5.1 we have
U(T)yp = M D+a(T)y, (( 5 Ly +o0n1?)

(H - E)¢r

Nl= Hi=

(e U(t)y) dt

and hence with z(T') = z,

ei/\TEu( ),¢ ’(/J 1()\ ~(T) +TE]+(7(T)) S(T )L(/\) _ uf(/\) 4 O()\_l/2) )

So we get the two conditions

S(IL=1L (5.14)
and
Ay(T)+TE|+o(T) =27k , ke, (5.15)
when these are fulfilled we have
|(H — E)yg|| = 0(A*?) .
With
T
v(T) = / ((p,q) — H(p,q)) dt = / (p,dq) — ET
0 Y(E)
we can rewrite the second condition (5.15) as

/\/ (p,dq) + OyE) = 2rk | ke, (5.16)
v

(B)

which has exactly the form of a Bohr-Sommerfeld quantization condition. This condition
restricts the set of \ values to a sequence

{ A (E) Fren
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satisfying (5.16). The only new thing compared to WKB and EBK quantization which
appears here is that the Maslov index o, (g) is not an integer multiple of 7/4, but can take
arbitrary values in R.

We will now study the first condition (5.14) more closely. It will turn out that this
is the crucial condition which allows only elliptic orbits to be quantized in this way. The
Lagrangian plane L defines the coherent state, hence it has to be positive, so the symplectic
map S(7T) : T,T7*M — T,T*M must leave a positive Lagrangian plane invariant. By the
general classification of linear symplectic maps it follows that S(7") must be conjugated to
an orthogonal matrix then, and has therefore only eigenvalues of modulus one, so the orbit
is elliptic.

From a more general point of view, we can study the normal forms of the map S(7T)
for an arbitrary periodic orbit. There is always one invariant two dimensional symplectic
eigenspace, spanned by the direction of the Hamiltonian vectorfield, and the direction
perpendicular to the energy shell. So we can bring §(T") into a normal form

S(T) = (307 £P> . (5.17)

Lemma 5.4.2. Let S be a symplectic matriz of the form (5.17) and let L be a positive
Lagrangian plane with

SL=1L,
then u = 0 and all eigenvalues of Sp have modulus one.

We summarize the results of this simple approach in the following theorem.

Theorem 5.4.3. Let H € V%(m,,) be selfadjoint, and assume that z € T*M is periodic
with period T under the Hamiltonian flow generated by the principal symbol Hy of H, and
let E = Hy(z). If the orbit through z is elliptic and the Poincaré map is of the form (5.17)
with u = 0, then the state (5.13) with v = ul satisfies

|(H ~ Bl = O(1*?)

if S(T)L = L and X satisfies the quantization condition
)\/ (p,dq) + oym) = 27k , keZ.
v(E)

The discrepancy of this quasimode construction is quite large, and one can improve the
result by considering higher order terms in the time evolution, see Theorem 3.5.9. This
would then lead to transport equations, whose solvability will pose additional conditions
on the orbit.

But in order to follow this approach further we would have to make the higher order
terms in the time evolution more explicit. Since we want to avoid this, we will now sketch a,
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different approach to the construction of quasimodes concentrated on elliptic orbits, which
is based on local normal forms of the Hamiltonian near the orbit, and is closer to our
approach to derive quasimodes concentrated on invariant tori.

It is useful to choose appropriate local coordinates around the given periodic orbit «. In
the neighborhood of the orbit one can always choose coordinates (h, s;p, q) € I x[0,T|xU C
R x [0, L] x R?2 such that the orbit is given by h = 0,p = ¢ = 0, T is the period of the
orbit, and the Hamilton function is of the form

Hy(h,s,p,q) = f(h) + ) 2 + @), +Ts(h, 53 p, ) (5.18)

where W3(h,s;p,q) is a function which is T-periodic in s and of third order in p and ¢,
see, e.g., [AKN97|. The constants w, are called characteristic frequencies of the orbit. One
says that the characteristic frequencies w; satisfy a resonance condition of order [, if there
exist kl, kQ, . akd € 7 with

k1w1 + k2w2 + -+ k'dflwd,1 + k‘d =0

and |ky| + |ka| + - - + |ka| = . If the characteristic frequencies of an elliptic orbit do not
satisfy a resonance condition of order [ for all [ < L, then the orbit is called nonresonant
up to order L. Under this condition one can find local symplectic coordinates near the
orbit in which the Hamilton function is in Birkhoff normal form of degree L, which means
that

HO(h’a s, D, Q) = f(h) + HéL)(pa Q) + \I’L-l-l(ha s D, Q) ) (519)

where U, (h, s;p,q) = O((Jp| + |g))*+") and H{" (p, q) is polynomial of degree [L/2] in
the variables p; := p? 4 ¢7, and whose lowest order term is again given by

IS

-1

w.
5 (05 + ) -
=1

<
Il

Since by the theory of Fourier integral operators we can quantize canonical transfor-
mations, we can map the eigenvalue problem microlocally near the elliptic orbit to an
eigenvalue problem with the operator given by the Hamiltonian in Birkhoff normal form
plus higher order corrections due to subprincipal and higher terms in .

In order to simplify the following discussions, we will assume that f(h) is linear in A,

f(h) =h, (520)

which means that the period is constant on the orbit cylinder through the periodic orbit.
For instance if the system is scaling this is the case for all orbits. Compared to the previous
discussion, this is equivalent to the condition u = 0 in (5.17).



5.4. Construction of quasimodes 259

We first discuss the case that the remainder W3(h,s;p,q) in (5.18) vanishes and no
higher order terms in A are present. Then the corresponding Hamilton operator is given
by

1 ks w
J 2 2
2 2 ( /\2an qj) '
=1

<.

If we insert the ansatz

LG
(5, q) = Lm( > N HT, /2]

where the prefactor ensures normalization, into the stationary Schrodinger equation, we
get with

(- %+ ) vals.0) = Jvelsna

that
1d wj
(e ~ E)oe(s) = |85 SIS B|ss0)

And in order that the right-hand side vanishes, we have to set
d—
1 ny
=235 %)

and thus have obtained a solution of the Schrodinger equation. Only one condition remains
because the solution ¥g(s, q) has to be periodic in s with period 7', and in order to ensure
this we have to require that

1d lw
}: J
Jj=1

for £k € 7Z. This is the quantization condition by which a discrete set of eigenvalues is
selected. In order to compare this condition with (5.15), we use that with our choice,
(5.20), of f(h) we have for the reduced action

T
S:/ hdt=hT = ET ,
0

and furthermore the Maslov index is given by Zd ! “LT, so the two conditions indeed
coincide.
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Higher order terms in the Hamiltonian can now be considered by modifying the ansatz
appropriately,

™

1 by (d-1)/4 _ _ )
¢E(Sa Q) = m ( ) (1,()\, S, Q)e)\l[¢(8)+l Zj 9 /2 :

Let us denote the quantizations of the monomials (p} +¢7) in the Birkhoff normal form by

1 2 2
PJ _ﬁ aqj + QJ ;
then we have
rpjaeAi[¢(8)+iEj /2 _ [ — %a{?ja + §qj8qja + %a] QNil6(s)H Y ¢7/2]

By iteration we see that
Py -+ Pae PR G2 = [%(a +0(q)) + O(A’”)] NOWHE; /2

for every k € IN.
If we now apply the full Hamiltonian to the modified ansatz, and make for the energy

an ansatz as an asymptotic series £ = Fy + %El -+, we obtain
1 w2 1
(H — By — X' ENn(s, q) = [asqs 0+ O+ ; ) (X g;dj0+ 5 a>

+ %Hla — Epa — %El + O()\Q)] ile(s)+i X 47 /2] ’

and if A and Ej satisfy the quantization condition, only terms of order A~! remain ,

d-1
1
?asa + ijqjaja + (H—Ey)a=0.

=1

This is a transport equation for a half-density in the tangent planes of the complex La-
grangian ideal, and it is solvable if the ideal is stably invariant and if the higher order
quantization condition,

1 L
E=— H; d
1 L/O 1 ds,

is fulfilled. In a similar way higher order contributions can be treated, and in this way one
could prove the following result.
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Theorem 5.4.4. Let H € U°(myy) be selfadjoint, and assume that v is an elliptic orbit
of the Hamiltonian flow generated by the principal symbol of H. If the principal symbol
has a local normal form (5.19), with linear f, (5.20), and if the characteristic frequencies
do not satisfy a resonance condition up to order L, then one can construct a quasimode of
order A=t concentrated on v,

|(H = EN)ll=0(""),
where 1n Birkhoff coordinates

and
E=Ey+\'E,+ )\ ?Ey+---

with

=

Ey— — L =2
/\( 0 /\ 2) 7wk

j=1

for k € Z and

1 L
E, =— H, ds .
1 L/o 1 ds

So for nonresonant elliptic orbits quasimodes of arbitrary order can be constructed.
The question remains what happens for resonant orbits. They play an important role
when on studies families of systems since under a change of the parameters of a system
typically bifurcations of orbits occur, where orbits become resonant and then bifurcate
into new orbits. In fact this is the basic mechanism how elliptic periodic orbits vanish
and hyperbolic ones appear in the passage from a system with mixed phase space to a
hyperbolic system. The general methods developed in Chapter 3 should allow similar
studies of quasimodes near bifurcations and on lower dimensional tori.

5.5 Quasimodes associated with invariant sets in phase
space

In this section we will use the approximate projection operators of Chapter 4.3.1 to con-
struct quasimodes concentrated on stably invariant subsets of phase space. A similar
construction in a KAM situation has been done by Shnirelman in [Shn].

The main idea is fairly simple. Given an invariant open domain D in phase space, then
the techniques of Chapter 4.3.1 allow to associate an approximate projection operator 7 p
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with it, which approximately commutes with the Hamilton operator H. In order to clarify
the main idea, imagine for a moment that it commutes exactly,

[H,‘/TD]:O.

Then we could choose an orthonormal basis of joint eigenfunctions 1, of both operators,
ie.

,Hwn = nwn and WDwn = 5nwn )

and since 7rp is an approximate projection operator its eigenvalues ¢, cluster around 0 and
1. Clearly the eigenfunctions corresponding to ¢, =~ 1 are concentrated in D, whereas the
ones corresponding to &, ~ 0 are concentrated in the complement of D. The Szeg6 limit
theorem, Theorem 4.2.3, allows, furthermore, to determine the asymptotic number Np(A)
of eigenfunctions concentrated in D. Since

Z<¢naﬂD¢n> = Z En ™~ ND(/\) )

En€el Enel
we get
lim Np(N) _ vol(D N Xg)
A—00 N(}\) N VOI(EE)

Hence the fraction of eigenfunctions which is concentrated in D is proportional to the
volume of D. This construction breaks down if 4 and 7rp no longer commute.

The construction of approximate projection operators associated with open stably in-
variant sets gives immediately the existence of quasimodes concentrated on these sets.

Theorem 5.5.1. Let H € V°(m,;) be a selfadjoint operator with principal symbol Hy and
let D C T*M be an open stably invariant subset whose closure is compact. Then

(H = Bamy whall < CyA™2Y
Proof. In fact this is a corollary of Theorem 4.3.7; we have
[H 75 e = (H = By i
and so with ||¢y|| =1 we get
(1 = En)y | = ([, 705 Tl | < [[[H, 7]
and the commutator was estimated in Theorem 4.3.7. O

In order to estimate how many quasimodes we obtain from this result, we have to
estimate ||7r53N)¢nH from below, because if the norm tends to zero sufficiently fast, then the
estimate in the theorem is trivially fulfilled.
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By the Szego limit theorem we have

1
. (N), 112 —
lim N, Z 7w p nl[* =

A—00
Encl

with I = [E —a/A\, E+ /)] and N; := #{E, € I}. This formula allows us to derive some
simple estimates on the number of eigenfunctions which are concentrated entirely in D or
living partly in D, respectively.

If 4, is concentrated in D, then wpt, — ¥, — 0 for A — co and hence

VOl(D N EE)

5.21
volXg ’ ( )

||lwptn|| > 1, for A — oo

Therefore, (5.21) yields an upper bound for the number

N}nt(D) = #{En el ; 7rD’(/Jn = wn + 0(1)} ’

int
i NEUD) _ vol(D 0 %)
A—00 N[ vol EE

On the other hand, we can estimate for every 1 > ¢ > 0 the number of eigenfunctions
with || pin|[ > 6,

NIY(D,§) := #{E, € I;||mptn|| > 6},

i.e. the ones of which at least a part of relative fraction ¢ lives on D, from below by

o NID,S) | vol(DNEy)

A—r00 T - vol X g

The eigenfunctions which satisfy ||wpi,|| > 6 for a 6 > 0, can of course be used to
define quasimodes

1 N)
On =gl Un
7w, 7

which satisfy by Theorem 5.5.1
[(H = Ba)oal| <67 1OnAPN

and are normalized. By the previous discussion we have a lower bound on their number.
But apart from this not very much information can be extracted from them which goes
beyond the general time evolution estimates for states concentrated in D. In contrast to
the explicit quasimode constructions in the last section, we get no further information on
the eigenvalues, nor do we have an explicit formula for the quasimodes.

But if the flow on DN Y is ergodic, then the local quantum ergodicity theorem implies
quantum ergodicity for the quasimodes.
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Theorem 5.5.2. Let H € ¥%(mg,) be selfadjoint, and assume D is an invariant open
domain which is stably invariant under the flow generated by the principal symbol Hy of H.
Let W%V) be the approximate projection operator constructed in Theorem 4.53.7 and define

1 (V)
On; = .. . TD (2
T w4 | ’

for the subsequence 1y, of eigenfunctions which satisfy ||7r53N)wnj || > & for some fized 6 > 0.
If the flow s ergodic on D N X g, then
D

lim ~— 3 (60, Abuy) — (A | = 0 (5.22)

A—00 NI
Enj €l

for all A € ¥°(1), and where (A)D = m Jpns, 7(A) dug.

As in the standard quantum ergodicity theorem, it follows from (5.22) that almost all
quasimodes concentrated on D N X tend to be equidistributed on D N Y.

Proof. We will use Theorem 4.4.2 with Op™[v] = w%v). Define

BA = 7TDA7TD—7TD.A

then by Theorem 4.2.3 we have

tim 3™ ([ Baltn) =0,

A—o0 IV Boel
n

and using this relation with 4 and A = 1 we obtain

. 1 —D
Jlim N E;IK(%, Adn;) —o(A) |
1 1 ——D
< )\1;1{.10 F[ Z m ‘(WDwTL]‘J'AWDwn]'> - <7erﬂj77ernj>o-(‘A) ‘
EnjEI J
1 1 ——
<< lim — 37 (mptin,, Ampthn,) — (ot ot )o(A)
5 A—00 NI B, el
1. 1 ——=D
< < lim EE% (Yo, T AYR) — (Y, W) (A) | =0

O

If Conjecture 5.2.5 were true, then we would get as a corollary of Theorem 5.5.1 that
generically a subsequence of eigenfunctions of density % is semiclassically concen-
trated on each stably invariant domain D. This would be a rigorous confirmation of the
general believe, going back at least to Percival [Per73], that the set of eigenfunctions split

into subsets living semiclassically in the different invariant regions in phase space.
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Densities and half-densities

In microlocal analysis and in semiclassics it is often useful to work with densities and half-
densities instead of functions. We will here collect some of their properties and indicate
some applications, mainly taken from [BW97, GS77, Hor85a).

A.1. Definition. Let E be a vector space (over R or C) and o a complex number. An
a-density v on E is a map

ngx---xEJ—>C

dim E times

é=(e1,...,eq) —v(e)
which satisfies for every A € GL(FE)

v(Aé) = |det A|%v(e) , (A.1)
where Aé = (Aey, ..., Aeg). The space of a-densities on E will be denoted by Q4 (E).

It is clear that v(é) = 0 if the vectors (ey,... ,eq) are linearly dependent, i.e. if they

~

do not form a basis of F, because then they can be written as the image of a basis f
under a degenerate map A € GL(E), é = Af, and then (A.1) gives v(é) = v(Af) =
|det A|*v(f) = 0 since det A = 0. Since GL(E) acts transitively on the set of bases of
E the space of a-densities on E is one-dimensional. The 1-densities can be thought of as
giving an assignment of volume to the parallel-epiped spanned by a basis.

We will summarize some properties of a-densities in the following lemma.

A.2. Lemma. (1) Let v € Q,(E), then for B € C v? € Qup(E).
(2) A linear map T : E — E* induces an a-density on E given by
vr(é) == |det<Tei,ej)\°‘/2 ,

hence every bilinear form w on E induces an a-density on E. In particular, it follows
that every symplectic vector space carries a natural 1-density.

265
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(8) Multiplication of densities is defined by multiplication of their values and hence gives
a map

Qa(E) x Q5(E) = Quss(E) .

(4) An isomorphism A : E — F induces an isomorphism on a-densities, Ay : Qo (E) —
O (F), defined as

~

Aw(f) =v(A7f) .
(5) There is a natural map
Qu(E) = Q_o(E")
defined by associating to each basis € its dual basis €*.

(6) More generally, every exact sequence of vector spaces
0=F—=2FE—=-G—=0
defines a natural i.somorphism
Qu(F) @ Q4(G) 2 Qu(E) .

Proof. (1) to (4) are obvious. To show (5), let v € Q,(F) and let e* be a basis of E*. We
claim that v* € _, where v* is defined by

v*(e*) == v(e) .

The dual basis is defined by (e, e;) = J;; and therefore, if A* : E* — E* is dual to
A : E — F in the sense that (A*e, Af) = (e, f) for all e, f € E, then det A = (det A*)™},

hence
V*(A%6%) = | det A*|~°1* (%)

for all A* € GL(E™).
0

Let M be a C'*° manifold, then the bundle of a-densities on M is given by assigning to
each tangentspace T, M the space of a-densities ,(7*M); we will denote this bundle by
Q,(M). The sections of this bundle will be called a-densities on M. Let u(z) be such a
section, then under a change of coordinates x +— y(x), it becomes multiplied by a factor

(6%

Oy
al' j

‘ det
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For 1-densities the integral is defined naturally: let M — U be a chart, and let |dz| be
the Lebesgue-density in this local coordinates. Every density with support in U can then
be written as u(x)|dz| and the integral is defined as

/ u(z) dz .

The transformation properties of 1-densities ensures that this is well defined. Since 1-
densities can be integrated, we get a natural duality between a-densities and (1 — «)-
densities. The set of 1/2-densities therefore carries a natural pre-Hilbert space structure,
and its completion defines an intrinsic Hilbert space on every manifold.

The theory of distributions naturally leads as well to densities. If we define a space
of distributions on a manifold as the dual-space to the smooth functions, then we have a
natural embedding of the smooth 1-densities with compact support into this distribution
space. Therefore it is natural to call these distributions generalized 1-densities. On the
other hand, we can look at the dual space to the smooth 1-densities, this will have embedded
the smooth functions in a natural way. Now, if one wants to have dual objects with the
same transformation properties, it is again natural to consider 1/2-densities.
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Appendix B

Gauss transforms

In semiclassics one often has to treat integrals of the form

where @ is a symmetric nondegenerate quadratic form with Re ) > 0, and f some smooth
function. The basic trick leading to an asymptotic evaluation of such an integral is the
use of the Fouriertransformation, which gives for smooth and sufficiently fast decaying
functions f the following result.

B.1. Lemma. Let Q) be a quadratic nondegenerate d x d matriz such that Re({z, Qzx)) > 0,
and let f € S(R?) then

1

= o (D2,Q7'Dg)/2
det(Q/2m) F@)le=o (B.1)

where the operator e=(P= Q7 D2)/2 s defined by e~ (Pe@7 ' Da)/26i (1) = o~(6:Q78)/2¢i(2 k)

Proof. The proof just follows from the formula for the Fourier transform of a Gaussian
function. Using

1 1 e
o (2:Qe)/2 / —(€Q70/26i(@8) ge

(2m)? \/det(Q/2r)

269
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see Theorem D.2, and the Fourier inversion formula, one gets

—(Qu)/2 1 (£.Q71)/24(w)
[ e = g JW// fle) dedg
1 / (€,Q71¢)/2 5) d¢

_ (De Q1 Da) /2, i) B
det(Q/2n) / ¢ e THI(E) dele

_ ~(D2.Q"1 D) /2 / i) g
/det(Q/2r) f deleo

_ o= (Das@71 D)2 '
det(Q/2n) Ch 10

0

In order to make use of the formula (B.1) one would like to develop the exponential
into a series, to get

1 ,
ef<DacaQ 1Dz>/2

1 1 -1 J
Jdet(Q/2m) (x)\w—OZ\/W;ﬁ[—<DmQ D,)/2]’ f(0) .

In order to make sense of this series, and to extend the range of functions f for which it is
valid, one needs estimates on the remainder term if one truncates the sum. The following
result is quoted from [H6r83, Lemma 7.6.4 and Theorem 7.6.5].

B.2. Theorem. Let ReQ™' > 0 and ||Q7!|| <1, and let s be an integer > d/2. Then we
have for any integer k > s that e~ (D= @' D)2 f (1) is continuous and

e—(Dﬁ,Q—lDw/?f(x)_Z%[_(Dm,Q—le)ﬂ]jf(x) < ClIQ7MF Y sup DS

i<k 7’ la|<s+2k

if f € C*T?% such that the right-hand side is finite. At Euclidean distance d(x) from supp f
greater than 1, the bound

e~ PP ()| < Cf|Q 7 [Fd(a) %) Y sup DA
o <s+2k
18 valid.

In the applications, ) will often be of the form () = AB with A € R and one is looking
for the limit A — oo. Then we have ||Q~!|| = A71||B~!|| and the formulas can be read as
asymptotic expansions for A\ — oo.
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These estimates are the basis of many results in the theory of pseudodifferential opera-
tors, where many results e.g., the product formula, are given in terms of Gaussian integrals
containing symbols, and the above estimates then show that these integral formulas define
again symbols.

As an example, assume that a € S°(1), i.e. there exist for every a € Z¢ a constant C,,
with

|0%a(A, z)| < Cq

and consider the integral

3\ 42 '
b(x) = <§> /eAl(z’B”/Qa(x) dz ,

where B is non-degenerate and has positive imaginary part. Then it follows from Theorem
B.2 that b € S°(1) and that the corresponding expansion obtained by expanding the
exponential function defines an asymptotic expansion of b in S°(1).
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Appendix C

The Malgrange preparation theorem

Let f(t) be a C*-function of ¢ € R which has a multiple zero at ¢ = 0:

FO)=f(0)=---=f&D0)y=0, f®0)#£0.

Then it follows from Taylor’s formula that there is a smooth function ¢(t) with ¢(0) # 0,
such that in a neighborhood of ¢t =0

Given an arbitrary C* function g(t), we want to study the question to what extent it
can be written as a multiple of f(¢). The Taylor expansion gives g(t) = Zf;é tr; +r(t)
with r(t) = O(t*), which means that q(¢) := r(t)/f(t) is well defined and bounded in a
neighborhood of ¢ = 0. Hence we can represent any ¢(tf) € C*°(R) in a neighborhood of
t=0as

o) = a)f ) + Yty

with ¢(t) locally in C*°(R), that means we can divide g(¢) by f(¢) modulo a remainder
which is a polynomial in ¢ of order k£ — 1.

All this is trivial, but the situation becomes more complicated if the function f depends
on parameters x € R% then the corresponding result is known as the Malgrange preparation
theorem. We quote here from [H6r83, chapter 7.5].

C.1. Theorem. Let f(t,z) be a C*® function of (t,z) € R**? near (0,0), which has a
multiple zero as a function of t at (t,x) = (0,0), i.e.

f=0f/ot=---=01f/otF L =0, O*f/0t* #0 at (0,0) .
Then there exists a factorization

flt,x) = c(t,z)(t* + ap_ ()" + -+ 4+ ag(z)) , (C.1)

273
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where a; and ¢ are C™ functions near 0 and (0,0) respectively, with ¢(0,0) # 0 and
a;j(0) = 0. When f is real the factorization can be chosen real. Furthermore, if f is
real-valued there exists a real-valued C* function T (t,x) with

T=0, OT/dt>0 at(0,0),

and C* functions a;(z) vanishing at 0 such that

Flt) =Tk + 3 ay(@)T?

J=0

in a neighborhood of (0,0).
If g(t,z) is a C* function in a neighborhood of (0,0) then

k-1

g(t’ .T) = q(t’ l‘)f(t, ‘T) + thTj(.Z‘) )

§=0
where q and ; are C* functions in a neighborhood of (0,0) and 0.

We will mainly need an extension of this theorem to several ¢ variables in the case
k =1, see [Hor83, chapter 7.5].

C.2. Theorem. Let f;(t,z), j =1,... ,m, be complex valued C*° functions in a neigh-
borhood of (0,0) in R™ with f;(0,0) =0, j = 1,...,m, and det df;(0,0)/0t; # 0. If
g € C* in a neighborhood of (0,0) we can then find g;(t,xz) € C* at (0,0) and r(z) € C*
at 0 so that

g(t,x) = Z q;(t,x)fi(t,z) +r(z) . (C.2)
Jj=1
It is useful to introduce at this place the ideal I(fi, ..., f;,) of functions generated by

the f;(t,z), j = 1,...,m. This is the set of all C* functions g in a neighborhood of 0
which are multiples of the f;,

g(tv ‘I) = qu(ta m)fj(ta :C) )

for some ¢; € C* in a neighborhood of 0. It is easy to see, [H6r83, Lemma 7.5.8], that if
Fi,... ,Fn € I(f1,..., fm) and dF},... ,dF,, are linearly independent at 0, F} = ... =
F,, =0 at 0, then

I(F, ... En)=1(f1,-.. , fm) -
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A natural way how ideals appear is, e.g., as vanishing ideals of submanifolds. Let M be a
C*°-manifold and A C M be a smooth submanifold, the vanishing ideal of A is defined as
the set of smooth functions on M which vanish on A

Iy = {f € C®°(M) with fl» =0} .

Locally every submanifold of codimension m can be represented as the set of common zeros
of m real-valued functions f; with dfi,...,df, linearly independent on A. According to
Theorem (C.2) one can represent every g € C*°(M) in a neighborhood of some point on A
as g = >, ¢;jfj +r and g € I, is equivalent to r = 0, hence

IA:I(flv"' :fm) .

For a general g the remainder 7 in the representation (C.2) is equal to the restriction of g
to A. If one chooses local coordinates (t,z) € R™% on M such that the projection of A
to the set {(0,7) x € R4} is locally bijective, then A can be represented as {T'(z),z} for
some C* functions T' = (T4,...,T,,) and the vanishing ideal is locally generated by the
functions t; — Tj(z), j =1,... ,m,

IA:I(tl—Tl,...,tm—Tm). (C3)

By fixing the coordinates the functions are fixed, too.

So one can identify the set of real-valued ideals in C*°(M) with the set of smooth
submanifolds of M. In analogy with this we will think of the complex valued ideals as
complex submanifolds of M. In analogy with the real valued case there is a similar way as
(C.3) to generate such an ideal locally.

C.3. Theorem. If fi,..., fmn satisfy the hypotheses in Theorem C.2, then
for some Tj(x) € C* vanishing at 0.

In the real valued case the functions Tj(x) are uniquely determined; this is no longer
the case in the complex valued case. If we have a different set of T}(x) with (C.4) then
T;—=T; € I(t:—T1(7),... ,tm—Tm(z)), so we need to know how large this class of functions
can be.

C.4. Theorem. IfI = I(t; — T\ (x),... ,tm — Tin(z)), where T1(0) = ... = T,,(0) = 0,
and if R(x) € C® then the following conditions are equivalent:

(i) Rel at (0,0).

(ii) |R(z)| < Cn|ImT(z)|¥, for N =1,2,... in a neighborhood of 0.
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(iii) R € I® = IV at (0,0). More precisely, there is a neighborhood V of (0,0) and
functions q, € C®°(R™*%) such that for every N

R(z)= Y qu(t,z)(t—T(z))*/a!, (tz)EV .

la|=N

In accordance with the interpretation of the ideal I(f1,..., fi) as a kind of complex
submanifold, we will think of the remainder r in the representation (C.2) of an arbitrary
function g as the restriction of g to I(f1, ..., fm)- For a general complex ideal I(f1,- .., fm)
this restriction r is not unique, but by Theorem C.4 we know that if 7' is another function
satisfying (C.2) for the same g, then

[r(z) = r'(2)] < Cw|Im T (2)|™

for all N € N. So r is unique at the zero-set of I and the difference between two different
remainders r and 7’ is flat on the zero set of I.

There is a close relationship of the preceeding constructions with the theory of almost
analytic extensions. Assume that the functions f;(t,z), j =1,... ,m, satisfy the hypothe-
ses of Theorem C.2, then if the functions f; are real valued the set

{(t,z); fi(t,z) =0, j=1,... ,m}

is a submanifold of codimension m of R™*% in a neighborhood of (0,0). If in case that the
f; are complex valued we choose almost analytic extensions f;(¢,z), j = 1,...,m, then
the set

/\(E = {(t;l‘) €®m+d; ‘]‘Ej(t,l'):(), ]:1’ ’m}’

is a complex submanifold of codimension m of C™*% in a neighborhood of (0, 0). It depends
of course on the choice of the almost analytic extensions. The equations f;(t,z) = 0,
j=1,...,m, can be solved in a neighborhood of (0,0) to give a function #(x), so that A

is given by
{(H(z),2); 2 € C%} .
Hence the restriction of a function g € C*®°(R™*%) is given as §({(x), z), where § denotes

an almost analytic extension of g. But if we take an almost analytic extension of (C.2)
and restrict it to A, we get

3(i(z),x) = (), (©5)

so we see that the apparatus connected with the Malgrange preparation Theorem allows
to replace part of the almost analytic machinery.

In the applications there often appears the case that a function f(z,y) € C™ is given
with

Imf>0, Im(0,0)=0, f.(0,00=0, detf, (0,000, (C.6)
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and that one has to study the ideal generated by the derivatives 0f/0z;. By Theorem C.3
there exist X;(y) € C* near 0 with

I1(0f/0x1,...,0f)0xq) = I(z1 — X1 (y), ... ,xa — Xa(y)) -

If X(y) = (X1(y),---, Xa(y)) is real valued, then f has a critical point at X (y). Therefore,

we will think of a complex valued X (y) € C¢ as a critical point of f which has moved to

the complex plane. This interpretation can be made even more natural, when one takes

an almost analytic extension of f. This will then really have a critical point at some X (y).
By Theorem C.2 we can represent f as

fl@y) =y + Z filz,y)(z; — X5())

and if we apply the same Theorem to the f;(z,v), fij(z,y) = fi(y) + >, fii(z,y)(z; —
Xi(y))/2, we get

flz,y) = foly) + Z F)(z; — X;(y) + Z Fig(@,y) (@ — X)) (z; — X;(y))/2,

and by iterating this procedure we arrive at

flwy)= > )@ —X(y)*/a! mod IV. (C.7)

lal<N

This can be thought of as the Taylor expansion of f around the critical point X (y) and
since we get by taking derivatives of (C.7) that

Opf(z,y) —f*(y) el

the functions f*(y) in (C.7) can be thought of as the derivatives of f at the critical point.
Especially for |a| =1 we get by (C.6) f*(y) € I, and hence by Theorem C.4 f*(y) € I,
and therefore we have

flay) =W+ D, - X)*/a! mod IV . (C.8)

2<]al<N

It will be important in the applications to ensure that the value f°(y) of f at the critical
point has a positive imaginary part.

C.5. Lemma. Under the hypotheses (C.6) there exists a constant C > 0 such that in a
neighborhood of 0

Imfo(y) > C| ImX(y)\2 )
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Appendix D

The method of stationary phase

The method of stationary phase lies at the heart of all of semiclassics. Its general aim is
to determine the asymptotic behavior of integrals of the form

/ eMN@y(z) dz

in the limit A — oo, where f and w are sufficiently smooth and Im f > 0. We will collect
here the main results, which are all quoted from [H6r83, chapter7.7].

The principal idea is that the main contributions to the integral come from the points
where f is stationary and Im f = 0. We first give an estimate for the case that there are
no such points in the support of u. This is a non-stationary phase theorem.

D.1. Theorem. Let K C R? be a compact set, X an open neighborhood of K and j, k
non-negative integers. If u € C¥(K), f € C*™(X) and Im f > 0 in X, then

/ M@ (I F(2))u(z) da

PRALL < C Y sup [Dul(|f? +Im f)lP7F A > 0.

la|<k

(D.1)

Here C is bounded when f stays in a bounded set in C**1(X). When f is real valued, the
estimate (D.1) reduces to

A /ei’\f(‘”)u(x) dz

<C Z sup | D%ul| =% | X>0.

o<k

From the estimate (D.1) we see that the integral decreases faster than any power of 1/A
for A\ — oo as long as there is no point = with f’(z) = 0 and Im f(x) = 0 in the support
of u. The stationary phase formula describes what happens when such a point is in the
support of u.

Before coming to the general result we want to treat the simplest case that the Taylor-
series of the phase function terminates after the quadratic part which is assumed to be
non-degenerate, and the amplitude is constant. Then the result is just the well known
formula for the Fourier-transform of a Gaussian, see, e.g., [Hor83].

279
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D.2. Theorem. Let B be a non-singular symmetric d X d matriz with Im B > 0, then

The branch of the square root is defined by demanding continuity and [det(B/(27i))]*/? > 0
if B/i is real, note that —B~! satisfies Tm —B~! > 0 too.

We want to make the definition of the square-root more explicit. First notice that since
the set of non-singular symmetric B with Im B > 0 is contractible, the branch of the square
root is well defined. Now let b;, j = 1,...,d, be the eigenvalues of B and let b; = r;e'¥,
j=1,...,d, be their polar decomposition. Then Im B > 0 implies that ¢, € [0, 7], hence
we get

[det(B/i)]Y2 = [| det BJ]Y/? ¢fz Xi(vi—/2)

as the branch which is positive for Re B = 0. In the special case that Im B = 0 one has
w; =01ifb; > 0, or p; =7 if b; <0, and we get

™ . T .
Z(%’ —-7/2) = D) ZSlgnbj =3 sign B .
j

J
In analogy with this case we will sometimes also call the quantity

sign, B := —gz(g}j _/2) (D.2)

J

the signature of B. The plus-sign indicates that it is the extension of the signature to
matrices with positive imaginary part. There is an analogous definition for matrices with
negative imaginary part. Although this quantity appears always implicitly when Gaussian
integrals are discussed, it was introduced explicitly in [RZ84] in order to give a systematic
study of the Maslov-bundle in the complex case, and for the same reason we introduce it
here as well, see section 3.4.3. So with this notation we have

insign, B/4

(det(B/(2mi))] /2 = (2m)"/2°

V] det B]

Coming back to the general case, the basic result is:

(D.3)

D.3. Theorem. Let K C R? be a compact set, X an open neighborhood of K and k a
non-negative integer. If u € C*(K), f € C**1(X) and Im f > 0 in X, Im f(x) = 0,
f'(xo) =0, det f"(z0) # 0, f' # 0 in K\{zo}, then

‘/ei’\f(””)u(x) dz — e E) [det(Af" (zg) /2mi)] Z)\’iju <Cx* Z sup |D%u| ,
j<k || <2k

(D.4)
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for A > 0. Here C is bounded when f stays in a bounded set in C3**Y(X) and |z —xzo|/f'(z)
has a uniform bound. With

9ro(@) == [ () = f(@0) — (" (o) (z = x0), (z = 70))/2

which vanishes to third order at xy, we have

(f"(z0) "D, D)" [gas"u]
Lu= — ¢ (xp) -
J Vzu:_j2§N 1-721//1,‘1/' ( 0)
This 1s a differential operator of order 25 acting on u at xq. The coefficients are ra-
tional homogeneous functions of degree —j in (o), ..., f¥ 2 (z0) with denominator
(det f"(x0))%. In every term the total number of deriatives of u and of f" is at most 2j.

The branch of the square-root [det(\f"(z)/2mi)] "/ is the same as discussed before.
Explicitly we have with (D.2)

9 d/2 iZ sign f"' (o)
1) ¢ (D.5)

[det(\f" (o) /2ri)| /2 = ( N)  Jdet frao)]

In most applications one only needs the leading term in the asymptotic expansion. This
gives

/ei’\f(‘”)u(aﬁ) dz = (Q—W) v e (@o) 1 u(zo) + O(ANY* 1)
A det(=1/"(z0)) ’

and the square-root can be written as just shown in (D.5).

Often f and u depend on additional parameters y € R™ and this can cause problems.
The simplest case is that f(z,y) is real valued and nondegenerate at = 0 for some value
of the external parameter which we will assume to be y = 0, i.e.

f2(0,0) =0 and det f; (0,0) #0 . (D.6)
Then by the implicit function theorem the equation
folz,y) =0 (D.7)

has in a neighborhood of (0, 0) a smooth solution z(y) with 2(0) = 0. Then Theorem D.3 is
true with ¢ replaced by z(y) and for u(z,y) supported in a sufficiently small neighborhood
of (0,0). Explicitly we have in leading order

| 42 iTsign @)y
/el)\f(m,y)u(x’ y) do = 2m e M@W)W) L O(\~I/2 1y (D.8)
Al det fr(z(y), y)l
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The problem which appears when the phase function is complex-valued and depends
on a parameter y € R™ is that the equation (D.7) does not necessarily have a solution
y(x). Take as example the integral

2\ 42 :
(_) /ei,\((z,y)Jr;(z,z)) dr = e~ My
2m ,

where the phase function is

i
—(x,x) .

~(@,7)
Then the only stationary point of f with Im f(z,y) = 0 is given by x = 0 at y = 0, so we
know by the non-stationary phase Theorem D.1 that for y # 0 the integral is O(A~°), and
by the stationary phase Theorem D.3 we know that for y = 0 it is asymptotically equal
to 1. Now it is clearly desirable to have a formula which describes the transition between
these two asymptotic regimes. The stationary phase condition

fi(z,y)=y+iz=0

has even a solution for y # 0, namely z(y) = iy, but it is complex. This is the phenomenon
which generally appears when one has parameter-dependent complex-valued phase func-
tions: the stationary points become complex when the parameter is varied. If we insert
the complex solution z(y) naively in the equation (D.8) for the real valued case, we get

flz,y) = (z,y) +

A\ 42 _
27 ’
which is indeed the correct result.

This example suggests that we should modify the stationary phase formulas such that
we can take the passage of stationary points to the complex into account. If f € C* is
not real analytic this can not be done directly, but we can use the apparatus of almost
analytic extensions, which provide a way to pass to the complex. So for f € C' we choose

an almost analytic extension f. Then under the conditions (D.6) the equation

fl(z,y) =0 (D.9)

will locally have a unique solution Z(y) € C? with Z(0) = 0. It turns out that if we choose
in the formula (D.4) almost analytic extensions for all quantities and insert Z(y) for =,
this gives indeed the correct result.

D.4. Theorem. Let f(x,y) be a complex valued C* function in a neighborhood of (0,0)
in RH™ ) satisfying (D.6), let f be an almost analytic extension of f, and (y) be the
solution of (D.9). Then for u € C* with support in a neighborhood of (0,0)

: o Eon » ~1/2 —
/el)‘f(m’y)u(x,y) dz — eNEWY) | det (A F" (3 (y), y)/27ri)} Z)\_’Lju < CN\Thod2

j<k

Y

(D.10)
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for A > 0, where m denotes the almost analytic continuation of the expression in Theorem
D.3 evaluated at Z(y).

One can avoid the use of almost analytic extensions if one uses the Malgrange prepara-
tion theorem. If we introduce the ideal generated by the derivatives of the phase function,

I1(0f /0xq,...,0f]0xq) ,

then the discussion at the end of Appendix C shows that we can replace f(Z(y),y) by
f%y) = f(z,y) mod I. More precisely, f° is determined by the representation in Theorem
C.2,

fz,y) = qu(x, y)of/0z; + fOy) .

Similarly one can replace all other almost analytically continued functions in (D.10) by
their representatives modulo the ideal 1.

If one wants to determine the first terms of the asymptotic approximation in practice,
one has to find a way to deal practically with the almost analytic extensions. Fortunately
it turns out that it is sufficient to manipulate Taylor expansions, i.e. polynomials or formal
power-series. Let

j{:jhﬁxayﬂ
a,p

be the Taylor series of f(z,y) around (0, 0), viewed as a formal power series, and make an
ansatz for z(y) as a formal power series, too,

z(y) = vay’y .

Then the equations f, = 0,i=1,...,d, for these formal power series read
a—90;
S fopee ) =0,
a>0,8 o
where 0; = (0,...,1,...,0) with the one on the i’th place. Equating now equal powers of

y gives a set of equations for z, in terms of the f, g which can be solved recursively.
We will determine the leading order contributions; the Taylor series for f.(z,y) around
(0,0),

Falm,y) = £2(0,0) + f1,(0,0)y + f2,(0,0)z + -+,
together with the condition f.(0,0) = 0 gives that

z(y) = =[£2:(0,0)] " f7,(0,0)y + O(y*) .
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For the phase-function f(z(y),y) we then get

F(@(y),v) = £(0,0) + (£1(0,0), g_;y> +(f1(0,0), )
0 0 0 0
+ %[(y, Fogy) + <a—zy, fagv) + v, f",za—‘”m + (a—xy, f;’,ya—xy)] +0(y?)

= £(0,0) + (£,(0,0),y) + (y,[y,y valfisl ' frgly) + 0@,

where the second-order derivatives are taken at (0,0). Notice that since Im f > 0 and
Im f(0,0) = 0 we must have

Im f/(0,0) =0 ,
and furthermore

Im[f" o g:l [ n 1 ]

Y,y

For the case that the imaginary part is strictly positive we will give an explicit formula for
the leading part of the asymptotic expansion in the stationary phase theorem. By Lemma
3.2.6 we then have

M@ _ MO0 0003 Wlly~FallE T ) = O(A-3/2) |

and

oM (EW)y) u(z(y), y) u(0,0) _ e
<[det(Af"(5c() y)/2mi)]'/? [det(/\f”(o,o)/Qm)]lﬂ) o=,

hence we get

iAf(z Uu i / 1 1"oren 1 -
/e’\f( Wu(z,y) do = N ITE MW+ Wl FalZal T ) (1 + O(A12)) |

where on the right hand side u, f and all derivatives of f are taken at (0,0). When one takes
higher order terms in the Taylor expansions of u and f into account, one systematically gets
explicit formulas for arbitrary order terms in the asymptotic expansion. If the imaginary
part of the quadratic form [f), — fy  [fa,]""fa,] is not strictly posmve one can choose
a splitting y = (v, y") such that the imaginary part vanishes on the y' subspace and is
strictly positive on the y” subspace. Then we can view 3’ as a parameter as in the real
case and perform the above calculations only with respect to y”.

Until now we have only discussed the case that the stationary point is nondegenerate, i.e.
the matrix of second derivatives of the phase function is non-degenerate at the stationary

point. The inclusion of higher order stationary points poses no essential difficulty. The
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characteristic phenomenon which appears is that the leading term has other powers of .
As an example consider the simple case that z € R and f(z) = z*, k¥ € N. Then for
u € C§P(R) we get

ok dp — A~VEAD (1/k) sin((1 — 1/k)m/2)/k w(0) + O(A~2/%) if k is odd
/ e ulw) dv = ATVEIT (1/K)el /2 [k u(0) + O(A~3/F) if k is even

a complete asymptotic expansion is contained in [H6r83]. With the standard techniques
used in the proof of the stationary phase formula the general multi-dimensional case can
be reduced to these examples.

The situation becomes more complicated if additional parameters are present, and
one needs uniform asymptotic expansions. The problem is that a slight perturbation of
a phase-function with degenerate critical point will generically produce a phase-function
with non-degenerate critical point. Therefore, if we have a family of phase-functions we
expect them to be degenerate only at isolated points of the parameter space. A simple
example is given by the function

1
f(z,y) = gﬂf?’ +yz

with z € R and y € R. Then the stationary points are given by

vy, —-ivlyl ify >0, (D.11)

so for y < 0 we have two non-degenerate stationary points, for y = 0 we have a degenerate
critical point and for y > 0 the critical points have moved to the complex, hence there is
no stationary point. The first case we look at is that the amplitude v is constant. Then
the integral gives the well-known Airy-function

/ei)\(w?’/3+yw) dr = \"1/3 Ai(/\2/3y) .

The asymptotic expansion of Ai(z) in the two regions z > 0 and z < 0, see, e.g.,[AS84],
gives the expected behavior of the integral,
A1/ AT(N/) {ﬁy/ sin(2Ay%/2/3 +m/4) ify >0

1 _2)\3/23 . )
i€ if y <0

therefore the Airy-function describes the transition between these two asymptotic regimes
while passing the degenerate stationary point at y = 0.

Let us now discuss the more general case that an amplitude-function u(z,y) € C* with
compact support close to (0,0) is present,

/u(x’y)ei/\[z3/3+yzc+b(y)] dr .
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By Theorem C.1 we can divide u(z,y) by 2% + v,

u(z,y) = uo(y) + ur(y)z + (2% + y)g(,y) - (D.12)

Inserting this relation into the integral and using

. 10 ;,
2 iNz®/3+ya+b(y)] — eiA[z®/3+yz+b(y)]
(2" +y)e oz

we get with partial integration
/U(JT, y)ei)\[z3/3+ym+b(y)] dz = ei)\b(y) ( / ei)\[m3/3+y$ dl’UO ) / z3/3+yz] da:ul(y)

/ 2*/3+ya] 4 m)

— M) ()\—1/3 Ai(AQ/Sy)uo(y) 4+ A2BAY ()\2/3 Yui(y)

6g($ y) 1)\[ 3/3+yz)

The integral in the last line is of the same form as the one we started with, with u replaced
by 0g/0x, so by iterating this procedure we arrive at a representation

/ ula, y)eP O] dp = O (AT AI )us (A, ) + A7 AT Py)us (0, ) |

with

A y) ~ Zuj,u(y))‘_
v=0

The drawback of this method is that we do not know the functions u; explicitly. From
(D.12) and the equations one obtains by differentiating on that one can determine the
terms of the Taylor-expansion of u;(y). For the first two terms we get

up(y) = u(0,0) + (9u/dy(0,0) — 8*u/0827(0,0)/2)y + O(y°)
u1(y) = Ou/0x(0,0) + (0%u/0x0y(0,0) — 8*u/0x>(0,0)/6)y + O(y?) ,

and this can be continued.

So far we have discussed the case that the phase-function is of the special form z3/3 +
yx + b(y). We now sketch how one can reduce the general case of a phase-function f(z,y)
which has a second order zero as a function of z at (0,0). So assume that 9, f(0,0) = 0
and 92f(0,0) = 0, but 82f(0,0) # 0, then by Theorem C.1, with k£ = 3, there exists a
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function T'(z,y) with 7(0,0) = 0 and 07/02(0,0) > 0 and C'* functions a(y), b(y) with
a(0) = 0, such that

fla,y) =T°/3+a(y)T + b(y) .

By taking 7" as a new variable in the integral one can reduce the general case to the special
case discussed before. This procedure can as well be applied in d dimension. The general
result for a third order stationary point is, quoted from [Ho6r83]:

D.5. Theorem. Let f(x,y) ba real valued C* function near 0 in R*™™ such that

f;(0,0):O ) ranklecl,zc(oao):d_l ’
(X,0/0z)°f(0,0) #£0 if0# X € Ker f; (0,0) .

Then there exist real valued C* functions a(y), b(y) near 0 such that a(0) = 0, b(0) =
£(0,0) and

/u(x, y)eN@Y) g ~ AW \—(d-1)/2 </\_1/3 Ai(a(y)A\??) Z o, (Y)A™”
v=0

A AT (a(y) ) S ul,u<y>x") |
v=0

provided that v € C§° with support close enough to 0; here u;, € Cg°.

The case that one has critical points of order £ — 1 > 2 is treated in the same way as
the second order case. One first uses the Malgrange preparation theorem, Theorem C.1, to
reduce the phase function to a polynomial of order k£, and then the general asymptotic ex-
pansion can be represented in terms of a special function, which is determined by this poly-
nomial, as a phase-function. For a more detailed description we refer to [Dui74, AGV88|.
The general problem with higher order degeneracies is that the higher the order of it is,
the less is known about the special functions appearing in the asymptotic expansions. The
properties of the Airy function are very well known. The function appearing in the next
order is called Pearcy’s-integral, which is already less intensively studied and in higher
orders even less is known.
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Zusammenfassung

Die vorliegende Dissertation ist dem Studium der Eigenschaften von quantenmechanis-
chen Systemen im semiklassischen Grenzfall gewidmet. Insbesondere der Einflul des klas-
sischen Systems auf die Eigenschaften des quantenmechanischen Systems, vor allem auf
die Struktur der Eigenfunktionen, steht im Zentrum des Interesses. Das breite Spektrum
der moglichen Eigenschaften des klassischen Systems kann sich in vielfaltiger Weise im
korrespondierendem quantenmechanschen System widerspiegeln. Ein Leitmotiv dieser Ar-
beit ist die Frage, wie sich die Existenz von invarianten Gebieten, oder allgemeiner von
invarianten Maflen, im Phasenraum auf das quantenmechanische System auswirkt. FEin
klassisches System, dessen Phasenraum ein invariantes Gebiet enthilt, 148t sich zerlegen
in die Einschrankung des Systems auf dieses Gebiet und in die Einschrankung des Systems
auf das Komplement des Gebietes. Damit erhdlt man eine Zerlegung des klassischen Sys-
tems in zwei Teilsysteme, die nicht miteinander wechselwirken. Die Frage ist nun, ob sich
das quantenmechanische System, zumindest ndherungsweise, dhnlich verhélt, namlich wie
zwei Teilsysteme, die nicht oder nur schwach miteinander wechselwirken. So erwartet man
dann z.B., daf} die Eigenfunktionen bzw. ihre Wignertransformierten, im semiklassischen
Limes auf den jeweiligen invarianten Gebieten im Phasenraum konzentriert sind. Weiterhin
mochte man natiirlich wissen, wie sich weitere Charakteristika der klassischen Dynamik,
wie Ergodizitit oder Integrabilitat, auf die Struktur der Eigenfunktionen auswirken.

Die mathematischen Methoden, mit denen man solche Fragen studieren kann, stammen
hauptséichlich aus dem Gebiet der mikrolokalen Analysis. Wir geben einen ausfiihrlichen
Uberblick iiber dieses Gebiet, von einer semiklassischen Perspektive aus. Die Methoden
aus der mikrolokalen Analysis geben einen rigorosen Rahmen, in dem man sehr schén
verstehen kann, wie die Strukturen der klassischen Mechanik im Hochenergie-Limes aus
der Quantenmechanik hervorgehen. Wir zeigen insbesondere, wie man den iiblichen Forma-
lismus so modifizieren kann, dal der semiklassische Limes in einer formal befriedigenden
Weise ausgefiihrt werden kann.

Eine haufig auftauchende Klasse von quantenmechanischen Zustanden bilden die so-
genannten Lagrange Zustande. Diese sind im semiklassischen Limes auf einer Lagrange
Untermannigfaltigkeit des Phasenraumes konzentriert. Wir studieren eine allgemeinere
Klasse von Lagrangeschen Zustidnden, bei denen die Lagrange Untermannigfaltigkeit kom-
plex werden kann; in dieser allgemeineren Klasse sind auch die kohérenten Zustinde ent-
halten. Die Ehrenfest Zeit, die angibt, wie lange die quantenmechanische Zeitentwicklung
der klassischen folgt, wird in Abhéngigkeit von der Chaotizitit des klassischen Systems



untersucht.

Kohérente Zustinde werden dann zur Einfiihrung der Anti-Wick Quantisierung be-
nutzt. Dieses Quantisierungsverfahren erlaubt die Quantisierung von nicht-glatten Distri-
butionen. Wir studieren insbesondere die Anti-Wick Quantisierung von Maflen und zeigen,
dafl die Norm dieser Operatoren durch die Hausdorff Dimension der Mafle bestimmt ist. Im
Weiteren wird die Anti-Wick Quantisierung dann benutzt um approximative Projektions-
operatoren als Quantisierung von charakteristischen Funktionen von offenen Teilmengen
des Phasenraumes einzufiihren.

Die Konstruktion der approximativen Projektionsoperatoren assoziiert mit invarianten
Gebieten des Phasenraumes, und das Studium ihrer Eigenschaften gehort zu den zentralen
Resultaten der Arbeit. Wenn das invariante Gebiet im klassischen System stabil ist unter
kleinen Storungen des klassischen Systems, dann gelingt die Konstruktion von approxima-
tiven Projektionsoperatoren, deren Kommutator mit dem Hamiltonoperator kleiner ist als
jede Potenz des semiklassischen Parameters. Dieses zunachst vielleicht recht technisch an-
mutende Resultat hat ein Reihe von wichtigen Konsequenzen. Zum einen ergibt sich damit
eine approximative Zerlegung des quantenmechanischen System in zwei Teilsysteme, die
fast invariant sind unter der Zeitentwicklung. Die Zeitskala, iiber die die Teilsysteme invari-
ant bleiben, ist dabei polynomial im semiklassischen Parameter und damit deutlich grofier
als die Ehrenfest Zeit. Weiterhin lasst sich zum einen die Existenz von approximativen
Losungen der stationdren Schrodingergleichung, sogenannter Quasimoden, in den einzel-
nen Teilsystemen folgern, und zum anderen folgt ein lokales Quantenergodizitatstheorem,
welches eine Verallgemeinerung des bekannten Theorems auf den Fall ergodischer Kompo-
nenten darstellt.

Im letzten Kapitel diskutiere ich dann allgemeine Eigenschaften von Quasimoden und
einige konkrete Konstruktionen. Dabei steht das Studium der Stabilitat von Quasimoden
unter kleinen Storungen im Vordergrund, welches zu zwei Vermutungen iiber generische
Zusammenhinge zwischen Quasimoden und Eigenfunktionen fiihrt. An konkreten Beispie-
len wird dann diskutiert, daf} die Stabilitatsbedingung nicht redundant ist, d.h. es gibt
Quasimoden, die nicht stabil sind.



