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Abstract
We develop Wigner’s approach to a dynamical transition state theory in phase
space in both the classical and quantum mechanical settings. The key to our
development is the construction of a normal form for describing the dynamics in
the neighbourhood of a specific type of saddle point that governs the evolution
from reactants to products in high dimensional systems. In the classical case
this is the standard Poincaré–Birkhoff normal form. In the quantum case we
develop a normal form based on the Weyl calculus and an explicit algorithm
for computing this quantum normal form. The classical normal form allows
us to discover and compute the phase space structures that govern classical
reaction dynamics. From this knowledge we are able to provide a direct
construction of an energy dependent dividing surface in phase space having
the properties that trajectories do not locally ‘re-cross’ the surface and the
directional flux across the surface is minimal. Using this, we are able to
give a formula for the directional flux through the dividing surface that goes
beyond the harmonic approximation. We relate this construction to the flux–
flux autocorrelation function which is a standard ingredient in the expression
for the reaction rate in the chemistry community. We also give a classical
mechanical interpretation of the activated complex as a normally hyperbolic
invariant manifold (NHIM), and further describe the structure of the NHIM.
The quantum normal form provides us with an efficient algorithm to compute
quantum reaction rates and we relate this algorithm to the quantum version
of the flux–flux autocorrelation function formalism. The significance of the
classical phase space structures for the quantum mechanics of reactions is
elucidated by studying the phase space distribution of scattering states. The
quantum normal form also provides an efficient way of computing Gamov–
Siegert resonances. We relate these resonances to the lifetimes of the quantum
activated complex. We consider several one, two and three degree-of-freedom
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systems and show explicitly how calculations of the above quantities can be
carried out. Our theoretical framework is valid for Hamiltonian systems with
an arbitrary number of degrees of freedom and we demonstrate that in several
situations it gives rise to algorithms that are computationally more efficient than
existing methods.

PACS numbers: 82.20.Ln, 05.45.−a, 34.10.+x

1. Introduction

The subject of this paper is transition state theory—classical and quantum. Transition state
theory (TST) (sometimes also referred to as ‘activated complex theory’ or the ‘theory of
absolute reaction rates’) is widely regarded as the most important theoretical and computational
approach to analysing chemical reactions, both from a qualitative and a quantitative point
of view. The central ideas of TST are so fundamental that in recent years TST has
been recognized as a very natural and fruitful approach in areas far beyond its origin of
conception in chemistry. For example, it has been used in atomic physics [JFU00], studies
of the rearrangements of clusters [KB99, KB02], solid state and semi-conductor physics
[JTDF84, Eck95], diffusion dynamics in materials [VMG02], cosmology [dOdAST02] and
celestial mechanics [JRL+02, WBW05b].

The literature on TST is vast, which befits the importance, utility, breadth, scope and
success of the theory. Searching ISI Web of Knowledge on the phrase ‘transition state
theory’ yields more than 17 600 hits. Searching Google with the same phrase gives more than
41 000 000 hits. There have been numerous reviews of TST, and the relatively recent review
of [TGK96] is an excellent source for earlier reviews, historical accounts, books, pedagogical
papers and handbook chapters dealing with TST. Moreover, [TGK96] is notable from the point
of view that in little more that 10 years it has attracted more than 458 citations (and it also
contains 844 references)!

Certainly the existence of this vast literature begs the question ‘why does there need
to be yet another paper on the theoretical foundations of TST, what new could it possibly
add?’ The one word answer to this question is ‘dynamics’. Advances in experimental
techniques over the past twenty years, such as, e.g. femtosecond laser spectroscopy, transition
state spectroscopy and single molecule techniques [Neu92, PZ95, Zew00], now provide
us with ‘real time’ dynamical information on the progress of a chemical reaction from
‘reactants’ to ‘products’. At the same time, these new experimental techniques, as well
as advances in computational capabilities, have resulted in a growing realization among
chemists of the ubiquity of nonergodic behaviour in complex molecular systems, see, e.g.
[SY04, BHC05, BHC06, Car05]. All of these results point to a need to develop a framework
for studying and understanding dynamics in high dimensional dynamical systems and recently
developed tools in computational and applied dynamical systems theory are giving new
insights and results in the study of the dynamics of molecular systems with three or more
degrees of freedom. In particular, we will show how these recent advances in analytical and
computational techniques can enable us to realize Wigner’s dynamical picture of transition
state theory in phase space for systems with three or more degrees of freedom. However,
to set this in context we first need to describe a bit of the historical background and
setting of TST.
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Transition state theory was created in the 1930s, with most of the credit being given to
Eyring, Polanyi and Wigner, who are referred to as the ‘founding trinity of TST’ in Miller’s
important review on chemical reaction rates [Mil98b]. Nevertheless, important contributions
were also made by Evans, Farkas, Szilard, Horiuti, Pelzer and Marcelin, and these are described
in the discussions of the historical development of the subject given in [LK83, PT05a].

The approach to TST taken by Eyring [Eyr35] emphasized thermodynamics (see the
perspective paper of [Pet00]). The approach of Wigner [Wig38] on the other hand is based
on classical mechanics (see the perspective paper of [Gar00]). It is the dynamical approach of
Wigner that is the focus of this paper. Despite the fact that the original framework of TST is
classical mechanics, it is natural to consider quantum mechanical versions of this approach to
reaction dynamics. We will first describe the classical mechanical setting, and then consider the
quantum mechanical version, and we will emphasize how much of the structure and philosophy
of the classical approach influences the quantum approach.

1.1. Transition state theory: classical dynamics

To begin with, we first examine the assumptions of classical TST, as set out by Wigner. Wigner
begins by stating that he considers chemical reactions in a setting where the equilibrium
Maxwell–Boltzmann velocity and energy distributions are maintained (see [Mah74] for a
detailed discussion of this point) and for which the potential energy surface is known [Gar00].
He then gives the following assumptions from which he derives TST:

1. the motion of the nuclei occurs on the Born–Oppenheimer potential energy surface
(‘electronic adiabaticity’ of the reaction)

2. classical mechanics adequately describes the motion of the nuclei
3. there exists a hypersurface in phase space dividing the energy surface into a region of

reactants and a region of products having the property that all trajectories that pass from
reactants to products must cross this dividing surface precisely once.

It is important to note that Wigner clearly developed his ideas in phase space, the arena for
dynamics. It is important to keep this in mind since a great deal of later developments occur
in configuration space, in which certain dynamical properties are obscured.

From the modelling point of view, the first two assumptions are of a very different nature
from the third. The first two are central to developing the model, or dynamical system (i.e.
determining the potential energy surface and Hamiltonian function). As a result, once a
dynamical system describing the reaction has been developed the third ‘assumption’ cannot
really have the status of an assumption. Rather, such a hypersurface satisfying these properties
must be shown to exist for the dynamical system. Of course, in practice this is exactly how the
theory is utilized. One starts with a dynamical system describing the reaction, and then one
attempts to construct a ‘dividing surface’ having the required characteristics. It is precisely
this third ‘assumption’ that is at the heart of this paper and from which, as we shall see, many
dynamical consequences flow.

We will be concerned with dynamics on a fixed energy surface. In this paper ‘energy’
means the total energy of the system, e.g. the sum of the kinetic and potential energies. More
mathematically, the energy surface is the level set of the Hamiltonian function3. This is
important to keep in mind because in not an insignificant portion of the relevant literature the
meaning of the phrase ‘energy surface’ is actually the ‘potential energy surface’, and a great

3 Hamiltonian functions can be more general than the sum of the kinetic and potential energy terms. They could
contain magnetic terms or Coriolis terms, for example. Nevertheless, we will still refer to the level set of the
Hamiltonian function as the ‘energy surface’.
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deal of effort is expended in attempting to infer dynamical phenomena from the ‘topography’ of
the potential energy surface. Certainly for one degree-of-freedom (DoF) Hamiltonian systems
(i.e. one configuration space coordinate and one associated momentum) one can understand all
possible dynamics from the shape of the potential energy surface. This is definitely not true for
more than one DoF (or else dynamical phenomena such as ‘chaos’ would have been discovered
many years earlier). However, two DoF Hamiltonian systems, where the Hamiltonian is the
sum of the kinetic and potential energies, do allow for certain constructions based solely on
the potential energy surface that imply important dynamical phenomena. We will survey these
later in this introduction. We emphasize that similar constructions using the potential energy
surface for systems having more than 2 DoF simply do not work in the same way as they do
for 2 DoF.

Now to realize assumption 3, on a fixed energy surface, we need to choose a dividing
surface that will ‘separate’ the energy surface into two parts (‘two parts’ is a bit too simplistic,
but we will come back to that later)—one part corresponding to the reactants and the other to
products. The dividing surface would have the additional (dynamical) property that trajectories
evolving from reactants to products cross it only once. Again, these reactant and product
regions are typically defined via the potential energy surface. They are often interpreted as
‘potential wells’ (i.e. local minima of the potential energy function) that are ‘separated’ by a
‘saddle point’ and a surface (in configuration space) passing through a neighbourhood of the
saddle point serves as the dividing surface [Pec81]. We will show that for systems with three
or more DoF such a configuration space approach, in several different ways, does not allow
one to realize Wigner’s original construction of TST. In fact, this is a central message of this
paper. It can be misleading, and even wrong, to attempt to infer dynamical phenomena from
the topography of the potential energy surface.

In the series of papers [WWJU01, UJP+01, WBW04a, WW04, WBW04b, WBW05a,
WBW05c] the fundamental framework for phase space TST is developed. The starting point is
classical mechanics and a Hamiltonian function describing the system (the same as [Wig38]).
The Hamiltonian can be expressed in any convenient set of coordinates, have any number, d,
degrees of freedom (DoF) and does not have to be of the form ‘kinetic plus potential energy’,
e.g. it can include rotational or magnetic terms.

With the Hamiltonian function in hand, the next step is to locate particular saddle-like
equilibrium points of the associated Hamilton’s equations that are of a certain type. Namely,
the matrix associated with the linearization of Hamilton’s equations about the equilibrium has
a pair of real eigenvalues of opposite signs (±λ) and 2d − 2 purely imaginary eigenvalues
occurring in complex conjugate pairs (±iωk, k = 2, . . . , d). Such equilibria are called saddle-
centre-. . .-centres, and structures associated with these equilibria provide the fundamental
mechanism for ‘transformation’ in a large, and diverse, number of applications (some listed at
the beginning of this introduction), whose dynamical consequences have remained a mystery.

Of course, locating saddles is in the spirit of classical transition state theory, but there
is an important difference here. We are concerned with the dynamical consequences of
certain types of saddles of Hamilton’s equations in phase space. The usual approach is to
consider saddles of the potential energy surface (the setting of the ‘landscape paradigm’
[Wal04]). However, if the Hamiltonian has the form of the sum of the kinetic energy
and the potential energy, then there is a correspondence between the rank one saddles of
the potential energy surface and the saddle-centre-. . .-centre type equilibria of Hamilton’s
equations. But here we emphasize the phase space setting and the influence of this saddle
in the dynamical arena of phase space. We reiterate that a central point of ours is that it
is difficult, and often misleading, to try to infer dynamics from properties of configuration
space.
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Next we seek to understand the phase space geometry near this saddle-centre-. . .-
centre (henceforth referred to as a ‘saddle’) equilibrium point of Hamilton’s equations. An
understanding of the geometry will give rise to a set of coordinates that will enable us to
explicitly compute the phase space structures that govern transport and to quantify their
influence on trajectories. This set of coordinates is realized in an algorithmic manner through
the use of the Poincaré–Birkhoff normal form procedure. These normal form coordinates are
central to our theory and the resulting analytical and computational techniques. In particular,
they enable us to show that ‘near’ the saddle the energy surface has what we call the ‘bottleneck
property’ which facilitates the construction of an energy dependent dividing surface. This
dividing surface has the ‘no-recrossing’ property and the flux across the dividing surface is
‘minimal’ (in a sense that we will make precise). Moreover, the coordinates also naturally
give rise to a ‘dynamical reaction path’. We want to describe these notions in a bit more detail
and place them in the context of the chemistry literature.

Further, we note that historically it has been well recognized that the computation of
quantities associated with chemical reactions is greatly facilitated by adopting a ‘good’ set of
coordinates [JR61, EM74, Mil76, Mil77]. In particular, if the Hamiltonian is separable, i.e.
there is a set of configuration space coordinates in terms of which the equations of motion
decouple, then the choice of a dividing surface with the no-recrossing property is trivial [Gar00].
This situation is extremely special and therefore almost irrelevant for chemical reactions.
However, the normal form method shows that such a decoupling can always be obtained in
the neighbourhood of the dividing surface through the symplectic (‘canonical’) transformation
of the full phase space coordinates (i.e. a symplectic transformation mixing the configuration
space coordinates and the conjugate momenta). The normal form thus is a constructive way
of obtaining ‘good’ coordinates in phase space.

The bottleneck property of the energy surface and the energy dependent dividing surface.
The geometry or ‘shape’ of a fixed energy surface has received little attention, as opposed
to consideration of the geometry or ‘shape’ of potential energy surfaces. This is unfortunate
since an understanding of the geometry of the energy surface is essential for constraining
and interpreting the possible global dynamics. Nevertheless, the lack of attention to this
issue is understandable since such considerations give rise to extremely difficult mathematical
problems. As an example, the importance of an understanding of the topology of the energy
surface for an understanding of the dynamics of the three body problem was emphasized by
Poincaré [Poi93a, Poi93b, Poi93c], and work on this problem has involved some of the giants
of mathematics of the 20th century and has resulted in the creation of many new areas of
mathematical research. Very recent results on the three body problem, as well as a discussion
of the history of the subject, can be found in [MMW98], and a discussion of the developments of
an appropriate computational framework for studying such questions for general Hamiltonian
systems can be found in [KMM04]. We would expect that similar studies of the structure of
the energy surfaces for standard Hamiltonian’s arising in studies of reaction dynamics will be
similarly fruitful and lead to new global dynamical insights.

However, there are ‘local’ results that describe the geometry of the energy surface that are
very relevant to studies of reaction dynamics and TST. In particular, for a range of energies
above that of the saddle, the (2d − 1)-dimensional energy surface locally has the structure
of the product of a (2d − 2)-dimensional sphere with the real line, S2d−2 × R. We say that
in this region of the phase space the energy surface has the ‘bottleneck property’ because it
is (locally) separated into two pieces: S2d−2 × R+ and S2d−2 × R−, and S2d−2 × {0} is the
dividing surface that separates these two pieces of the energy surface, and we identify the two
pieces separated by this dividing surface as ‘reactants’ and ‘products’. It will turn out that R
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corresponds to a natural (energy dependent) ‘reaction coordinate’ and S2d−2 will correspond
to (energy dependent) unstable bath modes, or vibrations ‘normal’ to the reaction coordinate.

It should be clear that the geometry of the energy surface, as the energy varies, is an
important feature of reaction dynamics. In particular, the geometry changes with energy and
the ‘bottleneck’, S2d−2 ×R, may deform into a more complicated shape as the energy is further
increased above that of the saddle. This can lead to the ‘breakdown’ of the validity of transition
state theory in the sense that we are not able to construct a dividing surface separating reactants
from products that is not recrossed. We note that an ‘energy limit’ for TST has been discussed
in [GL77,SK78]. Looking at it another way, the energy surface deforms in such a way that the
distinction between reactants and products becomes unclear. This is one way in which TST
can ‘break down’. We will mention one other way after we have introduced the notion of a
normally hyperbolic invariant manifold.

The ‘no-recrossing’ property and minimal flux. The dividing surface described above can
be realized through the normal form computations and transformations [WWJU01, UJP+01].
The high dimensional spherical geometry, S2d−2, is significant in several ways. A sphere is
separated into two parts along its equator, which in this high dimensional case is given by
S2d−3, the (2d − 3)-dimensional sphere4. The Hamiltonian vector field is transverse to each
hemisphere, but in an opposite sense for each hemisphere. This indicates the evolution from
reactants to products through one hemisphere, and the evolution from products to reactants
through the other hemisphere. Transversality of the Hamiltonian vector field to a hemisphere is
the mathematical property one needs to show that there are ‘no local recrossing of trajectories’,
as is shown in [UJP+01] and in this paper. The Hamiltonian vector field is tangent to the
equator of the sphere5. Mathematically, this is the condition for the equator, S2d−3, to be an
invariant manifold. More precisely, it is saddle-like in stability and an example of a normally
hyperbolic invariant manifold, or NHIM [Wig94, WWJU01, UJP+01]. The NHIM has the
physical interpretation as the ‘activated complex’—an unstable super molecule poised between
reactants and products.

Except for the equator, S2d−3 (which is a normally hyperbolic invariant manifold), the
dividing surface thus is locally a ‘surface of no return’ in the sense that all trajectories that
start on the dividing surface exit a neighbourhood of the dividing surface [UJP+01]. Most
importantly for reaction dynamics, the energy surface has the ‘bottleneck property’. That is,
our dividing surface locally divides the energy surface into two, disjoint components, which
correspond to reactants and products. Therefore the only way a trajectory can pass from
one of these components of the energy surface to the other is to pass through the dividing
surface. The issue of ‘recrossing’ is an important part of the choice of the dividing surface.
Truhlar [Tru98] distinguishes two types of recrossing: local and global recrossing. Local
recrossing cannot occur with our choice of dividing surface. However, global recrossing is
a very different matter. If the energy surface is compact (i.e. closed and bounded, for our
purposes) then the Poincaré recurrence theorem [Arn78] implies that global recrossing must
occur for almost all trajectories crossing the dividing surface. Moreover, the existence of
homoclinic orbits and heteroclinic cycles may also be an intrinsic feature of the dynamics
[WBW04a, WBW04b, WBW05a, WBW05b, WBW05c]. Their existence also implies that
global recrossing cannot be avoided regardless of the choice of transition state; in other words,

4 Think of the familiar, and easily visualizable, case of the two-dimensional sphere, S2. It is separated into two
hemispheres by its equator, a sphere of one less dimension, S1.
5 If the Hamiltonian vector field is transverse to one hemisphere, transverse to the other hemisphere in the opposite
directional sense, and it varies smoothly in phase space, then we can view the equator as where the Hamiltonian vector
field ‘changes direction’.
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global recrossing is a fundamental property of the dynamics and its presence does not therefore
indicate the limitations of any particular method for constructing a dividing surface.

Wigner [Wig38] pointed out that the effect of trajectories recrossing the dividing surface
would result in ‘too high values of the reaction rate’. This observation naturally leads to
the notion of variational transition state theory, where the idea is to vary the choice of
dividing the surface in such a way that the flux across the dividing surface attains a minimum
value (see [Kec67] and the review paper of [TG84]). The latter review paper contains 206
references and has more than 390 citations, which is indicative of the fact that variational
transition state theory is a huge subject in its own right. Much of the work that falls under
the heading of ‘variational transition state theory’ involves dividing surfaces in configuration
space (see [JJ01, BJ05] for a systematic development of this approach). These beautiful
results obtained by our predecessors can with modern day mathematical tools be formulated
differently, leading to more general results. The beginnings of a general framework for such
an approach was first given by [Mac91], and this was used in [WW04] to show that the
dividing surfaces computed by the normal form approach described in [WWJU01, UJP+01]
have ‘minimal flux’. It is worth re-emphasizing, that our dividing surface construction and our
flux calculations are carried out in phase space, not configuration space. The work in [WW04]
implies that one cannot find a surface in configuration space for systems with more than 2 DoF
that is free of local recrossing, and therefore has minimal flux (unless the system is given in
coordinates in which the Hamiltonian is separable or has some very special symmetries).

It is worth pointing out here that flux across a dividing surface is a ‘local property’ with
respect to the given surface, i.e. it does not require integration of trajectories for its computation.
If one makes a ‘bad’ choice of dividing surface that is not free of local recrossing then one must
compute trajectories to correct for the local recrossing effect (in the chemistry literature these
are referred to as ‘dynamical corrections’ to the rate, see [MM97,Pri05] for specific examples of
the effect of recrossing and how it is treated). This is particularly apparent when one carefully
examines a standard ingredient in the reaction rate in use in the chemistry community—the
flux–flux autocorrelation function for which we show that the use of our dividing surface and
phase space approach allows the computation of this function without the long time integration
of trajectories.

In summary, our work on the geometry of reaction dynamics allows for a careful
analysis and realization of Wigner’s [Wig38] dynamical version for transition state theory.
The dynamical foundations of Wigner’s transition state theory received a great deal of
attention in the 1970s in a series of seminal papers by Child, McLafferty, Pechukas and
Pollak [PM73, PP77, PP78, PP79a, PP79b, PCP80, PC80, CP80, Pec81], and there is a wealth
of dynamical ideas in these works. However, it is important to realize that these works focus
almost entirely on 2 DoF, and most of the results have not been generalized to 3 or more DoF.
Nevertheless, for 2 DoF they show how to construct a dividing surface without recrossing from
the projection of a periodic orbit, the Lyapunov orbit associated with a saddle equilibrium point,
to configuration space—the so-called periodic orbit dividing surface (PODS) [PM73, PP78].
In addition to this construction being limited to 2 DoF systems, the Hamiltonian must be of
type ‘kinetic plus potential’—Coriolis terms due to a rotating coordinate system or a magnetic
field are not allowed.

The generalization to more than two degrees of freedom and to more general Hamiltonians
has posed a major problem for decades. The reasons for the problems are twofold. On the
one hand, a construction based on configuration space, as in the case of the PODS, simply
does not work for systems with more than two degrees of freedom, as discussed in [WW04].
On the other hand, it was not clear what replaces the periodic orbit in higher dimension. For
more than two degrees of freedom a periodic orbit lacks sufficient dimensionality to serve as
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a building block for the construction of a dividing surface. In fact, a completely new object,
a so-called normally hyperbolic invariant manifold (NHIM) [Wig94], takes the place of the
periodic orbit in two degrees of freedom. It is interesting to recall a remark of Pechukas from
his influential review paper [Pec81]:

It is easy to guess that generalized transition states in problems with more degrees of
freedom must be unstable invariant classical manifolds of the appropriate dimension,
but to our knowledge no calculations have been done.

Our work gives a precise characterization of these invariant manifolds in terms of the NHIM,
as well as shows exactly what calculations are required to realize them in specific systems.6

The NHIM is not only the building block for the construction of a dividing surface in arbitrary
dimension, but it also forms the basis for locating the transition pathways for reactions in terms
of the stable and unstable manifolds of the NHIM [WBW04b].

Finally, we remarked earlier that one way in which TST can ‘break down’ is through
deformation of the energy surface. Another way in which it may break down is through
bifurcation of the NHIM. For 2 DoF systems the NHIM is a periodic orbit and bifurcation theory
for periodic orbits in Hamiltonian systems is well developed [Mey70, MH92]. Bifurcation of
the NHIM in 2 DoF systems can lead to stable motions that ‘trap’ trajectories in the transition
region. This has been observed in [CP80,MM97]. At present there exists no general bifurcation
theory for NHIMs in systems with d DoF, d � 3, and this poses a limitation to the range of
validity of our approach. In this case the relevant NHIMs are (2d − 3)-dimensional and
contain their own nontrivial dynamics. The development of bifurcation theory for such objects
promises to be a challenging and interesting mathematical problem that should yield new
insights into reaction dynamics.

The dynamical reaction path. Thus far we have described the geometry of the energy surface
near a saddle and the nature of the dividing surface that separates the energy surface near the
saddle into two regions corresponding to reactants and products. Now we want to describe
in more detail how trajectories approach, and move away from, the dividing surface. For this
purpose the notion of the reaction path arises.

Traditionally, the reaction path of a polyatomic molecule is the steepest descent path on the
potential energy surface (if mass-weighted Cartesian coordinates are used) connecting saddle
points and minima [MHA80]. Hence, it is a configuration space notion derived from properties
of the potential energy surface that is used to describe a specific dynamical phenomenon.
Similarly to TST, the literature related to reaction paths is vast. Searching ISI Web of
Knowledge on the phrase ‘reaction path’ yields more than 6600 hits. Searching Google with
the same phrase gives more than 7900 000 hits. It is often assumed that a reacting trajectory,
when projected into configuration space, will be ‘close’ to this reaction path, and much work
is concerned with developing configuration space coordinates (and their associated conjugate

6 It is perhaps worth pointing out that when reading the chemistry literature mathematicians might experience some
confusion surrounding the phrases ‘transition state’ and ‘dividing surface’. In some parts of the literature they are used
synonymously. In other parts, they have a very different meaning, as can be seen from the above quote of Pechukas.
A dividing surface cannot be an invariant manifold, or else trajectories could not cross the surface (trajectories on an
invariant manifold remain on that manifold for all time). The confusion probably arose out of the PODS theory. In that
situation the dividing surface and the invariant manifold (the periodic orbit) project to the same line in configuration
space. The projection of a reactive trajectory to configuration space intersects this line in configuration space. In the
three-dimensional energy surface, however, the trajectory intersects the dividing surface and not the periodic orbit.
The dividing surface is a two-dimensional sphere, S2, in this case (i.e. it is of one dimension less than the three-
dimensional energy surface) and the periodic orbit is an invariant one-dimensional sphere, S1, that forms the equator
of the sphere. The same situation holds for more than two DoF. The equator of our dividing surface is a normally
hyperbolic invariant manifold (but a periodic orbit does not have sufficient dimensions to satisfy this requirement).
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momenta) in which the dynamical equations that describe evolution ‘close’ to this reaction path
can be expressed (see, e.g., [Mar66a,Mar66b,Mar68,MHA80,Mil83,Nat92b,Nat92a,NGT+91,
Nat91, Nat04, GGB01, GGB04, GB05]). However, despite its fundamental importance in the
historical development of the subject of reaction dynamics, one might question the relationship
of this configuration based reaction path to the actual path taken in the course of the dynamical
evolution from reactants to products. In fact, in recent years numerous experiments have
shown that the actual dynamics may exhibit significant deviations from the ‘classical reaction
path’ [PCC+05, SSH02, AYAD03, LCZ+07, TLL+04, Bow06, HK06, PMOE06].

In this paper we show that the coordinates given by normal form theory also give rise to an
intrinsic dynamical reaction path, which is a trajectory on the energy surface. Its construction
follows from the dynamical properties associated with the NHIM (‘activated complex’). The
NHIM has stable and unstable manifolds which, as we will explain in detail, have the structure
of spherical cylinders, S2d−3 × R, and form the phase space conduits for reaction in the sense
that they enclose the reactive trajectories. Our dynamical reaction path forms the centre line
of these spherical cylinders and gives rise to a phase space description of an invariant ‘modal
partitioning’ along the reaction path corresponding to energy in the reacting mode and energies
in the (nonlinear) vibrational modes normal to the reaction path.

1.2. Transition state theory: quantum dynamics

Historically a great deal of effort—mostly in the chemistry community—has been devoted to
developing a quantum mechanical version of transition state theory (see the work by Miller
and coworkers [Mil98a]). Nonetheless, a quantum mechanical formulation of transition state
theory is still considered an open problem (see the recent review by Pollak and Talkner
[PT05b]). The nature of the difficulties is summed up succinctly by Miller [Mil98b]:

—the conclusion of it all is that there is no uniquely well-defined quantum version of
TST in the sense that there is in classical mechanics. This is because tunnelling along
the reaction coordinate necessarily requires one to solve the (quantum) dynamics
for some finite region about the TS dividing surface, and if one does this fully
quantum mechanically there is no ‘theory’ left, i.e. one has a full dimensional quantum
treatment which is ipso facto exact, a quantum simulation.

Part of the problem leading to this statement originates from (classical) transition state
theory where the necessary theoretical framework to realize transition state theory for multi-
dimensional systems as described in this paper has been developed only very recently. In
particular, this realization of classical TST requires one to work in phase space (as opposed to
configuration space). This also has consequences for the development of a quantum version of
transition state theory (which should reduce to classical TST in the classical limit and have all
the computational benefits of a ‘local’ theory as in the classical case). Again due to the lack of
a theoretical framework, most approaches to developing a quantum version of transition state
theory involve attempts to achieve a separation of the Schrödinger equation that describes the
chemical reaction. However, as in the classical case this separation does not exist. In contrast
to this, we will develop a quantum version of TST which is built in a systematic way on the
classical theory presented in this paper.

In the classical case the key idea to realize TST is to transform the Hamilton function
describing the reaction to normal form. In the quantum case we will establish a quantum
version of the classical normal form theory, and from this all of the quantum reaction dynamics
quantities will flow. In particular, the classical phase space structures that we found will
play a central role in the computation of quantum mechanical reaction quantities. Quantum
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mechanical computations are notable for suffering from the ‘curse of dimensionality.’ We
will see that the property of integrability which follows from the normal form in the classical
case will have a quantum manifestation that renders computations of ‘local’ reaction quantities
tractable for high dimensional systems. This leads to very efficient algorithms for computing,
e.g. quantum mechanical cumulative reaction probabilities and resonances.

Classical normal form theory is a standard technique of dynamical systems theory, and
there are many textbooks and tutorial papers that describe the subject. However, quantum
normal form theory is probably much less familiar in both the dynamical systems community
as well as the chemistry community. It is therefore useful to provide a discussion of the
background, context and historical development of the subject.

Symplectic transformations like those involved in the classical normal form theory also
have a long history in the study of partial differential equations. In the theory of microlocal
analysis they form one of the core techniques introduced in the late 1960s and early 1970s in the
fundamental papers by Egorov, Hörmander and Duistermaat, [Ego69, Hör71, DH72]. These
ideas lead naturally to the consideration of normal forms for partial differential equations, and
these were used to study the solvability and the singularities of solutions. The basic idea is
the following. One can associate with a linear partial differential operator a function on phase
space by substituting momenta for the partial differentials. The resulting function is called
the symbol of the operator. One can now use a symplectic transformation to find coordinates
in which the symbol has a particularly simple form. The crucial point now is that the tools
from microlocal analysis allow one to quantize such a symplectic transformation. The result
is a unitary operator which is called a Fourier integral operator and yields the transformation
of the original partial differential operator corresponding to the symplectic transformation of
its symbol (plus small error terms). This is the content of Egorov’s theorem [Ego69]. If
the transformed symbol assumes a simple form, then the the transformed operator assumes a
simple form too and its properties can be studied more easily. This construction was the basis
for many developments in the theory of linear partial differential equations in the 1970s, such
as the study of the solvability and the propagation of singularities (see, e.g., the compendium
by Hörmander [Hör85a, Hör85b]).

In quantum mechanics the relation between operators and symbols mentioned above is
the relation between the Hamilton operator, which defines a quantum mechanical system,
and the corresponding classical Hamilton function, which defines the classical dynamical
system corresponding to the quantum system. The operator thus is the quantization of the
symbol, and microlocal analysis provides us with a powerful set of tools to analyse quantum
systems. These ideas were applied, e.g. in the seminal work by Colin de Verdière on modes
and quasimodes [CdV77], where he constructed classical and quantum normal forms around
invariant tori in phase space which still is an active area of research (see, e.g., the recent work
by Cargo et al [CGSL+05]).

In transition state theory the classical Hamiltonian relevant for reaction type dynamics
has an equilibrium point, and as we have discussed in the first part of the introduction one
can use symplectic transformations to bring the Hamilton function to a normal form in the
neighbourhood of the equilibrium point. The tools from microlocal analysis will allow us
to quantize this symplectic transformation and bring the Hamilton operator into a normal
form, too. The problem of quantum normal forms near equilibrium points of the symbol has
been studied quite extensively already. But most of this work concerns stable equilibrium
points (see [BV90, EGH91, Sjö92, BGP99]). Here the aim is to construct a quantum normal
form in order to study energy spectra and eigenfunctions with very high precision. In the
physics literature [Rob84, Ali85, Eck86, FE88a, FE88b] the same question was studied based
on the Lie approach to classical normal forms. In the early works there has been some
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confusion about the ordering problem in quantization, but these problems have been resolved by
Crehan [Cre90].

The case of an unstable equilibrium point (or more precisely an equilibrium of saddle-
centre-. . .-centre type), which occurs in transition state theory, has received much less attention
in the literature so far. In this case one expects the operator to have continuous spectrum, and
so instead of computing eigenvalues one is looking for resonances. Resonances are complex
eigenvalues. Their imaginary parts are related to the finite lifetime of quantum states in the
neighbourhood of the unstable equilibrium point. Since the problem is no longer self-adjoint,
the determination of resonances is in general a much more difficult problem than that of
eigenvalues (see [Zwo99] for a review). The case of a Hamilton operator for which the symbol
has an unstable equilibrium is one of the few cases where resonances can be computed to
high accuracy using a complex Bohr–Sommerfeld quantization. For 2 DoF systems, this was
developed in [GS87,Sjö03] (for references in the chemistry literature, see, e.g. [SM91,Moi98]
where resonances are known as Gamov–Siegert eigenvalues). The methods were then extended
to systems with more DoF by Sjöstrand in [Sjö87], and building on this work more complete
results were obtained by Kaidi and Kerdelhué [KK00] who derived quantization conditions for
the resonances which are valid to all orders in the semiclassical parameter h̄ and are based on
a quantum normal form. In [IS02] this was embedded into the study of more general normal
forms for Fourier integral operators.

The development and study of the quantum normal form near an equilibrium point of
saddle-centre-. . .-centre type is one of the main aims in the quantum part of this paper. As
mentioned above, the quantum normal form has already been used to study resonances in the
literature before. We will see that the quantum normal form provides us with much more
information which includes cumulative reaction probabilities and a detailed understanding
of the dynamical mechanism of quantum reactions. To this end we will relate the quantum
states described by the quantum normal form to the phase space structures that control classical
reaction dynamics. In the classical case the NHIM is the manifestation of the activated complex.
Due to the Heisenberg uncertainty relation, there is no such invariant structure in quantum
mechanics. In fact the resonances will describe how the quantum activated complex decays.

In order to use the quantum normal form to study concrete chemical reactions we have to
be able to compute it explicitly, i.e. we need an explicit algorithm analogous to the classical
normal form. The mathematical treatments in [Sjö87,KK00] do not give us such an algorithm.
Therefore we develop a quantized version of the classical normal form algorithm which is
similar to the quantum normal form for stable equilibrium points in [Cre90,EGH91,BGP99].
We give a complete exposition of our algorithm to compute the quantum normal form. At
the level of symbols, the classical and quantum normal form algorithms are almost identical.
The essential differences are that the Poisson bracket is replaced by the Moyal bracket, and
rather than dealing with polynomial functions of the phase space coordinates, we deal with
polynomial functions of the phase space coordinates and h̄.

The outline of this paper is as follows. In section 2 we start by reviewing classical normal
form theory. We show in detail how to construct symplectic transformations from the flows
of Hamiltonian vector fields. The theory is presented in such a way that it allows for a direct
comparison with the quantum normal form that we develop in section 3. This section includes
a careful review of the necessary tools from the symbol calculus which are required to quantize
symplectic transformations. In section 4 we discuss the phase space structures which govern
classical reaction dynamics and show how these phase space structures can be realized with
the help of the classical normal form. This includes the construction of a dividing surface,
the role of the NHIM and its stable and unstable manifolds, the foliation of the NHIM by
invariant tori and its relation to the activated complex, the definition of dynamical reaction
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paths and a formula for the directional flux through the dividing surface. In this section
we also relate the theory presented to the flux–flux autocorrelation function formalism that
can be found in the chemistry literature. Section 5 is the quantum mechanical analogue of
section 4. We here use the quantum normal form to study quantum reaction dynamics. We
show how to construct a local S-matrix from the quantum normal form and how this leads to
an efficient algorithm to compute the cumulative reaction probability (the quantum analogue
of the classical flux). We study the distributions of the scattering states in phase space and
relate them to the phase space structures governing classical reaction dynamics. We also relate
the quantum normal form computation of the cumulative reaction probability to the quantum
version of the flux–flux autocorrelation function formalism. In section 6 we study quantum
resonances that correspond to the (classical) activated complex. We show how the resonances
describe the quantum mechanical lifetimes of the activated complex. We study the phase space
distributions of the corresponding resonance states and interpret these distributions in terms of
the phase space structures associated with the classical dynamics of reactions. In section 7 we
illustrate the efficiency of the classical and quantum normal form algorithms for computing
fluxes, cumulative reaction probabilities and resonances by applying the theory presented to
several examples with one, two and three degrees of freedom.

2. Classical normal form theory

In this section we summazise the main elements of classical Poincaré–Birkhoff normal form
theory for Hamiltonian functions. This is a well-known theory and has been the subject of
many review papers and books [Dep69, DF76, AKN88, MH92, Mur03]. The main reason for
summarizing the essential results here is that the reader can clearly see the classical and quantum
normal form theories ‘side by side’. In this way the classical–quantum correspondence is most
apparent. This is explicitly illustrated by developing the classical normal form theory in a way
that is rather different from that found in the literature. This difference allows us to explicitly
show that the structure of the classical and the quantum normal form theories is very similar.
At the same time, we emphasize that the classical normal form theory is an essential tool for
both discovering and computing the necessary geometric structures in phase space with which
we construct our phase space transition state theory in section 4.

This section is organized as follows. In section 2.1 we show how functions on phase space
transform under symplectic coordinate transformations, which are constructed as Hamiltonian
flows. In section 2.2 we define what a (classical) normal form is and show how the formalism
developed in section 2.1 can be used to transform a Hamiltonian function into normal form to
any desired order of its Taylor expansion about an equilibrium point. The general scheme is
discussed in detail in section 2.3 for the case of a saddle-centre-. . .-centre equilibrium point.

2.1. Transformation of phase space functions through symplectic coordinate transformations

The essence of classical normal form theory is to find a new set of coordinates, i.e. a change
of variables, that transforms the Hamiltonian to a ‘simpler’ form (and we will explicitly
define what we mean by ‘simpler’ shortly). Since we are dealing with Hamiltonian functions
we want the coordinate transformation to preserve the Hamiltonian structure, and this will
be accomplished if the transformation is symplectic [Arn78, AM78]. A standard approach
to constructing symplectic transformations is through the use of Lie transforms (see, e.g.,
[Mur03]), which we now review. Before proceeding we note that there are issues related to
differentiability of functions, existence and uniqueness of solutions of ordinary differential
equations, etc. However, we will proceed formally and assume that our functions have as
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many derivatives as required and that solutions of ordinary differential equations exist, and are
sufficiently differentiable, on domains of interest. Our purpose here is to develop methods and
an algorithm. Its applicability must be verified for specific problems.

A function W on phase space Rd × Rd defines a Hamiltonian vector field

XW =
d∑

k=1

(
∂W

∂pk

∂

∂qk

− ∂W

∂qk

∂

∂pk

)
, (2.1)

and at a point z = (q, p) = (q1, . . . , qd, p1, . . . , pd) in phase space this vector field takes the
value

XW(z) =
(

∂W(z)

∂p1
, . . . ,

∂W(z)

∂pd

, −∂W(z)

∂q1
, . . . ,−∂W(z)

∂qd

)
. (2.2)

The solutions of the ordinary differential equation (‘Hamilton’s equations’)

d

dε
z(ε) = XW(z(ε)) (2.3)

define a Hamiltonian flow, z �→ z(ε) := �ε
W(z), which satisfies the properties

• �
ε1
W ◦ �

ε2
W = �

ε1+ε2
W ,

• �ε
W ◦ �−ε

W = id,
• �0

W = id,

where id denotes the identity map, and

d

dε
�ε

W (z) = XW(�ε(z)). (2.4)

Most importantly for us, the Hamiltonian flow �ε
W defines a symplectic, or ‘canonical’,

coordinate transformation of the phase space onto itself [Arn78]. This is significant because
symplectic coordinate transformations preserve the Hamiltonian structure. The Hamiltonian
W is referred to as the generating function for the symplectic transformation �ε

W .
We now consider the transformation of a (scalar valued) function on phase space under

such a symplectic transformation. More precisely, for a phase space function A and a
symplectic coordinate transformation defined from the flow generated by Hamilton’s equations
z(ε) = �ε

W(z), the transformation of the function under this symplectic transformation is
given by

A(ε) = A ◦ �−ε
W , (2.5)

or, in coordinates,

A(ε)
(
z(ε)

) = A(z). (2.6)

For our purposes we want to develop A(ε) as a (formal) power series in ε. We begin by
computing the first derivative of A(ε) with respect to ε giving

d

dε
A(ε) = −〈∇A, XW 〉 ◦ �−ε

W = {W, A} ◦ �−ε
W , (2.7)

where ∇A ≡ (∂A/∂q1, . . . , ∂A/∂qd, ∂A/∂p1, . . . , ∂A/∂pd) is the gradient of A, 〈·, ·〉 is the
standard scalar product in R2d and

{W, A} =
d∑

k=1

(
∂W

∂qk

∂A

∂pk

− ∂W

∂pk

∂A

∂qk

)
= −{A, W }, (2.8)
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is the Poisson bracket of W and A. Using the fact that W is invariant under the flow �ε
W ( i.e.

W(�−ε
W ) = W(�0

W), or, in other words, the Hamiltonian W is constant along trajectories of
the vector field XW generated by W ) we can rewrite (2.7) as

d

dε
A(ε) = {W, A(ε)}. (2.9)

The Poisson bracket gives us a convenient way of representing the derivatives of a function
along trajectories of Hamilton’s equations. We simplify the notation further by defining the
adjoint operator

adW : A �→ adWA := {W, A} (2.10)

associated with a generating function W . We can now differentiate (2.9) again to obtain the
second order derivative with respect to ε,

d2

dε2
A(ε) = d

dε

(
d

dε
A(ε)

)
=
{
W,

d

dε
A(ε)

}
= {W, {W, A(ε)}} =: [adW ]2A(ε). (2.11)

Continuing this procedure for higher order derivatives gives

dn

dεn
A(ε) = d

dε

(
dn−1

dεn−1
A(ε)

)
=
{
W,

{
· · ·
{
W,

d

dε
A(ε)

}
· · ·
}}

= {W, {· · · {W, {W, A(ε)}} · · ·}} =: [adW ]nA(ε). (2.12)

Using these results, we obtain the Taylor expansion of A(ε) about ε = 0,

A(ε) =
∞∑

n=0

εn

n!

dn

dεn
A(ε)|ε=0 =

∞∑
n=0

εn

n!
[adW ]nA, (2.13)

where A(0) = A and [adW ]nA are defined as in equations (2.9)–(2.12) with [adW ]0A = A.
Equation (2.13) gives the Taylor expansion with respect to the flow parameter or ‘time’ ε

for a phase space function A that is transformed by a symplectic transformation defined by the
Hamiltonian flow generated by the function W . It will form the basis of the classical normal
form method where the idea is to ‘simplify’ (or ‘normalize’) a function which, for us, will be a
specific Hamiltonian through the choice of an ‘appropriately chosen’ sequence of symplectic
transformations that simplify the Hamiltonian ‘order by order’ of its Taylor expansion with
respect to the phase space coordinates z = (q, p). First, we need to make clear that the normal
form procedure that we develop here is valid in a neighbourhood of an equilibrium point. This
means that the normal form is a local object whose dynamics have meaning for the original
Hamiltonian only in a neighbourhood of an equilibrium point. In order to describe the terms
in the Taylor expansion of a given order in the phase space coordinates more precisely we
introduce the vector spaces Ws

cl, s ∈ N0, of polynomials which are homogeneous of order s.
The space Ws

cl is spanned (over C) by all monomials of the form

qαpβ :=
d∏

k=1

q
αk

k p
βk

k , where |α| + |β| :=
d∑

k=1

αk + βk = s. (2.14)

The following two lemmata are the key tools used in the computation of the classical
normal form.

Lemma 1. Let W ∈ Ws ′
cl , A ∈ Ws

cl with s, s ′ � 1, then

{W, A} ∈ Ws+s ′−2
cl , (2.15)

and for n � 0,

[adW ]nA ∈ Wn(s ′−2)+s

cl (2.16)

if n(s ′ − 2) + s � 0 and
[
adW

]n
A = 0 otherwise.
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Proof. This lemma can be proven by direct calculation. �

This lemma is key to the proof of lemma 2.

Lemma 2. Let W ∈ Ws ′
cl with s ′ � 3 and

A =
∞∑

s=0

As (2.17)

with As ∈ Ws
cl. Then

A′ := A ◦ �−1
W =

∞∑
n=0

1

n!
[adW ]nA =

∞∑
s=0

A′
s , (2.18)

where

A′
s =

[ s

s′−2
]∑

n=0

1

n!
[adW ]nAs−n(s ′−2), (2.19)

where [s/(s ′ − 2)] denotes the integer part of s/(s ′ − 2).

Proof. Using (2.17), we write out the next to last term in (2.18) as a series of series as follows
(where we have also changed the summation index from s to j in order to avoid possible
confusion):

∞∑
n=0

1

n!
[adW

]n
A =

∞∑
n=0

1

n!
[adW ]n

∞∑
j=0

Aj =
∞∑

j=0

Aj +
∞∑

j=0

adWAj +
∞∑

j=0

1

2
[adW ]2Aj

+
∞∑

j=0

1

3!
[adW ]3Aj + . . . +

∞∑
j=0

1

n!
[adW ]nAj + . . . . (2.20)

We now want to inspect each series in the series and extract the order s term from each one.
Then summing these terms will give the series (2.19). Using lemma 1, we find

[adW ]nAj ∈ Wn(s ′−2)+j

cl . (2.21)

Now we wish to choose j such that

[adW ]nAj ∈ Ws
cl. (2.22)

Comparing (2.21) and (2.22), this is true for

j = s − n(s ′ − 2). (2.23)

Hence it follows that

A′
s =

[ s

s′−2
]∑

n=0

1

n!
[adW ]nAs−n(s ′−2). (2.24)

�
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2.2. Definition and computation of the classical normal form

We will now define when a Hamilton function is in classical normal form. Here we use the
adjective ‘classical’ to distinguish the normal form in the case of classical mechanics from the
normal form that we will define for the case of quantum mechanics in section 3. As we will
see, in general a Hamilton function is not in normal form. However, as we will show in detail,
the formalism reviewed in the previous section can be used to construct an explicit algorithm
which allows one to transform a Hamilton function to normal form to any desired order of its
Taylor expansion.

The starting point is a Hamilton function with an equilibrium point at z = z0, i.e.
∇H(z0) = 0. Let H2(z) := 1

2 〈z − z0, D2H(z0)(z − z0)〉 be the quadratic part of the Taylor
expansion of H about z0

7. We then make the following

Definition 1. We say that H is in classical normal form with respect to the equilibrium
point z0 if

adH2H ≡ {H2, H } = 0. (2.25)

It follows from this definition that if H is in normal form then H2 will be an integral
of the motion generated by the Hamilton function H and moreover, as we will see below,
depending on the structure of H2, further integrals of the motion will exist. A consequence
of the existence of integrals of motion is the structuring, or foliation, of the phase space by
lower dimensional surfaces or manifolds that are invariant under the dynamics. If we choose
initial conditions for Hamilton’s equations then these initial conditions will determine values
of the integrals of motion. The full solution of Hamilton’s equation will then be contained in
the manifold given by the common level set of the integrals corresponding to the initial values.
This way the integrals of the motion confine the possible dynamics. Moreover, the existence
of integrals of the motion significantly simplifies the study of the dynamics.

In general a Hamilton function is not in normal form. However, we will use the formalism
and results developed in the previous section to transform a Hamiltonian to normal form in
a neighbourhood of the equilibrium point to a certain order of its Taylor expansion about the
equilibrium point. As we will see, the transformed Hamiltonian function truncated at this order
will lead to a very accurate description of the motion in the neighbourhood of the equilibrium
point. (What we mean by ‘accurate description’ is discussed in section 4.5.)

We develop the following procedure. We begin with our ‘original Hamiltonian’

H = H(0), (2.26)

and we construct a consecutive sequence of symplectic transformations

H(0) → H(1) → H(2) → H(3) → · · · → H(N), (2.27)

where N is a sufficiently large integer which will be the order at which we will truncate the
normal form series.

The first step in the sequence (2.27) is obtained by shifting the critical point z0 to the origin
of a new coordinate system. We set

z(1) = z − z0. (2.28)

The Hamiltonian function H(1) is the representation of H(0) in terms of the new coordinates
z(1), i.e.

H(1)(z(1)) = H(0)(z(1) + z0). (2.29)

7 Here , D2H(z0) denotes the Hessian of H at z0, i.e. the matrix of second derivatives (∂zi
∂zj

H(z0))ij .
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Once the equilibrium point is shifted to the origin, our normal form procedure will require
us to work with the Taylor expansion of the Hamiltonian H(1) about the origin in a ‘term-by-
term’ fashion. Let

H(1) = E0 +
∞∑

s=2

H(1)
s , (2.30)

where

H(1)
s (q, p) :=

∑
|α|+|β|=s

1

α!β!
∂α
q ∂β

p H (1)(0, 0)qαpβ (2.31)

are the terms of order s. Here we employ the usual multi-index notation; for α ≡
(α1, · · · , αd) ∈ Nd

0 we have |α| ≡ α1 + · · · + αd , α! ≡ α1!α2! · · · αd !, qα ≡ q
α1
1 q

α2
2 · · · qαd

d and
∂α
q ≡ ∂α1/∂q

α1
1 · · · ∂αd /∂q

αd

d (for β ∈ Nd
0 and p ∈ Rd , the notation is analogous). Since (2.30)

is a Taylor expansion of a Hamiltonian about an equilibrium point at the origin it follows that
H

(1)
1 = 0. In particular, H

(1)
0 ≡ E0 is the ‘energy’ of the equilibrium point.

At the next step in the sequence (2.27) we choose a linear symplectic transformation such
that H

(2)
2 assumes a ‘simple form’. In other words, we seek a transformation that simplifies

the quadratic part of the Hamiltonian or, equivalently, the linear part of the Hamiltonian vector
field. This is accomplished by choosing an appropriate symplectic 2d × 2d matrix M , i.e. a
matrix statisfying MT J M = J , where J is the standard 2d × 2d symplectic matrix

J =
(

0 id

−id 0

)
(2.32)

whose blocks consist of d × d zero matrices and d × d identity matrices. We then set

z(2) = Mz(1), (2.33)

and the corresponding transformed Hamiltonian is given by

H(2)(z(2)) = H(1)(M−1z(2)). (2.34)

Which form of H
(2)
2 can be considered to be ‘simple’ depends on the nature of the particular

equilibrium point (i.e. the eigenvalues and eigenvectors associated with the matrix obtained
by linearizing Hamilton’s equations about the origin). The main benefit of having H

(2)
2 in a

‘simple’ form is that this will simplify the explicit implementation of the algorithm to normalize
the higher order terms, n � 3, i.e. how to choose the next steps in the sequence (2.27).
Therefore, ‘simplify’ could mean that we would seek a transformation that would diagonalize
the linear part of Hamilton’s equations, or transform it to ‘real Jordan canonical form’ in the
case of complex eigenvalues. Clearly, constructing such a transformation is a problem in
linear algebra for which there is a large literature. However, the symplectic case tends to bring
with it new difficulties, both in the analytical and computational areas (see, e.g., [CK99]). In
the next section we will see how to simplify the linear part of Hamilton’s equations for our
particular case of interest, i.e. a saddle-centre-. . .-centre equilibrium point satisfying a certain
‘nonresonance’ condition. However, it is important to realize that the normal form algorithm
does not depend on the specific form taken by the linear part of Hamilton’s equations.

Up to this point we have located an equilibrium point of interest, translated it to the
origin, Taylor expanded the resulting transformed Hamiltonian H(1) about the origin (for
which H

(1)
1 = 0), and constructed a linear symplectic transformation in such a way that the

quadratic part of the resulting transformed Hamiltonian, H
(2)
2 , is ‘simple’. Now we are ready

to describe how to normalize the terms of order three and higher, i.e. how to define the next
steps in the sequence (2.27). To accomplish these transformations we will use the formalism
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reviewed in section 2.1 and successively transform the Hamiltonian by the time one maps of
the flows generated by Hamiltonian vector fields. More precisely, for n � 3, H(n) is computed
from H(n−1) according to

H(n) = H(n−1) ◦ �−1
Wn

=
∞∑

k=0

1

k!
[adWn

]kH (n−1) (2.35)

with a generating function Wn ∈ Wn
cl. The order s term of the Taylor expansion of H(n)

expressed as a series involving terms in the Taylor expansion of H(n−1) and Wn is obtained by
substituting the Taylor expansion of H(n−1) into (2.35) and using lemma 2. This gives

H(n)
s =

[
s

n−2

]∑
k=0

1

k!
[adWn

]kH (n−1)

s−k(n−2), n � 3. (2.36)

The corresponding transformation of phase space coordinates is then given by

z(n) = �1
Wn

(z(n−1)), n � 3. (2.37)

We note that in fact also the affine linear symplectic coordinate transformations (2.28)
and (2.33) which formed the first two steps in the sequence (2.27) can be formally expressed
as time one maps of Hamiltonian flows with generating function W1 ∈ W1

cl and W2 ∈ W2
cl,

respectively. A generating function W1 whose time one map achieves the translation (2.28) is
given by

W1(z) = −〈z0, J z〉, (2.38)

where J is the standard 2d × 2d symplectic matrix defined in equation (2.32). This gives

z(1) = �1
W1

(z) = z − z0. (2.39)

In this case the upper limit of the sum in (2.36) is infinity. It is in general not straightforward to
explicitly give an expression for a generating function W2 ∈ W2

cl whose time one map achieves
the linear symplectic transformation (2.33) for a given symplectic matrix M . But such a W2

always exists8. For n = 2 in equation (2.36) the upper limit of the sum is again infinity. In
the next section we will provide a matrix M which achieves the simplification of the quadratic
part of the Hamiltonian function for the case of a saddle-centre-. . .-centre equilibrium point
satisfying a nonresonance condition without specifying the corresponding W2. Note however
that it is M and not necessarily W2 which is required for our normalization procedure.

Let us now proceed with the nonlinear symplectic transformations generated by
polynomials Wn ∈ Wn

cl with n � 3 to achieve the third and higher steps in the sequence (2.27).
The first thing to note is that these transformations will not alter the zeroth order term, E0, and
we will also have H

(1)
1 = H

(n)
1 = 0, n � 3. The zeroth order term is unaltered since the upper

limit in the sum (2.36) is zero for s = 0. The first order term stays zero because for s � 1
in combination with n > 3 and s = 0 in combination with n = 3, the upper limit in the sum
(2.36) is again zero. For n = 3 in combination with s = 1, the upper limit is 1. However, the
k = 1 term, adW3H

(2)
0 , in the sum (2.36) is zero because H

(2)
0 is the constant E0 and hence

vanishes when adW3 is applied to it.
Moreover, the quadratic part of the Hamiltonian H

(2)
2 will not be modified by the

transformations generated by Wn, n � 3. We will show this directly from our formalism.

8 This follows from two facts. Firstly, the group of linear symplectic transformations is connected, and therefore the
image of the exponentiation of its Lie algebra is connected, too. Secondly, this Lie algebra is isomorphic to the vector
space of quadratic polynomials endowed with the Poisson bracket [Fol89]. Therefore the set of all time one maps
generated by quadratic elements of W2

cl is the whole symplectic group.
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Lemma 3. H
(n)
2 = H

(2)
2 , n � 3.

Proof. The idea is to use (2.35) to transform from H(n−1) to H(n), and then to show that
H

(n)
2 = H

(n−1)
2 for n � 3.

We separate out the constant and quadratic parts of H(n−1) as

H(n−1) = E0 + H
(n−1)
2 +

∞∑
s=3

H(n−1)
s , (2.40)

and then we substitute this into (2.35) to obtain

H(n) =
∞∑

k=0

1

k!
[adWn

]kE0 +
∞∑

k=0

1

k!
[adWn

]kH (n−1)
2 +

∞∑
k=0

1

k!
[adWn

]k
∞∑

s=3

H(n−1)
s . (2.41)

Note that the first series in this expression only admits the k = 0 term, E0. We consider the
case n � 3. In this case, the third series, using lemma 1, only admits terms of order larger
than or equal to three. Hence, all of the quadratic terms must be in the second series. Using
lemma 1, the kth term in that series is contained in Wk(n−2)+2

cl . Therefore the only quadratic
term occurs for k = 0, which is H

(n−1)
2 . �

Lemma 3 motivates the definition of the operator

D := ad
H

(2)
2

= {H(2)
2 , ·}. (2.42)

In fact, D will simply be a convenient shorthand notation for the operator adH2 = {H2, ·} in the
definition of the the normal form in Definition 1 in terms of the coordinates z(2). The operator
D plays a crucial role in the computation of the normal form transformation.

The other important point to realize when transforming H(n−1) to H(n) with �−1
Wn

,
Wn ∈ Wn

cl, is that all terms of order smaller than n are unchanged (however, the terms of
order larger than n are modified by the nth order normalization transformation). This is
essential for the success of the iterative process and we provide a proof of this result now.

Lemma 4. For n � 3 and 0 � s < n, H(n)
s = H(n−1)

s .

Proof. First, it is important to consider the upper limit of the sum (2.36). For 0 � s � n − 3
it is zero, which indicates that for these values of s only the k = 0 term is nonzero. Hence,
we have

H(n)
s = H(n−1)

s , 0 � s � n − 3. (2.43)

Next we separately consider the cases s = n − 2 and s = n − 1. Using (2.36) we find for
s = n − 2,

H
(n)
n−2 = H

(n−1)
n−2 + adWn

H
(n−1)
0 = H

(n−1)
n−2 (2.44)

since H
(n−1)
0 = E0 = const. For s = n − 1, (2.36) gives

H
(n)
n−1 = H

(n−1)
n−1 + adWn

H
(n−1)
1 + δn,3

1
2 [adWn

]2H
(n−1)
0 = H

(n−1)
n−1 (2.45)

since H
(n−1)
1 = 0 and H

(n−1)
0 = E0 = const. The Kronecker symbol in the last term of the

second expression shows that this term occurs only for n = 3. �
Now if we consider the nth order term in H(n) this will show us how to choose Wn, n � 3.

Lemma 5 (Homological equation). For s = n � 3,

H(n)
n = H(n−1)

n − DWn. (2.46)
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Proof. This result is also obtained from (2.36), with a careful consideration of the upper limit
of the sum. The case n � 5 is the most straightforward. In this case only k = 0 and k = 1
contribute in the sum, and using (2.8), we immediately obtain that

H(n)
n = H(n−1)

n + adWn
H

(2)
2 = H(n−1)

n − ad
H

(2)
2

Wn = H(n−1)
n − DWn. (2.47)

The special cases s = n = 4 and s = n = 3 must be considered. These will give rise to some
additional terms in (2.36). However, as for lemma 4, these will be zero if we take into account
H

(n−1)
1 = 0 and [adWn

]kE0 = 0 for integers k > 0, n � 3. �
Equation (2.47) is known as the homological equation. We want to solve the homological

equation, i.e. find a function Wn ∈ Wn
cl, in such a way that H(n) is in normal form up to order

n. To this end note that it follows from lemma 1 that D defines a linear map of Wn
cl into Wn

cl,
i.e. for each n,

D : Wn
cl → Wn

cl. (2.48)

In order to have H(n) in normal form up to order n we have to require D H(n)
n = 0. Looking

at the homological equation (2.47) this means we need to find a function Wn ∈ Wn
cl such that

H(n)
n = H(n−1)

n − D Wn is in the kernel of the restriction of D to Wn
cl, i.e.

H(n)
n = H(n−1)

n − DWn ∈ KerD|Wn
cl
. (2.49)

Definition 2. We will call the homological equation (2.46) solvable if for any n � 3 there
exists for any Hn ∈ Wn

cl an Wn ∈ Wn
cl such that

Hn − D Wn ∈ KerD|Wn
cl
. (2.50)

Whether the homological equation is solvable and how such a Wn can be found depends
on the structure of D, i.e. on the structure of the matrix associated with the linearization of
the vector field about the equilibrium point. In the next subsection we will show that the
homological equation is solvable in the case of a saddle-centre-. . .-centre equilibrium point
and explain how Wn can be found.

We summarize the results of this section in the following theorem.

Theorem 1. Assume that a Hamiltonian function H has an equilibrium point at z0 ∈ Rd ×Rd ,
and that the homological equation is solvable. Then for every N ∈ N there is a symplectic
transformation �N such that

H ◦ �−1
N = H

(N)
CNF + ON+1, (2.51)

where H
(N)
CNF is in normal form (with respect to z = (0, 0)) and ON+1 is of order N + 1, i.e.

there exists an open neighbourhood U of z = (0, 0) and a constant c > 0 such that

|ON+1(εz)| < cεN+1 (2.52)

for z ∈ U and ε < 1.

Proof. Following the scheme described in this section we normalize the Hamilton function H

order by order according to the sequence (2.27). We start by choosing a new coordinate system
z(1) = z − z0 which has the equilibrium point z0 at the origin (see (2.28)), and Taylor expand
the Hamilton function H(1), which we obtain from expressing H in the new coordinates z(1)

(see equation (2.29)), about z(1) = 0 to order N . The remainder which we denote by R
(1)
N+1 is

then of order N + 1.
We then choose a symplectic 2d×2d matrix M to define a linear symplectic transformation

to new coordinates z(2) = M z(1) in terms of which the quadratic part of the transformed
Hamilton function H(2) (see equation (2.34)) assumes a simple form. As mentioned above, the
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choice of M depends on the nature of the equilibrium point and will simplify the calculation
of the steps for n � 3 in the sequence (2.27). Apart from this, however, the choice of the
symplectic matrix M is not important. We thus get

H(2) = E0 +
N∑

s=2

H(2)
s + R

(2)
N+1, (2.53)

where H(2)
s (z(2)) = H(1)

s (M−1 z(2)), i.e. H(2)
s ∈ Ws

cl for s = 2, . . . , N , and the remainder term
R

(2)
N+1 given by R

(2)
N+1(z

(2)) = R
(1)
N+1(M

−1 z(2)) is again of order N + 1.
Having simplified the quadratic part, we proceed inductively by subsequently choosing

generating functions Wn ∈ Wn
cl, which at each order n, n = 3, . . . , N , solve the homological

equation (2.46) and determine H(n) from H(n−1) as follows. For n � 3, H(n−1) is of the form

H(n−1) =
N∑

s=0

H(n−1)
s + R

(n−1)
N+1 , (2.54)

where H(n−1)
s ∈ Ws

cl and R
(n−1)
N+1 is of order N + 1. Using this decomposition of H(n−1) we can

write for H(n) = H(n−1) ◦ �−1
Wn

,

H(n) =
N∑

s=0

H(n−1)
s ◦ �−1

Wn
+ R

(n−1)
N+1 ◦ �−1

Wn
(2.55)

=
N∑

s=0

∞∑
k=0

1

k!
[adWn

]kH (n−1)
s + R

(n−1)
N+1 ◦ �−1

Wn
(2.56)

=
N∑

s=0

[ N−s
n−2 ]∑
k=0

1

k!
[adWn

]kH (n−1)
s + R

(n)
N+1, (2.57)

where

R
(n)
N+1 = R

(n−1)
N+1 ◦ �−1

Wn
+

N∑
s=0

∞∑
k=
[

N−s
n−2

]
+1

1

k!
[adWn

]kH (n−1)
s . (2.58)

Here we have used equation (2.35) to get (2.56). To obtain (2.57) from (2.56) we removed all
those terms from the double sum in (2.56) contained in the Ws

cl with s � N + 1 and absorbed
them in the new remainder term R

(n)
N+1 in (2.58). Since the symplectic transformations �1

Wn
are

near identity transformations for n � 3 the remainder term R
(n)
N+1 is again of order N + 1.

After the step n = N the terms of order less than or equal to N of the Hamilton function
H(N) are then in normal form (with respect to z = (0, 0)). The symplectic transformation �N

in equation (2.51) and the corresponding new coordinates z(N) are then given by

z(N) ≡ �N(z) = �1
WN

◦ · · · ◦ �1
W3

(z(2)), z(2) = Mz(1), z(1) = z − z0. (2.59)

�

From the point of view of applications the definition of the normal form in definition 1
is not very practical since it requires one to carry out the procedure described in the proof of
theorem 1 for N → ∞. In general, it is well known that such normal form transformations
do not converge, except in special cases [SM71, Bru71, Rüs67, PM03]. For applications it is
more practical to consider the truncated normal form.
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Definition 3 (Nth order classical normal form). Consider a Hamilton function H with an
equilibrium point z0 ∈ Rd × Rd which, for N ∈ N, we normalize as described in theorem 1.
Then we refer to H

(N)
CNF in equation (2.51) as the N th order classical normal form (CNF) of H .

Note that in order to compute the N th order normal form it is sufficient to carry out the
Taylor expansion of the Hamiltonian up to order N . The remainder term can be neglected
immediately since the procedure described in the proof of theorem 1 shows that no terms from
the remainder term will enter the N th order normal form.

Of course, the normal form procedure presented in this section raises such questions as
‘what is the error associated with truncating the normal form at some finite order?’ After all, one
is interested in the dynamics associated with the full, original Hamiltonian. Another obvious
question is ‘what is the optimum order at which to truncate the normal form so that errors are
minimized?’ There is no general theory that can be used to answer such questions. They must
be addressed on a problem-by-problem basis. Fortunately, truncating the normal form does
give extremely accurate results in a number of problems [WBW04a, WBW04b, WBW05b],
and we will consider this in more detail in section 4.5.

2.3. Nature and computation of the normal form in a neighbourhood of an equilibrium point
of saddle-centre-. . .-centre stability type

We now describe the computation of the normal form in the classical situation of interest to
us; in the neighbourhood of an equilibrium point of saddle-centre-. . .-centre stability type.
This means that the matrix associated with the linearization of Hamilton’s equations about
the equilibrium point has two real eigenvalues, ±λ, and d − 1 complex conjugate pairs of
pure imaginary eigenvalues, ±i ωk , k = 2, . . . , d. Moreover, we will assume that the ωk ,
k = 2, . . . , d, are nonresonant in the sense that they are linearly independent over the integers,
i.e. k2 ω2 + · · · + kd ωd �= 0 for all (k2, . . . , kd) ∈ Zd−1 − {0} (note that the more stringent
diophantine condition for nonresonance [AKN88] is not required for our work).

But first, we locate the equilibrium point of interest, denote it by z0 = (q0, p0), and
translate it to the origin using the generating function given in (2.38). The Taylor series of the
corresponding Hamiltonian then has the form

H(1)(z(1)) = E0 + H
(1)
2 (z(1)) +

∞∑
s=3

H(1)
s (z(1)). (2.60)

We next construct a linear symplectic transformation M : R2d �→ R2d such that for
z(2) = M z(1), we have

H
(2)
2 (z(2)) = λp

(2)
1 q

(2)
1 +

d∑
k=2

ωk

2
((p

(2)
k )2 + q

(2)
k )2). (2.61)

We note that for some purposes it is convenient to consider also a slightly modified version
of the coordinates z(2) = (q(2), p(2)) which for later reference we will denote by (Q(2), P (2)).
The coordinates (q(2), p(2)) and (Q(2), P (2)) agree in the centre components, i.e. Q

(2)
k = q

(2)
k

and P
(2)
k = p

(2)
k for k = 2, . . . , d, but are rotated versus each other by an angle of 45◦ in the

saddle plane, i.e.

Q
(2)
1 = 1√

2
(q

(2)
1 − p

(2)
1 ), P

(2)
1 = 1√

2
(q

(2)
1 + p

(2)
1 ). (2.62)
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Note that the transformation from (q(2), p(2)) to (Q(2), P (2)) is symplectic. In terms of
(Q(2), P (2)) the quadratic part of the Hamiltonian assumes the form

H
(2)
2 (Q(2), P (2)) = λ

2
((P

(2)
1 )2 − Q

(2)
1 )2) +

d∑
k=2

ωk

2
((P

(2)
k )2 + Q

(2)
k )2). (2.63)

The quadratic part then consists of the sum of one inverted harmonic oscillator (or ‘parabolic
barrier’) and d − 1 harmonic oscillators.

In order to construct the 2d × 2d matrix M above we label the eigenvalues of J D2H(z0)

(which is the matrix corresponding to the linearization of Hamilton’s vector field around the
equilibrium point) in such a way that

e1 = −e1+d = λ, ek = −ek+d = iωk, k = 2, . . . , d, (2.64)

and then use the corresponding eigenvectors v1, . . . , v2d to form the columns of the matrix M

according to

M = (c1v1, c2Rev2, . . . , cdRevd, c1v1+d , c2Imv2, . . . , cd Imvd), (2.65)

where c1, . . . , cd are scalars defined as

c−2
1 := 〈v1, J v1+d〉, c−2

k := 〈Revk, J Imvk〉, k = 2, . . . , d. (2.66)

The constants c1, . . . , cd guarantee that the matrix M will be symplectic, i.e. M will satisfy
MTJM = J . Here we have assumed that the eigenvectors v1 and v1+d have been chosen in
such a way that 〈v1, J v1+d〉 is positive (if 〈v1, J v1+d〉 < 0 then we multiply v1+d by −1). It
is not difficult to see that c−2

k , k = 2, . . . , d, are automatically positive if the frequencies ωk

are positive9. Using the fact that 〈vn, Jvk〉 = 0 for n and k from the distinct sets {1, 1 + d},
{2, 2 + d}, . . . , {d, 2d}, it is easily verified that the matrix M satisfies MTJM = J .

2.3.1. Solution of the homological equation. Given a Hamiltonian function whose quadratic
part is of the form (2.61), the solution of the homological equation derived in lemma 5 for any
order n � 3 is extremely simple and transparent if we first perform the following symplectic
complex linear change of coordinates z(n) = (q(n), p(n)) �→ (x, ξ) which has the components
x1 = q

(n)
1 , ξ1 = p

(n)
1 and

xk := 1√
2
(q

(n)
k − ip(n)

k ), ξk := 1√
2
(p

(n)
k − iq(n)

k ), k = 2, . . . , d. (2.67)

Here, and for the rest of this section, we omit the superscript (n) for x and ξ for the sake of a
simpler and less cumbersome notation.

In terms of the phase space coordinates (x, ξ), the linear map D takes the form

D = λ(ξ1∂ξ1 − x1∂x1) +
d∑

k=2

iωk(ξk∂ξk
− xk∂xk

). (2.68)

The form of (2.68) is significant for two reasons. One is that when the monomials of order n

defined in (2.14) are expressed in terms of the coordinates (x, ξ) they form a basis for Wn
cl.

We have

Wn
cl = span

{
xαξβ :=

d∏
k=1

x
αk

k ξ
βk

k : |α| + |β| :=
d∑

k=1

αk + βk = n

}
. (2.69)

9 In fact, if one of the d−2
k is negative then this means that the corresponding frequency is negative; this is a case

which we have excluded, although it can be dealt with in a way that is similar to the procedure described in this paper.
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Secondly, in this basis the linear map (2.68) is diagonal. In fact, using (2.68), we see that the
image under D of a monomial xαξβ ∈ Wn

cl is

D
d∏

k=1

x
αk

k ξ
βk

k =
(

λ(β1 − α1) +
d∑

k=2

iωk(βk − αk)

) d∏
k=1

x
αk

k ξ
βk

k . (2.70)

These monomials thus are eigenvectors of (2.68).
Since the map D can be diagonalized it follows in a trivial way that Wn

cl can be represented
as the direct sum of the kernel of D acting on Wn

cl, KerD|Wn
cl
, and the image of D acting on

Wn
cl, ImD|Wn

cl
, i.e.

Wn
cl = KerD|Wn

cl
⊕ ImD|Wn

cl
. (2.71)

Now we can express H(n−1)
n as

H(n−1)
n = H

(n−1)

n;Ker + H
(n−1)

n;Im , (2.72)

where H
(n−1)

n;Ker ∈ KerD|Wn
cl

and H
(n−1)

n;Im ∈ ImD|Wn
cl
. We can then choose Wn such that

DWn = H
(n−1)

n;Im , (2.73)

and therefore by (2.46)

H(n)
n = H

(n−1)

n;Ker . (2.74)

The choice of Wn is not unique since one can always add terms from the kernel of D|Wn
cl
.

However, we will require Wn ∈ ImD|Wn
cl
, i.e. we will invert D on its image ImD|Wn

cl
, which

renders the choice of Wn unique.
Using our assumption that the frequencies ω2, . . . , ωd are nonresonant, i.e. linearly

independent over Z, we see from (2.70) that a monomial xαξβ is mapped to zero if and
only if αk = βk for all k = 1, . . . , d. In particular KerD|Ws

cl
= {0} if s is odd. This

implies that coordinate transformations can be constructed such that all odd order terms are
eliminated. Moreover, for s even, the terms that cannot be eliminated are those which are sums
of monomials for which xk and ξk have equal integer exponents for all k = 1, . . . , d.

Concretely, we can compute Wn according to (2.73) as follows. We assume that H
(n−1)

n;Im
is the linear combination of L monomials of order n,

H
(n−1)

n;Im =
L∑

l=1

hl

d∏
k=1

x
αk;l
k ξ

βk;l
k , (2.75)

with
∑d

k=1 αk;l + βk;l = n for all l = 1, . . . , L, and for all l = 1, . . . , L, there is at least
one k = 1, . . . , d for which αk;l �= βk;l (i.e. the vectors (α1;l , . . . , αd;l) and (β1;l , . . . , βd;l)
are different for all l = 1, . . . , L). Upon inspecting (2.70), and using (2.73), we see that a
generating function Wn that solves the homological equation is given by

Wn =
L∑

l=1

hl

λ(β1;l − α1;l) +
∑d

k=2 iωk(βk;l − αk;l)

d∏
k=1

x
αk;l
k;l ξ

βk;l
k;l . (2.76)

As mentioned above this solution of the homological equation is unique if we require Wn to
be in ImD|Wn

cl
.
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2.3.2. Integrals of the classical motion from the N th order classical normal form. The N th
order classical normal form H

(N)
CNF is a polynomial in the N th order phase space coordinates

(2.59) which, in order to keep the notation in this section simple, we will denote by (q, p), i.e.
we will omit superscripts (N) on the phase space coordinates. As discussed in the previous
section, it follows that if we perform the symplectic complex linear change of coordinates
x1 = q1, ξ1 = p1 and

xk := 1√
2
(qk − ipk), ξk := 1√

2
(pk − iqk), k = 2, . . . , d, (2.77)

then the coordinate pairs xk and ξk will have equal integer exponents for all k = 1, . . . , d in
each monomial of H

(N)
CNF. As a consequence the functions

I = p1q1 = ξ1x1, Jk = 1
2 (p2

k + q2
k ) = iξkxk, k = 2, . . . , d, (2.78)

are integrals of the motion generated by H
(N)
CNF. This assertion is simple to verify with the

following computations:

d

dt
I = {I, H (N)

CNF} = 0,
d

dt
Jk = {Jk, H

(N)
CNF} = 0, k = 2, . . . , d. (2.79)

The integrals of the motion I and Jk can be used to define action angle variables. We
therefore define the conjugate angles

ϕ1 =




tanh−1

(
q1 + p1

q1 − p1

)
, p1q1 < 0,

tanh−1

(
q1 − p1

q1 + p1

)
, p1q1 > 0,

(2.80)

ϕk = arg(pk + iqk), k = 2, . . . , d.

It is not difficult to see that the map (q, p) �→ (ϕ1, . . . , ϕd, I, J2, . . . , Jd) is symplectic.
For k = 2, . . . , d, the ranges of the ϕk are [0, 2π) and the ranges of the Jk are [0, ∞). The

maps (qk, pk) �→ (ϕk, Jk) are singular at qk = pk = 0 where the angles ϕk are not defined.
Away from the singularities the maps are one to one. In contrast, the range of both ϕ1 and I is
R (ϕ1 thus is not an angle in the usual sense). The map (q1, p1) �→ (ϕ1, I1) is singular on the
lines p1 = 0 and q1 = 0 which map to I = 0 with ϕ1 = ∞ and ϕ1 = −∞, respectively. Even
away from the singularities each (ϕ1, I ) has still two preimages (q1, p1) which correspond to
the two branches of the hyperbola I = p1q1. The coordinate lines of the action angle variables
are shown in figure 1.

We note that in terms of the coordinates (Q, P ) with (Qk, Pk) = (qk, pk), k =
2, . . . , d, and

Q1 = 1√
2
(q1 − p1), P1 = 1√

2
(q1 + p1), (2.81)

the integrals Jk , k = 2, . . . , d, are of the same form while I changes to

I = 1
2 (P 2

1 − Q2
1). (2.82)

The angles ϕk , k = 1, . . . , d, are cyclic, i.e. the Hamilton function H
(N)
CNF effectively

depends only on the integrals I and Jk , k = 2, . . . , d. To indicate this and for later reference
we introduce the function K

(N)
CNF defined via

H
(N)
CNF = K

(N)
CNF(I, J2, . . . , Jd) = E0 + λI + ω2J2 + · · · + ωdJd + higher order terms. (2.83)

Here the higher order terms are of order greater than 1 and less than or equal to [N/2] in the
integrals, where [N/2] denotes the integer part of N/2. Note that since the Hamiltonian in
normal form does not have any odd order terms, only the case of even N is of interest.
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Figure 1. The left figure shows contour lines of the action angle variables I and ϕ1 (hyperbolae
and straight lines, respectively) in the saddle plane with coordinates (q1, p1) and (Q1, P1) which
are rotated versus each other by 45◦. The right figure shows contour lines of the action angle
variables Jk and ϕk , k = 2, . . . , d (circles and straight lines, respectively) in the centre planes with
coordinates (qk, pk) = (Qk, Pk).

As we will see, the classical integrals of motion are extremely useful for characterizing,
and realizing, classical phase space structures. However, the obvious question arises and must
be answered. These are constants of the motion for the N th order classical normal form
H

(N)
CNF. How close to being constant are they on trajectories of the full Hamiltonian? Also,

we will use them to construct certain invariant manifolds for the N th order classical normal
form H

(N)
CNF. How close to being invariant will these manifolds be for the full Hamiltonian?

These questions must be asked, and answered, on a problem-by-problem basis. A number of
studies have recently shown that for moderate N (e.g. 10–14), these integrals are ‘very close’
to constant for the full Hamiltonian dynamics for most practical purposes and that the invariant
manifolds constructed from them are ‘almost invariant’ for the full Hamiltonian dynamics.

We emphasize again that in this section we omitted superscripts (N) on the coordinates in
order to keep the notation simple and that the integrals of the motion of the N th order normal
form only assume the simple form in (2.78) if they are expressed in terms of the N th order
normal form coordinates (2.59).

3. Quantum normal form theory

In this section we develop a normal form theory for quantum mechanics that is algorithmically
the same as the one presented for classical mechanics in the previous section, section 2.
However, the objects manipulated by the algorithm in the quantum mechanical case are
different, and this is what we now describe.

In quantum mechanics the role of a Hamilton function in classical mechanics is played
by a self-adjoint operator, the Hamilton operator. While the Hamilton function in classical
mechanics acts on a phase space, which was R2d in section 2, a Hamilton operator acts on a
Hilbert space, which will be L2(Rd) in our case.

The quantum mechanical analogue of a symplectic transformation in classical mechanics
is a unitary transformation. The conjugation of a Hamilton operator Ĥ by a unitary operator
Û gives the new operator

Ĥ ′ = Û ∗Ĥ Û , (3.1)

where Û ∗ denotes the adjoint of Û . The operator Ĥ ′ is again self-adjoint and has the same
spectral properties as the original Hamilton operator Ĥ . We will use unitary transformations
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to simplify the Hamilton operator in the same way that we used symplectic transformations to
simplify the classical Hamilton function. In the classical setting the symplectic transformations
were obtained as the time one maps of a Hamiltonian flow, where the Hamiltonian, W , was
referred to as the generating function. In the quantum mechanical setting we will analogously
consider a self-adjoint operator Ŵ which gives the unitary operator

Û = e− i
h̄
Ŵ . (3.2)

The operator Ŵ is called the generator of Û . Analogous to the development of (2.7) and
the results that follow, we now consider the one-parameter family of self-adjoint operators
defined by

Ĥ (ε) := e
i
h̄
εŴ Ĥe− i

h̄
εŴ , (3.3)

where the parameter ε is real. Note that Ĥ ′ = Û ∗Ĥ Û = Ĥ (ε = 1), and Ĥ = Ĥ (ε = 0). If
we differentiate (3.3) with respect to ε we obtain the Heisenberg equation

d

dε
Ĥ (ε) = i

h̄
[Ŵ , Ĥ (ε)], (3.4)

where [·, ·] denotes the commutator which, for two operators Â, B̂, is defined as [Â, B̂] =
ÂB̂ − B̂Â. Therefore Ĥ ′ can be obtained from the solution of (3.4) with initial condition
Ĥ (ε = 0) = Ĥ . Equation (3.4) will play the same role for the development of the quantum
normal form as equation (2.9) played for the classical normal form. This is consistent with the
usual quantum–classical correspondence where the commutator i

h̄
[·, ·] is related to the Poisson

bracket {·, ·}. In the next section we will make this correspondence more precise.
One of the key properties of the classical normal form in the neighbourhood of a

nonresonant saddle-centre-. . .-centre equilibrium point is that the Hamilton function in normal
form is a function of the classical integrals, see (2.83). We will see in section 4 that this feature
will help us to understand the local classical dynamics and identify the phase space structures
that control the dynamics near a nonresonant saddle-centre-. . .-centre equilibrium point. In
the quantum mechanical case the classical integrals will correspond to ‘elementary’ operators
with well-known spectral properties. Analogous to symplectic transformations in the classical
case, we will use unitary transformations in the quantum mechanical case to bring the Hamilton
operator into a simpler form in which it will be a function of these elementary operators only.
In the same manner as in the classical case, this simplification will be obtained ‘order by
order’. To give notions like ‘order’ and ‘equilibrium point’ a meaning for quantum operators
and also to derive an explicit algorithm to achieve the desired simplification we will have to
relate quantum operators to classical phase space functions and vice versa. This is the subject
of the following section, section 3.1. The formalism developed in section 3.1 is then used
in section 3.2 to transform Hamilton operators through conjugation by unitary operators. In
section 3.3 we will define when a Hamilton operator is in quantum normal form, and show
how a given Hamilton operator can be transformed to quantum normal form to any desired
order. In section 3.4 we study the nature of the quantum normal form for our case of interest,
which is in a neighbourhood of a nonresonant saddle-centre-. . .-centre equilibrium point of
a corresponding classical Hamiltonian system. As a first explicit example, we show how the
quantum normal form can be computed for one-dimensional potential barriers in section 3.5.

3.1. The classical–quantum correspondence

The basis for our quantization of the classical normal form described in section 2.2 is the Weyl
quantization and the associated Weyl calculus. Before we use the Weyl calculus to define
the quantum normal form in section 3.3 we want to give some background on the general
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theory, which provides a systematic way of formulating the quantum–classical correspondence.
General references for the material in this section that contain much more detail and background
are [Fol89, DS99, Mar02].

3.1.1. Weyl quantization. A quantization is a rule which associates operators on a Hilbert
space with functions on a phase space. We will use here the Weyl quantization, which is the
one most commonly used. Let qk and pk , k = 1, . . . , d, be the components of the position
and momentum vectors q and p, respectively. These are quantized in such a way that they act
on a wavefunction ψ(q) according to

q̂kψ(q) = qkψ(q), p̂kψ(q) = h̄

i

∂ψ(q)

∂qk

. (3.5)

The Weyl quantization extends these prescriptions to general functions of (q, p) by requiring
that, for ξq, ξp ∈ Rd , the quantization of the exponential function

e
i
h̄
(〈ξp,q〉+〈ξq ,p〉) (3.6)

is the phase space translation operator

T̂ξq ,ξp
= e

i
h̄
(〈ξp,q̂〉+〈ξq ,p̂〉). (3.7)

Using Fourier inversion we can represent a function on phase space as

A(q, p) = 1

(2πh̄)2d

∫
Rd

∫
Rd

Ā(ξq, ξp)e
i
h̄
(〈ξp,q〉+〈ξq ,p〉) dξq dξp, (3.8)

where

Ā(ξq, ξp) =
∫

Rd

∫
Rd

A(q, p)e− i
h̄
(〈ξp,q〉+〈ξq ,p〉) dq dp (3.9)

is the Fourier transform of A. The Weyl quantization Op[A] of A is then defined by replacing
the factor e

i
h̄
(〈ξp,q〉+〈ξq ,p〉) in the integral (3.8) by the operator T̂ξq ,ξp

, i.e.

Op[A] = 1

(2πh̄)2d

∫
Rd

∫
Rd

A(ξq, ξp)T̂ξq ,ξp
dξq dξp. (3.10)

In order to manipulate these operators and understand their mathematical properties we will
need the appropriate definitions and notation. We will say that A ∈ Sh̄(R

d ×Rd) if A depends
smoothly on (h̄, q, p) and if for all α, β ∈ Nd and k ∈ N there exists a constant Cα,β,k such that

(1 + |q| + |p|)k|∂α
q ∂β

p A(h̄, q, p)| � Cα,β,k. (3.11)

The space Sh̄(R
d × Rd) is similar to the usual Schwartz space. The only difference is that

we allow the functions to depend additionally on the parameter h̄ in a smooth way. For
A ∈ Sh̄(R

d × Rd) the Fourier transform is again a Schwartz function and so the Weyl
quantization (3.10) gives a well-defined bounded operator. But the quantization can be
extended to larger classes of functions. One such larger standard class of functions for which
the Weyl quantization is well behaved is Sm(Rd ×Rd) for some m ∈ R. Here A ∈ Sm(Rd ×Rd)

if A satisfies the estimates

|∂α
q ∂β

p A(h̄, q, p)| � Cα,β(1 + |q| + |p|)m for all α, β ∈ Nd . (3.12)

If A ∈ Sm(Rd × Rd) then Op[A] : Sh̄(R
d) → Sh̄(R

d) (see, e.g., [DS99]). Here Sh̄(R
d) is

defined analogously to Sh̄(R
d × Rd) in (3.11). The function A is called the (Weyl) symbol of

the operator Op[A]. If the symbol A also depends on the parameter h̄ we will usually assume
that, for small h̄, A has an asymptotic expansion in integer powers of h̄,

A(h̄, q, p) ∼ A0(q, p) + h̄A1(q, p) + h̄2A2(q, p) + · · · . (3.13)
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Here the leading order term A0(q, p) is then called the principal symbol and it is interpreted
as the classical phase space function corresponding to Op[A].

The quantization (3.10) can also be inverted. Let Â be an operator; then

A(h̄, q, p) := Tr(T̂ ∗(q, p)Â), (3.14)

is the Weyl symbol of Â, i.e. we have Op[A] = Â, with Tr denoting the trace and T̂ ∗ denoting
the adjoint of T̂ .

The advantage of this representation of operators is that many properties of the operators
are nicely reflected in their symbols. For later reference we collect two such relations:

1. For the adjoint operator one has Op[A]∗ = Op[A∗], where A∗ denotes the complex
conjugate symbol of A. Hence, a real valued symbol gives a symmetric operator.

2. If A ∈ S0(Rd × Rd), i.e. the symbol and all its derivatives are bounded, then the
corresponding operator is bounded as an operator on L2(Rd). This is known as the
Calderon–Vaillancourt theorem [DS99]. This implies in particular that a real valued
symbol A ∈ S0(Rd × Rd) gives a self-adjoint operator Op[A].

For example, the symbol J = (p2 +q2)/2 on R×R is in S2(R×R). Its principal symbol
is (p2 + q2)/2 and the Weyl quantization gives

Op[J ] = − h̄2

2

d2

dq2
+

1

2
q2. (3.15)

Similarly, the symbol I = p q is in S2(R × R) with principal symbol p q and is quantized as

Op[I ] = h̄

i

(
q

d

dq
+

1

2

)
. (3.16)

These are the quantizations of the classical integrals obtained in section 2.3.2, and they will
form the building blocks of the quantum normal form associated with a saddle-centre-. . .-centre
equilibrium point in section 3.4.

3.1.2. The Moyal bracket. The main idea behind the introduction of symbols of operators is
that one can use the symbols to study properties of the operators, as we have already indicated
in the last subsection. Since the symbols are functions they are in general much easier to study
than operators. One can probably say that the single most useful fact about pseudodifferential
operators, i.e. operators whose symbols satisfy estimates like (3.12), is that they form an
algebra, i.e. the product of two such operators is again of this type, and that one can compute
the symbol of a product from the symbols of the operators which are multiplied.

The quantum normal form algorithm we will develop will rely essentially on this product
formula for symbols. Given two functions A, B, one can find a function A ∗ B such that
Op[A]Op[B] = Op[A ∗ B], see [DS99]. This so-called star product of A and B is given by

A ∗ B(q, p) = A(q, p) exp

(
i
h̄

2
[〈↼

∂ q,
⇀

∂ p〉 − 〈⇀

∂ q,
↼

∂ p〉]
)

B(q, p), (3.17)

where the arrows indicate whether the partial differentiation acts to the left (on A) or to the
right (on B). For the precise meaning of the expression on the right-hand side of this equation
we refer the reader to [Fol89,DS99,Mar02]. However, by expanding the exponential we obtain
the more explicit asymptotic expansion in powers of h̄ that will suffice for our purposes

A ∗ B(q, p) ∼
∞∑

k=0

1

k!

(
ih̄

2

)k

A(q, p)[〈↼

∂ q,
⇀

∂ p〉 − 〈⇀

∂ q,
↼

∂ p〉]kB(q, p)

= A(q, p)B(q, p) +
ih̄

2
{A, B}(q, p) + · · · , (3.18)
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where {·, ·} again denotes the Poisson bracket defined in (2.8). In particular, if A ∈ Sm(Rd×Rd)

and B ∈ Sm′
(Rd × Rd) then A ∗ B ∈ Sm+m′

(Rd × Rd) [Fol89, DS99, Mar02]. It is worth
mentioning that even if A and B are independent of h̄, the product A ∗ B will in general
depend on h̄ with the principal symbol being given by A B, i.e. the usual product of the
functions A and B.

From the Heisenberg equation (3.4) we see that the commutator plays an important role
when one wants to conjugate an operator with a one-parameter family of unitary operators.
Applying the product formula (3.17) to the expression for the commutator of Op[A] and Op[B],

Op[A]Op[B] − Op[B]Op[A] = Op[A ∗ B] − Op[B ∗ A] = Op[A ∗ B − B ∗ A], (3.19)

we obtain the formula for the symbol of a commutator

(A ∗ B − B ∗ A)(q, p) = h̄

i
{A, B}M(q, p), (3.20)

where {·, ·}M is the Moyal bracket which is defined as

{A, B}M(q, p) = 2

h̄
A(q, p) sin

(
h̄

2
[〈↼

∂ p,
⇀

∂ q〉 − 〈⇀

∂ p,
↼

∂ q〉]
)

B(q, p). (3.21)

For the precise interpretation of the right-hand side of this equation we again refer the reader
to [Fol89,DS99,Mar02]. However, as above, by expanding the sine we can obtain an explicit
asymptotic expansion for small h̄ that will suffice for our purposes,

{A, B}M(q, p) ∼
∞∑

k=0

(
h̄

2

)2k
(−1)k

(2k + 1)!
A(q, p)[〈↼

∂ p,
⇀

∂ q〉 − 〈⇀

∂ p,
↼

∂ q〉](2k+1)B(q, p). (3.22)

Note that in the case where one of the functions A, B is a polynomial the sum terminates at
some finite k and gives the exact expression for the Moyal product. In what follows, all our
explicit calculations will use from the Weyl quantization only the asymptotic formula (3.22)
for the Moyal product. Since we will work only with finite Taylor series, the asymptotic
expansion will always terminate and give the exact result.

From (3.22) we see that

{A, B}M(q, p) = {A, B}(q, p) + O(h̄2), (3.23)

i.e. in leading order the Moyal bracket is equal to the Poisson bracket, and moreover, if at least
one of the functions A, B is a second order polynomial then

{A, B}M(q, p) = {A, B}(q, p). (3.24)

3.1.3. Localizing in phase space. One important application of the product formula
(3.17) is that it allows operators to be localized in phase space, a technique often called
micro-localization, which in fact gave the whole field of microlocal analysis its name. Let
ρ ∈ S0(Rd × Rd) be a cutoff function, i.e. there is a set U ⊂ Rd × Rd such that

ρ|U = 1 (3.25)

and ρ has support in a small neighbourhood of U . Then we will call Op[ρ] a cutoff operator
(associated with U ), and we can use it to split any operator Op[H ] into two parts

Op[H ] = Op[ρ]Op[H ] + (1 − Op[ρ])Op[H ] = Op[Hloc] + Op[Hrem] (3.26)

where Hloc = ρ ∗H and Hrem = H −ρ ∗H . By the product formula (3.17) the symbol Hloc is
concentrated near the support of ρ and Hrem is concentrated on the complement of the support
of ρ. In this sense the usual procedure to localize the study of functions and dynamical
systems by multiplication with cutoff functions can be quantized. In particular we have



Invited Article R31

Hloc = ρH +O(h̄), so the leading order is actually the classical localization. If Op[ρ] is a cutoff
operator associated with some phase space region U we will call Op[Hloc] = Op[ρ]Op[H ]
the localization of H to U .

The localization appears to be a very natural object to consider with regard to the
application we are interested in, namely the study of the dynamics of a chemical reaction which
is described by a Hamilton operator Op[H ] whose principal symbol has a saddle-centre-. . .-
centre equilibrium point. The neighbourhood of the equilibrium point is the most important
region for the chemical reactions. This is where the reactants combine to form the activated
complex which then decays into the products. So it is natural to use the above procedure to
localize the Hamiltonian to a neighbourhood of the equilibrium point in phase space. In fact,
we will derive the quantization of the classical normal form procedure for a Hamiltonian which
is localized.

The localization has another advantage which is of a more technical nature. The Hamilton
operators we will encounter have symbols with polynomial growth in p and q for large p and
q, and this leads to some technical complications concerning questions like self-adjointness
and unitarity. If we localize our Hamiltonians by multiplication with a cutoff operator we end
up working with operators with bounded symbols only, for which self-adjointness is easy to
show. This will make many proofs technically much easier.

3.2. Transformation of operators through conjugation with unitary operators using the Weyl
calculus

We will now apply the Weyl calculus to the problem outlined in the beginning of this section.
For an operator Â = Op[A] with symbol A we consider its conjugation by a unitary operator
Û = e

i
h̄
Ŵ , where Ŵ = Op[W ] has symbol W . Our aim is to find the symbol A′ such that

Op[A′] = e
i
h̄

Op[W ]Op[A]e− i
h̄

Op[W ]. (3.27)

If we introduce the one-parameter family of operators

Â(ε) = Op[A(ε)] = e
i
h̄
εOp[W ]Op[A]e− i

h̄
εOp[W ] (3.28)

then A′ = A(ε = 1) and the Heisenberg equation (3.4) can be written in terms of the Moyal
bracket as an equation for the symbol A(ε),

d

dε
A(ε) = {W, A(ε)}M. (3.29)

In order to obtain A′ we thus have to solve (3.29) with initial condition A(0) = A. Note the
similarity between (3.29) and (2.9) in section 2.1 which expresses the correspondence between
the Heisenberg equation (3.4) and the classical equation (2.9) in the framework of the Weyl
calculus.

We will now discuss methods of how to solve equation (3.29) for certain choices of W .
Recall that if W is a polynomial of order less than or equal to two, then the Moyal bracket
reduces to the Poisson bracket (see (3.24)) and hence equation (3.29) reduces to (2.9), and we
recalled earlier in our development of the classical normal form theory that polynomials of
order less than or equal to two generate affine linear symplectic transformations (see section 2.2
and reference [Fol89]). The following lemma tells us that the symbols of operators transform
in the same way as classical phase space functions under such transformations.

Lemma 6 (Exact Egorov). Assume W(q, p) is a polynomial of order less than or equal to 2
with real valued coefficients, and let �1

W be the time one map of the Hamiltonian flow generated
by W (see (2.5)). Then

Û = e− i
h̄

Op[W ] (3.30)
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is unitary, and for every A ∈ Sm(Rd × Rd), we have

e
i
h̄

Op[W ]Op[A]e− i
h̄

Op[W ] = Op[A′] (3.31)

with A′ ∈ Sm(Rd × Rd) given by

A′ = A ◦ �−1
W . (3.32)

Proof. For the full proof we refer the reader to the appendix to chapter 7 in [DS99]. The main
ideas are as follows. It is well known that Op[W ] is essentially self-adjoint (see e.g. [DS99]),
and therefore Û is unitary. In order to find H ′ we have to solve (3.29). Since W is a polynomial
of order two or less than two equation (3.29) reduces to (2.9). From equation (2.5) we see that
A(ε) = A ◦ �−ε

W , and at ε = 1 we obtain (3.32). Now if W is a polynomial of order less than
or equal to two, then �−1

W is an affine linear transformation. Hence if A ∈ Sm(Rd × Rd), then
A′ ∈ Sm(Rd × Rd). �

This result is called ‘exact Egorov’ because there is a more general theorem due to
Egorov [Ego69] which states that, for a large class of W , a similar result holds asymptotically
for h̄ → 0. However, only for polynomials of degree equal to or less than two, do the higher
order terms in h̄ vanish.

For later reference we consider the following example. For (q, p) ∈ R2, let

W(q, p) = −π

4

1

2
(p2 + q2), (3.33)

which is the Hamilton function of an harmonic oscillator. The factor −π/4 is introduced for
convenience. The function W generates the vector field

XW(q, p) = (∂pW(q, p), −∂qW(q, p)) = π

4
(−p, q). (3.34)

The corresponding flow is given by

(q(ε), p(ε)) = �ε
W(q, p) =

(
cos

(
ε
π

4

)
q − sin

(
ε
π

4

)
p, sin

(
ε
π

4

)
q + cos

(
ε
π

4

)
p

)
.

(3.35)

The harmonic oscillator thus generates rotations in the (q, p)-plane. In particular, the time
one map of the flow generated by W gives the map from the coordinates (q, p) to the new
coordinates

(Q, P ) = �1
W(q, p) = 1√

2
(q − p, q + p), (3.36)

which we have already considered in section 2.3. Transforming I (q, p) = pq under this flow
we get

I ′(Q, P ) = I ◦ �−1
W (Q, P ) = 1

2 (P 2 − Q2), (3.37)

which gives the operator

Op[I ′] = − h̄2

2

d2

dQ2
− 1

2
Q2. (3.38)

We will refer to Op[I ′] as the Q representation of Op[I ], and for later reference we denote the
unitary transformation which classically generates the 45◦ rotation (3.36) as

Ûr = e− i
h̄

Op[W ], (3.39)

where W is given by (3.33).
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Having discussed this particular example of an application of lemma 6 (exact Egorov) we
now turn to the case of higher order polynomials in W . To this end we will develop a power
series approach analogous to what we described in section 2.1. This will provide higher order
approximations in h̄ as well as give an explicit expression for the symbol of the transformed
in (3.27) in the case where W or A are polynomials.

We begin by simplifying the notation and define the Moyal-adjoint action. For two smooth
functions W and A, we define analogously to the adjoint action in (2.10) the Moyal-adjoint
action as

MadWA := {W, A}M. (3.40)

Using the Moyal adjoint equation (3.29) becomes

dA(ε)

dε
= MadWA(ε). (3.41)

We compute higher order derivatives of A(ε) with respect to ε in a manner analogous to (2.11)
and (2.12). We successively differentiate (3.29) and apply the notation (3.40) to obtain

dn

dεn
A(ε) = [MadW ]nA(ε). (3.42)

Hence, the (formal) Taylor series in ε around ε = 0 is given by

A(ε) =
∞∑

n=0

εn

n!
[MadW ]nA, (3.43)

and setting ε = 1 we obtain the formal sum

A′ =
∞∑

n=0

1

n!
[MadW ]nA. (3.44)

This expression is completely analogous to (2.13), and as we will see in more detail, can be
used in a similar fashion to compute the symbol A′ up to any desired order in h̄ and (q, p).
In particular, analogously to equation (2.13), it gives the Taylor expansion with respect to ε,
evaluated at ε = 1, for the symbol A′ of the operator obtained after conjugation of the operator
defined by the symbol A by the unitary transformation generated by W . This formula forms the
basis of the quantum normal form method where the idea is to ‘simplify’ (or ‘normalize’) the
symbol whose quantization will then correspond to the normal form of the Hamilton operator.
As in the classical case, the computation of the Taylor expansion is carried out ‘order by order’
using power series expansions of the symbol in (q, p) and h̄. The series is expanded about
an equilibrium point of the principal symbol, and therefore the quantum normal form will be
valid in a neighbourhood of this point. Hence, as in the classical case, the quantum normal
form is a ‘local object’ whose operator nature requires more technical details for a rigorous
characterization of its properties (cf section 3.1.3 and definition 4), and we will describe these
in more detail in the following.

Therefore similar to the mathematical formalism required for computing the classical
normal form, normalizing the symbol of the operator that will correspond to the quantum
normal form will require us to manipulate monomials which in addition to (q, p) now also
have factors of h̄. In order to describe this we adopt a notation introduced by Crehan [Cre90]
and define the spaces

Ws
qm = span

{
h̄j qαpβ := h̄j

d∏
k=1

q
αk

k p
βk

k : |α| + |β| + 2j = s

}
. (3.45)
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These spaces Ws
qm are closely related to the spaces Ws

cl spanned by the polynomials (2.14) in
the classical case. In fact we have

Ws
qm =

[s/2]⊕
k=0

h̄kWs−2k
cl , (3.46)

where [s/2] denotes the integer part of s/2.
Below we want to use functions W ∈ Ws

qm in order to construct unitary operators of the

form e− i
h̄

Op[W ]. However, the quantization of a function W ∈ Ws
qm will give an unbounded

operator and this makes the discussion of self-adjointness of Op[W ], and hence the unitarity
of e− i

h̄
Op[W ], more complicated. But since we are interested in the local quantum dynamics

generated by a Hamilton operator in the neighbourhood of an equilibrium point of its principal
symbol it will be sufficient to have a local version of the spaces Ws

qm. We thus apply the
localization procedure from section 3.1.3. We say that W ∈ Ws

qm;loc if W ∈ Sh̄(R
d × Rd) and

there is an open neighbourhood U of z0 = 0 ∈ Rd × Rd such that

W |U ∈ Ws
qm. (3.47)

The quantization of elements of Ws
qm;loc will then give bounded operators. Therefore, if

W ∈ Ws
qm;loc is real valued then Op[W ] will be self-adjoint and thus Û = e− i

h̄
Op[W ] will be

unitary.
We will frequently use Taylor expansions and want to modify them in such a way that the

terms in the expansion are in Ws
qm;loc. In order to make our discussion of this property precise

we will need the following definition.

Definition 4. We will say a function ON ∈ Sh̄(R
d × Rd) is a remainder of order N (around

(q, p) = (0, 0)) if there is an open neighbourhood U of (q, p) = (0, 0) and c > 0 such that

|ON(ε2h̄, εq, εp)| < cεN (3.48)

for h̄ < 1, (q, p) ∈ U and ε < 1.

We then can formulate

Lemma 7. Let A ∈ Sh̄(R
d ×Rd), then there exist As ∈ Ws

qm;loc such that for any N ∈ N there

is a remainder ON ∈ Sh̄(R
d × Rd) of order N such that

A =
N−1∑
s=0

As + ON. (3.49)

Proof. Let us take the ordinary Taylor expansion of A(h̄, q, p) around (h̄, q, p) = (0, 0, 0)

and order the terms according to the definition of order in (3.45). This gives us an expansion
A =∑N−1

s=0 Ãs + RN with

Ãs =
∑

|α|+|β|+2j=s

1

j !α!β!
∂k
h̄∂α

q ∂β
p A(0, q0, p0)q

αpβh̄j ∈ Ws
qm (3.50)

and RN(ε2h̄, εq, εp) = O(εN). Now choose a function ρ ∈ Sh̄(R
d × Rd) with ρ|U ≡ 1

for some open neighbourhood U of 0, and set As := ρÃs . Then it follows directly that
As ∈ Ws

qm;loc and ON := A −∑N−1
s=0 As ∈ Sh̄(R

d × Rd) is a remainder of order N . �
The main reason for defining the order s according to (3.45), i.e. the reason for double

counting the powers of h̄, is that it behaves nicely with respect to the Moyal product. This is
reflected in the following lemmata. The first one is the analogue of lemma 1 in the classical case.



Invited Article R35

Lemma 8. Let W ∈ Ws ′
qm;loc, A ∈ Ws

qm;loc, s, s ′ � 1, then

{W, A}M ∈ Ws+s ′−2
qm;loc , (3.51)

and for n � 0,

[MadW ]nA ∈ Wn(s ′−2)+s

qm;loc , (3.52)

if n(s ′ − 2) + s � 0 and
[
MadW

]n
A = 0 otherwise.

Proof. We can write the Moyal bracket (3.22) as

{W, A}M =
∑

k

(
h̄

2

)2k
(−1)k

(2k + 1)!
D(2k+1)(W, A)(q, p) (3.53)

with the bi-differential operators

D(2k+1)(W, A)(q, p) := W(q, p)[〈↼

∂ p,
⇀

∂ q〉 − 〈⇀

∂ p,
↼

∂ q〉](2k+1)A(q, p), (3.54)

Now the bi-differential operator D(2k+1) is of order 2k + 1 in the arguments involving A and
W individually, and therefore

D(2k+1) : Ws
qm;loc × Ws ′

qm;loc → Ws−(2k+1)+s ′−(2k+1)

qm;loc . (3.55)

On the other hand, multiplication by h̄2k mapsWs−(2k+1)+s ′−(2k+1)

qm;loc toWs−(2k+1)+s ′−(2k+1)+4k

qm;loc =
Ws+s ′−2

qm;loc , and therefore every term in the series (3.53) is in Ws+s ′−2
qm;loc . But the order of W and A

as polynomials in (q, p) near (q, p) = (0, 0) is at most s and s ′, respectively, and therefore
the terms in the series (3.53) vanish near (q, p) = (0, 0) for 2k + 1 > min(s, s ′). Hence

{W, A}M ∈ Ws+s ′−2
qm;loc . (3.56)

The second result then follows by induction. �
We can now turn our attention to the computation of the symbol of a conjugated operator

when the generator of the unitary operator has order larger than 2. The computation will
proceed in two steps; in the first lemma we show that conjugation respects the class of symbols
we are working with.

Lemma 9. Let W ∈ Ws
qm;loc and A ∈ Sh̄(R

d × Rd), then there exists an A′ ∈ Sh̄(R
d × Rd)

such that Op[A′] = e
i
h̄

Op[W ]Op[A]e− i
h̄

Op[W ].

The techniques for proving this lemma are different from the ones we use in the rest of
the paper. In order not to interrupt the flow of the paper, we therefore present the proof in
appendix A.

By lemma 9 we know that the symbol of e
i
h̄

Op[W ]Op[A]e− i
h̄

Op[W ] is a function in
Sh̄(R

d × Rd). With the help of lemma 8 we can reorder the terms in the formal expansion
(3.44) to turn it into a well-defined Taylor expansion in the sense of lemma 7. This is the
content of the following lemma which can be considered to be the analogue of lemma 2 in the
classical case.

Lemma 10. Let W ∈ Ws ′
qm;loc, s ′ � 3, and A ∈ Sh̄(R

d × Rd) with Taylor expansion

A = ∑∞
s=0 As , As ∈ Ws

qm;loc. Then the symbol A′ of e
i
h̄

Op[W ]Op[A]e− i
h̄

Op[W ] has the Taylor
expansion

A′ =
∞∑

s=0

A′
s (3.57)
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with

A′
s =

[ s

s′−2
]∑

n=0

1

n!
[MadW ]nAs−n(s ′−2) ∈ Ws

qm;loc, (3.58)

i.e. for every N ∈ N there exists a remainder ON ∈ Sh̄(R
d × Rd) of order N such that

A′ =
N−1∑
s=0

A′
s + ON. (3.59)

Proof. By lemma 9 we know that A′ ∈ Sh̄(R
d ×Rd), and we have to compute its Taylor series.

With (3.42) we can use the Taylor expansion of A′(ε) to write

A′ =
N−1∑
n=0

1

n!

[
MadW

]n
A + O ′

N (3.60)

with

O ′
N = 1

(N − 1)!

∫ 1

0
(1 − ε)N−1

[
MadW

]N
A′(ε) dε, (3.61)

being just the standard remainder formula for Taylor expansions. Since A′(ε) ∈ Sh̄(R
d×Rd) =

W0
qm;loc we have by lemma 8 that O ′

N ∈ Sh̄(R
d × Rd) is a remainder of order N . If we next

insert the Taylor expansion for A we get

A′ =
N−1∑
l=0

N−1∑
n=0

1

n!

[
MadW

]n
Al + ON, (3.62)

where ON ∈ Sh̄(R
d ×Rd) denotes the collection of all the remainder terms of order N . Using

lemma 8 we can collect all the terms of order k in the sum which gives (3.58). To this end
one can proceed completely analogously to the proof of lemma 2 and we therefore omit the
details. �

3.3. Definition and computation of the quantum normal form

We will now define when a Hamilton operator is in quantum normal form. Similarly to the case
of the classical normal form, in general a Hamilton operator is not in quantum normal form.
However, as we will show, the formalism based on the Weyl calculus developed in the previous
two sections can be used to construct an explicit algorithm which will allow us to transform
a Hamilton operator to normal form to any desired order of its symbol. The algorithm will
consist of two parts. The first part operates on the level of the symbols of operators, and this
part of the algorithm will be very similar to the normalization algorithm in the classical case.
In the second part the symbols are quantized, i.e. the operators corresponding to the symbols
will be determined.

The starting point is a Hamilton operator Op[H ] which is the Weyl quantization of a
symbol H(h̄, q, p). Assume that the Hamiltonian dynamical system defined by the principal
symbol has an equilibrium point at z0 = (q0, p0), i.e. the gradient of the principal symbol
vanishes at z0. Let H2(z) ∈ W2

qm denote the second order term of the Taylor expansion of the
symbol H about z0 and Op[H2] its Weyl quantization. We now make the
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Definition 5 (Quantum normal form). We say that Op[H ] is in quantum normal form with
respect to the equilibrium point z0 of its principal symbol if

[Op[H2], Op[H ]] = 0, (3.63)

or equivalently in terms of the symbol,

adH2H ≡ {H2, H } = 0. (3.64)

The equivalence of the two equations in definition 5 derives from the fact that the Moyal
bracket reduces to the Poisson bracket if one of its arguments is quadratic. Moreover, we
remark that H2 and the quadratic part of the principal symbol differ at most by a term that
consists of h̄ with a constant prefactor. Since the Poisson bracket vanishes if one of its two
arguments is a constant it does not make a difference in definition 5 if H2 in (3.64) were
replaced by the second order term of the Taylor expansion of the principal symbol.

As in the case of a Hamilton function being in classical normal form the property of a
Hamilton operator to be in quantum normal form has strong implications which in the quantum
case lead to a considerable simplification of the study of the spectral properties of the operator.
To this end recall that two commuting operators have a joint set of eigenfunctions. Hence, if
an operator is in quantum normal form the study of its spectral properties will be simplified
considerably, since the spectrum and eigenfunctions of an operator Op[H2] with a symbol of
order 2 are well known.

Similarly to the classical case a Hamilton operator is in general not in quantum normal
form. However, we will now show how the formalism developed in the previous two sections
can be used to transform a Hamilton operator to quantum normal form to any desired order
of its symbol. Similarly to the classical case we will truncate the symbol at a certain order
and show that the corresponding Hamilton operator will lead to a very good approximation of
many interesting spectral properties of the original Hamilton operator.

We develop the following procedure. Let H = H(0) denote the symbol of our original
Hamilton operator. We will construct a consecutive sequence of transformations of the symbol
according to

H =: H(0) → H(1) → H(2) → H(3) → · · · → H(N) (3.65)

by requiring the symbol H(n), for n � 1, to derive from the symbol H(n−1) by conjugating
Op[H(n−1)] with a unitary transformation according to

Op[H(n)] = e
i
h̄

Op[Wn]Op[H(n−1)]e− i
h̄

Op[Wn], (3.66)

where the symbol Wn of the generator of the unitary transformation is in Wn
qm;loc. As in

the series of symplectic transformations in the classical case in (2.27), N in (3.65) is again a
sufficiently large integer at which we will truncate the quantum normal form computation. The
algorithm for normalizing the symbol will be identical to the classical case. The key difference
is that the Poisson bracket of the classical case is replaced by the Moyal bracket in the quantum
case. With this replacement, the mathematical manipulations leading to normalization of the
symbol are virtually identical.

To this end, using (3.44) we see that, analogously to (2.35) in the classical case, we have

H(n) =
∞∑

k=0

1

k!

[
MadWn

]k
H (n−1). (3.67)

As in the classical case the first two steps, n = 1, 2, in (3.65) differ somewhat in nature
from the steps for n � 3. The first step serves to shift the equilibrium point to the origin and
the second step serves to simplify the quadratic part of the symbol. It follows from lemma 6
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(exact Egorov) that we achieve these affine linear transformations by choosing the symbols
W1 and W2 identical to the generators of the corresponding symplectic transformations in the
classical case. We thus have

H(1)(h̄, z) = H(0)(h̄, z + z0) (3.68)

and

H(2)(h̄, z) = H(1)(h̄, M−1z), (3.69)

where M is a suitable symplectic 2d × 2d matrix which achieves the simplification of the
quadratic part of the symbol analogously to the classical case. It is important to note that we
do not explicitly need the generators W1 and W2 which, as mentioned in section 2.2, might be
difficult to compute.

Before we proceed with the normalization of the higher order terms, n � 3, we will assume
that we localize around the equilibrium point which is now at the origin, see section 3.1.3, i.e.
by multiplying H(2) by a suitable cutoff function concentrated about the origin we can assume
H(2) ∈ Sh̄(R

d × Rd) and the terms H(2)
s of the Taylor expansion of H(2) to be in Ws

qm;loc.
For the higher order terms, n � 3, we find by (3.58) in lemma 10 that the terms H(n)

s can
be computed from the terms of the power series of H(n−1) according to

H(n)
s =

[ s
n−2 ]∑
k=0

1

k!
[MadWn

]kH (n−1)

s−k(n−2). (3.70)

The normalization procedure for the terms of order n � 3 of the symbol has very similar
properties as the corresponding procedure in the classical case. In particular a transformation
at a given order does not affect lower order terms. This is made more precise in the following
lemmata that are the analogues of lemmas 3 and 4 for the classical case from section 2.2.

Lemma 11. H
(n)
2 = H

(2)
2 , n � 3.

Proof. The proof is completely analogous to the proof of lemma 3 and is therefore omitted. �

As in the classical case, lemma 11 motivates the adoption of the following notation for
the operator

D := ad
H

(2)
2

= {H(2)
2 , ·}. (3.71)

Lemma 12. For n � 3 and 0 � s < n, H(n)
s = H(n−1)

s .

Proof. The proof is completely analogous to the proof of lemma 4 and is therefore omitted. �

As in the classical case the nth order term in H(n)
n indicates how to choose Wn for n � 3.

Lemma 13 (Quantum homological equation). For s = n � 3,

H(n)
n = H(n−1)

n − DWn, (3.72)

Proof. The proof is completely analogous to the proof of lemma 5 and is therefore omitted. �

The homological equation (3.72) is solved in exactly the same way as the homological
equation in the classical normal form computation described in section 2.3.1. The only
difference is that we now deal with a symbol that in contrast to the classical Hamilton function
in general depends on h̄. But due to the splitting Ws

qm = ⊕[s/2]
k=0 h̄kWs−2k

cl , see (3.46), the
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results on the solution of the classical homological equation can be transferred directly. In
particular the notion of solvability introduced in definition 2 carries over verbatim.

We note that so far we have only shown how to transform the Hamilton operator to
quantum normal form on the level of its symbol. We have not yet discussed the implications
for the corresponding transformed operator. As we will see, similarly to the question of
how to explicitly solve the homological equation, the nature of the transformed Hamilton
operator depends on the type of equilibrium point of the principal symbol. In the next section,
section 3.4, we will discuss this in detail for the case of a nonresonant saddle-centre-. . .-centre
equilibrium point.

We summarize our findings in the following theorem.

Theorem 2. Assume the principal symbol of Op[H ] has an equilibrium point at z0 ∈ Rd ×Rd ,
and that the homological equation is solvable in the sense of definition 2. Then for every N ∈ N

there is a unitary transformation ÛN such that

Û ∗
NOp[H ]ÛN = Op[H(N)

QNF] + Op[ON+1], (3.73)

where Op[H(N)
QNF] is in quantum normal form (with respect to 0) and ON+1 is of order N + 1.

Proof. As we have seen in this section the conjugations of a Hamilton operator by unitary
transformations to transform it to quantum normal form can be carried out on the level of the
symbols of the operators involved. This makes the proof of theorem 2 very similar to the proof
of theorem 1 in the classical case. In fact, the proof of theorem 1 carries over verbatim when
one replaces the Poisson bracket by the Moyal bracket. Then lemma 3 is replaced by lemma 11
and lemma 4 by lemma 12.

Using the scheme (3.65) with (3.66) then gives the unitary transformation ÛN in (3.73) as

ÛN = e− i
h̄

Op[W1]e− i
h̄

Op[W2]e− i
h̄

Op[W3] · · · e− i
h̄

Op[WN ]. (3.74)

The first two generators, W1 and W2, are chosen exactly as in the classical normal form
algorithm, see (3.68) and the following paragraph, and by lemma 6 (exact Egorov) this induces
the same transformation of the symbols as in the classical case. The other generators Wn, n � 3,
are then chosen recursively as solutions of the homological equation, see lemma 13, where
after each step we have to determine H(n) up to order N from (3.70). �

Similarly to the classical case the definition of the quantum normal form in definition 5 is
of little value for practical purposes since we cannot expect the quantum normal computation
to converge if we carry it out for N → ∞ as required by definition 5. For applications it is
more useful to consider the truncated quantum normal form.

Definition 6 (Nth order quantum normal form). Consider a Hamilton operator Op[H ]
whose principal symbol has an equilibrium point at z0 ∈ Rd × Rd which, for N ∈ N, we
normalize according to theorem 2. Then we refer to the operator Op[H(N)

QNF] in equation (3.73)
as the N th order quantum normal form (QNF) of Op[H ].

We have seen that the procedure to construct the quantum normal form is very similar to
the procedure to compute the classical normal form. In particular the homological equations
(2.46) and (3.72) which determine the choice of the successive transformations (2.27) and
(3.65), respectively, look identical since the Poisson bracket reduces to the Moyal bracket if
one of its arguments is a polynomial of order less than or equal to 2. However, it is important
to point out that this does not mean that the Moyal bracket completely disappears from the
procedure in the quantum case. In fact, while the normalization transformation at a given order
does not modify lower order terms, it does modify all higher order terms, and the Moyal bracket
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plays an important role in this, see (3.70). Consequently the terms in the Taylor expansions of
H(n) and the generators Wn will in general depend on h̄.

Since the Moyal bracket tends to the Poisson bracket in the limit h̄ → 0 we expect that
the symbol of the quantum normal form should tend to the classical normal form, too. This is
indeed the case.

Proposition 1. The principal symbol of the N th order quantum normal Op[H(N)
QNF] is the

classical normal form of order N , i.e.

H
(N)
QNF(h̄, q, p) = H

(N)
CNF(q, p) + O(h̄). (3.75)

Proof. This follows from an inspection of the construction of the classical and quantum
normal forms. The first two steps are identical by lemma 6 (exact Egorov). The homological
equation determining the choices of the Wn is also identical. What is different however is the
transformation of the higher order terms, k > n. Here we have equation (2.36) in the classical
case and equation (3.70) in the quantum case, and these equations differ by the use of the
adjoint versus the Moyal adjoint. But since MadWA = adWA + O(h̄) and therefore

Madk
WA = adk

WA + O(h̄) (3.76)

the differences in the higher order terms between the classical and the quantum transformation
schemes are always of order h̄. This implies that the differences between the symbol of the
quantum normal form and the classical normal form are of order h̄. �

3.4. Nature and computation of the quantum normal form in a neighbourhood of an
equilibrium point of the principal symbol of saddle-centre-. . .-centre type

We now describe how the quantum normal form of a Hamilton operator can be computed in the
case where the principal symbol has an equilibrium point of saddle-centre-. . .-centre type, i.e.
the matrix associated with the linearization of the Hamiltonian vector field generated by the
principal symbol has two real eigenvalues, ±λ, and d−1 complex conjugate pairs of imaginary
eigenvalues ±i ωk, k = 2, . . . d. We will assume that the ωk, k = 2, . . . d, are nonresonant in
the sense that they are linearly independent over the integers, i.e. k2ω2 + · · · + kdωd �= 0 for
all (k2, . . . kd) ∈ Zd−1 − {0}.

As mentioned in the previous section it follows from lemma 6 (exact Egorov) that we
can use the same affine linear symplectic transformations that we used in the classical case in
section 2 to shift the equilibrium point to the origin of the coordinate system and to simplify
the second order term of the symbol. We thus have

H(2) = E0 + H
(2)
2 +

∞∑
s=3

H(2)
s , (3.77)

where

H
(2)
2 (h̄, q, p) = λq1p1 +

d∑
k=2

ωk

2
(p2

k + q2
k ) + ch̄, (3.78)

where c is some real constant.
We note that in terms of the coordinates (Q, P ) we defined in section 2.3 H

(2)
2 is given by

H
(2)
2 (h̄, q, p) = λ

2
(P 2

1 − Q2
1) +

d∑
k=2

ωk

2
(P 2

k + Q2
k) + ch̄, (3.79)

which is the analogue of equation (2.63) in the classical case.
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3.4.1. Solution of the homological equation. We will solve the homological equation in
the spaces Wn

qm. The solution will then be localized by multiplication with a cutoff function
afterwards to obtain elements in Wn

qm;loc. This will ensure that the quantizations of these
symbols are bounded and generate unitary operators.

In order to solve the homological equation in lemma 13 we perform the linear symplectic
complex change of coordinates (q, p) �→ (x, ξ) given by x1 = q1, ξ1 = p1 and

xk := 1√
2
(qk − ipk), ξk := 1√

2
(pk − iqk), k = 2, . . . , d. (3.80)

In terms of these coordinates the operator D defined in (3.71) assumes the simple form

D = λ(ξ1∂ξ1 − x1∂x1) +
d∑

k=2

iωk(ξk∂ξk
− xk∂xk

). (3.81)

In terms of these coordinates the spaces Wn
qm defined in (3.45) are given by

Wn
qm = span

{
h̄j xαξβ := h̄j

d∏
k=1

x
αk

k ξ
βk

k : |α| + |β| + 2j = n

}
, (3.82)

and the operator D acts on an element h̄j xαξβ ∈ Wn
qm according to

D h̄j

d∏
k=1

x
αk

k ξ
βk

k =
(

λ(β1 − α1) +
d∑

k=2

iωk(βk − αk)

)
h̄j

d∏
k=1

x
αk

k ξ
βk

k . (3.83)

This means that the map D can again be diagonalized and similarly to the classical case we
have that Wn

qm is given by the direct sum of the kernel of D acting on Wn
qm, KerD|Wn

qm
and the

image of D acting on Wn
qm, ImD|Wn

qm
, i.e.

Wn
qm = KerD|Wn

qm
⊕ ImD|Wn

qm
. (3.84)

Now we can express H(n−1)
n as

H(n−1)
n = H

(n−1)

n;Ker + H
(n−1)

n;Im , (3.85)

where H
(n−1)

n;Ker ∈ KerD|Wn
qm

and H
(n−1)

n;Im ∈ ImD|Wn
qm

. We can therefore choose Wn such that

DWn = H
(n−1)

n;Im , (3.86)

and therefore

H(n)
n = H

(n−1)

n;Ker . (3.87)

Similarly to the classical case the choice of Wn is not unique since one can always add terms
from the kernel of D|Wn

qm
. However, we will require Wn ∈ ImD|Wn

qm
, i.e. we will invert D on

its image ImD|Wn
qm

.
Using our assumption that the frequencies ω2, . . . , ωd are nonresonant, i.e. linearly

independent over Z, we see from (3.83) that a monomial h̄j xαξβ is mapped to zero if and
only if αk = βk , k = 1, . . . , d. In particular KerD|Ws

qm
= {0} if s is odd. This implies that

unitary transformations can be constructed such that all odd order terms in the symbol of the
conjugated Hamilton operator are eliminated. Moreover, for s even, the terms that cannot be
eliminated are those which are sums of monomials for which x

(s)
k and ξ

(s)
k have equal integer

exponents for all k = 1, . . . , d.
Concretely, we can compute Wn from (3.86) as follows. We assume that H

(n−1)

n;Im is the
linear combination of L monomials of order n,

H
(n−1)

n;Im =
L∑

l=1

hl h̄
jl

d∏
k=1

x
αk;l
k ξ

βk;l
k , (3.88)
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with 2jl +
∑d

k=1 αk;l + βk;l = n for all l = 1, . . . , L, and for all l = 1, . . . , L, there is at least
one k = 1, . . . , d for which αk;l �= βk;l (i.e. the vectors (α1;l , . . . , αd;l) and (β1;l , . . . , βd;l) are
different for all l = 1, . . . , L). Upon inspecting (3.83), and using (3.86), we see that a suitable
generating function is given by

Wn =
L∑

l=1

hl

λ(β1;l − α1;l) +
∑d

k=2 iωk(βk;l − αk;l)
h̄jl

d∏
k=1

x
αk;l
k;l ξ

βk;l
k;l . (3.89)

As mentioned above this solution of the homological equation is unique if we require Wn

to be in ImD|Wn
qm

.

3.4.2. Structure of the Hamilton operator in N th order quantum normal form. In the previous
section we have seen how to obtain the quantum normal form to order N in the case where
the equilibrium point is of saddle-centre-. . .-centre type. So far these computations have
been carried out on the level of the symbols of the Hamilton operators. We now discuss the
implications for the structure of the corresponding Hamilton operator in quantum normal form
itself.

In the classical case in sections 2.3.1 and 2.3.2 we have shown that in each monomial
of the Hamilton function in N th order classical normal form the coordinate pairs (xk, ξk) (or
equivalently (qk, pk)), k = 1, . . . , d, occur with equal integer exponents and that this implies
that the Hamilton function in N th order classical normal form is effectively a function of d

integrals, see equation (2.83).
In the previous section we saw that in the monomials that form the symbol of a Hamilton

operator in N th order quantum normal form the coordinate pairs (xk, ξk) (or equivalently
(qk, pk)), k = 1, . . . , d, again have equal integer exponents. Hence, the symbol is effectively
a function of I = p1q1, Jk = 1

2 (p2
k +q2

k ), k = 2, . . . , d. We will now show that analogously to
(2.83) the Hamilton operator in N th order quantum normal form is a function of the d operators

Î := Op[I ], Ĵk := Op[Jk], k = 2, . . . , d, (3.90)

see equations (3.15) and (3.16). To this end recall that the Hamilton operator in quantum
normal form is localized near the equilibrium point. We will say that two operators Op[A] and
Op[B] are equal near a point z = (q, p) in phase space if their symbols A and B are equal in
a neighbourhood of z. To indicate this we write

Op[A] ≡z Op[B]. (3.91)

Theorem 3. Let Op[H(N)
QNF] be a Hamilton operator in N th order quantum normal form with

respect to an equilibrium point of its principal symbol of saddle-centre-. . .-centre type, and
assume furthermore that the frequencies ω2, . . . , ωd associated with the d − 1 centres are
linearly independent over Z. Then there exists a polynomial K

(N)
QNF : Rd → R of order [N/2]

such that

Op[HQNF] ≡0 K
(N)
QNF(Î , Ĵ2, . . . , Ĵd). (3.92)

In this theorem [N/2] denotes the integer part of N/2. The proof of this theorem is based
on the following

Lemma 14. Let I = pq, J = 1
2 (p2 + q2), and Î = Op[I ], Ĵ = Op[J ], respectively, then

there are integers �n,k such that for any n ∈ N,

Op[I n] =
[n/2]∑
k=0

(−1)k�n,k

(
h̄

2

)2k

Î n−2k (3.93)
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and

Op[J n] =
[n/2]∑
k=0

�n,k

(
h̄

2

)2k

Ĵ n−2k. (3.94)

Here [n/2] denotes the integer part of n/2, and the coefficients �n,k are determined by the
recursion relation

�n+1,k = �n,k + n2�n−1,k−1 for k � 1 (3.95)

and �n,0 = 1.

Proof. We start by considering the case of I = pq. The strategy will be to use the Weyl
calculus to determine the symbol of Op[I n] as a function of I , and then to invert this relation.
The symbol of Op[I n] is I ∗n := I ∗ I ∗ · · · ∗ I , the n-fold star product of I . Using I = pq

and the definition of the star product in (3.17) we find the recursion relation

I ∗ I n = I n+1 +

(
h̄

2

)2

n2I n−1. (3.96)

This can be rewritten as

Op[I n+1] = ÎOp[I n] −
(

h̄

2

)2

n2Op[I n−1], (3.97)

which can be used to determine the Î n := Op[I n] recursively. If we insert the ansatz (3.93)
into the recursion relation (3.97) we find the recursion for the coefficients (3.95).

In order to show the validity of equation (3.94) we apply the same strategy and find instead
of (3.97)

Op[J n+1] = ĴOp[J n] +

(
h̄

2

)2

n2Op[J n−1], (3.98)

and inserting now (3.94) as an ansatz into this equation leads again to the relation (3.95) for
the coefficients. �

We note that the closed formulae for Î n and Ĵ n
k given in [Cre90] are not correct. We now

prove theorem 3.

Proof of theorem 3. It follows from our construction that the symbol of a Hamilton operator
in quantum normal form is near (q, p) = (0, 0) a polynomial in I , Jk , k = 2, . . . , d, that can
be written in the following form:

H
(N)
QNF =

L∑
l=1

hlh̄
jl I α1;l J

α2;l
2 · · · J αd;l

d , (3.99)

where 2jl + 2
∑d

k=1 αk;l � N , or equivalently jl +
∑d

k=1 αk;l � N/2, for all l = 1, . . . , L. For
Op[H(N)

QNF] we thus find

Op[H(N)
QNF] =

L∑
l=1

hlh̄
jl Op[Iα1;l ]Op[J α2;l

2 ] · · · Op[J αd;l
d ]. (3.100)

If we insert the expansions from lemma 14 into (3.100) we obtain

Op[H(N)
QNF] =

L∑
l=1

hlh̄
jl

[α1;l /2]∑
k1=0

[α2;l /2]∑
k2=0

· · ·
[αd;l /2]∑
kd=0

(−1)α1;l �α1;l ,k1 · · · �αd;l ,kd

×
(

h̄

2

)2(k1+...+kd )

Î α1;l−2k1 Ĵ
α2;l−2k2

2 · · · Ĵ αd;l−2kd

d . (3.101)
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Since jl +
∑d

k=1 αk;l � N/2 for all l = 1, . . . , L it follows that the RHS of (3.101) is a
polynomial of order [N/2] in Î , Ĵ2, . . . , Ĵd . This polynomial defines the function K

(N)
QNF.

We note that for h̄ → 0 the polynomial K
(N)
QNF tends to the polynomial K

(N)
CNF defined in

(2.83) that gives the N th order classical normal form as a function of the integrals I and Jk ,
k = 2, . . . , d. Though this is obvious from the proof of theorem 3 it is worth mentioning that
in general the coefficients in the polynomial K

(N)
QNF differ from the polynomial that is obtained

from writing H
(N)
QNF as a function of I and Jk , k = 2, . . . , d. We will see this in the example

presented in section 3.5.
Theorem 3 is a crucial result. It tells us that the truncated quantum normal form simply

is a polynomial in the operators Î and Ĵk , k = 2, . . . , d, whose spectral properties are well
known. As we will see in more detail in sections 5 and 6 this will allow us to compute quantum
reaction rates and quantum resonances with high efficiency.

3.5. Quantum normal form for one-dimensional potential barriers

In the following we present the explicit computation of the quantum normal form for Hamilton
operators of one-dimensional systems of type ‘kinetic plus potential’ where the potential has a
maximum. It is important to point out that the applicability of the normal form algorithms—
both classical and quantum—is not restricted to systems of the form ‘kinetic plus potential’
(i.e. for example, Coriolis terms in the Hamiltonian function or Hamilton operator due to a
magnetic field or a rotating coordinate frame are allowed). Since even for this simple one-
dimensional problem the expressions for the symbols and operators involved soon become
very lengthy we will carry out the quantum normal form algorithm only to order 4. We note
that we implemented the normalization algorithm in the programming language C++. In our
object-oriented implementation the number of dimensions and the order of truncation of the
normal form can be chosen arbitrarily. This C++ program will be used to compute the high
order quantum normal forms for the more complicated examples given in section 7.

For now let us consider a Hamilton operator of the form

Ĥ = − h̄2

2m

d2

dq2
+ V (q), (3.102)

where the potential V is assumed to have a (nondegenerate) maximum at q = q0. The Weyl
symbol of Ĥ is given by

H(h̄, q, p) = 1

2m
p2 + V (q), (3.103)

i.e. Op[H ] = Ĥ . Since the symbol H does not depend on h̄, the symbol agrees with the
principal symbol. Hamilton’s equations for the Hamiltonian function given by H then have an
equilibrum point at (q, p) = (q0, 0) which is of saddle stability type, i.e. the matrix associated
with the linearization of the Hamiltonian vector field about the equilibrium point has a pair of
real eigenvalues ±λ. Here λ is given by

λ =
√

− 1

m
V ′′(q0). (3.104)

The first two steps in the sequence of transformations (3.65) serve to shift the equilibrium
point of the (principal) symbol to the origin and to simplify the quadratic part of the symbol.
As mentioned in section 3.3, it follows from lemma 6 (exact Egorov) that the transformations
of the symbol H to achieve these goals agree with the corresponding classical transformations.
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Classically, we shift the equilibrium point to the origin of the coordinate system by
transforming the coordinates according to

(q, p) �→ (q − q0, p). (3.105)

For completeness, we note that this transformation can be obtained from the time one map of
the flow generated by the first order polynomial

W1(q, p) = −q0p, (3.106)

i.e. �1
W1

(q, p) = (q − q0, p). The Weyl quantization of W1 is given by

Op[W1] = q0 ih̄
d

dq
. (3.107)

It follows from lemma 6 that

e
i
h̄

Op[W1]Op[H ]e− i
h̄

Op[W1] (3.108)

has the symbol

H(1)(h̄, q, p) = H ◦ �−1
W1

(h̄, q, p) = H(h̄, q + q0, p) = 1

2m
p2 + V (q + q0). (3.109)

We now want to find a unitary transformation such that the quadratic part of the symbol
H(2) of the transformed Hamilton operator assumes the form

H
(2)
2 (h̄, q, p) = λ p q. (3.110)

Classically, this is achieved by the transformation

(q, p) �→
(√

mλ q,
1√
mλ

p

)
(3.111)

followed by the 45◦ rotation

(q, p) �→
(

1√
2
(p + q),

1√
2
(p − q)

)
. (3.112)

Both these transformations are symplectic.
Again for completeness, we note that the transformation (3.111) can be obtained from the

time one map of the flow generated by

W2(q, p) = ln(
√

mλ) p q, (3.113)

i.e.

�1
W2

(q, p) =
(√

mλ q,
1√
mλ

p

)
. (3.114)

The Weyl quantization of W2 is given by

Op[W2] = ln(
√

mλ)
h̄

i

(
q

d

dq
+

1

2

)
, (3.115)

see equation (3.16). The transformation (3.112) can be obtained from the time one map of the
flow generated by

W ′
2(q, p) = π

4

1

2
(q2 + p2), (3.116)

which gives

�1
W ′

2
(q, p) =

(
1√
2
(p + q),

1√
2
(p − q)

)
, (3.117)
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see the example after lemma 6 (exact Egorov), (3.33). The Weyl quantization of W ′
2 is given by

Op[W ′
2] = π

2

(
− h̄2

2

d2

dq2
+

1

2
q2

)
, (3.118)

see equation (3.15).
Using lemma 6 it follows that the symbol of

Op[H(2)] = e
i
h̄

Op[W ′
2]e

i
h̄

Op[W2]Op[H(1)]e− i
h̄

Op[W2]e− i
h̄

Op[W ′
2] (3.119)

is given by

H(2)(h̄, q, p) = H(1) ◦ �−1
W ′

2
◦ �−1

W2
(h̄, q, p)

= V0 + λqp +
∞∑

k=3

k∑
n=0

Vn;k−np
nqk−n =:

∞∑
k=0

H
(2)
k (h̄, q, p), (3.120)

where

H
(2)
0 (h̄, q, p) = V0 := V (q0), H

(2)
1 (h̄, q, p) = 0, H

(2)
2 (h̄, q, p) = λpq.

(3.121)

The coefficients of the monomials in (3.120) of cubic or higher degree are

Vn;j = (−1)n
1

n!j !

1

(2mλ)(n+j)/2

dn+jV (q0)

dqn+j
, n + j � 3. (3.122)

So far, i.e. up to order 2, the transformations involved in the quantum normal form
algorithm agree with their counterparts in the classical normal form algorithm. We now
want to study the next steps in the sequence (3.65) which give the quantum normal form of
order three and four. To make these transformations well defined we from now on assume
that we use the scheme outlined in section 3.1.3 to localize the Hamilton operator H(2) and
the operators which will generate the required unitary transformations about the origin. The
monomials in the third and fourth order polynomials H

(2)
3 and H

(2)
4 have coefficients

V3;0 = −V0;3 = −1

3
V2;1 = 1

3
V1;2 = −1

6

1

(2mλ)3/2
V ′′(q0), (3.123)

V4;0 = V0;4 = −1

4
V3;1 = −1

4
V1;3 = 1

6
V2;2 = 1

24

1

(2mλ)2
V ′′(q0), (3.124)

respectively, where the primes denote derivatives.
It follows from equation (3.70) that for W3 ∈ W3

qm;loc, the symbol of the transformed
operator

Op[H(3)] = e
i
h̄

Op[W3]Op[H(2)]e− i
h̄

Op[W3] (3.125)

is given by

H(3) = H
(3)
0 + H

(3)
1 + H

(3)
2 + H

(3)
3 + H

(3)
4 + · · · , (3.126)

where following lemma 12, the terms H
(3)
k and H

(2)
k agree for k � 2, and

H
(3)
3 = H

(2)
3 + MadW3H

(2)
2 = H

(2)
3 + {W3, H

(2)
2 }, (3.127)

H
(3)
4 = H

(2)
4 + MadW3H

(2)
3 +

1

2
[MadW3 ]2H

(2)
2 . (3.128)

Equation (3.127) is the homological equation. Introducing the operator

D = {H(2)
2 , ·} (3.129)
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the homological equation takes the form

H
(3)
3 = H

(2)
3 − DW3, (3.130)

which agrees with the form of the homological equation in lemma 13. Following section 3.4
we need to solve the homological equation, i.e. choose W3, such that DH

(3)
3 = 0. Since

W3
qm = ImD|W3

qm
, or equivalently KerD|W3

qm
= {0}, we have to choose W3 such that H

(3)
3 = 0.

From (3.127) we see that this is achieved by setting

W3(h̄, q, p) = −
3∑

n=0

1

λ(2n − 3)
Vn;3−np

nq3−n, (3.131)

= −V3;0
3λ

(p3 − 9p2q − 9pq2 + q3). (3.132)

Inserting this W3 into (3.128) gives

H
(3)
4 (h̄, q, p) = V4;0(p4 − 4p3q + 6p2q2 − 4pq3 + q4)

−V 2
3;0
λ

(3p4 + 12p3q − 30p2q2 + 12pq3 + 3q4 − 4h̄2). (3.133)

Note the occurrence of the term involving h̄2. It is a consequence of the second term on the
right-hand side of (3.128) which involves the Moyal bracket of two polynomials which are
of degree higher than two for which the Moyal bracket no longer coincides with the Poisson
bracket.

Using equation (3.70) again we see that for W4 ∈ W4
qm;loc, the symbol of the transformed

operator

Op[H(4)] = e
i
h̄

Op[W4]Op[H(3)]e− i
h̄

Op[W4] (3.134)

is given by

H(4) = H
(4)
0 + H

(4)
1 + H

(4)
2 + H

(4)
3 + H

(4)
4 + · · · , (3.135)

where it again follows from lemma 12 that H
(4)
k = H

(3)
k for k � 3. For k = 4 we obtain the

homological equation

H
(4)
4 = H

(3)
4 + MadW4H

(3)
2 = H

(3)
4 − DW4. (3.136)

We need to choose W4 such that DH
(4)
4 = 0. We therefore decompose H

(3)
4 according to

H
(3)
4 = H

(3)

4;Ker + H
(3)

4;Im, (3.137)

where H
(3)

4;Ker ∈ KerD|W4
qm

and H
(3)

4;Im ∈ ImD|W4
qm

. It follows from section 3.4 that H
(3)

4;Ker

consists of all monomials of H
(3)
4 in which p and q have the same integer exponent and H

(3)

4;Im
consists of all monomials of H

(3)
4 in which p and q have different integer exponents. We

thus have

H
(3)

4;Ker = 6V4;0p2q2 +
V 2

3;0
λ

(30p2q2 + 4h̄2) (3.138)

and

H
(3)

4;Im = V4;0(p4 − 4p3q − 4pq3 + q4) − V 2
3;0
λ

(3p4 + 12p3q + 12pq3 + 3q4). (3.139)

To achieve DH
(4)
4 = 0 we choose

W4(h̄, q, p) = V3;0
4λ2

(3p4 + 24p3q − 24pq3 − 3q4) − V4;0
4λ

(p4 − 8p3q + 8pq3 − q4).

(3.140)
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We thus get

H(4)(h̄, q, p) = V0 + λpq + 6 V4;0p2q2 +
V 2

3;0
λ

(30p2q2 + 4h̄2) + O5, (3.141)

where the remainder O5 is defined according to definition 4. Neglecting O5 gives the symbol
of the 4th order quantum normal form. In order to get the corresponding operator we have to
replace the factors I = pq by the operator Î = Op[I ]. To this end we use the recurrence (3.93)
in lemma 14 to get

Op[I 2] = Î 2 − h̄2

4
. (3.142)

The 4th order quantum normal form of the operator Ĥ in (3.102) is thus given by

K
(4)
QNF(Î ) = V0 + λÎ +

(
30

V 2
3;0
λ

+ 6V4;0

)
Î 2 − h̄2

2

(
7
V 2

3;0
λ

+ 3V4;0

)
(3.143)

= V0 + λÎ +
1

16m2λ2

(
5

3mλ2

(
V ′′(q0)

)2
+ V ′′(q0)

)
Î 2

− 1

64m2λ2

(
7

9mλ2

(
V ′′(q0)

)2
+ V ′′(q0)

)
h̄2. (3.144)

This gives the first correction term to the well known quadratic approximation which consists
of approximating the potential barrier by an inverted parabola. The corresponding classical
normal form is given by

K
(4)
CNF(I ) = V0 + λI +

1

16m2λ2

(
5

3mλ2

(
V ′′(q0)

)2
+ V ′′(q0)

)
I 2. (3.145)

We see that the polynomial K
(4)
QNF (in Î ) has two more terms than the polynomial K

(4)
CNF (in

I ). These are the terms involving h̄, and their occurrence is due to the Moyal bracket (see the
comment following equation (3.133) which enters the quantum normal form computation on
the level of the symbols and the Weyl quantization of powers of the classical integral I = p q

(see (3.142)) which is required to obtain the Hamilton operator from its symbol.

4. Classical reaction dynamics and reaction probabilities

In this section we give an overview of the theory of reaction dynamics that is firmly rooted in
the dynamical arena of phase space and has recently been developed in [WWJU01, UJP+01,
WBW04b, WW04, WBW05a, WBW05b, WBW05c]. This section is organized as follows. In
section 4.1 we describe the geometric structures in phase space near an equilibrium point of
saddle-centre-. . .-centre stability type (see section 2.3) that control the classical dynamics of
reactions. These phase space structures are ‘realized’ through the classical normal form, and
details of this are given in section 4.2 where we also provide a detailed discussion of how
these phase space structures constrain trajectories of Hamilton’s equations. In section 4.3 we
describe how the integrability of the truncated normal form gives rise to the foliation of the
phase space near the saddle by Lagrangian manifolds. This will be of central importance
for the quantum mechanics of reactions as we will see in section 5. In section 4.4 we will
show how the normal form can be used to compute the directional flux through the dividing
surface. As we will see the normal form obtained from truncating the normal form algorithm
at a suitable order gives a very accurate description of the local dynamics. Means to verify the
accuracy are discussed in section 4.5. While the normal form technique is ‘locally applicable’
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in a neighbourhood of the reaction region, in section 4.6 we discuss how the local structures
mentioned above can be globalized in a way that their influence on reactions outside this ‘local’
region can be determined. Finally, in section 4.7 we comment on the flux–flux autocorrelation
function formalism to compute classical reaction probabilities that is frequently utilized in the
chemistry literature, its relation to our phase space theory and the computational benefits of
our approach over the flux–flux autocorrelation function formalism.

4.1. Phase space structures that control classical reaction dynamics: an overview of the
geometry

Our starting point is an equilibrium point of Hamilton’s equations of saddle-centre-. . .-
centre stability type. Near (and we will discuss what we mean by ‘near’ in section 4.5)
such equilibrium points there exist lower dimensional manifolds that completely dictate the
dynamics of the evolution of trajectories from reactants to products (or vice versa). The normal
form theory developed in section 2 provides a transformation to a new set of coordinates,
referred to as the normal form coordinates, in which these manifolds can be identified and
explicitly computed, and then mapped back into the original, ‘physical’ coordinates via the
normal form transformation. In this section we give a brief description of these phase space
structures, and in section 4.2 we describe how they constrain trajectories.

We let E0 denote the energy of the saddle, and we consider a fixed energy E > E0 (and
‘sufficiently close’ to E0). We also restrict our attention to a certain neighbourhood U , local to
the equilibrium point. We defer a discussion of exactly how this region is chosen to section 4.5;
suffice it to say for now that the region is chosen so that an integrable nonlinear approximation
to the dynamics yields structures to within a given desired accuracy.

Near this equilibrium point the (2d−1)-dimensional energy surface in the 2d-dimensional
phase space R2d has the structure of a ‘spherical cylinder’ S2d−2 ×R, i.e. the Cartesian product
of a (2d − 2)-dimensional sphere S2d−2 and a line R. The dividing surface that we construct
locally separates the energy surface into two components; ‘reactants’ and ‘products’. This
dividing surface which we denote by S2d−2

ds (E) has the structure of a (2d − 2)-dimensional
sphere S2d−2. It can be shown to have the following properties:

• The only way that trajectories can evolve from the reactants component to the products
component (and vice versa), without leaving the local region U , is by crossing S2d−2

ds (E).
We refer to this property of S2d−2

ds (E) as the ‘bottleneck property’10.
• The dividing surface that we construct is free of local recrossings; any trajectory which

crosses S2d−2
ds (E) must leave the neighbourhood U before it might possibly cross S2d−2

ds (E)

again.
• A consequence of the previous property of the dividing surface is that it minimizes the

(directional) flux. It is thus the optimal dividing surface sought for in variational transition
state theory [WW04].

The dividing surface S2d−2
ds (E) itself is divided into two hemispheres: the forward reactive

hemisphere B2d−2
ds, f (E), and the backward reactive hemisphere B2d−2

ds, b (E). The hemispheres

B2d−2
ds, f (E) and B2d−2

ds, b (E) are topological (2d − 2)-balls. These two hemispheres are separated

by the equator of S2d−2
ds (E), which itself is a sphere of dimension (2d − 3). On B2d−2

ds, f (E)

and B2d−2
ds, b (E) the Hamiltonian vector field is transversal to each of these surfaces. This

transversality is the mathematical manifestation of ‘no recrossing’. Heuristically, ‘transversal’

10 Here we inserted the restriction ‘without leaving the local region U ’ to exclude the case where the dividing surface
does not divide the full (global) energy surface into two disjoint components. For example, two regions in an energy
surface might be connected by channels associated with two different saddle-centre-. . .-centre equilibrium points.
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means that the Hamiltonian vector field ‘pierces’ the surfaces, i.e. there is no point where it
is tangential to the surface. Now the Hamiltonian vector field pierces the surfaces B2d−2

ds, f (E)

and B2d−2
ds, b (E) in opposite directions. Since the vector field varies smoothly from point to

point, it must be tangential to the equator on which B2d−2
ds, f (E) and B2d−2

ds, b (E) are joined. More
mathematically, the fact that the Hamiltonian vector field is tangential to the equator means that
the equator is an invariant manifold. In fact, it is a so-called normally hyperbolic invariant
manifold (NHIM) [Wig94], denoted by S2d−3

NHIM(E), where normal hyperbolicity means that
the expansion and contraction rates transverse to the manifold dominate those tangent to the
manifold, and there are an equal number of independent expanding and contracting directions
transverse to the manifold at each point on the manifold. This implies that it is ‘saddle like’ in
terms of stability (in our set-up there is one expanding direction and one contracting direction
normal to the NHIM at each point on the NHIM). Heuristically, one can think of it as a ‘big
saddle like surface’. In fact, the (2d − 3)-dimensional NHIM is the energy surface of an
invariant subsystem which has d − 1 degrees of freedom, i.e. one degree of freedom less than
the full system. In chemistry terminology this subsystem is the ‘activated complex’, which
may be thought of as representing an oscillating (unstable) ‘supermolecule’ poised between
reactants and products [Eyr35, Pec81, Mil98a].

Normally hyperbolic invariant manifolds have stable and unstable manifolds, which
themselves are invariant manifolds. In particular, the NHIM, S2d−3

NHIM(E), has (2d − 2)-
dimensional stable and unstable manifolds Ws(E) and Wu(E) which are isoenergetic, i.e.
contained in the energy surface. These invariant manifolds have the topology of spherical
cylinders S2d−3 × R. Since they are of codimension one in the energy surface, i.e. they are of
one dimension less than the energy surface, they act as impenetrable barriers. The importance
of these particular geometrical structures is that all reactive trajectories (both forward and
backward) must lie inside regions of the energy surface that are enclosed by the NHIM’s stable
and unstable manifolds. This can be described more precisely by first noting that Ws(E) and
Wu(E) each have two branches that ‘join’ at the NHIM. We call these branches the forward and
backward branches of Ws(E) and Wu(E), and denote them by Ws

f (E), Ws
b (E), Wu

f (E) and
Wu

b (E), respectively. We call the union of the forward branches, Wf(E) := Ws
f (E) ∪ Wu

f (E),
the forward reactive spherical cylinder. Trajectories with initial conditions enclosed by Wf(E)

in the reactants component of the energy surface evolve towards the forward hemisphere of the
dividing surface B2d−2

ds, f (E), cross B2d−2
ds, f (E) and evolve into a region of the products component

of the energy surface that is enclosed by Wf(E). Similarly, we call the union of the backward
branches, Wb(E) := Ws

b (E)∪Wu
b (E), the backward reactive spherical cylinder. Trajectories

with initial conditions enclosed by Wb(E) in the products component of the energy surface
evolve towards B2d−2

ds, b (E), cross B2d−2
ds, b (E) and evolve into a region of the reactants component

of the energy surface that is enclosed by Wb(E). All forward reactive trajectories are enclosed
by Wf(E) and all backward reactive trajectories are enclosed by Wb(E). As we will see
in the next section these structures can be computed from the normal form developed in
section 2.

4.2. The normal form coordinates: phase space structures and trajectories of Hamilton’s
equations

We now describe how the phase space structures mentioned in the previous section can be
identified and computed from the normal form algorithm, and how they influence trajectories
of Hamilton’s equations. From the discussion in section 2.3, after N steps of the normal
form algorithm, we have constructed a coordinate transformation from the original, ‘physical’
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coordinates to new, ‘normal form’ coordinates (q
(N)
1 , . . . , q

(N)
d , p

(N)
1 , . . . , p

(N)
d ), and in these

new coordinates the Hamiltonian truncated at order N takes the form

H
(N)
CNF = K

(N)
CNF(I

(N), J
(N)
2 , . . . , J

(N)
d )

= E0 + λI (N) + ω2J
(N)
2 + · · · + ωdJ

(N)
d + higher order terms, (4.1)

where

I (N) = q
(N)
1 p

(N)
1 , J

(N)
k = 1

2

((
q

(N)
k

)2
+
(
p

(N)
k

)2
)

, k = 2, . . . , d, (4.2)

and the higher order terms are of order greater than 1 and less than or equal to [N/2] (in the
integrals), see equation (2.83) in section 2.3.

The quantities (4.2) are integrals of the motion (‘conserved quantities’), i.e. they are
constant on trajectories of the Hamiltonian vector field given by the N th order classical normal
form Hamiltonian11. Henceforth we will drop the superscripts (N) for the sake of a less
cumbersome notation, but it should be understood that the normal form procedure is truncated
at some fixed order N .

In the normal form coordinates, using (4.1) and (4.2), Hamilton’s equations take the form

q̇1 = ∂KCNF

∂I
(I, J2, . . . , Jd) q1 ≡ �(I, J2, . . . , Jd) q1,

ṗ1 = −∂KCNF

∂I
(I, J2, . . . , Jd) p1 ≡ −�(I, J2, . . . , Jd) p1,

q̇k = ∂KCNF

∂Jk

(I, J2, . . . , Jd) pk ≡ �k(I, J2, . . . , Jd) pk,

ṗk = −∂KCNF

∂Ji

(I, J2, . . . , Jd)qk ≡ −�k(I, J2, . . . , Jd) qk, k = 2, . . . , d. (4.3)

These equations appear ‘decoupled’. It is important to understand this statement in quotations
since the equations are not ‘decoupled’ in the usual fashion. Nevertheless, effectively, this is
the case since the coefficient � and the nonlinear frequencies �k , k = 2, . . . , d, are constant
on a given trajectory. This follows from the fact that they are functions of the integrals I

and Jk , k = 2, . . . , d. Hence, once the initial conditions for a trajectory are chosen, then the
coefficients of (4.3) are constant (in time), and in this sense the equations are decoupled and
can be easily integrated. The reason we have this property is a result of the d independent
integrals given in (4.2). However, � and the nonlinear frequencies �k , k = 2, . . . , d, will
generally vary from trajectory to trajectory and the equations are hence not decoupled in the
classical sense. We could view them as being ‘decoupled on trajectories’ as a result of the d

integrals being constant on trajectories. In mathematical terms this means that the equations
of motion are integrable. The notion ‘integrability’ can be viewed as a generalization of the
notion ‘separability’. The latter refers to the property of the equations of motion that allows
the achievement of a decoupling of the form (4.3) from a transformation that involves the
configuration space variables q only (which then entails a transformation of the momenta p to
give a symplectic transformation of the full phase space coordinates). Historically, separability
has played an important role in developing approximate transition state theory and analysing
tunnelling effects, see, e.g., [JR61,EM74,Mil76]. Indeed, if the full dynamics is separable near
the saddle point (in phase space) then the construction of a dividing surface with no recrossing

11 The fact that there are d constants of motion is a consequence of the nonresonance assumption on the linear
frequencies ωk , k = 2, . . . , d. If there are resonances amongst the ωk , then there will be fewer integrals.
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is trivial and the choice of reaction coordinate is ‘obvious’. However, it is important to point
out that in the neighbourhood of a saddle-centre-. . .-centre equilibrium point the equations
of motions are in general not separable but the normal form transformation leading to the
decoupling in (4.3) in general involves a symplectic transformation which mixes configuration
and momentum variables.

The general solution of (4.3) is given by

q1(t) = A1 exp(�(I, J2, . . . , Jd) t),

p1(t) = B1 exp(−�(I, J2, . . . , Jd) t),

qk(t) = Ak sin(�k(I, J2, . . . , Jd) t + ϕk),

pk(t) = Ak cos(�k(I, J2, . . . , Jd) t + ϕk), k = 2, . . . , d,

(4.4)

where the A1, . . . , Ad , ϕ2, . . . , ϕd and B1 are 2d constants determined by the initial
conditions (q1(0), . . . , qd(0), p1(0), . . . , pd(0)). The constants in (4.4) determine the integrals
according to

I = A1 B1, Jk = 1
2A2

k, k = 2, . . . , d. (4.5)

From the general solution (4.4) we see that the motion is generally hyperbolic (i.e. ‘saddle
like’) in the plane of the coordinates (q1, p1) associated with the saddle and rotational
in the planes of the coordinate pairs (qk, pk), k = 2, . . . , d, associated with the centre
directions.

In the following, we show how the normal form, which is valid in the neighbourhood of the
saddle-centre-. . .-centre equilibrium point, gives explicit formulae for the various manifolds
described in section 4.1. At the same time, we show how trajectories of Hamilton’s equations
expressed in the normal form coordinates, are constrained by these manifolds. Many more
details can be found in [UJP+01,WBW04b]. The geometrical illustrations that we give are for
three degrees of freedom. In fact, conceptually, the step from two to three degrees of freedom
is the big step; once the case of three degrees of freedom is well understood, it is not difficult
to incorporate more degrees of freedom. We begin by describing the local structure of the
energy surfaces.

The structure of an energy surface near a saddle point. For E < E0, the energy surface
consists of two disjoint components. The two components correspond to ‘reactants’ and
‘products.’ The top panel of figure 2 shows how the two components project to the various
planes of the normal form coordinates. The projection to the plane of the saddle coordinates
(q1, p1) is bounded away from the origin by the two branches of the hyperbola, q1p1 = I < 0,
where I is given implicitly by the energy equation with the centre actions Jk , k = 2, . . . , d,
set equal to zero: KCNF(I, 0, . . . , 0) = E < E0. The projections to the planes of the centre
coordinates, (qk, pk), k = 2, . . . , d, are unbounded.

At E = E0, the formerly disconnected components merge (the energy surface bifurcates),
and for E > E0 the energy surface has locally the structure of a spherical cylinder, S2d−2 ×R.
Its projection to the plane of the saddle coordinates now includes the origin. In the first and
third quadrants it is bounded by the two branches of the hyperbola, q1p1 = I > 0, where
I is again given implicitly by the energy equation with all centre actions equal to zero, but
now with an energy greater than E0: KCNF(I, 0, . . . , 0) = E > E0. The projections to the
planes of the centre coordinates are again unbounded. This is illustrated in the bottom panel
of figure 2.
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The dividing surface and reacting and nonreacting trajectories. On an energy surface with
E > E0, we define the dividing surface by q1 = p1. This gives a (2d − 2)-sphere which
we denote by S2d−2

ds (E). Its projection to the saddle coordinates simply gives a line segment
through the origin which joins the boundaries of the projection of the energy surface, as shown
in figure 3. The projections of the dividing surface to the planes of the centre coordinates are
bounded by circles (p2

k + q2
k )/2 = Jk , k = 2, . . . , d, where Jk is determined by the energy

equation with the other centre actions, Jl , l �= k, and the saddle integral, I , set equal to zero.
The dividing surface divides the energy surface into two halves, p1 − q1 > 0 and p1 − q1 < 0,
corresponding to reactants and products.

As mentioned above, trajectories project to hyperbolae in the plane of the saddle
coordinates, and to circles in the planes of the centre coordinates. The sign of I determines
whether a trajectory is nonreacting or reacting, see figure 3. Trajectories which have I < 0
are nonreactive and for one branch of the hyperbola q1p1 = I they stay on the reactants
side and for the other branch they stay on the products side; trajectories with I > 0 are
reactive, and for one branch of the hyperbola q1p1 = I they react in the forward direction, i.e.
from reactants to products, and for the other branch they react in the backward direction, i.e.
from products to reactants. The projections of reactive trajectories to the planes of the centre
coordinates are always contained in the projections of the dividing surface. In this, and other
ways, the geometry of the reaction is highly constrained. There is no analogous restriction on
the projections of nonreactive trajectories to the centre coordinates.

The normally hyperbolic invariant manifold (NHIM) and its relation to the ‘activated complex’.
On an energy surface with E > E0, the NHIM is given by q1 = p1 = 0. The NHIM has the
structure of a (2d −3)-sphere, which we denote by S2d−3

NHIM(E). The NHIM is the equator of the
dividing surface; it divides it into two ‘hemispheres’: the forward dividing surface, which has
q1 = p1 > 0, and the backward dividing surface, which has q1 = p1 < 0. The forward and
backward dividing surfaces have the structure of (2d −2)-dimensional balls, which we denote
by B2d−2

ds, f (E) and B2d−2
ds, b (E), respectively. All forward reactive trajectories cross B2d−2

ds, f (E);

all backward reactive trajectories cross B2d−2
ds, b (E). Since q1 = p1 = 0 in the equations of

motion (4.3) implies that q̇1 = ṗ1 = 0, the NHIM is an invariant manifold, i.e. trajectories
started in the NHIM stay in the NHIM for all time. The system resulting from q1 = p1 = 0
is an invariant subsystem with one degree of freedom less than the full system. In fact,
q1 = p1 = 0 defines the centre manifold associated with the saddle-centre-. . .-centre
equilibrium point, and the NHIM at an energy E greater than the energy of the equilibrium
point is given by the intersection of the centre manifold with the energy surface of this
energy E [UJP+01, WW04].

This invariant subsystem is the ‘activated complex’ (in phase space), located between
reactants and products (see section 4.1). The NHIM can be considered to be the energy surface
of the activated complex. In particular, all trajectories in the NHIM have I = 0.

The equations of motion (4.3) also show that ṗ1 − q̇1 < 0 on the forward dividing surface
B2d−2

ds, f (E), and ṗ1 − q̇1 > 0 on the backward dividing surface B2d−2
ds, b (E). Hence, except for

the NHIM, which is an invariant manifold, the dividing surface is everywhere transverse to the
Hamiltonian flow. This means that a trajectory, after having crossed the forward or backward
dividing surface, B2d−2

ds, f (E) or B2d−2
ds, b (E), respectively, must leave the neighbourhood of the

dividing surface before it can possibly cross it again. Indeed, such a trajectory must leave the
local region in which the normal form is valid before it can possibly cross the dividing surface
again.

The NHIM has a special structure: due to the conservation of the centre actions, it is
filled, or foliated, by invariant (d − 1)-dimensional tori, Td−1. More precisely, for d = 3
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degrees of freedom, each value of J2 implicitly defines a value of J3 by the energy equation
KCNF(0, J2, J3) = E. For three degrees of freedom, the NHIM is thus foliated by a one-
parameter family of invariant 2-tori. The end points of the parametrization interval correspond
to J2 = 0 (implying q2 = p2 = 0) and J3 = 0 (implying q3 = p3 = 0), respectively.
At the end points, the 2-tori thus degenerate to periodic orbits, the so-called Lyapunov
periodic orbits. As we will discuss in more detail in sections 5 and 6, the fact that the
NHIM is foliated by invariant tori has important consequences for the corresponding quantum
system.

The stable and unstable manifolds of the NHIM forming the phase space conduits for reactions.
Since the NHIM is of saddle stability type, it has stable and unstable manifolds, Ws(E) and
Wu(E). The stable and unstable manifolds have the structure of spherical cylinders, S2d−3×R.
Each of them consists of two branches: the ‘forward branches’, which we denote by Ws

f (E)

and Wu
f (E), and the ‘backward branches’, which we denote by Ws

b (E) and Wu
b (E). In terms

of the normal form coordinates, Ws
f (E) is given by q1 = 0 with p1 > 0, Wu

f (E) is given by
p1 = 0 with q1 > 0, Ws

b (E) is given by q1 = 0 with p1 < 0 and Wu
b (E) is given by p1 = 0

with q1 < 0, see figure 4. Trajectories on these manifolds have I = 0.
Since the stable and unstable manifolds of the NHIM are of one less dimension than the

energy surface, they enclose volumes of the energy surface. We call the union of the forward
branches, Ws

f (E) and Wu
f (E), the forward reactive spherical cylinder and denote it by Wf(E).

Similarly, we define the backward reactive spherical cylinder, Wb(E), as the union of the
backward branches, Ws

b (E) and Wu
b (E).

The reactive volumes enclosed by Wf(E) and Wb(E) are shown in figure 5 as their
projections to the normal form coordinate planes. In the plane of the saddle coordinates, the
reactive volume enclosed by Wf(E) projects to the first quadrant. This projection is bounded
by the corresponding hyperbola q1p1 = I , with I obtained from KCNF(I, 0, . . . , 0) = E.
Likewise, Wb(E) projects to the third quadrant in the (q1, p1)-plane. Wf(E) encloses
all forward reactive trajectories; Wb(E) encloses all backward reactive trajectories. All
nonreactive trajectories are contained in the complement.

Forward and backward reaction paths. The local geometry of Wf(E) and Wb(E) suggests
a natural definition of dynamical forward and backward reaction paths as the unique paths in
phase space obtained by putting all of the energy of a reacting trajectory into the reacting mode,
i.e. setting q2 = . . . = qd = p2 = . . . = pd = 0. This gives the two branches of the hyperbola
q1p1 = I , with I obtained from KCNF(I, 0, . . . , 0) = E, which in phase space are contained in
the plane of the saddle coordinates, see figure 5. This way, the forward (respectively, backward)
reaction path can be thought of as the ‘centre curve’ of the relevant volume enclosed by the
forward (respectively, backward) reactive spherical cylinder Wf(E) (respectively, Wb(E)).
These reaction paths are the special reactive trajectories which intersect the dividing surface
at the ‘poles’ (in the sense of North and South poles, where q1 = p1 assumes its maximum
and minimum values on the dividing surface).

The transmission time through the transition state region. The normal form coordinates
provide a way of computing the time for all trajectories to cross the transition region. We
illustrate this with a forward reacting trajectory (a similar argument and calculation can be
applied to backward reacting trajectories). We choose the boundary for the entrance to
the reaction region to be p1 − q1 = c for some constant c > 0, i.e. initial conditions
which lie on the reactant side of the transition state, and the boundary for exiting the
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Figure 2. Projection of energy surfaces (turquoise regions) to the planes of the normal form
coordinates. The energy surface in the top panel has E < E0; the energy surface in the bottom
panel has E > E0.

p1

q1

p2

q2

p3

q3

Figure 3. Projection of the dividing surface and reacting and nonreacting trajectories to the planes
of the normal form coordinates. In the plane of the saddle coordinates, the projection of the
dividing surface is the dark red diagonal line segment, which has q1 = p1. In the planes of the
centre coordinates, the projections of the dividing surface are the dark red discs. Forward and
backward reactive trajectories (yellow and blue) project to the first and third quadrants in the plane
of the saddle coordinates, respectively, and pass through the dividing surface. The red and green
curves mark nonreactive trajectories on the reactant side (p1 − q1 > 0), and on the product side
(p1 − q1 < 0), of the dividing surface, respectively. The turquoise regions indicate the projections
of the energy surface.

p1

q1

p2

q2

p3

q3

Figure 4. The projection of the NHIM and the local parts of its stable and unstable manifolds,
Ws(E) and Wu(E), to the planes of the normal form coordinates. In the plane of the saddle
coordinates, the projection of the NHIM is the origin marked by the blue bold point, and the
projection of Ws(E) and Wu(E) are the p1-axis and q1-axis, respectively. Ws(E) consists of the
forward and backward branches Ws

f (E) and Ws
b (E), which have p1 > 0 and p1 < 0, respectively;

Wu(E) consists of Wu
f (E) and Wu

b (E), which have q1 > 0 and q1 < 0, respectively. In the plane
of the centre coordinates, the projections of the NHIM, Ws(E) and Wu(E) (the blue circular discs),
coincide with the projection of the dividing surface in figure 3. The turquoise regions mark the
projections of the energy surface.
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reaction region to be p1 − q1 = −c on the product side. We now compute the time
of flight for a forward reacting trajectory with initial condition on p1 − q1 = c to reach
p1 − q1 = −c on the product side. The solutions are q1(t) = q1(0) exp(�(I, J2, . . . , Jd)t)

and p1(t) = p1(0) exp(−�(I, J2, . . . , Jd)t) (see (4.4)), where �(I, J2, . . . , Jd) is determined
by the initial conditions. This gives the time of flight as

T = (�(I, J2, . . . , Jd))
−1 ln

(
p1(0)

q1(0)

)
. (4.6)

The time diverges logarithmically as q1(0) → 0, i.e. the closer the trajectory starts to the
boundary Wf(E). It is not difficult to see that the time of flight is shortest for the centre curve
of the volume enclosed by Wf(E), i.e. the trajectory which traverses the transition state region
fastest is precisely our forward reaction path. A similar construction applies to backward
reactive trajectories.

In fact, the normal form can be used to map trajectories through the transition state region,
i.e. the phase space point at which a trajectory enters the transition state region can be mapped
analytically to the phase space point at which the trajectories exit the transition state region.

4.3. The normal form coordinates: the foliation of the reaction region by Lagrangian
submanifolds

In section 4.2 we have indicated that the different types of possible motion near a saddle-
centre-. . .-centre equilibrium point can be described in terms of the integrals. In fact, the
existence of the d integrals (4.2) leads to even further constraints on the classical motions
and hence to even more detailed structuring of the phase space near a saddle-centre-. . .-centre
equilibrium point than we have already described in section 4.2. As we will see in section 5,
this structure will have important consequences for the quantum mechanics of reactions. In
order to describe this structure we introduce the so-called momentum map M [Gui94,MR99]
which maps a point (q1, . . . , qd, p1, . . . , pd) in the phase space R2d to the integrals evaluated
at this point:

M(q1, . . . , qd, p1, . . . , pd) �→ (I, J2, . . . , Jd). (4.7)

The preimage of a value for the constants of motion (I, J2, . . . , Jd) under M is called a fibre.
A fibre thus corresponds to the common level set of the integrals in phase space.

A point (q1, . . . , qd, p1, . . . , pd) is called a regular point of the momentum map if the
linearization of the momentum map, DM, has rank d at this point, i.e. if the gradients of the
d integrals I , Jk , k = 2, . . . , d, with respect to the phase space coordinates (q, p), are linearly
independent at this point. If the rank of DM is less than d then the point is called an irregular
point. A regular fibre is a fibre which consists of regular points only. The regular fibres of
the momentum map in (4.7) are d-dimensional manifolds given by the Cartesian product of
a hyperbola q1p1 = I in the saddle plane (q1, p1) and d − 1 circles S1 in the centre planes
(qk, pk), k = 2, . . . , d. Since hyperbola q1p1 = I consists of two branches each of which have
the topology of a line R, the regular fibres consist of two disjoint toroidal cylinders, Td−1 ×R,
which are the Cartesian products of a (d − 1)-dimensional torus and a line. We denote these
toroidal cylinders by

�+
I,J2,...,Jd

= {(q, p) ∈ R2d : p1q1 = I, 1
2 (p2

2 + q2
2 ) = J2, . . . ,

1
2 (p2

d + q2
d ) = Jd, q1 > 0}

(4.8)

and

�−
I,J2,...,Jd

= {(q, p) ∈ R2d : p1q1 = I, 1
2 (p2

2 + q2
2 ) = J2, . . . ,

1
2 (p2

d + q2
d ) = Jd, q1 < 0}.

(4.9)
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Figure 5. Projections of the reactive volumes enclosed by the forward and backward reactive
spherical cylinders, Wf (E) and Wb(E), and the forward and backward reaction paths, to the planes
of the normal form coordinates. The volumes enclosed by Wf (E) and Wb(E) project to the dark
pink and green regions in the first and third quadrants in the plane of the saddle coordinates,
respectively. These volumes project to the dark green/dark pink brindled discs in the planes of
the centre coordinates, where their projections coincide with the projection of the NHIM and
the dividing surface in figures 3 and 4. The forward and backward reaction paths project to the
two branches of a hyperbola marked blue in the first and third quadrants in the plane of the saddle
coordinates, respectively, and to the origins (bold blue points) in the planes of the centre coordinates.
The turquoise regions mark the projections of the energy surface.

I

S1

IR

S1 IR2S1 IR2

S1 IR2 S1 IR2
J2 J3

2

S1

2 2 IR

2 IR2

2

J3

J2

Figure 6. Sketch of the image of the energy surface
of energy E > E0 under the momentum map M in
equation (4.7) in the space of the integrals I and Jk ,
k = 2, . . . , d, for the case of d = 3 degrees of freedom.
The green/dark pink brindled piece of the image of the
energy surface has I > 0; the turquoise piece has I < 0.
The intersections with the planes I = 0, J2 = 0 and
J3 = 0 (pieces of which are visualized by semitransparent
planes for clarity) form the bifurcation diagram of the
energy surface. The image of the energy surface is
not bounded in the direction of negative I as indicated
by the dashed line at the bottom. The topology of the
fibres M−1(I, J2, J3) is indicated for the various points
(I, J2, J3) marked by dots. The fibre of a point (I, J2, J3)

with I �= 0 consists of two disconnected manifolds as
indicated by the factor of 2. The fibre of a point (I, J2, J3)

with I = 0 consists of a single connected manifold.

Figure 7. Contour KCNF(0, J2, . . . , Jd ) = E (blue
line) in the space of the centre integrals (J2, . . . , Jd ) for
d = 3 degrees of freedom. Up to the prefactor (2π)d−1,
the area V(E) of the enclosed region (marked green)
gives the directional flux through the dividing surface,
see equation (4.10). The green region agrees with the
projection of the piece of the image of the energy surface
under the momentum map which has I > 0 in figure 6.
to the (J2, J3)-plane.

�+
I,J2,...,Jd

and �−
I,J2,...,Jd

are Lagrangian manifolds [Arn78]. Prominent examples of
Lagrangian manifolds are tori which foliate the neighbourhood of a centre-. . .-centre
equilibrium point and whose semiclassical quantization often lead to a very good approximation
of part of the energy spectra of the corresponding bounded system [OdA88]. In our case the
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Lagrangian manifolds are unbounded. They are the products of (d −1)-dimensional tori Td−1

and unbounded lines R. The toroidal base of these cylinders will again lead to semiclassical
quantization conditions and, as we will see in sections 5 and 6, this will have important
consequences for the computation of quantum reaction rates and resonances.

If the fibre contains an irregular point then the fibre is called singular. The image of the
singular fibres under the momentum map is called the bifurcation diagram. It is easy to see that
the bifurcation diagram consists of the set of (I, J2, . . . , Jd) where one or more of the integrals
vanish. In figure 6. we show the image of the energy surface with energy E > E0 under the
momentum map M in the space of the integrals for d = 3 degrees of freedom. The bifurcation
diagram (of the energy surface) consists of the intersections of the image of the energy surface
(the turquoise and green/dark pink brindled surface in figure 6.) with one of the planes I = 0,
J2 = 0 or J3 = 0. Upon approaching one of the edges that have J2 = 0 or J3 = 0 the circle
in the plane (q2, p2) or (q3, p3), respectively, shrinks to a point, and accordingly the regular
fibres T2 × R reduce to cylinders or ‘tubes’ S1 × R. At the top corner in figure 6. both J2 and
J3 are zero. Here both circles in the centre planes (q2, p2) and (q3, p3) have shrunk to points.
The corresponding singular fibre consists of two lines, R, which are the forward and backward
reaction paths, respectively (see also figure 5).

All the fibres mentioned so far have I �= 0 and each consists of a pair of disconnected
components. For I < 0, one member of each pair is located on the reactants side and the other
on the products side of the dividing surface. For I > 0, one member of each pair consists of
trajectories evolving from reactants to products and the other member consists of trajectories
that evolve from products to reactants. In fact the two members of a fibre which has I > 0
are contained in the energy surface volume enclosed by the forward and backward reactive
spherical cylinders Wf(E) and Wb(E), see figure 5. For this reason we marked the piece of
the image of the energy surface under the momentum map which has I > 0 by the same
green/dark pink colour in figure 6. that we used in figure 5. Green corresponds to forward
reactive trajectories and dark pink corresponds to backward reactive trajectories. Under the
momentum map these trajectories have the same image.

The light blue line in figure 6. which has I = 0 is the image of the NHIM under the
momentum map. For three degrees of freedom the NHIM is a three-dimensional sphere,
and as mentioned in section 4.2 and indicated in figure 6., it is foliated by a one-parameter
family of invariant 2-tori which shrink to periodic orbits, i.e. circles S1, at the end points of
the parametrization interval. As we have already indicated in section 4.2, this foliation of the
NHIM has important consequences for the quantum mechanics of reactions which we will
dicuss in sections 5 and 6. Moreover, we will see in section 4.4 that, for d = 3 degrees of
freedom, the area enclosed by the image of the NHIM in the plane (J2, J3) gives, up to a
prefactor, the directional flux through the dividing surface.

4.4. The directional flux through the dividing surface

A key ingredient of transition state theory and the classical reaction rate is the directional flux
through the dividing surface defined in section 4.1. Given the Hamiltonian function in normal
form expressed as a function of the integrals (4.2), and a fixed energy E above the energy of
the saddle-centre-. . .-centre, E0, it is shown in [WW04] that the directional flux through the
dividing surface is given by

f (E) = (2π)d−1V(E), (4.10)

where V(E) is the volume in the space of the actions (J2, . . . , Jd) enclosed by the contour
HCNF(0, J2, . . . , Jd) = E. For E < E0, the directional flux is zero. For the case of a system
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with three degrees of freedom for which we sketched the image of the energy surface in the
space of the integrals in figure 6., the volume V(E) is given by the area in the (J2, J3) plane
enclosed by the light blue line corresponding to the NHIM in figure 6.. For clarity we illustrate
this area again in figure 7.. As we mentioned in section 4.2, the NHIM can be considered as the
energy surface of an invariant subsystem with one degree of freedom less than the full system
which is referred to as the activated complex in the chemistry literature. Therefore the flux can
be interpreted as the volume enclosed by the energy surface (given by the NHIM) in the phase
space of this invariant subsystem. This gives a direct connection between the directional flux
through the dividing surface and the activated complex. In fact, the dimensionless quantity

NWeyl(E) = f (E)

(2πh̄)d−1
, (4.11)

where 2πh̄ is Planck’s constant, is Weyl’s approximation of the integrated density of states, or
equivalently the mean number of quantum states of the activated complex with energies less
than or equal to E (see, e.g., [Gut90]). As we will see in section 5 NWeyl(E) can be interpreted
as the mean number of open quantum ‘transition channels’ at energy E.

In the case where we take into account only the quadratic part of the normal form
or, equivalently, if we linearize Hamilton’s equations, we have HCNF(I, J2, . . . , Jd) =
λI +

∑d
k=2 ωkJk and the energy surface HCNF(0, J2, . . . , Jd) = E encloses a simplex in

(J2, . . . , Jd) whose volume leads to the well-known result [Mac90]

f (E) = Ed−1

(d − 1)!

d∏
k=2

2π

ωk

. (4.12)

This shows, e.g., that the flux scales with Ed−1 for energies close to the saddle energy. The
key advantage of the normal form algorithm that we presented in section 2 is that it allows one
to include the nonlinear corrections to (4.12) to any desired order.

Here we give a brief outline of the essential elements of the derivation of the expression
for the flux in (4.10) following the discussion [WW04]. It is important to note that our work
is firmly rooted in phase space. In particular, we are considering the (directional) flux of a
vector field on phase space (Hamilton’s equations) through a dividing surface in phase space
(which has been proven to have the ‘no-recrossing’ property as discussed earlier). For this
reason the modern notation of differential forms, especially in light of its importance in the
modern formulation of Hamiltonian mechanics, proves to be most convenient and notationally
economical.

Therefore we begin by considering the phase space volume form � = dp1 ∧ dq1 ∧ · · · ∧
dpd ∧ dqd , which in terms of the symplectic 2-form ω = ∑d

k=1 dpk ∧ dqk can be written as
� = ωd/d!. Note that in our case the phase space coordinates (q, p) used here will be N th
order normal form coordinates and we do not use superscripts (N) to indicate this. However
the quantities introduced in the following do not depend on the chosen coordinate system.
They are invariant under symplectic coordinate transformations. Let η be an energy surface
volume form defined via the property dH ∧ η = �. Then the flux through a codimension one
submanifold of the (2d − 1)-dimensional energy surface H = E is obtained from integrating
over it the ‘flux’ form �′ given by the interior product of the Hamiltonian vector field XH with
η [Mac90], i.e.

�′ = iXH
η = 1

(d − 1)!
ωd−1, (4.13)

where iXH
η(ξ1, . . . , ξ2d−2) = η(ξ1, . . . , ξ2d−2, XH ) for any 2d − 2 vectors ξk . The second

equality in (4.13) is easily established on a noncritical energy surface, i.e. on an energy surface
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which contains no equilibria. The flux form �′ is exact. In fact the generalized ‘action’ form

φ =
d∑

k=1

pk dqk ∧ 1

(d − 1)!
ωd−2

has the property dφ = �′ and facilitates the use of Stokes’ theorem to compute the flux. In
the case of two degrees of freedom we simply have �′ = ω = dp1 ∧ dq1 + dp2 ∧ dq2 and φ

becomes the usual action form φ = p1 dq1 + p2 dq2. Since the dividing surface S2d−2
ds (E) is a

sphere, that is, a manifold without boundary, it follows from Stokes’ theorem that the integral
of �′ over S2d−2

ds (E) is zero. In order to compute reaction rates one has to distinguish between
the directions in which the Hamiltonian flow crosses the dividing surface (i.e. distinguish
between forward and backward reactive trajectories). Given a normal bundle12 over S2d−2

ds (E)

the direction can be specified by the sign of the scalar product between the normal vectors
and the Hamiltonian vector field. This scalar product is strictly positive on one hemisphere of
S2d−2

ds (E), strictly negative on the other hemisphere and zero only at the equator of S2d−2
ds (E),

i.e. at the normally hyperbolic invariant manifold S2d−3
NHIM(E), where the Hamiltonian vector

field is tangent to S2d−2
ds (E). Likewise, the flux form �′ on S2d−2

ds (E) vanishes nowhere on
B2d−2

ds, f (E) and B2d−2
ds, b (E) and is identically zero on S2d−3

NHIM(E). It is natural to take as the

orientation of B2d−2
ds, f (E) and B2d−2

ds, b (E) the orientation they inherit from the dividing surface.

Without restriction we may assume that the orientation of S2d−2
ds (E) is such that �′ is positive

on the forward hemisphere B2d−2
ds, f (E) and negative on the backward hemisphere B2d−2

ds, b (E), i.e.

�′ and −�′ can be considered as volume forms on B2d−2
ds, f (E) and B2d−2

ds, b (E), respectively. It
follows from Stokes’ theorem that the fluxes through the forward and backward hemispheres,∫
B2d−2

ds, f (E)
�′ and

∫
B2d−2

ds, b (E)
�′, have the same magnitude but opposite signs and can be computed

from integrating the action form φ over the NHIM:

f (E) =
∫

B2d−2
ds, f (E)

�′ = −
∫

B2d−2
ds, b (E)

�′ =
∣∣∣∣
∫

S2d−3
NHIM(E)

φ

∣∣∣∣. (4.14)

We call the positive quantity
∫
B2d−2

ds, f (E)
�′ the forward flux and the negative quantity

∫
B2d−2

ds, f (E)
�′

the backward flux through S2d−2
ds (E) .

Writing the flux form �′ in terms of ‘angle-action variables’ (ϕ1, . . . , ϕd, I, J2, . . . , Jd)

(these were derived in terms of the integrals of the normal form in section 2.3.1) we obtain
the result that the forward flux through the dividing surface is given by the expression in
equation (4.10).

4.5. The normal form coordinates: issues associated with truncation

The final question to address concerns the ‘validity’ of the normal form transformation. More
precisely, this means how large the neighbourhood (in phase space) U of the saddle-centre-
. . .-centre equilibrium point can be taken so that the geometric structures given by the normal
form are accurate for the ‘full equations’. Actually, there are a number of questions to be
answered related to ‘validity’.

• In truncating the Taylor expansion of the Hamiltonian at degree N , how do you
determine N?

• What is the region of validity of the normal form transformation for the Taylor expanded
Hamiltonian truncated at degree N?

12 Roughly speaking, at each point of the dividing surface we consider the normal vector in the energy surface. The
normal bundle is the union of all vectors taken over all points on the dividing surface.
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• How ‘accurate’ are the phase space structures (e.g. the dividing surface, the NHIM) for
the normal form of the Hamiltonian truncated at degree N?

• How accurate are trajectories of the normal form of the Hamiltonian at order N?

First, general theory assures us that the phase space structures exist, and have the properties
described above (e.g. normal hyperbolicity, the bottleneck property), for energies sufficiently
close to that of the saddle-centre-. . .-centre equilibrium point [Wig94]. The normal form
computation is merely an approach for realizing the geometrical structures that the theory tells
us must exist.

In practice, one Taylor expands the Hamiltonian and then truncates it at a degree that one
thinks will provide sufficient accuracy for the range of energies of interest. Experience will
generally provide some good ‘rules of thumb’, e.g. for the HCN isomerization work described
in [WBW04b], an expansion up to degree 10 was found to provide sufficient accuracy in the
range of energies studied (up to 0.2 eV above the saddle-centre-. . .-centre equilibrium point).

There is still the question of accuracy. Once the normal form is computed to the
desired degree (and, most importantly, the transformation and its inverse between the original
coordinates and the ‘normal form coordinates’), and the energy is fixed, we have explicit
formulae for the dividing surface, the NHIM (the ‘equator’ of the dividing surface), and the
(local) stable and unstable manifolds of the NHIM13. We next need to check their ‘accuracy’.
There are several tests that we employ, and these tests are carried out at fixed energy.

• Numerically verify that the dividing surface satisfies the ‘bottleneck property’, i.e. it
(locally) separates the energy surface into two components, and the only way a trajectory
can pass between components (while remaining in this region) is by passing through the
dividing surface.

• Using the inverse of the normal form transformation map the NHIM and its (local) stable
and unstable manifolds back into the original coordinates and check that the full (i.e. not
a truncated Taylor expansion) Hamiltonian vector field is tangent to these surfaces. This
is a requirement for these surface to be ‘invariant manifolds’. The tests are carried out
pointwise on a grid of points covering the surfaces.

• The integrals (4.2) are constant in time on trajectories of the normal form of the truncated
Taylor expansion. We check how they vary in time on trajectories of the full Hamiltonian.

If the desired accuracy is obtained for this energy, then the energy may be increased and
the accuracy tests are repeated at the higher energy. If accuracy is inadequate, then a higher
degree Taylor expansion can be computed. As energy is increased, ultimately two factors
may lead to break down of this approach for realizing these phase space structures. One is
that the energy surface may deform in such a way that the bottleneck property does not hold.
Another is that the approach will require such a high degree Taylor expansion that it becomes
computationally intractable.

4.6. The global dynamics associated with the manifolds constructed in the reaction region

As we have shown, the normal form transformation to normal form coordinates provides
a method for providing a complete understanding of the geometry of reaction dynamics in
a neighbourhood U (in phase space) of the saddle-centre-. . .-centre equilibrium point of
Hamilton’s equations. By this, we mean that in the normal form coordinates we can give
an explicit equation for the surfaces and, as a result of the ‘simple’ structure of Hamilton’s
equations in the normal form coordinates, we can describe precisely the influence of these

13 Here ‘local’ means that we only have realizations of the stable and unstable manifolds in a neighbourhood of the
saddle-centre-. . .-centre equilibrium point where the normal form transformation has the desired accuracy.
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Table 1. Table of phase space surfaces influencing reaction dynamics and their representations
in normal form coordinates on an energy surface of energy greater than the energy of the saddle
equilibrium point.

Geometrical structure Equation in normal form coordinates

Dividing surface, S2d−2
ds (E) q1 = p1

Forward reactive hemisphere, q1 = p1 > 0

B2d−2
ds, f (E)

Backward reactive hemisphere, q1 = p1 < 0

B2d−2
ds, b (E)

NHIM, S2d−3
NHIM(E) q1 = p1 = 0

Stable manifold of the NHIM, Ws(E) q1 = 0, p1 �= 0
Unstable manifold of the NHIM, Wu(E) p1 = 0, q1 �= 0
Forward branch of Ws(E), Ws

f (E) q1 = 0, p1 > 0
Backward branch of Ws(E), Wsb(E) q1 = 0, p1 < 0
Forward branch of Wu(E), Wu

f (E) p1 = 0, q1 > 0
Backward branch of Wu(E), Wu

b (E) p1 = 0, q1 < 0
Forward reactive spherical cylinder p1q1 = 0, p1, q1 � 0, q1 �= p1

Wf (E) ≡ Ws
f (E) ∪ Wu

f (E)

Backward reactive spherical cylinder p1q1 = 0, p1, q1 � 0, q1 �= p1

Wb(E) ≡ Ws
b (E) ∪ Wu

b (E)

Forward reaction path q2 = . . . = qd = p2 = . . . = pd = 0, p1 > 0
Backward reaction path q2 = . . . = qd = p2 = . . . = pd = 0, p1 < 0

geometrical structures on trajectories of Hamilton’s equations. In table 1 we summarize the
results obtained thus far by providing a list of the different surfaces that control the evolution
of trajectories from reactants to products in the neighbourhood U in figure 1.

However, all of these surfaces, and associated dynamical phenomena, are only ‘locally
valid’ in the neighbourhood U . The next step is to understand their influence on the dynamics
outside U , i.e. their influence on the dynamics of reaction throughout phase space in the original
coordinates (as opposed to the normal form coordinates). In order to do this we will need the
normal form transformation constructed in section 2 and given in (2.59), to order N (where N

is determined according to the desired accuracy following the discussion in section 4.5). We
rewrite (2.59) below:

z(1) = z − z0,

z(2) = Mz(1),

(q
(N)
1 , . . . , q

(N)
d , p

(N)
1 , . . . , p

(N)
d ) ≡ z(N) = �1

WN
◦ · · · ◦ �1

W3
(z(2)). (4.15)

We refer to the original coordinates as the ‘physical coordinates’ where reading from top to
bottom, (4.15) describes the sequence of transformations from physical coordinates to normal
form coordinates as follows. We translate the saddle-centre-. . .-centre equilibrium point to
the origin, we ‘simplify’ the linear part of Hamilton’s equations, then we iteratively construct
a sequence of nonlinear coordinate transformations that successively ‘simplify’ the order 3,
4, . . . , N terms of the Hamiltonian according to the algorithm described in section 2. We can
invert each of these transformations to return from the normal form coordinates to the physical
coordinates.

Computation of Wu
b (E) and Wu

f (E). Our approach to computing the stable and unstable
manifolds of a NHIM is, in principle, the same as for computing the stable and unstable
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manifolds of a hyperbolic trajectory (however, the practical implementation of the algorithm
in higher dimensions is a different matter and one that deserves much more investigation).

We describe the computation of Wu
f (E) as follows.

• In the normal form coordinates, choose a distribution of initial conditions on the NHIM
and displace these initial conditions ‘slightly’ in the direction of the forward branch of
Wu(E) (p1 = 0, q1 = ε > 0, ε ‘small’).

• Map these initial conditions back into the physical coordinates using the inverse of the
normal form transformation.

• Integrate the initial conditions forward in time using Hamilton’s equations in the
physical coordinates, for the desired length of time (typically determined by accuracy
considerations) that will give the manifold of the desired ‘size’. Since the initial conditions
are in the unstable manifold they will leave the neighbourhood U in which the normal
form transformation is valid (which is why we integrate them in the original coordinates
with respect to the original equations of motion).

The backward branch of Wu(E) can be computed in an analogous manner by displacing
the initial conditions on the NHIM in the direction of the backward branch of Wu(E)

(p1 = 0, q1 = ε < 0, ε ‘small’).

Computation of Ws
b (E) and Ws

f (E). The forward and backward branches of Ws(E) can
be computed in an analogous fashion, except the initial conditions are integrated backward
in time.

Computation of the forward and backward reaction paths. Here the situation is, numerically,
much simpler since we only have to integrate a trajectory. We consider the case of the forward
reaction path. The backward reaction path is treated in the same way, after the obvious changes
of sign for the appropriate quantities.

Recalling that the dividing surface in normal form coordinates is given by q1 = p1, the
intersection of the forward reaction path with the dividing surface is given by

q2 = . . . = qd = p2 = . . . = pd = 0,

q2
1 = I, q1 = p1 > 0, with KCNF(I, 0, . . . , 0) = E. (4.16)

We transform this point in normal form coordinates into physical coordinates using the inverse
of the transformations given in (4.15). Integrating this point forward in time using Hamilton’s
equations in the physical coordinates gives the forward reaction path immediately after passage
through the dividing surface. Integrating the point backward in time gives the forward reaction
path immediately before passage through the dividing surface.

Computation of reactive volumes. Consider a region of the energy surface of some fixed
energy E whose entrance and exit channels are associated with saddle-centre-. . .-centre
equilibrium points. Near each such equilibrium point we can construct a dividing surface
that a trajectory of energy E must cross in order to enter the region. Suppose that the region
is compact and simply connected. An example is the phase space region associated with the
potential well that corresponds to an isomer in an isomerization reaction [WBW04b]. It is
then possible to give a formula for the energy surface volume corresponding to trajectories of
the energy E that will leave that region of the energy surface.

This formula is expressed in terms of the phase space flux across the dividing surfaces
controlling access to this region of the energy surface and the corresponding ‘mean first passage
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times’ of trajectories entering the region through the dividing surfaces. This theory is described
in detail in [WBW05a,WBW05c] and here we just outline the results and show how the phase
space structures discussed above in a region of the transition state are ‘globalized’ to give this
result.

We consider an energy surface region to which entrance is possible only through a number
of dividing surfaces, B2d−2

ds, f;i (E) (i is the index for the number of forward dividing surfaces that
control access to the region under consideration in the sense that trajectories initialized on this
surface and integrated in forward time enter the region), and we compute the energy surface
volume of reactive initial conditions, i.e. the initial conditions of trajectories that can leave the
region under consideration through one of the dividing surfaces. The phase space transport
theory described above is crucial for this computation as it allows us to define entrance and
exit channels uniquely in terms of dividing surfaces that have the property of ‘no recrossing of
trajectories’ and minimal directional flux.

If the region under consideration is compact and connected it is a simple consequence of
the Poincaré recurrence theorem [Arn78] that reactive initial conditions in the region lie (up
to a set of measure zero, or ‘zero volume’) on trajectories which in the future escape from the
region and in the past entered the region. Hence, for each point on a particular dividing surface
hemisphere B2d−2

ds, f;i (E), there exists a time t (which depends on the point) for the trajectory
starting at this point to spend in the region before it escapes through the same, or another,
dividing surface. We define the mean passage time associated with B2d−2

ds, f;i (E) as

〈t〉enter;i (E) =
(∫

B2d−2
ds, f;i (E)

t �

)/(∫
B2d−2

ds, f;i (E)

�

)
. (4.17)

Here we use the more concise language of differential forms also used in section 4.4 to
express the measure on the dividing surface over which we integrate the passage time. This
measure is given by � = ωd−1/(d − 1)!, where ω denotes the canonical symplectic two-form∑d

k=1 dpk ∧ dqk . It then follows from arguments analogous to those that lead to the so-called
classical spectral theorem proven by Pollak in the context of bimolecular collisions [Pol81]
that the energy surface volume of reactive initial conditions in an energy surface region is
given by

Vreact(E) =
∑

i

〈t〉enter;i (E)fenter;i (E), (4.18)

where the summation runs over all dividing surfaces B2d−2
ds, f;i (E) controlling access to the region

under consideration, and each entrance/exit channel contributes to the total reactive volume
by the product of the associated mean passage time and the (directional) flux,

fenter;i (E) =
∫

B2d−2
ds, f;i (E)

�. (4.19)

The mean passage time for a given dividing surface hemisphere can be computed from a Monte
Carlo sampling of that hemisphere. Performing such a sampling, uniformly with respect
to the measure �, is straightforward in the normal form coordinates. The flux through a
dividing surface hemisphere is also computed easily from the normal form as described in
section 4.4. The efficiency of this procedure has been demonstrated for concrete examples
in [WBW05a, WBW05c].

Practical considerations. By their very definition, invariant manifolds consist of trajectories,
and the common way of computing them, and visualizing them, that works well in low
dimensions is to integrate a distribution of initial conditions located on the invariant manifold
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(hence, this illustrates the value of the normal form coordinates and transformation for locating
appropriate initial conditions). In high dimensions there are numerical and algorithmic issues
that have yet to be fully addressed. How does one choose a mesh on a 2d − 3 dimensional
sphere? As this mesh evolves in time, how does one ‘refine’ the mesh in such a way that the
evolved mesh maintains the structure of the invariant manifold?

4.7. The flux–flux autocorrelation function formalism for computing classical reaction
probabilities

In the chemistry literature (see [YT60, MST83, Mil98a]) the accepted expression for the flux
that goes into the expression for the classical reaction rate is given by

f (E) =
∫

Rd

∫
Rd

δ(E − H(q, p))F (q, p)Pr(q, p) dq dp. (4.20)

We want to explain the relation of this expression for the flux to the one derived in section 4.4.
We begin by explaining the dynamical significance of each function in (4.20). The function
δ(E − H) restricts the integration to the energy surface of energy E under consideration. The
remaining functions in the integral are defined on the basis of a dividing surface which is
defined as the zero level set of a function s, i.e. the dividing surface is given by

{(q, p) ∈ R2d : s(q, p) = 0}. (4.21)

It is assumed that this surface divides the phase space into two components: a reactants
component which has s(q, p) < 0 and a products component which has s(q, p) > 0. In the
chemistry literature s is usually a function of q only, i.e. ‘it is a dividing surface defined in
configuration space.’ However, it is crucial to note that this restriction is not important.

If we let � denote the Heaviside function (which is zero if its argument is negative and
one if its argument is positive) then the composition � ◦ s can be viewed as a characteristic
function on phase space which vanishes on the reactants components and is identically one on
the products component. The function F occurring in (4.20) at a point (q, p) is then defined
as the time derivative of � ◦ s(�t

H (q, p)) at time t = 0, i.e.

F(q, p) = d

dt
� ◦ s(�t

H (q, p))|t=0 = δ(s(q, p)){s, H }(q, p), (4.22)

where {·, ·} again denotes the Poisson bracket. This means that F is a δ function in s that
is weighted by the scalar product between the gradient of the surface s and the Hamiltonian
vector field XH ,

F(q, p) = δ(s(q, p))〈∇s(q, p), XH (q, p)〉. (4.23)

Due to the function δ(s) in F the integral (4.20) is effectively restricted to the dividing surface
(4.21), or if we also take into account the function δ(E − H), the integral (4.20) is effectively
a (2d − 2)-dimensional integral over the intersection of the dividing surface (4.21) with the
energy surface of energy E. It is not difficult to see that if we disregard the factor Pr in
(4.20), then the restriction of the resulting measure {s, H } dq dp to the intersection of the
dividing surface with the energy surface agrees with the measure �′ that we defined in (4.13)
in section 4.4. This implies that the expression for the flux (4.20) is invariant under symplectic
coordinate transformations.

The function Pr in (4.20) is defined as

Pr(q, p) = lim
t→∞ �(s(�t

H (q, p)), (4.24)

which evaluates to one if the trajectory with initial conditions (q, p) has s(q(t), p(t)) > 0
and hence proceeds to products for t → ∞ and to zero otherwise. In this way the function Pr
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in (4.20) acts as a characteristic function on the intersection of the dividing surface with the
energy surface.

Equation (4.20) can be rewritten as

f (E) =
∫ ∞

0
CF (t) dt, (4.25)

where

CF (t) =
∫

Rd

∫
Rd

δ(E − H(q, p))F (q, p)F (q(t), p(t)) dq dp, (4.26)

which is referred to as the flux–flux autocorrelation function. This result is obtained using the
identity

Pr(q, p) =
∫ ∞

0

d

dt
� ◦ s(�t

H (q, p)) dt =
∫ ∞

0
F(�t

H (q, p)) dt, (4.27)

and changing the order of the time and phase space integrals. In (4.27) it is tacitly assumed
that �(s(q, p)) = 0, which means that if we want to use the form of Pr given in (4.27) in the
integral (4.20) then it is assumed that �(s(q, p)) evaluates to zero on the dividing surface.
This means that one assumes that a trajectory with initial condition at a point (q, p) on the
dividing surface (4.21) still requires an infinitesimal time to actually cross the dividing surface
(4.21), i.e. more correctly (4.25) should be

f (E) = lim
ε→0+

∫ ∞

−ε

CF (t) dt. (4.28)

We emphasized this point since it is important for understanding the time dependence of the
function CF to which we come back below.

As stated in the chemistry literature (see, e.g., [Mil98a]) the equivalent expressions for
the flux in (4.20) and (4.25) do not depend on the particular choice of the dividing surface. To
see this recall that an arbitrarily chosen dividing surface will in general have the recrossing
problem that we mentioned in section 4.1. This means that there are either

• ‘nonreactive recrossings’: nonreactive trajectories that cross the dividing surface, or
• ‘reactive recrossings’: reactive trajectories that cross the dividing surface more than once,

or both.
In fact reactive and nonreactive recrossings are independent, i.e. one can construct a

dividing surface that only has nonreactive recrossings or only has reactive recrossings or has
both (or no recrossings at all like the dividing surface that we construct). From the definition of
the function Pr in (4.24) it is clear that those nonreactive recrossings that result from trajectories
that approach the dividing surface from the side of reactants, cross the dividing surface (4.21)
(two or an even number larger than two times) and return to the side of reactants do not
contribute to the integral (4.20). In order to see that the factor Pr in the expression for the flux
in (4.20) also takes care of nonreactive trajectories that approach the dividing surface from
the products side and also of reactive recrossings one needs to note that F(q, p) takes into
account the direction in which a trajectory crosses the dividing surface: the sign of the scalar
product between the Hamiltonian vector field and the gradient of the function s that defines
the dividing surface depend on the direction in which the Hamiltonian vector field pierces the
dividing surface (see (4.23)). In this way a family of nonreactive trajectories that approach
the dividing surface from the products side crosses the dividing surface (4.21) (two or an even
number larger than two times) and returns to the side of products will have a vanishing net
contribution to the integral (4.20). Similarly, if a family of reactive trajectories crosses the
dividing surface on its way from reactants to products n times (where n must be odd for the
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trajectories to be reactive) then the net contribution of the first n−1 intersections of this family
of trajectories to the integral (4.20) is zero. This can be rigorously proven using the methods
described in [WW04] but we omit the details here.

The benefits that result from (4.20) formally not depending on the particular choice of
the dividing surface are diminished by the fact that the implementation of the characteristic
function Pr is computationally very expensive. In practice (i.e. in numerical computations)
one cannot carry out the integration of Hamilton’s equations to t = ∞ in order to evaluate Pr

according to (4.24). Instead one attempts to truncate the integration after a finite time t0 after
which trajectories are assumed not to come back to the dividing surface. This is equivalent to
assuming that the flux–flux autocorrelation function CF (t) is essentially zero for times t > t0
such that the integral in (4.25) can be truncated at time t0. A smaller time t0 required for this
assumption to hold means that the number of numerical computations required is reduced.
This implies that some dividing surfaces are better suited for numerical computations than
others [PM05], but this is generally not known a priori.

We note that our dividing surface is free of recrossings. In order to use expression (4.20)
to get our result for the flux in (4.10) we define the function s according to s(q, p) = q1 − p1,
where (q, p) are the normal form coordinates that we used in section 4.2. The delta function
δ(E − H(q, p)) in the integral (4.21) then restricts the integration to the isoenergetic dividing
surface that we constructed in section 4.2. In our case Pr simply needs to effectively restrict
the integral (4.21) to the forward reactive hemisphere of our dividing surface. We therefore set

Pr(q, p) = �(q1 − p1). (4.29)

In this way we recover the expression for the flux that we have given in (4.10). It is crucial to
note that in our case the evaluation of Pr does not require the integration of Hamilton’s equations
and is therefore computationally much cheaper than using (4.20) with Pr defined according
to (4.24) for an arbitrarily chosen dividing surface. Equivalently, using the fact that in our
case we have F = {H, Pr} it is easy to see that the flux–flux autocorrelation function CF (t)

becomes the function δ(t) times our result for the flux given in (4.10). The time integration in
(4.28) (or in its corrected version (4.28)) becomes trivial in our case. For an arbitrarily chosen
dividing surface CF will as a function of time gradually approach zero—in a monotonic or an
oscillatory manner depending on the portions of reactive and nonreactive recrossings of the
dividing surface (see, e.g., [PM05]).

5. Quantum reaction dynamics and cumulative reaction probabilities

As described in the introduction, in this section we develop the quantum version of the classical
reaction rate theory developed in section 4. We especially emphasize the roles of the classical
and quantum normal forms. In particular, the classical coordinates in this section are the
normal form coordinates. Moreover, we will see that the classical phase space structures that
are realized through the classical normal form the ‘skeleton’ on which the quantum dynamics
evolves.

5.1. Quantum normal form

We consider a Hamilton operator whose principal symbol has an equilibrium point of saddle-
centre-. . .-centre stability type. In section 3.4 we have shown how such a Hamilton operator
can be transformed to quantum normal form to any desired order N of its symbol by conjugating
it with suitable unitary transformations. The resulting N th order quantum normal form Ĥ

(N)
QNF
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is a polynomial of order [N/2] in the operators

Î = h̄

i

(
q1

d

dq1
+

1

2

)
and Ĵk = − h̄2

2

d2

dq2
k

+
1

2
q2

k , k = 2, . . . , d, (5.1)

i.e. Ĥ
(N)
QNF is of the form

Ĥ
(N)
QNF = K

(N)
QNF(Î , Ĵ2, . . . , Ĵd) = E0 + λÎ + ω2Ĵ2 + · · · + ωdĴd + ch̄ + higher order terms,

(5.2)

where c ∈ R is a constant and the higher order terms are of order greater than one and less
than [N/2] in the operators Î and Ĵk , k = 2, . . . , d.

From the structure of Ĥ
(N)
QNF in (5.2) it follows that its eigenfunctions are products of the

eigenfunctions of the individual operators in (5.1). This structure is the quantum manifestation
of the integrability of the classical normal form described in section 2.3.2. In the classical
case integrability leads to a particular simple form of Hamilton’s equations which provides a
complete understanding of the phase space structure and dynamics in a neighbourhood of the
saddle-centre-. . .-centre equilibrium point. Similarly, we see that the quantum manifestation
of classical integrability will lead to a simple structure for the corresponding quantum Hamilton
operators in such a way that multidimensional problems are rendered ‘solvable’.

The operators Ĵk are the Hamilton operators of one-dimensional harmonic oscillators
(with unit frequency). Their eigenvalues are h̄(nk + 1/2), nk ∈ N0, and the corresponding
eigenfunctions are given by

ψnk
(qk) = 1

(πh̄)1/4
√

2nknk!
Hnk

(
x√
h̄

)
e− q2

k
2h̄ , (5.3)

where Hnk
is the nkth Hermite polynomial [AS65, LL01].

We will choose the eigenfunctions of Î in such a way that their product with the harmonic
oscillator eigenfunctions (5.3) give incoming and outgoing scattering wavefunctions of the
system described by the Hamilton operator in (5.2). For clarity, we start with the one-
dimensional case.

5.2. Scattering states for one-dimensional systems

The scattering states and S-matrix associated with a saddle equilibrium point in a one-
dimensional system have been studied in [CP94a, CP94b, CP99] and in the following we
mainly follow their presentation.

For one-dimensional systems a Hamilton operator in quantum normal form is a polynomial
function of the operator Î = −ih̄(qd/dq+1/2). The scattering states ψI are the eigenfunctions
of Î , i.e. solutions of

ÎψI (q) ≡ −ih̄

(
q

d

dq
+

1

2

)
ψI (q) = IψI (q) (5.4)

with eigenvalues I ∈ R. Two solutions of this equation are given by

ψIo;r(q) = �(−q)|q|−1/2+iI/h̄,

ψIo;p(q) = �( q)|q|−1/2+iI/h̄,
(5.5)

where � is the Heaviside function, and the index ‘o’ is for ‘outgoing to’ and ‘r’ and ‘p’ are for
‘reactants’ and ‘products’, respectively. The motivation for this notation becomes clear from
viewing the solutions (5.5) as Lagrangian states, i.e. we rewrite them as

ψIo;r/p(q) = AIo;r/p(q)eiϕIo;r/p(q)/h̄, (5.6)
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Figure 8. Lagrangian manifolds �Io/i;r/p associated with the wavefunctions ψIo/i;r/p. The arrows
indicate the Hamiltonian vector field generated by I = pq.

where the amplitude and phase functions are given by

AIo;r/p(q) = �(∓q)|q|−1/2, ϕIo;r/p(q) = I ln |q|, (5.7)

respectively. This way we can associate the one-dimensional Lagrangian manifolds

�Io;r =
{
(q, p) =

(
q,

d

dq
ϕIo;r(q)

)
=
(

q,
I

q

)
: q < 0

}
,

�Io;p =
{
(q, p) =

(
q,

d

dq
ϕIo;p(q)

)
=
(

q,
I

q

)
: q > 0

} (5.8)

with the states ψIo;r and ψIo;p. From the presentation of �Io;r and �Io;p in figure 8 we see that
for q → −∞, ψIo;r is the outgoing state to reactants, and for q → +∞, ψIo;p is the outgoing
state to products.

We define another set of eigenfunctions of Î which will correspond to incoming states by
requiring their momentum representations to be given by

ψ̄I i;r(p) = ψ∗
Io;p(p), ψ̄I i;p(p) = ψ∗

Io;r(p). (5.9)

Here ‘∗’ denotes complex conjugation. The corresponding position representations are
obtained from the Fourier transforms of (5.9) giving

ψI i;r(q) = 1√
2πh̄

∫
ψ̄I i;r(p)e

i
h̄
qp dp = 1√

2πh̄

∫ ∞

0
p−1/2−iI/h̄e

i
h̄
qp dp,

ψI i;p(q) = 1√
2πh̄

∫
ψ̄I i;p(p)e

i
h̄
qp dp = 1√

2πh̄

∫ 0

−∞
(−p)−1/2−iI/h̄e

i
h̄
qp dp. (5.10)

The integrals in (5.10) are not absolutely convergent, but can be defined as oscillatory integrals.
The motivation for defining incoming states according to equation (5.9) becomes clear from
considering the stationary phase contributions to the integrals (5.10). These come from the p

satisfying

d

dp
(−I ln |p| + qp) = 0, (5.11)

i.e. p = I/q, where p > 0 for ψI i;r and p < 0 for ψI i;p. This way we can associate with the
incoming states the Lagrangian manifolds

�I i;r =
{
(q, p) =

(
q,

I

q

)
: p > 0

}
,

�I i;p =
{
(q, p) =

(
q,

I

q

)
: p < 0

}
.

(5.12)
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These manifolds are also shown in figure 8 and we see that for p → +∞, ψI i;r is an incoming
state from reactants and for p → −∞, ψI i;p is an incoming state from products.

In order to evaluate the integrals (5.10) we use the well-known formula∫ ∞

0
yz−1e−ky dy = e−z ln k�(z). (5.13)

This is valid for Rek > 0, and we will use the analytic continuation to Rek = 0, in which case
the left-hand side is defined as an oscillatory integral. We then obtain

ψI i;r(q) =




ei π
4√

2π
e−i I

h̄
ln h̄e

π
2

I
h̄ �

(
1

2
− i

I

h̄

)
q−1/2+iI/h̄, q > 0,

e−i π
4√

2π
e−i I

h̄
ln h̄e− π

2
I
h̄ �

(
1

2
− i

I

h̄

)
(−q)−1/2+iI/h̄, q < 0.

(5.14)

This can be rewritten as

ψI i;r = ei π
4√

2π
e−i I

h̄
ln h̄�

(
1

2
− i

I

h̄

)
(e

π
2

I
h̄ ψIo;p − ie− π

2
I
h̄ ψIo;r). (5.15)

In the same way we obtain

ψI i;p = ei π
4√

2π
e−i I

h̄
ln h̄�

(
1

2
− i

I

h̄

)
(e

π
2

I
h̄ ψIo;r − ie− π

2
I
h̄ ψIo;p). (5.16)

For what follows in section 5.7 it is useful to discuss how the eigenfunctions ψIo;r/p and
ψI i;r/p are related to the more standard eigenfunctions of the operator Î in the Q-representation
that we introduced in section 3.2 (see (3.36)–(3.38)).

The eigenvalue equation (5.4) then becomes

Î χI (Q) =
(

− h̄2

2

d2

dQ2
− 1

2
Q2

)
χI (Q) = IχI (Q). (5.17)

Two solutions of this equation are given by

χI±(Q) = 1√
2π2h̄

(
1

2h̄

)1/4

e
I
h̄

π
4 �

(
1

2
− i

I

h̄

)
D− 1

2 +i I
h̄

(
±e−i π

4

√
2

h̄
Q

)
, (5.18)

where Dν is the parabolic cylinder function [AS65, LL01]. In fact, the eigenfunctions ψI i;r/p

are the images of χI+/− under the unitary transformation Ûr that we defined in (3.39), or
equivalently

χI+ = Û ∗
r ψI i;r, χI− = Û ∗

r ψI i;p. (5.19)

This relationship is discussed in great detail in [Chr03a, Chr03b] where it is also shown that
the pairs of eigenfunctions ψI i;r/p, ψIo;r/p and χI+/− are orthogonal and fulfil the completeness
relations ∫

R

(ψ∗
I i;r(q)ψI i;r(q ′) + ψ∗

I i;p(q)ψI i;p(q ′)) dI = δ(q − q ′),∫
R

(ψ∗
Io;r(q)ψIo;r(q ′) + ψ∗

Io;p(q)ψIo;p(q ′)) dI = δ(q − q ′),∫
R

(χ∗
I+(Q)χI+(Q

′) + χ∗
I−(Q)χI−(Q′)

)
dI = δ(Q − Q′).

(5.20)
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5.3. S-matrix and transmission probability for one-dimensional systems

The incoming and outgoing wavefunctions defined in section 5.2 are not independent. Each
solution ψI of (5.4) can be written as a linear combination of ψIo;r/p or ψI i;r/p,

ψI = αpψIo;p + αrψIo;r, (5.21)

ψI = βpψI i;p + βrψI i;r. (5.22)

These representations are connected by the S-matrix,(
αp

αr

)
= S(I )

(
βp

βr

)
. (5.23)

We can read off the entries of the S-matrix from (5.15) and (5.16) and obtain

S(I ) = ei π
4√

2π
e−i I

h̄
ln h̄�

(
1

2
− i

I

h̄

)(−ie− π
2

I
h̄ e

π
2

I
h̄

e
π
2

I
h̄ −ie− π

2
I
h̄

)
. (5.24)

Using the relation �(1/2+iy)�(1/2− iy) = π/ cosh(πy) it is easy to see that S(I )∗S(I ) = 1,
i.e. S(I ) is unitary.

From the S-matrix we can determine the transmission coefficient

T (I ) = |S12(I )|2 = eπ I
h̄

eπ I
h̄ + e−π I

h̄

= 1

1 + e−2π I
h̄

(5.25)

and the reflection coefficient

R(I ) = |S11(I )|2 = e−π I
h̄

eπ I
h̄ + e−π I

h̄

= 1

1 + e2π I
h̄

. (5.26)

As required we have T (I ) + R(I ) = 1. We see that the relevant scale is I/h̄. T tends to 1 if
I � h̄ and to 0 if I � −h̄.

We can generalize this now easily to operators ĤQNF = KQNF(Î ), where KQNF is a
polynomial function of Î . In this case the incoming and outgoing states defined in section 5.2
are also eigenfunctions of ĤQNF. We have

ĤQNFψI i/o;r/p = EψI i/o;r/p, (5.27)

where E = KQNF(I ) with I being the corresponding eigenvalue of Î . The expression for the
S-matrix in (5.24) remains valid with I replaced by I (E) := K−1

QNF(E), where we have to
assume that the energy is close enough to the equilibrium energy so that KQNF(E) is invertible.
We thus obtain the S-matrix for the scattering problem described by the Hamilton operator
ĤQNF = KQNF(Î ),

S(E) = S(I (E)). (5.28)

The corresponding transmission coefficient is given by

T (E) = T (I (E)) = 1

1 + exp

(
− 2π

I (E)

h̄

) , (5.29)

and similarly the reflection coefficient is given by R(E) = R(I (E)). This is a simple
generalization of the previous example. However, it is a very important result because we see
that we can use the quantum normal form to compute the local S-matrix and the transmission
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and reflection coefficients to any desired order of the symbol of the Hamilton operator that
describes the scattering problem.

5.4. S-matrix and cumulative reaction probability for multi-dimensional systems

We now consider the multi-dimensional case. In this case the Hamilton operator in quantum
normal form is given by ĤQNF = KQNF(Î , Ĵ2, . . . , Ĵd), where KQNF is a polynomial function,
and Ĵk = (−h̄2∂2

qk
+ q2

k )/2, k = 2, . . . , d, are one-dimensional harmonic oscillators. Let ψnk
,

nk ∈ N0, be the nkth harmonic oscillator eigenfunction (5.3), i.e.

Ĵkψnk
= h̄(nk + 1/2)ψnk

. (5.30)

Then the incoming and outgoing scattering states are given by

ψ(I,nsca) i;r/p(q1, . . . , qd) = ψI i;r/p(q1)ψn2(q2) · · · ψnd
(qd),

ψ(I,nsca) o;r/p(q1, . . . , qd) = ψIo;r/p(q1)ψn2(q2) · · · ψnd
(qd),

(5.31)

where nsca = (n2, . . . , nd) ∈ Nd−1
0 is a (d − 1)-dimensional vector of scattering quantum

numbers.
The S-matrix connecting incoming to outgoing states is then block-diagonal with

Snsca,msca (E) = δnsca,msca S(Insca (E)), (5.32)

where δnsca,msca is the multi-dimensional Kronecker symbol, S(I ) is given by (5.24) and Insca (E)

is determined by

KQNF(Insca (E), h̄(n2 + 1/2), . . . , h̄(nd + 1/2)) = E. (5.33)

We will assume that this equation has a unique solution Insca (E), which is guaranteed if the
energy is close enough to the equilibrium energy since KQNF starts linearly in the actions,
see (5.2).

We can now define the transition matrix T as the diagonal sub-block of the S-matrix which
has the (1, 2)-components of the matrices in (5.32) on the diagonal, i.e.

Tnsca,msca (E) = δnsca,msca S1,2(Insca (E)) = δnsca,msca

[
1 + exp

(
− 2π

Insca (E)

h̄

)]−1

. (5.34)

The cumulative reaction probability N(E) is then defined as (see, e.g., [Mil98a])

N(E) = TrT (E)T (E)†. (5.35)

Using (5.34) we thus get

N(E) =
∑
nsca

Tnsca,nsca (E) =
∑

nsca∈N
d−1
0

[
1 + exp

(
− 2π

Insca (E)

h̄

)]−1

. (5.36)

The cumulative reaction probability N(E) is the quantum analogue of the classical flux
f (E) or, more precisely, of the dimensionless quantity NWeyl(E) = f (E)/(2πh̄)d−1 that we
defined in equation (4.11) in section 4.4. To see this let us consider N(E) in the semiclassical
limit h̄ → 0. To this end first note that[

1 + exp

(
− 2πI/h̄

)]−1

→ �(I) as h̄ → 0, (5.37)

where � is the Heaviside function. This means that the transmission coefficients Tnsca,nsca (E)

in (5.36) are essentially characteristic functions, i.e. in the semiclassical limit, Tnsca,nsca (E) is
0 or 1 if the solution of K(Insca , h̄(n2 + 1/2), . . . , h̄(nd + 1/2)) = E for Insca is negative or
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Figure 9. (a) Lines (I, h̄(n2 + 1/2), . . . , h̄(nd + 1/2)), I ∈ R, nk ∈ N0, k = 2, . . . , d, in
the space (I, J2, . . . , Jd ) ∈ R × [0, ∞)d−1 for d = 3 and their intersections with the surface
KQNF(I,J2,J3) = E. (b) Grid points (h̄(n2 + 1/2), . . . , h̄(nd + 1/2)) in the space (J2, . . . , Jd )

for d = 3. The blue line marks the contour KQNF(0, J2, . . . , Jd ) = E. In this plot only the
scattering states for which the quantum numbers (n2, n3) have the values (0, 0), (0, 1), (1, 0) or
(1, 1) correspond to ‘open transmission channels’, see text.

positive, respectively. This way the cumulative reaction probability can be considered to be
a counting function. For a given energy E, it counts how many of the solutions Insca of the
equations KQNF(Insca , h̄(n2 + 1/2), . . . , h̄(nd + 1/2)) = E with scattering quantum numbers
nsca = (n2, . . . , nd) ∈ Nd−1

0 are positive:

N(E) → #{Insca > 0 : KQNF(Insca , h̄(n2 + 1
2 ), . . . , h̄(nd + 1

2 )) = E, nsca ∈ Nd−1
0 }, (5.38)

as h̄ → 0. In other words, N(E) can be considered to count the number of open
‘transmission channels’, where a transmission channel with quantum numbers nsca is open
if the corresponding transmission coefficient Tnsca,nsca (E) is close to 1.

We can interpret N(E) graphically as the number of grid points (h̄(n2 + 1/2), . . . , h̄(nd +
1/2)) in the space of (J2, . . . , Jd) ∈ [0, ∞)d−1 that are enclosed by the contour
KQNF(0, J2, . . . , Jd) = E, see figure 9. The number of grid points is approximately given by
the volume in the space of (J2, . . . , Jd) ∈ [0, ∞)d−1 enclosed by KQNF(0, J2, . . . , Jd) = E

divided by h̄d−1. Using the fact that for h̄ → 0, KQNF becomes the function KCNF which
gives the classical energy as a function of the classical integrals (I, J2, . . . , Jd) we find that
the volume in the space of (J2, . . . , Jd) enclosed by KCNF(0, J2, . . . , Jd) = E is given by the
classical flux f (E) divided by (2π)d−1, see (4.10) in section 4.4, and the cumulative reaction
probability N(E) is thus approximately given by NWeyl(E) = f (E)/(2πh̄)d−1 defined in
(4.11) in section 4.4. This way we verified our statement in section 4.4 that NWeyl(E) gives the
mean number of open transmission channels. In fact, as mentioned in section 4.4, the classical
flux f (E) can be considered to be the phase space volume enclosed by the energy contour
of energy E of the invariant subsystem which has one degree of freedom less than the full
scattering system and which as the so-called activated complex is located between reactants
and products. NWeyl(E) counts how many elementary quantum cells of volume (2πh̄)d−1 fit
into this phase space volume and this way gives the Weyl approximation of the cumulative
reaction probability N(E).

It is important to note here that like the flux in the classical case the cumulative reaction
probability is determined by local properties of the Hamilton operator embodied in its symbol
in the neighbourhood of the equilibrium point only. All one needs to know is the quantum
normal form, which enters through the relation (5.33) and which determines Insca (E).
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5.5. Distribution of the scattering states in phase space

At the end of the previous section we have seen how the cumulative reaction probability
is related to the classical flux. In this section we want to further investigate the quantum–
classical correspondence by studying the distribution of the scattering states in phase space
and relating these distributions to the classical phase space structures that control classical
reaction dynamics as discussed in sections 4.1 and 4.2.

The standard tool to describe the phase space distribution of a wavefunction is the Wigner
function, but since the scattering wavefunctions are not square-integrable the Wigner functions
will be distributions. Therefore it is more convenient to study the phase space distribution in
terms of their Husimi representation which is obtained from projecting the scattering states
onto a coherent state basis (see [Har88,Bal98]) and this way leads to smooth functions. For a
point (q0, p0) ∈ Rd × Rd we define a coherent state with wavefunction

ψq0,p0(q) = 1

(πh̄)d/4
e

i
h̄
(〈p0,q〉−〈q0,p0〉/2)e− 1

2h̄
〈q−q0,q−q0〉. (5.39)

This wavefunction is concentrated around q = q0 and its Fourier transform, i.e. its momentum
representation, is concentrated around p = p0. In phase space the coherent state (5.39) is thus
concentrated around (q0, p0). The Husimi function of a state ψ is now defined by the modulus
square of the projection onto a coherent state,

Hψ(q, p) := 1

(2πh̄)d
|〈ψp,q, ψ〉|2. (5.40)

It has the important property that the expectation value of an operator Op[A] with respect to a
state ψ is given by

〈ψ, Op[A]ψ〉 =
∫ ∫

Rd×Rd

A(q, p)Hψ(q, p) dqdp + O(h̄). (5.41)

Furthermore, we have Hψ(q, p) � 0, i.e. the Husimi function can be considered to be a
probability density on phase space and describes how a quantum state is distributed in phase
space.

The Husimi functions of the scattering states ψ(I,nsca) i/o;r/p inherit the product structure
(5.31), i.e. we have

Hψ(I,nsca ) i/o;r/p(q1, . . . , qd, p1, . . . , pd) = HψI i/o;r/p(q1, p1)Hψn2
(q2, p2) · · · Hψnd

(qd, pd).

(5.42)

The Husimi functions of the eigenfunctions ψnk
of the one-dimensional harmonic oscillators

Ĵk are well known (see, e.g., [KMW97]),

Hψnk
(qk, pk) = 1

2πh̄2nknk!

(p2
k + q2

k )
nk

h̄nk
e− p2

k
+q2

k
2h̄ . (5.43)

The first three of these Husimi functions are shown in figure 10. They are concentrated on the
circles p2

k + q2
k = 2nkh̄ and have an nk-fold zero at the origin.

The computation of the Husimi functions for the one-dimensional scattering states ψIo;r/p

in (5.5) can be found in [NV97] where it is shown that for the linear combination

ψα,β = αψIo;p + βψIo;r, α, β ∈ C, (5.44)
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Figure 10. Contour plots of the harmonic oscillator Husimi functions Hψnk
in the (qk, pk)-plane

for nk = 0 (a), nk = 1 (b) and nk = 2 (c), and contour plots of the Husimi functions HψI i;r in
the (q1, p1)-plane for I = −1 (d), I = 0 (e) and I = 1 (f ). Red corresponds to low values;
blue corresponds to high values. In (a)–(c) the spacing between the values of the contour lines is
decreasing exponentially (h̄ = 0.1).
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Figure 11. Projections of the Lagrangian manifolds �(I,nsca) i;r defined in equation (5.46) to the
normal form coordinate planes for the same set-up as in figure 9. The scattering quantum numbers
are nsca = (n2, n3) with 0 � n2, n3 � 3. For the values (0, 0), (0, 1), (1, 0) and (1, 1) of
the quantum numbers (n2, n3), the Lagrangian manifolds �

ψ in
nsca react

are contained in the energy

surface volume (green region) enclosed by the forward reactive spherical cylinder Wf (E) defined
in section 4. For the other values of the quantum numbers the Lagrangian manifolds �(I,nsca) i;r
are located in the reactants component of the energy surface.

one gets

Hψα,β (q, p) =
√

π

2πh̄ cosh(πI/h̄)
e− 1

2h̄
(p2+q2)

∣∣∣∣αD− 1
2 − iI

h̄

(
− q − ip√

h̄

)
+ βD− 1

2 − iI
h̄

(
q − ip√

h̄

)∣∣∣∣
2

,

(5.45)

where Dν again denotes the parabolic cylinder function [AS65]. Figure 10 shows contour
plots of the Husimi representation of the state ψI i;r for different values of the eigenvalue I .
Here α and β in (5.44) are determined from (5.15). In accordance with the classical dynamics
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where trajectories with I < 0 are nonreactive and trajectories with I > 0 are reactive, most of
the state ψI i;r is reflected to the reactants side for I < 0 while it is transmitted mainly to the
products side for I > 0. The borderline case between these two situations is given by I = 0.
Here the state is localized in phase space at the hyperbolic equilibrium point with ridges along
the reactants branches of the stable and unstable manifolds and the products branch of the
unstable manifold.

Figure 10 indicates that the Husimi functions of the scattering states ψI i;r are localized on
the Lagrangian manifolds

�(I,nsca) i/o;r/p = �I i/o;r/p × �n2 × · · · × �nd
, (5.46)

where the �I i/o;r/p are defined in (5.8) and (5.12), and

�nk
= {(qk, pk) ∈ R2 : q2

k + p2
k = 2h̄nk}, k = 2, . . . , d, (5.47)

are the Lagrangian manifolds associated with one-dimensional harmonic oscillator
eigenfunctions. Quantum mechanics thus picks out those Lagrangian manifolds �±

I,J2,...,Jd

foliating the classical phase space (see section 4.3) for which the actions, J2, . . . , Jd , fulfil
Bohr–Sommerfeld quantization conditions. More precisely we find that the outgoing scattering
states ψI ;o;r/p are localized on the Lagrangian manifolds

�(I,nsca) o;r = �−
I,h̄n2,...,h̄nd

,

�(I,nsca) o;p = �+
I,h̄n2,...,h̄nd

,
(5.48)

and the incoming scattering states ψI ;i;r/p are localized on the Lagrangian manifolds

�(I,nsca) i;r =
{

�+
I,h̄n2,...,h̄nd

, I > 0,

�−
I,h̄n2,...,h̄nd

, I < 0,

�(I,nsca) i;p =
{

�−
I,h̄n2,...,h̄nd

, I > 0,

�+
I,h̄n2,...,h̄nd

, I < 0.

(5.49)

The projection of the Lagrangian manifolds �(I,nsca) i/o;r/p to the centre planes (qk, pk),
k = 2, . . . , d, is thus restricted to the discrete circles p2

k + q2
k = 2nkh̄, nk ∈ N0. If we fix

the total energy E then this also entails a discretization of the projection of the manifolds
(5.46) to the saddle plane (q1, p1) since the eigenvalue I needs to satisfy the energy equation
KQNF(I, h̄(n2 + 1/2), . . . , h̄(nd + 1/2)) = E. For the Lagrangian manifold �(I,nsca) i;r this
is depicted in figure 11. Depending on whether I is positive or negative the Lagrangian
manifold �(I,nsca) i;r is either located inside or outside the energy surface volume enclosed by
the forward reactive spherical cylinderWf(E)defined in section 4, and hence is either composed
of reactive or nonreactive trajectories of the classical dynamics. From our discussion at the end
of section 5.4 it then follows that the cumulative reaction probability N(E) is approximately
given by the total number of Lagrangian manifolds �(I,nsca) i;r which, for scattering quantum
numbers nsca = (n2, . . . , nd) ∈ Nd−1

0 , are located inside the energy surface volume enclosed
by Wf(E).

5.6. The global S-matrix

It is important to emphasize again that, so far, our approach to quantum reaction dynamics has
been local, i.e. it is derived completely from the properties of the quantum normal form that
is valid in the neighbourhood of the saddle-centre-. . .-centre equilibrium point. The property
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of the resulting S-matrix in (5.32) being block-diagonal reflects the fact that the quantum
normal form is integrable in the sense that the basis of scattering states can be chosen in the
product form (5.31). In a different basis the matrix will lose this feature, and phenomena like
mode mixing are related to how other incoming and outgoing scattering states are related to
this special basis. It is natural to embed the study of this phenomenon in a study of the global
dynamics which we will describe in this section. The global formalism is in particular required
in order to compute general state-to-state reaction rates.

Let us start by describing the scattering or reaction process in classical mechanics by using
Poincaré sections. Recall that a Poincaré section at energy E is given by a smooth hypersurface
�(E) of the energy surface with energy E which is transversal to the flow (�(E) is allowed to
have several components). If we have two such Poincaré sections �1(E) and �2(E) such that
all the flow lines intersecting �1(E) intersect at a later time �2(E), too, then moving along
the flow from �1(E) to �2(E) defines a Poincaré map

P (2,1)(E) : �1(E) → �2(E). (5.50)

Such Poincaré maps can be composed. If �3(E) is another Poincaré section which lies
behind �2(E) in the sense that the flow lines that intersect �2(E) also intersect �3(E) at
a later time, and if P (3,2)(E) : �2(E) → �3(E) is the corresponding Poincaré map, then the
Poincaré map

P (3,1)(E) : �1(E) → �3(E) (5.51)

is given by

P (3,1)(E) = P (3,2)(E) ◦ P (2,1)(E). (5.52)

Using this construction we can describe transport through phase space regions by a
sequence of maps. Given some Poincaré section �initial(E) located in the area of initial points
in the reactants region where we prepare the system and a Poincaré section �final(E) in the
products region where we measure the outcome, a succession of Poincaré maps

�initial(E) → �1(E) → �2(E) → · · · → �final(E) (5.53)

tells us how the initial points are transported through the system14.
The advantage of subdividing the flow into a sequence of maps lies in the fact that

different regions in phase space might need different techniques to compute the flow. In
our case of interest Poincaré sections can be constructed to the products and reactants side
of a saddle-centre-. . .-centre equilibrium point. The dynamics ‘across’ this equilibrium point
can then be described by the normal form while the dynamics between neighbourhoods of
different saddle points can be obtained from integrating the original equations of motions
[Cre04, Cre05, WBW05b]. Moreover, the phase space structures obtained from the local
normal form can be ‘globalized’ following the discussion in section 4.6.

A similar procedure can be developed in the quantum case. The Poincaré maps

P (j,i)(E) : �i(E) → �j(E) (5.54)

are symplectic maps, and as such can be quantized using the theory of Fourier integral operators.
The quantizations will be unitary operators which we interpret as local S-matrices,

S(j,i)(E) : L2
�i(E) → L2

�j (E), (5.55)

14 We here ignore the difficulties involved in constructing global Poincaré sections (see, e.g., [DW95]); we assume
that the sequence of Poincaré sections (5.53) is intersected transversally by the trajectories with initial points from a
suitable open subset in the reactants region.
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where L2
�(E) is a Hilbert space obtained by geometric quantization of �(E), see, e.g., [Kir01].

This is similar to the quantization developed in [Bog92]. As in classical dynamics we can
compose these matrices to obtain a global S-matrix

S(final,initial)(E) = S(final,n)(E)S(n,n−1)(E) · · · S(1,initial)(E), (5.56)

which tells us how initial states in L2
�initial(E) are transformed into final states in L2

�final(E).
The reasons for introducing this splitting of the S-matrix are the same as in the classical
case. We can employ different techniques for computing the S-matrices according to different
local properties of the system. Near equilibrium points the dynamics can be described by
the quantum normal form we developed in this paper. Notice that the neighbourhoods of
the saddle-centre-. . .-centre equilibrium points are the regions where we expect quantum
effects to be of most importance due to partial reflection at and tunnelling through the
barriers associated with saddle points. The quantum transport between neighbourhoods of
different equilibrium points can be described by a standard van Vleck type formalism, using,
e.g., initial value representations (IVRs) which are very common in theoretical chemistry (see,
e.g., [Mil98a, Mil98b] for references).

5.7. The flux–flux autocorrelation function formalism to compute quantum reaction
probabilities

The main approach to computing quantum mechanical reaction rates that is most heavily
pursued in the chemistry literature is the quantum version of the flux–flux autocorrelation
function formalism that we reviewed in section 4.7. This approach was developed by Miller
and others (see [YT60, MST83, Mil98a]) and in the following we will mainly follow their
presentation. We will see that the cumulative reaction probability N(E) is the quantum
mechanical flux through a dividing surface and hence is the analogue of the classical flux.
The goals of this section are twofold. Firstly, we will show that we recover our result
for the cumulative reaction probability in (5.36) when we evaluate the quantum flux–flux
autocorrelation function expression for the cumulative reaction probability N(E) in terms of
the quantum normal form and for our choice of the dividing surface that we discussed in
section 4. This way will ensure that the flux–flux autocorrelation function formalism and our
result for the cumulative reaction probability are formally equivalent and hence, our result
for N(E) can be viewed as a quantum mechanical flux through a dividing surface. Secondly,
we will argue that, as in the classical case, the application of the flux–flux autocorrelation
formalism in its original form, which does not depend on the specific choice of a dividing
surface, is computationally much more expensive than our quantum normal form approach.

Following [YT60, MST83, Mil98a], a quantization of the flux–flux autocorrelation
function formalism in section 4.7, or more precisely of the dimensionless quantity

NWeyl(E) = f (E)/(2πh̄)d−1 = 2πh̄

∫
Rd

∫
Rd

δ(E − H)FPr
dq dp

(2πh̄)d
(5.57)

is obtained by replacing the classical phase space integral in (5.57) by the trace of the associated
operators in the form

N(E) = 2πh̄ Tr δ(E − Ĥ )F̂ P̂r. (5.58)

Following the quantum–classical correspondence principle the operator F̂ is obtained from
its classical counterpart F by replacing the Poisson bracket in the classical expression
F = {�(s), H } by the corresponding commutator to give

F̂ = − i

h̄
[�̂(s), Ĥ ]. (5.59)
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Here �̂(s) is a quantization (to which we will come back below) of the composition of
the Heaviside function with a function s that defines the dividing surface according to
s(q, p) = 0 as discussed in section 4.7. Similarly, the quantization of the projection function
Pr = limt→∞ �(s(�t)) in (4.24) is given by the operator

P̂r = lim
t→∞ e

i
h̄
Ĥ t �̂(s)e− i

h̄
Ĥ t . (5.60)

The application of P̂r to a state ψ is thus obtained from taking the limit t → ∞ in the process
of letting the time evolution operator, exp(− i

h̄
Ĥ t), act on ψ for the time t , then apply �̂(s) to

determine whether ψ has evolved to products after time t (see below for the details) and then
evolve the state ψ backward in time by applying the inverse of the time evolution operator,
exp( i

h̄
Ĥ t). In fact, the operator P̂r is given by the limit t → ∞ of the Heisenberg picture of

the operator �̂(s).
Using

P̂r =
∫ ∞

0

d

dt

(
e

i
h̄
Ĥ t �̂(s)e− i

h̄
Ĥ t
)

dt =
∫ ∞

0
e

i
h̄
Ĥ t F̂ e− i

h̄
Ĥ t dt, (5.61)

we find that analogously to (4.25) the cumulative reaction probability can be rewritten as an
autocorrelation function15:

N(E) = 2πh̄

∫ ∞

0
CF̂ (t) dt, (5.62)

where

CF̂ (t) = Tr δ(E − Ĥ )F̂ e
i
h̄
Ĥ t F̂ e− i

h̄
Ĥ t . (5.63)

We illustrate the application of the flux–flux autocorrelation function formalism in the
following sections.

5.7.1. Example: 1D parabolic barrier. As a first example we consider a one-dimensional
system and a surface defined according to s(q, p) = q −q0 = 0. In the position representation
the quantization of the function �(s) is then defined by its action on a wavefunction ψ(q)

according to

�̂(s)ψ(q) = �(q − q0)ψ(q). (5.64)

A state ψ thus is an eigenfunction with eigenvalue 1 of the operator P̂r if its wavefunction
ψ(q) is concentrated in q > q0 if evolved forward in time to time t = ∞. Likewise, ψ is an
eigenfunction with eigenvalue 0 of the operator P̂r if its wavefunction ψ(q) is concentrated in
q < q0 if evolved forward in time to time t = ∞. For a Hamilton operator of type ‘kinetic
plus potential’, Ĥ = 1

2m
p̂2 + V (q̂), with the quantization of the operators q̂ and p̂ given in

(3.38), the operator F̂ becomes

F̂ = − i

h̄
[ ˆ�(s), Ĥ ] = − i

h̄
[ ˆ�(s),

1

2m
p̂2] = − i

h̄

1

2m
(p̂[ ˆ�(s), p̂] + [ ˆ�(s), p̂]p̂)

= 1

2m
(p̂δ(q0) + δ(q0)p̂). (5.65)

15 Formally equation (5.61) still contains a term �̂(s). But this term will give no contribution to N(E) for the same
reason as in the classical flux–flux autocorrelation formalism (see the discussion after (4.27)). In the examples below
this can be seen explicitly since we define the operator �̂(s) in normal form coordinates as a multiplication operator
by a characteristic function. Then the same reasoning as in the classical case applies.
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For the expectation value of F̂ with respect to a state ψ we thus get16

〈ψ |F̂ |ψ〉 = −i
h̄

2m
(ψ∗(q0)ψ

′(q0) − ψ ′∗(q0)ψ(q0)), (5.66)

where the primes denote the derivatives. This agrees with the standard definition of the
quantum probability current density that can be found in any quantum mechanics textbook
(see, e.g., [LL01]).

To make the example more concrete we consider a parabolic barrier described by the
Hamilton operator

Ĥ = − h̄2

2m

d2

dq2
− 1

2
mλ2q2. (5.67)

The spectrum of Ĥ is R. We choose energy eigenfunctions ψE ± such that they correspond to
wavefunctions moving in the positive and negative q directions, respectively, i.e. besides

ĤψE ± = EψE ± (5.68)

we have

P̂rψE + = ψE +, P̂rψE − = 0. (5.69)

For the trace (5.58) to be well defined we need to require that the states ψE ± are normalized
in such a way that they satisfy the completeness relation∫

R

(ψ∗
E +(q)ψE +(q

′) + ψ∗
E −(q)ψE −(q ′)) dE = δ(q − q ′). (5.70)

The eigenfunctions ψE ± having the properties (5.69) and (5.70) are given by

ψE ±(q) = 1√
2π2h̄

( m

2h̄λ

)1/4
e

E
λh̄

π
4 �

(
1

2
− i

E

h̄λ

)
D− 1

2 −i E
h̄λ

(
±e−i π

4

√
2mλ

h̄
q

)
, (5.71)

where Dν again denotes the parabolic cylinder function [AS65]. In fact, the wavefunctions
ψE ± can be obtained from a suitable scaling of the wavefunctions χI± that we defined in (5.18)
and which satisfy the completeness relations (5.20). For ψE ±, we have

− i
h̄

2m
(ψ∗

E ±ψ ′
E ± − ψ ′∗

E ±ψE ±) = ± 1

2πh̄

1

1 + e−2πE/(λh̄)
, (5.72)

and hence using (5.66) and (5.69) we get for the cumulative reaction probability,

N(E) = 2πh̄Trδ(E − Ĥ )F̂ P̂r

= 2πh̄

∫
R

(〈ψE′ +|δ(E − Ĥ )F̂ P̂r|ψE′ +〉 + 〈ψE′ −|δ(E − Ĥ )F̂ P̂r|ψE′ −〉) dE′

= 2πh̄

∫
R

δ(E − E′)〈ψE′ +|F̂ |ψE′ +〉 dE′ = 1

1 + e−2πE/(λh̄)
, (5.73)

which is the exact quantum mechanical reflection coefficient for a parabolic barrier [LL01].
We now want to repeat the calculation above by inserting for Ĥ the quantum normal form

of the parabolic barrier in (5.58). This will show two things. Firstly, this will lead to our
result for the cumulative reaction probability N(E) that we have given in (5.36) (which for
the one-dimensional case reduces the reflection coefficient derived in section 5.3). Secondly,
we will see that our result agrees with N(E) in (5.73), i.e. our result for N(E) in terms of the
quantum normal form is exact for parabolic barriers.

16 In the following it will be notationally more convenient to use the Dirac notation for scalar products. Here 〈ψ |A|ψ〉
is the same as 〈ψ, Aψ〉 for any operator A and state ψ .
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From our discussion in section 3.5 it follows that the quantum normal form of (5.67) is
given by

ĤQNF = KQNF(Î ) = λÎ . (5.74)

In order to evaluate (5.58) for our dividing surface which in terms of the normal form
coordinates is given by s(q, p) = q − p = 0 (see section 4.2) it is convenient to work
with the rotated coordinates

(Q, P ) = 1√
2
(q − p, q + p). (5.75)

The Q representation of the operator �̂(s) is then defined analogously to (5.64), i.e.

�̂(s)ψ(Q) = �(Q)ψ(Q). (5.76)

As we have seen in the example of the application of lemma 6 (exact Egorov) in section 3.2
the Q representation of the operator Î reads

Î = − h̄2

2

d2

dQ2
− 1

2
Q2 (5.77)

(see equation (3.38)). In section 5.2 we showed that the eigenfunctions of (5.77) are given by
χI± defined in (5.18). In fact, the eigenfunctions χI± formally agree with the eigenfunctions
ψE ± in (5.71) if m and λ are replaced by 1 and E is replaced by I . Analogously to (5.65)
we have

− i

h̄
[�̂(s), Î ] = 1

2
(P̂ δ(Q) + δ(Q)P̂ ), (5.78)

and for an arbitrary state ψ ,

〈ψ | − i

h̄
[�̂(s), Î ]|ψ〉 = −i

h̄

2
(ψ∗(0)ψ ′(0) − ψ ′∗(0)ψ(0)). (5.79)

Evaluating this expression for the eigenfunctions χI ± we get

− i
h̄

2
(χ∗

I ±χ ′
I ± − χ ′∗

I ±χI ±) = ± 1

2πh̄

1

1 + e−2πI/h̄
. (5.80)

Using this result and the fact that χI + and χI − are moving in positive and negative Q directions
and hence are eigenfunctions of P̂r with eigenvalues 1 and 0, respectively, we get

N(E) = 2πh̄Trδ(E − KQNF(Î ))F̂ P̂r

= 2πh̄

∫
R

(〈χI +|δ(E − KQNF(Î ))F̂ P̂r|χI +〉 + 〈χI −|δ(E − KQNF(Î ))F̂ P̂r|χI −〉) dI

= 2πh̄

∫
R

δ(E − KQNF(I ))λ〈χI +| − i

h̄
[�̂(s), Î ]|χI +〉 dI = 1

1 + e−2πE/(λh̄)
. (5.81)

This formally agrees with the expression for N(E) that we have given in (5.36) and also with
the exact result in (5.73), i.e. our quantum normal form computation of N(E) is exact for
parabolic barriers.

5.7.2. Example: general barriers in 1D. Let us now use the quantum normal form in the
flux–flux autocorrelation formalism in the more general case of a one-dimensional system
with a Hamilton operator whose principal symbol has a saddle equilibrium point but is not
necessarily quadratic. As in the previous section we again work in the Q representation, i.e. our
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dividing surface is defined by s(Q, P ) = Q = 0, and the operators �̂(s) and Î are defined by
(5.76) and (5.77), respectively. In order to evaluate (5.58) for a general Hamilton operator in
quantum normal form, ĤQNF = KQNF(Î ), where KQNF(Î ) is a polynomial in Î , we use that
for n ∈ N, we have

[�̂(s), Î n] =
n−1∑
k=0

Î n−k−1[�̂(s), Î ]Î k. (5.82)

This can be shown by direct calculation. For the eigenfunction χI ± of Î we thus have

〈χI ±|[�̂(s), Î n]|χI ±〉 = 〈χI ±|[�̂(s), Î ]|χI ±〉nIn−1, (5.83)

and hence

〈χI ±|[�̂(s), KQNF(Î )]|χI ±〉 = 〈χI ±|[�̂(s), Î ]|χI ±〉dKQNF(I )

dI
. (5.84)

Using this together with (5.79) and (5.80) we find that the cumulative reaction probability is
given by

N(E) = 2πh̄ (〈χI +|δ(E − KQNF(Î ))F̂ P̂r|χI +〉 + 〈χI −|δ(E − KQNF(Î ))F̂ P̂r|χI −〉)

= 2πh̄

∫
R

δ(E − KQNF(I ))〈χI +| − i

h̄
[�̂(s), Î ]|χI +〉dKQNF(I )

dI
dI

= 1

1 + e−2πI (E)/h̄
, (5.85)

where I (E) is the solution of E = KQNF(I (E)), and we have assumed that there is only one
such solution (compare with the remark after (5.33). We thus recover our result for N(E) that
we have given in (5.36).

5.7.3. Example: general barriers in arbitrary dimensions. We now consider the d-
dimensional case with a Hamilton operator in quantum normal form given by ĤQNF =
KQNF(Î , Ĵ2, . . . , Ĵd). Again we work in the Q representation in terms of which our dividing
surface is defined as s(Q1, . . . , Qd, P1, . . . , Pd) = Q1 = 0. The quantization of �(s) is then
defined by its action on a wavefunction ψ(Q1, . . . , Qd) according to

�̂(s)ψ(Q1, . . . , Qd) = �(Q1)ψ(Q1, . . . , Qd). (5.86)

The Q representation of the incoming eigenfunctions (5.31) is given by

χ(I,nsca) i;r(Q1, . . . , Qd) := χI +(Q1)ψn2(Q2) · · · ψnd
(Qd),

χ(I,nsca) i;p(Q1, . . . , Qd) := χI −(Q1)ψn2(Q2) · · · ψnd
(Qd)

(5.87)

with I ∈ R and scattering quantum numbers nsca = (n2, . . . , nd) ∈ Nd−1
0 . It then follows

from the one-dimensional case discussed in the previous section that

〈χ(I,nsca) i;r|[�̂(s), KQNF(Î , Ĵ2, . . . , Ĵd)]|χ(I,nsca) i;r〉

= 〈χ(I,nsca) i;r|[�̂(s), Î ]|χ(I,nsca) i;r〉 ∂

∂I
KQNF

(
I, h̄

(
n2 +

1

2

)
, . . . , h̄

(
nd +

1

2

))
(5.88)
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(see equation (5.84)). Using the completeness of the states χ(I,nsca) i;r/p we find for the
cumulative reaction probability,

N(E) = 2πh̄
∑

nsca∈N
d−1
0

∫
R

(〈χ(I,nsca) i;r|δ(E − KQNF(Î , Ĵ2, . . . , Ĵd))F̂ P̂r|χ(I,nsca) i;r〉

+ 〈χ(I,nsca) i;p|δ(E − KQNF(Î , Ĵ2, . . . , Ĵd))F̂ P̂r|χ(I,nsca) i;p〉) dI

= 2πh̄
∑

nsca∈N
d−1
0

∫
R

δ

(
E − KQNF

(
I, h̄

(
n2 +

1

2

)
, . . . , h̄

(
nd +

1

2

)))

×
〈
χ(I,nsca) i;r

∣∣∣∣− i

h̄
[�̂(s), KQNF(Î , Ĵ2, . . . , Ĵd)]

∣∣∣∣χ(I,nsca) i;r

〉
dI

=
∑

nsca∈N
d−1
0

[
1 + exp

(
− 2π

Insca (E)

h̄

)]−1

, (5.89)

where Insca (E) solves KQNF(I, h̄(n2 + 1/2), . . . , h̄(nd + 1/2)) = E for nsca = (n2, . . . , nd) ∈
Nd−1

0 , and we assume there is only one such solution (compare, again, with the remark after
(5.33). We thus recover our result in (5.36).

Though we showed that if the flux–flux autocorrelation function formalism is evaluated
in terms of the quantum normal form then it reproduces our results for the cumulative reaction
probability that we developed in section 5.4, it is important to point out the computational
differences between the flux–flux autocorrelation function formalism in its original form and
the quantum normal form approach to computing cumulative reaction probabilities. The main
problem with the implementation of the flux–flux autocorrelation function formalism is the
occurrence of the projection operator P̂r in the trace in (5.58). The presence of the operator P̂r is
crucial in order to ensure that only states that evolve from reactants to products contribute to the
trace in (5.58). The extraction of this information for an arbitrarily chosen dividing surface and
without any insight into the quantum dynamics requires one to look at the full time evolution
of states as embodied in the definition of the operator P̂r in (5.60). Though various techniques
like Monte Carlo path integration and initial value representation (IVR) [Mil98a, Mil98b]
have been developed in order to solve this time evolution problem that is involved in the
evaluation of the trace in (5.58) due to the presence of P̂r, it remains a formidable numerical
task to apply (5.58) to specific systems. In contrast to this, the computation of the cumulative
reaction probability from the quantum normal form does not involve the solution of a time
evolution problem. The reason for this is that the quantum normal form yields an unfolding
of the quantum dynamics in the reaction region. As a result the S-matrix expressed in terms
of the corresponding scattering states is diagonal, i.e. the scattering states can be immediately
classified and the reaction probabilities can be immediatedly determined without explicitly
looking at the time evolution. The numerical effort to implement and evaluate the quantum
normal form is comparable to the classical normal form computation described in sections 2
and 4. In section 7 we will illustrate the efficiency of the quantum normal form computation
of the cumulative reaction probability for several concrete examples.

6. Quantum resonances

In this section we consider quantum resonances and the corresponding resonance states. The
role of quantum resonances in the context of chemical reactions was explicitly studied for
the first time in the chemistry literature by Friedman and Truhlar [FT91] and Miller [SM91].
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The quantum resonances are viewed as another imprint of the activated complex in addition
to the quantization of the cumulative reaction probability discussed in the previous section,
section 5. Recent developments in high-resolution spectroscopic techniques allow one to
probe the dynamics of quantum mechanical reactions with unprecedented accuracy. There
is therefore immense interest in quantum resonances both in experimental and computational
chemistry [Zar06, SY04, SSM+00].

We will show that the quantum normal form provides us with a very efficient algorithm for
computing quantum resonances and also the corresponding resonance states. In our discussion
of the classical reaction dynamics we could identify the activated complex with the centre
manifold of the saddle-centre-. . .-centre equilibrium point, i.e. with an invariant subsystem
with one degree of freedom less than the full system located between reactants and products
(see section 4.1). As we will discuss in detail in section 6.3, the Heisenberg uncertainty relation
excludes the existence of an invariant quantum subsystem. In fact, the quantum resonances
will describe how a wavepacket initialized near the classically invariant subsystem will decay
in time.

Quantum resonance can be introduced in several ways. A common definition is based
on the S-matrix. If one can extend the S-matrix analytically to complex energies, then the
resonances are defined as its poles in the complex energy plane. We could therefore use the
results of the previous section to determine the resonances from the quantum normal form.
However, we will choose a different approach to introduce resonances which will make their
dynamical meaning much more clear.

6.1. Definition of quantum resonances

We will define resonances as the poles of the resolvent operator. This is in line with the the
convention in the mathematical literature (see, e.g., [Zwo99]). Let us recall the necessary
notions.

For an operator Ĥ : L2(Rd) → L2(Rd), the resolvent set r(Ĥ ) of Ĥ is defined as the set
of E ∈ C such that Ĥ −E is invertible. The spectrum of Ĥ is the complement of the resolvent
set. For E ∈ r(Ĥ ), the resolvent of Ĥ is defined as

R̂(E) = (Ĥ − E)−1 : L2(Rd) → L2(Rd). (6.1)

If Ĥ is self-adjoint, then the spectrum of Ĥ is contained in R. The resolvent is thus
defined at least for all E ∈ C\R. The resolvent is related to the time evolution operator
Û (t) = exp(− i

h̄
tĤ ) by Laplace transformation. For ImE � 0,

R̂(E) = i

h̄

∫ ∞

0
e

i
h̄
Et Û (t) dt, (6.2)

and by Mellin transform

Û (t) = 1

2π i

∫
ImE=c

R̂(E)e
i
h̄
tE dE, (6.3)

where c > 0. The path of integration in the Mellin integral should be thought of as encircling
the spectrum of Ĥ . Hence, if Ĥ has only isolated eigenvalues En then Cauchy’s theorem gives

Û (t) =
∑

e− i
h̄
tEn P̂n (6.4)

with the projectors

P̂n := 1

2π i

∫
Cn

R̂(E) dE, (6.5)
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where the Cn are closed paths encircling only En. This is the usual spectral theorem which
shows how eigenvalues and eigenfunctions (contained in the projectors P̂n) determine the time
evolution of a system with discrete spectrum.

In the case where the spectrum of Ĥ is not discrete the sum over eigenvalues is replaced
by an integral, and it becomes harder to read off properties of the time evolution directly.
Physically, a continuous spectrum corresponds to an open system like a scattering system where
wavepackets can decay by spreading out to infinity. This will be described by resonances.

Let us assume Ĥ has continuous spectrum. The resolvent R̂(E) is an analytic function of
E for ImE > 0, and the resonances are defined as the poles of the meromorphic continuation
of R̂(E) to the region ImE � 0. Since the operator Ĥ is self-adjoint on L2(Rd) and has
continuous spectrum, there is no meromorphic continuation of R̂(E) as an operator from
L2(Rd) → L2(Rd). Instead one looks for a continuation of R̂(E) as an operator

R̂(E) : L2
comp(R

d) → L2
loc(R

d), (6.6)

where L2
comp(R

d) and L2
loc(R

d) denote the spaces of functions that are in L2(Rd) and have
compact support, or that are locally in L2(Rd), respectively. More directly, let ϕ, ψ ∈
L2

comp(R
d), then quantum resonances are the poles of the meromorphic continuation of the

matrix elements

〈ϕ, R̂(E)ψ〉 (6.7)

from the region ImE > 0 to ImE � 0. Assuming we have found such a meromorphic
continuation with poles at En ∈ C, n ∈ N, ImEn < 0, then we can use (6.3) to get

〈ϕ, Û(t)ψ〉 = 1

2π i

∫
ImE=c

〈ϕ, R̂(E)ψ〉e i
h̄
tE dE. (6.8)

Shifting the contour of integration and picking up the contribution from the poles gives us an
expansion in terms of the resonances En

〈ϕ, Û(t)ψ〉 ∼
∑

e− i
h̄
tEn〈ϕ, P̂nψ〉 (6.9)

with the projectors

P̂n := 1

2π i

∫
Cn

R̂(E) dE, (6.10)

where Cn is a closed path encircling only the resonance En. This looks formally like (6.4), but
there are two important differences. Firstly, ImEn < 0 which means that |e− i

h̄
tEn | = etImEn ,

and hence the terms in the sum are exponentially decreasing for t → ∞ (since ImEN < 0).
Secondly, the projectors P̂n are no longer orthogonal projectors in L2(Rd). Futhermore, we
can take the expansion only as far as the meromorphic continuation allows us to, and even if it
extends to C, the resulting sum could be divergent. The range of the meromorphic continuation
and the convergence properties of the sum can depend on ϕ and ψ (see [Zwo99] for a more
detailed description).

The relation (6.9) reveals the dynamical meaning of the resonances. Resonance states
are not stationary, and the reciprocal value of the imaginary part of the resonance energies
determines their lifetime.

6.2. Computation of resonances of the quantum normal form

We now turn to explicit calculations and show how one can compute quantum resonances of
the quantum normal form.
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6.2.1. Resonances of one-dimensional systems. We start with the simplest one-dimensional
example ( d = 1) and consider the operator

Ĥ = λÎ = λ
h̄

i

(
q∂q +

1

2

)
, (6.11)

where λ > 0. For this operator the Schrödinger equation can be solved explicitly and the time
evolution operator is given by

Û (t)ψ(q) = e− λt
2 ψ(e−λtq). (6.12)

This operator is of course unitary, i.e. it preserves the L2-norm. In time, the state Û (t)ψ(q)

spreads out at an exponential rate. If we look at the overlap of Û (t)ψ(q) with another localized
state we expect an exponential decay, and this is exactly what the resonances describe. Let
ϕ, ψ ∈ C∞

0 (R), then

〈ϕ, Û(t)ψ〉 = e− λt
2

∫
ϕ∗(q)ψ(e−λtq) dq (6.13)

and if we insert for ψ its Taylor series

ψ(q) =
N∑

n=0

1

n!
ψ(n)(0)qn + RN+1(q), (6.14)

with |RN+1(q)| � CN+1|q|N+1, then we obtain

〈ϕ, Û(t)ψ〉 =
N∑

n=0

e−λ(n+1/2)t 1

n!
ψ(n)(0)

∫
ϕ∗(q)qn dq + O(e−λ(N+1+1/2)t ) (6.15)

for t � 0. Inserting this equation into (6.2) leads to the meromorphic continuation of R̂(E) to
the domain ImE > −h̄λ(N + 1 + 1/2) with poles at

En = −ih̄λ(n + 1/2), n = 0, . . . , N. (6.16)

These are the resonances of the operator Ĥ given in (6.11).
We can furthermore read off the projection operators

P̂nψ(q) := 1

n!
ψ(n)(0)qn, (6.17)

and a direct calculation shows that qn is an eigenfunction with complex eigenvalue En =
−ih̄λ(n + 1/2),

Ĥqn = −ih̄λ(n + 1/2)qn. (6.18)

We now extend this analysis to the case of a Hamilton operator in quantum normal form
for d = 1, i.e. Ĥ = K(Î ), where K is a polynomial or an analytic function in I . We will
require furthermore the condition

ImK(−ix) < 0, for x > 0. (6.19)

By expanding K in a power series we find

Ĥqn = K(−ih̄(n + 1/2))qn (6.20)

and solving the Schrödinger equation yields Û (t)qn = exp[− i
h̄
tK(−ih̄(n + 1/2))]qn. Hence,

if ψ(q) is analytic, we have

Û (t)ψ(q) =
∞∑

n=0

1

n!
ψ(n)(0)e− i

h̄
tK(−ih̄(n+1/2))qn, (6.21)
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and by condition (6.19) we can use (6.2) to see that the resonances are given by

En = K(−ih̄(n + 1/2)), n = 0, 1, 2, . . . . (6.22)

This can be regarded as a kind of imaginary Bohr–Sommerfeld quantization condition for the
resonances. Moreover, we can formally write the resonance states φn(q) = qn as ‘complex’
Lagrangian states,

φn(q) = qn = (sgn q)n|q|−1/2+iIn/h̄ (6.23)

with In = −ih̄(n + 1/2). This reveals the formal similarity of the resonance states to the
scattering states (5.5) with the main difference being that in the case of resonances I fulfils
an imaginary Bohr–Sommerfeld quantization condition while in the case of scattering the
spectrum of Î is continuous and real. With the states (6.23) we can associate the complex
Lagrangian manifolds

�φn
= {(q, p) = (q, In/p) : q ∈ R} ⊂ R × iR. (6.24)

6.2.2. Resonances of multi-dimensional quantum normal form. Finally, we consider the case
of a d-dimensional system in quantum normal form, i.e. let Ĥ = K(Î , Ĵ2, . . . , Ĵd) and ϕnk

denote the nkth harmonic oscillator eigenfunction (see (5.30)).
For n = (n1, . . . , nd) ∈ Nd

0 , set

ψn(q) = q
n1
1 ϕn2(q2) · · · ϕnd

(qd). (6.25)

Then we have

Ĥψn = K
(− ih̄(n1 + 1/2), h̄(n2 + 1/2), . . . , h̄(nd + 1/2)

)
ψn, (6.26)

and if we assume ImK(−ix1, x2 . . . , xd) < 0 for x1 > 0 and x2, . . . , xd in a neighbourhood
of 0, we can conclude as before that the resonances of Ĥ are given by

En = K(−ih̄(n1 + 1/2), h̄(n2 + 1/2), . . . , h̄(nd + 1/2)), n ∈ Nd
0 . (6.27)

To summarize, we have shown theorem 4.

Theorem 4. Suppose Ĥ = K(Î , Ĵ2, · · · , Ĵd) and that K satisfies the condition

ImK(−ix1, x2, . . . , xd) < 0 (6.28)

for x1 > 0 and x2, . . . xd in some neighbourhood of 0. Then the resonances in a neighbourhood
of 0 are given by

En = K(−ih̄(n1 + 1/2), h̄(n1 + 1/2), . . . , h̄(nd + 1/2)), n ∈ Nd
0 , (6.29)

and the corresponding resonance eigenstates are

ψn(q) = q
n1
1 ϕn2(q2) · · · ϕnd

(qd). (6.30)

Following (6.24) the resonance eigenstate can be interpreted as Lagrangian states
associated with the complex Lagrangian manifolds

�ψn
= {(q, p) ∈ R2d : p1 = In1/q1, (p2

k + q2
k ) = 2nkh̄, k = 2, . . . , d}. (6.31)
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6.3. Lifetime of the activated complex

The geometric object in classical phase space associated with the activated complex is the
centre manifold, a (2d − 2)-dimensional invariant submanifold. As mentioned in section 4.4
this submanifold can be considered as the phase space of a (d − 1) DoF invariant subsystem
related to the supermolecule poised between reactants and products in the chemistry literature
[Pec76, Mar92]. This invariant subsystem is unstable, i.e. a trajectory with initial condition
near but not in the subsystem will leave the neighbourhood of this subsystem.

For the corresponding quantum system the Heisenberg uncertainty relation excludes the
existence of a quantum analogue of the classical invariant subsystem. This is because in normal
form coordinates the invariant manifold is defined by q1 = p1 = 0 and in quantum mechanics
we have the uncertainty relation �p1�q1 � h̄/2, i.e. p1 and q1 cannot be 0 simultaneously.
The closest one can get to a state which initially has q1 = p1 = 0 is a minimal uncertainty
state which is a Gaussian of the form

ψ0(q1) = 1

(πh̄)1/4
e− 1

h̄

q2
1
2 . (6.32)

In order to obtain a state which at time t = 0 is localized on the centre manifold we choose

ψ(q1, . . . , qd) = 1

(πh̄)1/4
e− 1

h̄

q2
1
2 ϕn2(q2) · · · ϕnd

(qd) (6.33)

for some fixed quantum numbers n2, . . . , nd ∈ N0, where ϕnk
again denote the harmonic

oscillator eigenfunctions.
A suitable quantity for measuring the lifetime of such a state is the decay of the

autocorrelation function

|〈ψ, Û(t)ψ〉|2. (6.34)

We will compute the autocorrelation function for the case that the Hamiltonian is in quantum
normal form. Inserting the expression (6.33) for ψ and expanding the Gaussian into a Taylor
series gives

〈ψ, Û(t)ψ〉 =
∞∑

k=0

1

k!

(−1)k

(2h̄)k

1

(πh̄)1/4
〈ψ0ϕn2 · · · ϕnd

, Û (t)q2kϕn2 · · · ϕnd
〉

=
∞∑

k=0

1

k!

(−1)k

(2h̄)k

1

(πh̄)1/2

∫
e− 1

h̄

q2
1
2 q2k

1 dq1e− i
h̄
tH(−ih̄(2k+1/2),h̄(n2+1/2),...,h̄(nd +1/2)),

(6.35)

where we have used as well that q2k is a resonance state (6.26). The integral over q1 gives∫
e− 1

h̄

q2
1
2 q2k

1 dq1 = �(k + 1/2)(2h̄)k+1/2, and we thus find

〈ψ, Û(t)ψ〉 =
(

2

π

)1/2 ∞∑
k=0

�(k + 1/2)

k!
(−1)ke− i

h̄
tH(−ih̄(2k+1/2),h̄(n2+1/2),...,h̄(nd +1/2)). (6.36)

The leading term in this sum for t → ∞ is given by the smallest resonance with k = 0. Hence,

|〈ψ, Û(t)ψ〉|2 ∼ 2e
1
h̄
t2ImH(−ih̄/2,h̄(n2+1/2),...,h̄(nd +1/2)), (6.37)

and this determines the maximal lifetime of a quantum state of the activated complex, i.e. a
state initially localized on the invariant subsystem given by the centre manifold.

For small h̄ the quantum normal form is dominated by its quadratic part and that gives

lim
h̄→0

1

h̄
2ImH(−ih̄/2, h̄(n2 + 1/2), . . . , h̄(nd + 1/2)) = −λ (6.38)
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and therefore for small h̄

|〈ψ, Û(t)ψ〉|2 ∼ 2e−tλ. (6.39)

The quantum lifetime of the activated complex is in leading order for h̄ → 0 thus given by
the reciprocal value of the classical Lyapunov exponent associated with the saddle equilibrium
point.

6.4. On the relation between the resonances of the quantum normal form and the full system

We have seen that the resonances of an operator in quantum normal form can be computed
explicitly. They are obtained from the Bohr–Sommerfeld type quantization condition (6.27).
In section 3 we have shown how to approximate a Hamilton operator near an equilibrium point
of the principal symbol by an operator in quantum normal form. We now want to discuss under
which conditions this quantum normal form can be used to compute the resonances of the full
Hamilton operator. This question has been studied in [KK00] and we will mainly cite their
results.

One would expect that resonances of the full system are close to the one of the quantum
normal form around an equilibrium point if that equilibrium point dominates the reaction, i.e.
if it is the only equilibrium point at that energy, and all other trajectories come from infinity
or can escape to infinity. This idea is formalized by using the trapped set of the classical
Hamiltonian, whose definition we now recall.

Let H(q, p) be a Hamilton function and �t
H the Hamiltonian flow generated by it. The

trapped set at energy E is defined by

TSE(H) := {(q, p) ∈ Rd × Rd : H(q, p) = E, | lim
t→±∞ �t

H (q, p)| < ∞}. (6.40)

It consists of the trajectories which stay in some bounded region for t → ±∞.

Theorem 5 ([KK00]). Assume H satisfies the general conditions of [HS86] and has an
equilibrium point at z0 with energy E0 and TSE0(H) = {z0}. Let K

(N)
QNF be the N th order

quantum normal form of H with respect to z0. Then the resonances of Op[H ] in a h̄δ

neighbourhood of E0, 1 � δ > 0, are h̄δN close to the resonances of K
(N)
QNF.

The conditions from [HS86] referred to above are conditions on H which ensure that the
resonances can be defined by a complex deformation of phase space, a generalization of the
complex dilation method [Sim79, Rei82, Moi98] which we will use in section 7 to compute
numerically exact quantum resonances. For a more recent and more accessible presentation
see [LBM02].

More explicitly, the main consequence of theorem 5 is that for every n ∈ Nd
0 , there is a

resonance En ∈ C of Op[H ] with

En = K
(N)
QNF(−ih̄(n1 + 1/2), h̄(n1 + 1/2), . . . , h̄(nd + 1/2)) + O((|n|h̄)N+1). (6.41)

The quantum normal form thus provides an asymptotic expansion of the resonances for small
h̄. If we want to have all resonances in a neighbourhood of E0 of radius h̄δ , then we must go
in n up to a size determined by h̄|n| ∼ h̄δ in which case the error term becomes of order h̄δN .
Since we are interested in the first few resonances only we can take δ = 1.

We note that the resonances (6.41) coincide with the poles of the S-matrix which we
computed in (5.24) and (5.32). As can be seen from (5.24) the poles of the S-matrix are simply
given by the poles of the gamma function at nonpositive integers.

In cases when the trapped set is larger, e.g. when there are several equilbrium points at
the same energy, the situation is more complicated and the structure of the set of resonances is
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no longer necessarily determined by the contributions from the individual equilibrium points.
Instead one has to use the methods sketched in section 5.6 to construct a global S-matrix which
will bring the global geometry into play.

6.5. Distribution of the resonance states in phase space

We now want to study the distribution of the resonance states in phase space in terms of Husimi
functions. As in the case of the scattering states in section 5.5 the Husimi functions of the
resonance states (6.25) is given by the product of the Husimi functions of harmonic oscillator
eigenfunctions ϕnk

and the Husimi function of φn1(q1) = q
n1
1 . We have already discussed the

Husimi functions of the ϕnk
in section 5.5. The computation of the Husimi function of the φn1

is rather straightforward, and we obtain

〈ψp1,q1 , φn1〉 =
√

2πh̄

(πh̄)1/4

(
h̄

2

)n/2

inHn1

(
p1 − iq1√

2h̄

)
e

i
2h̄

p1q1− 1
2h̄

p2
1 , (6.42)

where Hn1 is the n1th Hermite polynomial. Therefore we have

Hφn1
(q1, p1) = 1√

πh̄

(
h̄

2

)n1
∣∣∣∣Hn1

(
p1 − iq1√

2h̄

)∣∣∣∣
2

e−p2
1/h̄. (6.43)

Figure 12 shows contour plots of the Husimi functions of the first five resonance states. Due
to the exponential damping in the direction of p1 the Husimi functions Hφn

are concentrated
along p1 = 0. Along p1 = 0 they increase in leading order in q1 as

Hφn
(q1, 0) ∼ 1√

πh̄

(
h̄

2

)n/2

qn
1 + O(qn−2

1 ). (6.44)

It follows from (6.43) that Hφn1
has n1 zeroes located near the origin on q1 = 0.

For n = (n1, . . . , nd) ∈ Nd
0 the Husimi function of a multi-dimensional scattering

wavefunction ψn defined in (6.25) is simply given by the product of the functions defined
in (5.43) and (6.43), i.e.

Hψn
(q, p) = Hφn1

(q1, p1)Hϕn2
(q2, p2) · · · Hϕnd

(qd, pd). (6.45)

From the distribution of the functions (5.43) and (6.43) it thus follows that the resonance states
ψn are concentrated on the real projections of the complex Lagrangian manifolds �ψn

in (6.31)

{(q, p) ∈ R2d : p1 = 0, (p2
k + q2

k ) = 2nkh̄, k = 2, . . . , d}. (6.46)

7. Examples

In the following we illustrate the classical and quantum reaction dynamics for concrete
examples with one, two and three degrees of freedom. As we will see, the reaction dynamics
in systems with one or two degrees of freedom still has certain features that do not persist in
the multidimensional case (of three or more degrees of freedom). We will use the classical
normal form to realize the phase space structures that control classical reaction dynamics
for these systems and compute the classical flux. Likewise we will use the quantum normal
form to compute cumulative reaction probabilities and quantum resonances. We note that
we implemented the procedures to compute the classical and quantum normal forms in the
programming language C++. In our object-oriented implementation the number of degrees of
freedom and the order of the normal form can be chosen arbitrarily.
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Figure 12. Contour plots of the Husimi functions Hφn1
in the (q1, p1)-plane for n1 = 0, . . . , 5.

Red corresponds to low values; blue corresponds to high values. The spacing between the values
of the contour lines is decreasing exponentially (h̄ = 0.1).
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Figure 13. (a) Graph of the Eckart potential VE defined in (7.2) with parameters a = 1, B = 5
and different values of A. (b) Phase portaits for the Eckart potential with parameters a = 1,
A = 0.5, B = 5 and m = 1. The green and red lines mark the stable and unstable manifolds of
the equilibrium point (x, px) = 0.

7.1. Example with 1 DoF

The most frequently used systems to model one-dimensional reaction problems, like the
paradigm hydrogen exchange reaction H2 + H → H + H2, are the parabolic barrier and the
Eckart potential (see, e.g., [SM91,SY04]). The reason for choosing these model systems is that
the reflection coefficient and the quantum resonances can be computed analytically for these
systems. We have already seen that the quantum normal form computation of the reflection
coefficient and the resonances is exact for a parabolic barrier. We therefore focus here on
the Eckart barrier which provides a much more realistic model of reactions than the parabolic
barrier.
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The Hamilton function for an Eckart barrier [Eck30] is given by

H = p2/(2m) + VE(x), (7.1)

where VE is defined as

VE(x) = A
exp((x + x0)/a)

1 + exp((x + x0)/a)
+ B

exp((x + x0)/a)

(1 + exp((x + x0)/a))2
(7.2)

with

x0 = a ln
B + A

B − A
. (7.3)

For B > A � 0 the Eckart potential possesses a maximum which we shifted to x = 0 for
convenience. The value of the potential at its maximum is

VE(0) = (A + B)2

4B
. (7.4)

The potential monotonically decreases to 0 as x → −∞ and to A as x → ∞ (see figure 13(a)).
For A = 0, the potential is symmetric.

The Weyl quantization of the Hamilton function (7.1) gives the Hamilton operator

Op[H ] = − h̄2

2m

∂2

∂x2
+ VE. (7.5)

The Hamilton function H in (7.1) is then the principal symbol of the Hamilton operator Op[H ].

7.1.1. Computation of the classical and quantum normal forms. In order to compute the
quantum normal form we can follow the calculation for one-dimensional potential barriers
described in section 3.5. Using the notation of section 3.5 the coefficients of the Taylor
expansion to fourth order are

λ = 1√
8ma2B3

(B2 − A2), (7.6)

and

V30 = − 1

16
A

√
B2 − A2

B7/4

(
2

ma2

)3/4

, V40 = 1

96

2 B2 − 9 A2

m a2B2
. (7.7)

We refrain from giving the analytical expressions for the higher order terms as the
actual computation of the classical and quantum normal form implemented in our C++
program is carried out numerically. However, we used the coefficients above together with
equation (3.143) to check the numerically computed 4th order quantum normal form. To give
the reader the opportunity to verify our results we list in table 2 in appendix B the coefficients
of the symbol of the 10th order quantum normal form of the Eckart barrier with parameters
a = 1, B = 5, A = 1/2 and m = 1. The classical normal form can be obtained from the
symbol by discarding all terms that involve a factor h̄.

7.1.2. Classical reaction dynamics. Since the energy surface of a 1 DoF system is one-
dimensional, the classical reaction dynamics of 1 DoF systems is trivial. The question of
whether a trajectory is reactive or nonreactive is determined by the energy alone, i.e. in the
case of the Eckart barrier trajectories are forward or backward reactive if they have energy
E > VE(0), and they are nonreactive localized in reactants or products if E < VE(0) (see
figure 13(b)). Fixing an energy E > VE(0) one can choose any point xds ∈ R to define a
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dividing ‘surface’ on the energy surface according to {(x, px) : x = xds, H(x, px) = E} =
{(x, px) = (xds, ±

√
2m(E − VE(x))}. This dividing ‘surface’ consists of two points which

have px > 0 and px < 0 and are crossed by all forward reactive trajectories and backward
reactive trajectories, respectively. In fact the two points can be considered to form a zero-
dimensional sphere, S0, with each point forming by itself a zero-dimensional ball, B0. Note
that many of the other phase space structures that we discussed in section 4 do not make sense
for the case of d = 1 degree of freedom. Moreover, the case of one degree of freedom is special
because it is the only case for which the location of the dividing surface is not important.

Note that the formalism to compute the classical flux f (E) developed in section 4.4 does
not apply either to the case d = 1. Still it is useful to view the classical flux to be given by the
step function f (E) = �(E −VE(0)), i.e. classically, we have full transmission for E > VE(0)

and full reflection for E < VE(0).

7.1.3. Quantum reaction dynamics. The effect of quantum mechanical tunnelling makes the
quantum reaction dynamics even of 1 DoF systems more complicated than the corresponding
classical reaction dynamics. The quantum mechanically exact transmission coefficient Texact

can be computed analytically for the Eckart potential [Eck30]. One finds

Texact(E) = 1 − cosh[2π(α − β)] + cosh[2πδ]

cosh[2π(α + β)] + cosh[2πδ]
, (7.8)

where

α = 1

2

√
E

C
, β = 1

2

√
E − A

C
, δ = 1

2

√
B − C

C
, C = h̄2

8ma2
. (7.9)

Note that Texact(E) → 0 when the energy E approaches the limiting value A of the potential
from above. Figure 14 shows the graph of Texact(E) versus the energy E. Following section 5.3
we can compute the transmission coefficient from the N th order quantum normal form K

(N)
QNF

according to

T
(N)

QNF(E) =
[

1 + exp

(
− 2π

I (N)(E)

h̄

)]−1

, (7.10)

where I (N)(E) is obtained from inverting the equation

K
(N)
QNF(I

(N)(E)) = E. (7.11)

We illustrate the high quality of the quantum normal form computation of the transmission
coefficient in figure 15(a) which shows the difference between Texact and T

(N)
QNF for different

orders, N , of the quantum normal form. Though the quantum normal form expansion is not
expected to converge, the difference between Texact and T

(N)
QNF decreases as N increases to the

maximum value of 10 at which we stopped the quantum normal form computation. In fact,
the difference decreases from the order of 1% for the 2nd order quantum normal form to the
order of 10−11 for the 10th order quantum normal form.

We can also compute the quantum mechanically exact resonances analytically. They are
given by the poles of the transmission coefficient (7.8). We find

Eexact,n = C

(
(δ − i(n + 1

2 ))2 + A
4C

)2
(δ − i(n + 1

2 ))2
, n = 0, 1, 2, . . . . (7.12)

We illustrate the location of the quantum resonances in the complex energy plane in the bottom
panel of figure 14. Following section 6.2.1 we can compute the resonances from the N th order
quantum normal form according to

E
(N)
QNF,n = K

(N)
QNF(−ih̄(n + 1/2)), n = 0, 1, 2, . . . . (7.13)
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For the 2nd order quantum normal form this reduces to

E
(2)
QNF,n = VE(0) − iλh̄(n + 1

2 ), n = 0, 1, 2, . . . . (7.14)

As mentioned earlier the 2nd order quantum normal form resonances would be exact for a
parabolic potential barrier. For comparison we also show the location of these resonances in
the complex energy plane in the bottom panel of figure 14. Note that the 2nd order resonances
have a constant real part. The ‘bending’ of the series of exact resonances in figure 14 is a
consequence of the nonlinearity of the Eckart potential. The quantum normal form is able
to describe this effect very accurately. The approximation of the exact resonances by the 4th
order quantum normal is already so good that the error is no longer visible on the scale of
figure 14. We therefore show the differences between the exact and quantum normal form
resonances for different orders of the quantum normal form in a separate graph in figure 15(b).
Again, up to the maximal order shown, the accuracy of the quantum normal form increases
with the order. As is to be expected, for a fixed order of the quantum normal form N , the error
of the quantum normal form increases with the quantum number n. Note that the sequence of
resonances is localized in the complex energy plane in figure 14 in such a way that the real
part of the resonance closest to the real axis coincides with the position of the (smooth) step
of the transmission coefficient on the (real) energy axis.

7.2. Example with 2 DoF

We now illustrate the quantum normal form computation for a 2 DoF model system which
consists of an Eckart barrier in the x-direction that is coupled to a Morse oscillator in the
y-direction. A Morse oscillator is a typical model for a chemical bond. The Hamilton
function is

H = 1

2m
(p2

x + p2
y) + VE(x) + VM(y) + εHc, (7.15)

where VE is the Eckart potential from (7.2)) and VM is the Morse potential

VM(y) = De(exp(−2aMy) − 2 exp(−aMy)) (7.16)

with positive valued parameters De (the dissociation energy) and aM (see figure 16(a)). For
the coupling term Hc we choose a so-called kinetic coupling (see, e.g., [Hel95])

Hc = px py. (7.17)

The strength of the coupling is controlled by the parameter ε in (7.15). The vector field
corresponding to the Hamilton function (7.15) has an equilibrium point at (x, y, px, py) = 0.
For |ε| sufficiently small (for given parameters of the Eckart and Morse potentials), the
equilibrium point is of the saddle-centre stability type. Contours of the Eckart–Morse potential
V (x, y) = VE(x) + VM(y) are shown in figure 16(b). These indicate the bottleneck-type
structure of the energy surfaces with energies slightly above the energy of the saddle-centre
equilibrium point. Note that the relation between the saddle of the potential V (x, y) = VE(x)+
VM(y) at (x, y) = 0 and the equilibrium point of Hamilton’s equations at (x, y, px, py) = 0
is complicated by the kinetic coupling in (7.15).

The Weyl quantization of the Hamilton function H in (7.15) gives the operator

Op[H ] = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ VE + VM − εh̄2 ∂2

∂x∂y
. (7.18)

The Hamilton function (7.15) is the principal symbol of the operator Op[H ].
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Figure 15. (a) Error for the transmission coefficient of the Eckart potential computed from quantum
normal forms of different orders N . (b) Errors for the resonances of the Eckart potential computed
from quantum normal forms of different orders N as a function of the quantum number n. The
parameters for the Eckart potential are the same as in figure 14.
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Figure 16. (a) Morse potential VM(y) = De (exp(−2 aM y) − 2 exp(−2aM y)). The potential
approaches 0 for y → ∞. The parameter De = VM(∞) − VM(0) gives the depth of the potential
well while aM determines the width of the well. (b) Contours of the Eckart–Morse potential
VE(x) + VM(y). Red corresponds to small values of the potential; blue corresponds to large values.
The parameters for the Eckart potential are the same as in figure 14. The parameters for the Morse
potential are De = 1 and aM = 1.

7.2.1. Computation of the classical and quantum normal forms. Since the equilibrium point
is already at the origin of the coordinate system we can skip the first step in the classical and
quantum normal form transformation sequences (2.27) and (3.65), and start with the second
step which consists of simplifying the quadratic part of the Hamilton function or symbol,
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respectively. To this end we follow section 2.3 and compute the matrix J D2H associated with
the linearization of Hamilton’s equations about (x, y, px, py) = 0. This gives

J D2H(0) =




0 0 1/m ε

0 0 ε 1/m

mλ2
E 0 0 0

0 −mω2
M 0 0


 , (7.19)

where λE is defined as in (7.6) and

ωM =
√

1

m
V ′

M(0) = aM

√
2De

m
(7.20)

is the linear frequency of the Morse oscillator. The matrix in (7.19) has eigenvalues

λ := e1 = 1
2

√
2λ2

E − 2ω2
M + 2

√
ω4

M + 2λ2
Eω2

M + λ4
E − 4εm2λ2

Eω2
M, (7.21)

e3 = −λ, (7.22)

iω := e2 = i 1
2

√
2ω2

M − 2λ2
E + 2

√
ω4

M + 2λ2
Eω2

M + λ4
E − 4εm2λ2

Eω2
M, (7.23)

e4 = −iω, (7.24)

where as mentioned above, for given parameters of the Eckart and Morse potentials and |ε|
sufficiently small, the eigenvalues e1 and e3 (and hence λ) are real, and e2 and e4 are purely
imaginary (and hence ω is real). For ε → 0, λ and ω converge to λE and ωM, respectively.

The corresponding eigenvectors are

vk = (ek(e
2
k + ω2), εmλ2

Eek, mλ2
E(e2

k + ω2), −εm2λ2
Eω2)T, k = 1, 2, 3, 4. (7.25)

Following section 2.3 we obtain a real linear symplectic change of coordinates by using the vk

to define the columns of a matrix M according to

M = (c1v1, c2Rev2, c1v3, c2Imv2) (7.26)

with the coefficients c1 and c2 defined as

c−2
1 := 〈v1, J v3〉, c−2

2 := 〈Rev2, J Imv2〉. (7.27)

Now set

(q1, q2, p1, p2)
T = M−1(x, y, px, py)

T . (7.28)

Then the Hamilton function (7.15) becomes

H = V (0) + λq1p1 +
ω

2

(
q2

2 + p2
2

)
+ · · · , (7.29)

where the neglected terms are of order greater than 2. The constant term is

V (0) = VE(0) + VM(0) = (A + B)2

4B
− De. (7.30)

The truncation of (7.29) at order 2 is the symbol of the 2nd order quantum normal form
of (7.15).

The classical and quantum normal forms are then computed from the algorithms described
in sections 2.3 and 3.3, respectively. For the parameters a = 1, B = 5, A = 1/2 for the Eckart
potential and De = 1 and aM = 1 for the Morse potential, ε = 0.3 for the coupling strength,
and m = 1, we list the coefficients of the symbol of the 10th order quantum normal from table 3
of appendix B. The classical normal form can be obtained from the symbol by neglecting all
terms that involve a factor h̄.
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7.2.2. Classical reaction dynamics. For a 2 DoF system the NHIM is a one-dimensional
sphere, S1, i.e. a periodic orbit. This is the Lyapunov periodic orbit associated with the saddle
point. As discussed in the introduction, for 2 DoF systems with time-reversal symmetry,
the periodic orbit can be used to define a dividing surface without recrossing—the so-called
periodic orbit dividing surface—from the projection of the periodic orbit to configuration
space [PM73, PP78]. Note that, as mentioned earlier, such a construction in configuration
space does not work for systems with 3 or more DoF [WW04].

The NHIM has stable and unstable manifolds with the structure of cylinders or ‘tubes’,
S1 × R. They inclose the forward and backward reactive trajectories as discussed in detail in,
e.g., [WBW05b, WBW05c]. The flux is given by the action of the periodic orbit [WW04]. In
the uncoupled case (ε = 0) the periodic orbit (p.o.) is contained in the (y, py)-plane and its
action can be computed analytically. One finds

f (E) =
∮

p.o.

py dy = 2π

a
(
√

2mDe −
√

−2m(E − VE(0))) (7.31)

for −De+VE(0) < E < VE(0) and f (E) = 0 (no classical transmission) for E � −De+VE(0).

7.2.3. Quantum reaction dynamics. For the uncoupled case we can compute the cumulative
transmission probability analytically. We have

Nexact(E) =
∑
n2

TEckart;exact(E − EMorse;n2), (7.32)

where TEckart;exact denotes the transmission coefficient for the Eckart barrier given in (7.8) and
EMorse;n2 are the energy levels of a one-dimensional Morse oscillator

EMorse;n2 = −a2
Mh̄2

2m

(
n2 +

1

2
−

√
2mDe

aMh̄

)2

, n2 = 0, 1, 2, . . . . (7.33)

The graph of Nexact in the top panel of figure 17 shows that Nexact is ‘quantized’, i.e. it
increases in integer steps each time a new transition channel opens. The opening of a
Morse oscillator mode (n2) as a transition channel can be defined as the energy where
TEckart;exact(E − EMorse;n2) = 1/2. The quantization of the cumulative reaction probability has
been observed experimentally, e.g. in molecular isomerization experiments [LM93] and also
in ballistic electron transport problems in semiconductor nanostructures where the analogous
effect leads to a quantized conductance [vWvHB+88,WTN+88]. As mentioned in sections 4.4
and 5.4, the quantity

NWeyl(E) = f (E)/(2πh̄) (7.34)

can be interpreted as the mean number of open transmission channels at energy E. This is
illustrated in the top panel of figure 17 which shows NWeyl together with Nexact. Note the
nonlinear increase of NWeyl(E) with E which is an indication of the strong anharmonicity of
the Morse oscillator.

In order to compute the cumulative reaction probability from the quantum normal form
we follow the procedure described in section 5.4. We get

N
(N)
QNF(E) =

∑
n2

[
1 + exp

(
− 2π

I (N)
n2

(E)

h̄

)]−1

, (7.35)

where I (N)
n2

(E) is obtained from inverting

K
(N)
QNF(I

(N)
n2

(E), h̄(n2 + 1/2)) = E, n2 = 0, 1, 2, . . . . (7.36)
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Figure 17. The top panel shows the cumulative reaction probabilities Nexact(E) (oscillatory curve)
and NWeyl(E) for the Eckart–Morse potential defined in the text with ε = 0. The bottom panel
shows the (numerically) exact resonances computed from the complex dilation method in the
complex energy plane. Circles mark resonances for the uncoupled case ε = 0 and crosses mark
resonances for the strongly coupled case ε = 0.3. The parameters for the potential are the same as
in figure 16. Again we choose m = 1 and h̄ = 0.1.
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Figure 18. (a) Errors for the cumulative reaction probability in the top panel of figure 17 for
different orders N of the quantum normal form. (b) Difference |E(N)

QNF − Eexact| for a selection
of resonances with quantum numbers (n1, n2) for the resonances shown in the bottom panel of
figure 17 for the coupled case ε = 0.3.

The high quality of the quantum normal form computation of the cumulative reaction
probability is illustrated in figure 18(a) which shows |NQNF(E)−Nexact(E)| versus the energy
E for quantum normal forms with N = 2 to N = 10. As in the 1 DoF example in section 7.1,
we find that up to the orders shown, the accuracy of the quantum normal form increases with
the order of the quantum normal form. The error is of order 10−10 for the 10th order quantum
normal form.

For the coupled case ε �= 0 we also make a comparison of the quantum mechanically
exact resonances and the resonances computed from the quantum normal form. The exact
resonances cannot be computed analytically for the coupled case. To get them numerically we
use the complex dilation method [Sim79,Rei82,Moi98] whose implementation for the present
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system we describe in section C of the appendix. The bottom panel in figure 17 shows the
(numerically) exact resonances for the uncoupled case and the strongly coupled case ε = 0.3.
In both cases the resonances form a distorted lattice in the complex energy plane. The quantum
normal form computation of the resonances is given by

E
(N)

QNF,(n1,n2)
= K

(N)
QNF(−ih̄(n1 + 1/2), h̄(n2 + 1/2)), n1, n2 = 0, 1, 2, . . . . (7.37)

One of the benefits of the quantum normal form is that it leads to an assignment of the
resonance lattice by quantum numbers. The quantum number n1 labels the resonances in
the vertical direction, and the quantum number n2 labels the resonances in the horizontal
direction. Each vertical string of resonances (i.e. sequence of resonances for fixed n2) gives
rise to one quantization step of the cumulative reaction probability. Note that an assignment of
the resonances is very difficult to obtain only from the exact quantum computation. Figure 18(b)
illustrates the high accuracy of the quantum normal form computation for a selection of
resonances.

7.3. Example with 3 DoF

Our final example is a 3 DoF model system consisting of an Eckart barrier in the x-direction
that is coupled to Morse oscillators in the y-direction and in the z-direction. The Hamilton
function is

H = 1

2m
(p2

x + p2
y + p2

z ) + VE(x) + VM;2(y) + VM;3(z) + εHc, (7.38)

where VE is the Eckart potential from (7.2) and VM;k , k = 2, 3, are Morse potentials of the
form (7.16) with parameters De;k and aM;k , k = 2, 3, respectively. For Hc we choose the
mutual kinetic coupling

Hc = pxpy + pxpz + pypz. (7.39)

The strength of the coupling is again controlled by the parameter ε in (7.38). The vector field
generated by the Hamilton function has an equilibrium point at (x, y, z, px, py, pz) = 0. For
|ε| sufficiently small (for given parameters of the Eckart and Morse potentials), the equilibrium
point is of the saddle-centre-centre stability type. Figure 19 shows contours of the potential
V (x, y, z) = VE(x) + VM;2(y) + VM;3(z) which, for energies slightly above the saddle-centre-
centre equilibrium point, indicate the bottleneck-type structure of the corresponding energy
surfaces.

The Weyl quantization of the Hamilton function H in (7.38) gives the operator

Op[H ] = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ VE + VM;2 + VM;3 − εh̄2

(
∂2

∂x∂y
+

∂2

∂x∂z
+

∂2

∂y∂z

)
.

(7.40)

The Hamilton function (7.15) is the principal symbol of the operator Op[H ].

7.3.1. Computation of the classical and quantum normal forms. As in section 7.2 the
equilibrium point is again already at the origin of the coordinate system. For the computation
of the classical and quantum normal forms we therefore again start with the second step
in the sequences (2.27) and (3.65), respectively. Following again section. 2.3, we compute
the Hamiltonian matrix associated with the linearization of Hamilton’s equations about the
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equilibrium point (x, y, z, px, py, pz) = 0. This gives

JD2H(0) =




0 0 0 1/m ε ε

0 0 0 ε 1/m ε

0 0 0 ε ε 1/m

mλ2
E 0 0 0 0 0

0 −mω2
M;2 0 0 0 0

0 0 −mω2
M;3 0 0 0




, (7.41)

where λE is defined in (7.6) and

ωM;k =
√

1

m
V ′

M;k(0) = aM;k

√
2De;k

m
, k = 2, 3, (7.42)

are the linear frequencies of the Morse oscillators. The matrix J D2H(0) has six eigenvalues,
one pair of real eigenvalues of opposite signs and two pairs of imaginary eigenvalues with
opposite signs. We label them according to

e1 = λ, e4 = −λ, e2 = iω2, e5 = −iω2, e3 = iω3, e6 = −iω3,

(7.43)

where λ, ω2 and ω3 are real positive constants that converge to λE and the linear frequencies
ωM;2 and ωM;3, respectively, when ε → 0. We assume that the parameters De;k and aM;k ,
k = 2, 3, are chosen such that ω2 and ω3 are linearly independent over Z. Let us again
denote the corresponding eigenvectors by vk , k = 1, . . . , 6. In order to define a real linear
symplectic change of coordinates we use the eigenvectors vk to define the columns of a matrix
M according to

M = (c1v1, c2Rev2, c3Rev3, c1v4, c2Imv2, c3Imv3) (7.44)

with the coefficients c1, c2 and c3 defined as

c−2
1 := 〈v1, J v4〉, c−2

2 := 〈Rev2, J Imv2〉, c−2
3 := 〈Rev3, J Imv3〉. (7.45)

We choose the eigenvectors v1 and v3 such that 〈v1, J v3〉 is positive (if 〈v1, J v2〉 < 0 then
multiply v2 by −1). As mentioned in section 2.2 the coefficients c−2

2 and c−2
3 in (7.45) are

automatically positive and the matrix M is symplectic. For

(q1, q2, q3, p1, p2, p3)
T = M−1(x, y, z, px, py, pz)

T (7.46)

the Hamilton function (7.38) becomes

H = V (0) + λq1p1 +
ω2

2

(
q2

2 + p2
2

)
+

ω3

2

(
q2

3 + p2
3

)
+ · · · , (7.47)

where the neglected terms are of order greater than 2. The constant term is

V (0) = VE(0) + VM;2(0) + VM;3(0) = (A + B)2

4B
− De;2 − De;3. (7.48)

The truncation of (7.47) at order 2 is the symbol of the 2nd order quantum normal form of
(7.38). The higher order classical and quantum normal forms are then computed from the
algorithm described in sections 2.3 and 3.3. For the parameters a = 1, B = 5, A = 1/2 for
the Eckart potential and De;1 = 1, De;2 = 3/2 and aM;1 = aM;2 = 1 for the Morse potential,
ε = 0.3 for the coupling strength and m = 1, we list the coefficients of the symbol of the 10th
order quantum normal form in table 4 of appendix B. The classical normal form is obtained
from discarding terms involving a factor h̄.
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Figure 19. Contours VE(x) + VM;2(y) + VM;3(z) = const of the Eckart–Morse–Morse potential.
The parameters for the Eckart potential are the same as in figure 14. The parameters for the Morse
potentials are De;2 = aM;2 = aM;3 = 1 and De;3 = 2/3.

Figure 20. The NHIM projected into configuration space. The energy is 0.1 above the energy of
the saddle-centre-centre equilibrium point.

Figure 21. The stable and unstable manifolds of the NHIM projected into configuration space. Due
to the time-reversal symmetry, these manifolds project onto each other in configuration space. The
two colours represent the forward and backward branches of the manifolds, and they are ‘joined’
at the NHIM. The energy is 0.1 above the energy of the saddle-centre-centre equilibrium point.
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Figure 22. Energy contours in the plane of the Morse oscillator actions (J2, J3). The Morse
oscillators have energies Ey and Ez such that VE(0) + Ey + Ez = E with VE(0) being the height
of the one-dimensional Eckart barrier (see text). The parameters for the potential are the same as
in figure 19. The mass m is 1.

7.3.2. Classical reaction dynamics. The NHIM is a three-dimensional sphere, S3. In figure 20
we show the NHIM with the energy 0.1 above the energy of the saddle-centre-centre equilibrium
point projected into configuration space, with the equipotential at the same energy for reference.
Note that the projection of the NHIM to configuration space is a three-dimensional object. This
can be viewed as an indication that the construction of a (in this case two-dimensional) dividing
surface ‘in configuration space’ without recrossing is not possible for a system with 3 (or more)
DoF since, as explained in detail in [WW04], a dividing surface without recrossing needs to
contain the NHIM (as its equator).

The NHIM’s stable and unstable manifolds have the structure of spherical cylinders, S3×R.
In figure 21 we show projections into configuration space of local pieces of the backward
branch of the stable manifold of the NHIM, the forward branch of the stable manifold of the
NHIM, the backward branch of the unstable manifold of the NHIM and the forward branch
of the unstable manifold of the NHIM. Due to the time-reversal symmetry of the system the
stable and unstable manifolds project onto each other in configuration space. The stable and
unstable manifolds enclose the forward and backward reactive trajectories as discussed in
section 4.

The NHIM is foliated by invariant 2-tori. According to section 4.4 the classical flux for
an energy E is given by

f (E) = (2π)2V(E), (7.49)

where V(E) is the area enclosed by the energy contour in the plane of the corresponding action
variables J2 and J3. In the uncoupled case the 2-tori are given by the Cartesian products
of two circles that are contained in the (y, py)-plane and (z, pz)-plane, respectively. The
corresponding action variables J2 and J3 can be easily computed in this case. Let Ey and Ez

be the energies contained in these two DoF. Then

J2(Ey) = 1

2π

∮
p.o.

py dy = 1

a2
(
√

2mDe;2 −√−2mEy), −De < Ey < 0, (7.50)

and similarly for J3(Ez). The NHIM has energy E = VE(0) + Ey + Ez, where VE(0) =
(A + B)2/(4B) is the height of the one-dimensional Eckart barrier. Figure 22 shows some
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energy contours in the (J2, J3)-plane. The fact that the energy contours are not straight lines
is an indication of the strong nonlinearity of the Morse oscillators for the energies shown. For
an energy VE(0) − De;2 − De;3 < E < VE(0) − De;3, the inclosed area is given by

V(E) =
∫ E+De;3−VE(0)

−De;2
J3(E − VE(0) − Ey)

dJ2(Ey)

dEy

dEy (7.51)

= 2m
√

De;3
a2 a3

(
√

De;2 −
√

VE(0) − De;3 − E)

− m

a2 a3
(g(E − VE(0) + De;3) − g(−De;2)), (7.52)

where

g(Ey) := √−Ey(Ey − E + VE(0)) − 1

2
(E − VE(0)) arctan

(
E − VE(0) − 2Ey

2
√−Ey(Ey − E + VE(0))

)
.

(7.53)

For E � VE(0)−De;2−De;3 the classical flux is zero. The graph of NWeyl(E) = f (E)/(2πh̄)2

is shown in the top panel of figure 23.

7.3.3. Quantum reaction dynamics. In the uncoupled case the exact cumulative reaction
probability Nexact can be computed analytically. We have

Nexact(E) =
∑
n2,n3

TEckart;exact(E − EMorse;2,n2 − EMorse;3,n3), (7.54)

where TEckart;exact denotes the transmission coefficient for the Eckart barrier given in (7.8) and
EMorse;k,nk

, k = 2, 3, are the energy levels of the one-dimensional Morse oscillators,

EMorse;k,nk
= −a2

M;kh̄
2

2m

(
nk +

1

2
−
√

2mDe;k
aM;kh̄

)2

, nk = 0, 1, 2, . . . . (7.55)

The graph of Nexact gives the oscillatory curve shown in the top panel of figure 23.
For the quantum normal form computation of the cumulative reaction probability we get

N
(N)
QNF(E) =

∑
n2,n3

[
1 + exp

(
− 2π

I (N)
n2,n3

(E)

h̄

)]−1

, (7.56)

where I
(N)

(n2,n3)
(E) is obtained from inverting

KQNF(I
(N)

(n2,n3)
(E), h̄(n2 + 1/2), h̄(n3 + 1/2)) = E, n2, n3 = 0, 1, 2, . . . . (7.57)

The high quality of the quantum normal form approximation of the cumulative reaction
probability is illustrated in figure 24(a) which shows |N(N)

QNF(E) − Nexact(E)| versus the
energy E.

For the coupled case ε �= 0 we again make a comparison of the exact resonances
and the resonances computed from the quantum normal form. We again compute the
(numerically) exact resonances from the complex dilation method whose implementation is
described in appendix C. The bottom panel in figure 23 shows the exact resonances for the
uncoupled case and the strongly coupled case ε = 0.3. In both cases the resonances now
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form a superposition of distorted lattices. The quantum normal form computation of the
resonances

E
(N)

QNF,(n1,n2,n3)
= K

(N)
QNF(−ih̄(n1 + 1/2), h̄(n2 + 1/2), h̄(n3 + 1/2)), n1, n2, n3 ∈ N0,

(7.58)

allows one to organize the resonance by quantum numbers. The quantum numbers n1 label the
resonances in the vertical direction, and the pairs of Morse oscillator mode quantum numbers
(n2, n3) label the resonances in the horizontal direction. Here each vertical string of resonances
(i.e. sequence of resonances for fixed (n2, n3)) gives rise to one step of the cumulative reaction
probability. In the top panel of figure 23 we mark the energies at which a mode (n2, n3) opens
as a transmission channel. These energies are defined in the same way as in section 7.2.

Since the density of the resonances in the complex energy plane is higher for the 3 DoF
case than it is in the 2 DoF case the quantization of the cumulative reaction probability is more
‘washed out’. Again note that an assignment of the resonances is very difficult to obtain only
from the exact quantum computation. The resonances computed from the quantum normal
form are again of a very high accuracy as shown for a selection of resonances with quantum
numbers (n1, n2, n3) in figure 24(b).

8. Conclusions and outlook

In this paper we have developed a phase space version of Wigner’s dynamical transition
state theory for both classical and quantum systems. In the setting of Hamiltonian classical
mechanics, reaction type dynamics is induced by the presence of a saddle-centre-. . .-centre
equilibrium point (‘saddle’ for short). For a fixed energy slightly above the energy of the
saddle, the energy surface has a wide–narrow–wide structure in the neighbourhood of the
saddle. Trajectories must pass through this bottleneck in order to evolve from reactants to
products. We provided a detailed study of the phase space structures which for such an
energy, exist near the saddle and control the dynamics in the neighbourhood of the saddle. In
particular we showed the existence of a dividing surface which is free of local recrossings,
i.e. it has the property that all trajectories extending from reactants to products (or vice versa)
intersect this dividing surface exactly once without leaving a neighbourhood of the saddle and
nonreactive trajectories which enter the neighbourhood from the side of reactants (respectively,
products) and exit the neighbourhood back to reactants (respectively, products) do not intersect
the dividing surface. This dividing surface minimizes the directional flux in the sense that a
(generic) deformation of the dividing surface leads to an increase of the directional flux through
the dividing surface. Such a dividing surface is a prerequisite for the computation of reaction
rates from the directional flux and its construction for multi-degree-of-freedom systems was
considered a major problem in transition state theory. We showed that the existence of such a
dividing surface is related to the presence of a normally hyperbolic invariant manifold (NHIM)
which exists near the saddle. The NHIM has the structure of a sphere of two dimensions less
than the energy surface. It can be considered to form the equator of the dividing surface which
itself is a sphere of one dimension less than the energy surface. This way the NHIM divides the
dividing surface into two hemispheres of which one is intersected by all trajectories evolving
from reactants to products and the other is crossed by all trajectories evolving from products
to reactants.

The NHIM is the mathematical manifestation of what is referred to as activated complex
in the chemistry literature. In fact, the NHIM, which is the intersection of the centre manifold
of the saddle with the energy surface of the (full) system, can itself be viewed as the energy
surface of an unstable invariant subsystem (the subsystem given by the centre manifold). This
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Figure 23. The top panel shows the cumulative reaction probabilities Nexact(E) (oscillatory
curve) and NWeyl(E) (smooth curve) for the Eckart–Morse–Morse potential defined in the text
with ε = 0. It also shows the quantum numbers (n2, n3) of the Morse oscillators that contribute to
the quantization steps. The bottom panel shows the resonances in the complex energy plane marked
by circles for the uncoupled case ε = 0 and by crosses for the strongly coupled case ε = 0.3. The
parameters for the Eckart potential are the same as in figure 14. The parameters for the Morse
potential are De;2 = 1, De;3 = 3/2, aM;2 = 1 and aM;3 = 1. Again we choose m = 1 and h̄ = 0.1.
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Figure 24. (a) Errors for the cumulative reaction probability in the top panel figure 23 for different
orders N of the quantum normal form. (b) Errors |E(N)

QNF − Eexact| for a selection of resonances
with quantum numbers (n1, n2, n3) for the coupled case ε = 0.3 in the bottom panel of figure 23.
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subsystem has one degree of freedom less than the full system and as a kind of super molecule
is poised between reactants and products. The theoretical background presented in this paper
thus shows that the activated complex is not merely a heuristic concept utilized by transition
state theory, but a geometric object of precise significance for the dynamics. In particular,
the NHIM has stable and unstable manifolds which have sufficient dimensionality to act as
separatrices. They form the phase space conduits for reactions in the sense that they enclose
the reactive volumes (which consist of trajectories evolving from reactants to products or
vice versa) and separate them from the nonreactive volumes (which consist of nonreactive
trajectories). They have the structure of spherical cylinders (i.e. cylinders where the base is a
sphere). We discussed how the centre lines of the reactive volumes enclosed by these spherical
cylinders naturally lead to the definition of a reaction path, i.e. as a kind of guiding trajectory
about which other reactive trajectories rotate in phase space (observed as an oscillation when
projected to configuration space) in a well-defined manner. In contrast to the usual, often
heuristic definitions of a reaction path, the reaction path presented in this paper incorporates
the full dynamics in a mathematically precise way.

We showed that all the phase space structures mentioned above can be realized through an
efficient algorithm based on a standard Poincaré–Birkhoff normal form. This algorithm allows
one to transform the Hamilton function which describes the classical reaction dynamics to a
simpler (‘normal’) form to any order of its Taylor expansion about the saddle point through
a succession of symplectic transformations. In several examples we showed that the normal
form computation truncated at a suitable order leads to a very accurate description of the
dynamics near the saddle. In the generic situation where there are no resonances between
the linear frequencies associated with the centre direction of the saddle the normal form is
integrable and explains the regularity of the motion near the saddle which has been discovered
in the chemistry literature [HB93, KB99, Mil77]. The integrability leads to a foliation of
the neighbourhood of the saddle by invariant Lagrangian manifolds. These Lagrangian
manifolds have the structure of toroidal cylinders, i.e. cylinders where the base is formed by
a torus.

We showed that similarly to the unfolding of the classical dynamics in the neighbourhood
of a saddle point we can obtain an unfolding of the corresponding quantum dynamics. We
therefore reviewed some basic tools from the theory of micro local analysis which allow
one to study properties of quantum operators in a region of interest in the phase space of
the corresponding classical system. The main idea is to use the Weyl calculus to relate
Hamilton operators to phase space functions (symbols) and vice versa. This way one can
extract properties of a Hamilton operator resulting from some classical phase space region
by studying its symbol restricted to (or ‘localized at’) this phase space region. In the case of
reaction dynamics the region of interest is the neighbourhood of a saddle point. We showed that
in the neighbourhood of a saddle the Hamilton operator can be transformed to a simple form—
the quantum normal form—to any order of the Taylor expansion of its symbol about the saddle
by conjugating the Hamilton operator by a succession of suitable unitary transformations.
We showed that the quantum normal form computation can be cast into an explicit algorithm
based on the Weyl calculus. This algorithm consists of two parts of which the first part takes
place on the level of the symbols and is therefore very similar in nature to the classical normal
form computation. The main difference is that the Poisson bracket involved in the symplectic
transformation in the classical case is replaced by the Moyal bracket. In the second part of
the quantum normal form algorithm the symbols are quantized to obtain the corresponding
quantum operators. For this part we also developed an explicit algorithm.

Through applications to several examples we illustrated the efficiency of the quantum
normal form algorithm for computing quantum reaction quantities like the cumulative reaction
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probability and quantum resonances. The cumulative reaction rate is the quantum analogue of
the classical flux. Quantum resonances describe the decay of wavepackets initialized on the
centre manifold. In fact, quantum mechanically, the Heisenberg uncertainty principle excludes
the existence of an invariant subsystem representing the activated complex analogously to the
classical case. So quantum mechanically a state initially localized on the centre manifold is
unstable and will spread out. The quantum resonances describe the lifetimes of such states.
We showed that these resonances are also related to the stepwise increase (‘quantization’) of
the cumulative reaction probability as a function of energy. The dependence of the cumulative
reaction probability on the energy and also the resonances are viewed as the quantum signatures
of the activated complex, and there is huge experimental interest in these quantities [SY04]. In
fact, recent advances in spectroscopic techniques allow one to study quantum scattering with
unprecedented detail (see, e.g., [Zar06]). We hope that the results presented and the methods
developed in this paper will contribute to the understanding and a better interpretation of such
experiments.

The benefit of the quantum normal form presented in this paper is not only to give a
firm theoretical framework for a quantum version of an activated complex but it moreover
leads to a very efficient method for computing quantum reaction rates and the associated
resonances.

In fact, the quantum normal form computation of reaction probabilities and resonances is
highly promising since it opens the way to study high dimensional systems for which other
techniques based on the ab initio solution of the quantum scattering problem like the complex
dilation method [Sim79, Rei82, Moi98] or the utilization of an absorbing potential [NM01]
do not seem feasible. We mention that in order to compute resonances from the complex
dilation method that are sufficiently accurate to facilitate a comparison with our quantum
normal form computations for the three-degree-of-freedom example studied in this paper we
had to diagonalize matrices of size 2500 × 2500, and this way we reached the limits of our
numerical computation capabilities. Furthermore, the complex dilation method requires the
‘tuning’ of the scaling angle which is not straightforward but has to be worked out by repeating
the numerical computation for different scaling angles. In contrast to this, the quantum normal
form computation can be implemented in a similarly transparent and efficient way as the
classical normal form. The quantum normal form then gives an explicit formula for the
resonances from which they can be computed directly by inserting the corresponding quantum
numbers. In particular, this leads to a direct assignment of the resonances which one cannot
obtain from the ab initio methods mentioned above.

We used the Weyl calculus as a tool to systematically study several further aspects of
the quantum–classical correspondence. One such aspect is the relation between the quantum
mechanics of reactions to the phase space structures that control classical reaction dynamics.
We showed that the scattering wavefunctions are concentrated on those Lagrangian manifolds
foliating the neighbourhood of a saddle whose toroidal base fulfils Bohr–Sommerfeld
quantization conditions. The location of such a ‘quantized’ Lagrangian manifold relative
to the NHIM’s stable and unstable manifold, i.e. the question of whether the classical
trajectories on such a Lagrangian manifold are reactive or nonreactive, determines whether
the scattering wavefunction corresponds to an open or a closed transmission channel. In fact,
the cumulative reaction probability can be interpreted as a counting function of the number
of open transmission channels (i.e. the number of quantized Lagrangian manifolds in the
reactive volume of phase space) at a given energy. We showed that the Weyl approximation
of this number is obtained from dividing the phase space volume of the invariant subsystem
representing the activated complex enclosed by the NHIM of the given energy by elementary
quantum cells, i.e. quantum cells with sidelength given by Planck’s constant.
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We moreover showed that the resonance states can be viewed to be localized on Lagrangian
manifolds for which in addition to the Bohr–Sommerfeld quantization of the toroidal base
the remaining degree of freedom fulfils a complex Bohr–Sommerfeld quantization condition.
These complex Lagrangian manifolds project to the NHIM and its unstable manifolds (the
direction of the decay of the resonance states) in real phase space.

Most of the theory discussed in this paper, both classically and quantum mechanically, is
local in nature. In fact, the flux in the classical case, and the cumulative reaction probability
and the associated resonances in the quantum case only require local information derived
from properties of the Hamilton function or operator, respectively, in the neighbourhood of
the saddle point. This information can therefore be extracted from the classical and quantum
normal forms. Some of the classical phase space structures in the neighbourhood of the
saddle where they are accurately described by the normal form are nonlocal in nature. This
concerns the stable and unstable manifolds and the Lagrangian manifolds mentioned above.
In fact they can extend to regions far away from the saddle point. This ‘global’ information
is important for the study of state specific reactivity and the control of reactions. Since these
phase space structures are invariant manifolds and hence consist of trajectories they can be
obtained by ‘growing’ them out of the neighbourhood described by the (classical) normal form
by integrating the equations of motion generated by the original Hamilton function. For the
classical case we used this, as we mentioned in this paper, to develop an efficient procedure
to determine, e.g., the volume of reactive initial conditions in a system. For the quantum
case we mention the recent work by Creagh [Cre04, Cre05] who developed a semiclassical
theory of a reaction operator from a kind of normal form expansion about what we defined
as the dynamical reaction path in this paper. Our own future work will follow similar ideas
by extending the Bohr–Sommerfeld quantized Lagrangian manifolds that carry the scattering
wavefunctions to the Lagrangian structures associated with the asymptotic states of reactants
and products. The goal is to develop an efficient semiclassical procedure to compute full
scattering matrices. This would not only allow one to compute state-specific reactivities but
also give a clearer idea of how the quantum signatures of the activated complex are manifested
in scattering experiments.
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Appendix A. Proof of lemma 9

We here provide a short sketch of the proof of lemma 9.

Proof. Let A ∈ Sh̄(R
d × Rd) and A′ be the symbol of e

i
h̄

Op[W ]Op[A]e− i
h̄

Op[W ] with
W ∈ Ws

qm;loc. We need to show that A′ ∈ Sh̄(R
d × Rd). To this end define for s � 0,

Hs(Rd) := {ψ ∈ L2(Rd) : Op[B]ψ ∈ L2(Rd) ∀B ∈ Ws ′
qm with 0 � s ′ � s}, (A.1)
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and let H−s(Rd) denote the dual of Hs(Rd). Then a variant of the usual Beals characterization
of pseudodifferential operators gives that A ∈ Sh̄(R

d × Rd) if and only if for all s, s ′ ∈ Z,

Op[A] : Hs ′
(Rd) → Hs(Rd). (A.2)

This follows because (A.2) implies that for any Bj ∈ Wsj

qm, j = 1, . . . , N with sj � 0, we
have

[Op[BN ], [Op[BN−1], . . . , [Op[B1], Op[A]]]] : L2(Rd) → L2(Rd), (A.3)

and this implies that A ∈ Sh̄(R
d × Rd) (see [DS99]).

For a real valued W ∈ Ws
qm;loc, we define Û (ε) := e− i

h̄
εOp[W ]. Then Û (ε) : L2(Rd) →

L2(Rd) since Û (ε) is unitary. Moreover, we have that

Û (ε) : Hs(Rd) → Hs(Rd) (A.4)

for all s. To see this, let ψ ∈ Hs(Rd). Then we have to show that Op[B]Û (ε)ψ ∈ L2(Rd) for
all B ∈ Ws ′

qm with s ′ � s. But Op[B]Û (ε) = Û (ε)Û(−ε)Op[B]Û (ε) and

Û (−ε)Op[B]Û (ε) − Op[B] =
∫ ε

0

d

dε′

(
Û (−ε′)Op[B]Û (ε′)

)
dε′

=
∫ ε

0
Û (−ε′)

i

h̄
[Op[W ], Op[B]]Û (ε′) dε′. (A.5)

Hence

Op[B]Û (ε) = Û (ε)

(
Op[B] +

∫ ε

0
Û (−ε′)

i

h̄
[Op[W ], Op[B]]Û (ε′) dε′

)
. (A.6)

Since W is localized, the commutator i
h̄

[Op[W ], Op[B]] is a bounded operator, and therefore

Op[B]Û (ε)ψ ∈ L2(Rd).
By (A.4) we see then that if Op[A] satisfies (A.2) then Û (−ε)Op[A]Û (ε) satisfies (A.2),

too, and therefore A′ ∈ Sh̄(R
d × Rd). �

Appendix B. Symbols of the quantum normal forms of the systems studied in section 7

Table 2. Nonvanishing coefficients of the symbol H
(10)
QNF(h̄, x, ξ) = ∑α+β+2γ�10 h(α,β,γ )x

αξβh̄γ

of the 10th order quantum normal form of the one DoF Eckart barrier with the potential (7.2) studied
in section 7.1. Recall that the nonvanishing terms in the normal form have α = β.

α γ h(α,β,γ ) α γ h(α,β,γ )

0 0 1.512 500 000 000 000 000 4 0 0.000 625 000 000 000 000
1 0 0.782 663 720 891 674 056 2 2 0.002 375 000 000 000 005
2 0 0.128 750 000 000 000 027 0 4 0.000 250 000 000 000 000
0 2 0.001 250 000 000 000 000 5 0 −0.000 237 170 824 512 630
3 0 −0.001 581 138 830 084 187 3 2 −0.001 877 602 360 724 986
1 2 −0.012 155 004 756 272 212 1 4 −0.001 098 767 960 437 415
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Table 3. Nonvanishing coefficients of the symbol H
(10)
QNF = ∑

|α|+|β|+2γ�10 ×
h(α,β,γ )x

α1
1 x

α2
2 ξ

β1
1 ξ

β2
2 h̄γ of the 10th order quantum normal form of the coupled 2 DoF Eckart–

Morse system defined in equation (7.15) in section 7.2. Recall that the nonvanishing terms in the
normal form have α = β.

α1 α2 γ h(α,β,γ ) α1 α2 γ h(α,β,γ )

0 0 0 0.512 500 000 000 000 000 1 3 0 −i 0.011 273 157 211 934 359
1 0 0 0.754 753 936 565 858 878 1 1 2 −i 0.011 172 831 518 205 997
0 1 0 i 1.398 960 687 353 887 473 0 4 0 0.002 732 350 157 899 168
2 0 0 0.123 785 339 782 523 858 0 2 2 0.007 186 254 008 569 981
1 1 0 −i 0.001 065 319 634 986 676 0 0 4 0.000 687 695 639 095 786
0 2 0 0.502 213 521 058 802 562 5 0 0 −0.000 214 239 042 469 975
0 0 2 0.125 449 608 038 641 072 4 1 0 −i 0.000 985 595 001 405 555
3 0 0 0.000 021 351 350 002 054 3 2 0 0.003 423 967 215 023 733
2 1 0 i 0.008 176 183 587 983 269 3 0 2 −0.000 782 323 582 246 664
1 2 0 −0.013 717 963 053 750 142 2 3 0 i 0.001 688 243 381 394 164
1 0 2 −0.014 142 331 760 119 375 2 1 2 i 0.000 302 145 176 622 814
0 3 0 −i 0.002 237 031 129 850 027 1 4 0 0.003 334 954 065 262 960
0 1 2 −i 0.002 154 732 890 857 193 1 2 2 0.011 718 284 130 545 851
4 0 0 0.000 388 266 134 708 556 1 0 4 0.000 106 782 020 240 749
3 1 0 i 0.001 167 305 695 975 092 0 5 0 i 0.001 836 329 386 792 953
2 2 0 −0.007 789 574 828 129 416 0 3 2 i 0.011 444 002 354 002 782
2 0 2 0.000 318 492 327 523 421 0 1 4 i 0.004 314 246 915 341 055

Table 4. Nonvanishing coefficients of the symbol H
(10)
QNF = ∑

|α|+|β|+2γ�10 ×
h(α,β,γ )x

α1
1 x

α2
2 x

α3
3 ξ

β1
1 ξ

β2
2 ξ

β3
3 h̄γ of the coupled 3 DoF Eckart–Morse–Morse system defined in

equation (7.38) in section 7.3. Recall that the nonvanishing terms in the normal form have α = β.

α1 α2 α3 γ h(α,β,γ ) α1 α2 α3 γ h(α,β,γ )

0 0 0 0 −0.987 500 000 000 000 000 0 2 0 2 0.152 783 733 769 442 116
1 0 0 0 0.734 955 236 108 148 115 0 1 3 0 0.310 986 515 383 694 741
0 1 0 0 i 1.822 517 936 036 739 209 0 1 1 2 −4.151 328 593 608 719 646
0 0 1 0 i 1.267 290 444 967 990 459 0 0 4 0 0.006 137 865 049 515 079
2 0 0 0 0.118 038 678 383 844 813 0 0 2 2 0.859 423 987 882 411 768
1 1 0 0 −i 0.012 334 879 342 872 699 0 0 0 4 −0.265 855 011 175 839 773
1 0 1 0 i 0.005 310 192 075 685 135 5 0 0 0 −0.000 210 376 032 140 816
0 2 0 0 0.393 832 730 618 103 493 4 1 0 0 −i 0.000 284 795 393 758 395
0 1 1 0 0.909 582 776 314 433 320 4 0 1 0 −i 0.000 337 276 968 652 946
0 0 2 0 0.173 096 436 125 076 552 3 2 0 0 −0.000 627 685 605 556 083
0 0 0 2 0.266 664 869 446 484 871 3 1 1 0 0.003 281 135 664 719 332
3 0 0 0 0.000 552 036 804 498 563 3 0 2 0 0.000 026 178 720 039 055
2 1 0 0 i 0.002 430 126 450 332 083 3 0 0 2 −0.000 809 539 163 262 948
2 0 1 0 i 0.004 886 339 438 884 285 2 3 0 0 −i 0.001 666 813 854 950 104
1 2 0 0 −0.000 569 612 518 570 350 2 2 1 0 −i 0.011 060 027 951 060 662
1 1 1 0 −0.039 861 920 250 395 527 2 1 2 0 i 0.021 558 200 542 697 081
1 0 2 0 0.005 117 262 453 168 276 2 1 0 2 −i 0.001 561 080 497 427 406
1 0 0 2 −0.015 343 995 286 930 709 2 0 3 0 −i 0.004 089 992 505 729 545
0 3 0 0 −i 0.063 077 949 720 773 535 2 0 1 2 −i 0.000 973 333 949 567 230
0 2 1 0 i 0.851 786 534 413 891 081 1 4 0 0 0.002 350 577 380 299 191
0 1 2 0 −i 1.430 298 863 449 648 912 1 3 1 0 0.165 841 199 916 935 531
0 1 0 2 −i 0.085 082 314 838 682 922 1 2 2 0 0.544 009 061 075 099 235
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Table 4. Continued.

0 0 3 0 i 0.243 714 959 199 355 560 1 2 0 2 −0.126 519 607 942 211 641
0 0 1 2 i 0.066 628 105 873 760 135 1 1 3 0 −0.182 508 361 502 375 351
4 0 0 0 0.000 459 055 390 142 951 1 1 1 2 2.075 443 875 730 594 886
3 1 0 0 i 0.002 154 242 685 324 458 1 0 4 0 −0.016 321 552 385 758 725
3 0 1 0 i 0.000 532 155 590 347 800 1 0 2 2 −0.493 860 447 549 943 396
2 2 0 0 −0.004 840 046 450 845 588 1 0 0 4 0.100 323 914 200 990 955
2 1 1 0 −0.008 696 277 962 945 819 0 5 0 0 −i 0.035 437 158 103 964 192
2 0 2 0 −0.001 521 249 367 386 827 0 4 1 0 −i 1.098 730 518 769 317 535
2 0 0 2 −0.000 729 166 304 792 555 0 3 2 0 −i 16.346 415 113 011 525 772
1 3 0 0 −i 0.005 625 488 538 854 559 0 3 0 2 i 3.112 191 195 399 140 660
1 2 1 0 −i 0.042 200 218 044 352 362 0 2 3 0 i 25.261 986 404 397 997 857
1 1 2 0 i 0.035 856 221 513 981 255 0 2 1 2 −i 79.663 024 974 498 432 059
1 1 0 2 −i 0.019 385 123 066 852 090 0 1 4 0 −i 3.564 332 805 428 819 594
1 0 3 0 −i 0.005 485 448 552 764 268 0 1 2 2 i 91.718 400 582 446 722 291
1 0 1 2 i 0.005 553 350 862 328 742 0 1 0 4 −i 7.653 275 405 441 236 619
0 4 0 0 −0.022 779 283 170 516 708 0 0 5 0 −i 0.071 898 162 267 093 398
0 3 1 0 −0.382 813 075 268 433 553 0 0 3 2 −i 8.612 377 204 404 908 782
0 2 2 0 −0.852 347 953 691 774 933 0 0 1 4 i 6.544 597 476 333 204 031

Appendix C. Computation of quantum resonances from the complex dilation method

We here provide some details on the complex dilation method [Sim79, Rei82, Moi98] that we
used to numerically compute the quantum resonances of the 2 DoF coupled Eckart–Morse
system in section 7.2 and the 3 DoF coupled Eckart–Morse–Morse system in section 7.3. We
illustrate the method for the 2 DoF system. The generalization to 3 DoF is straightforward.

Let Ĥ = Op[H ] be the Weyl quantization of the Hamilton function H defined in (7.15).
For an angle α � 0, we define the scaled operator Ĥ α that is obtained from the operator Ĥ by
substituting for the coordinate x the scaled coordinate exp(iα)x, i.e.

Ĥ α = − h̄2

2m

(
e−2iα ∂2

∂x2
+

∂2

∂y2

)
+ VE(eiαx) + VM(y) − εh̄2e−iα ∂2

∂x∂y
. (C.1)

For α �= 0 this operator is no longer Hermitian. The effect of the complex scaling is that, for
suitable α > 0, the generalized eigenfunctions of Ĥ that correspond to resonances become
square-integrable after the substitution x �→ exp(iα)x, i.e. they become genuine elements of
the Hilbert space L2(R2). The resonances are then given by the eigenvalues of the operator Ĥ α

which can be computed from a standard variational principle using a finite matrix representation
in which Ĥ α is expanded in terms of some truncated basis set.

We choose the basis set given by the product states |ndv, nM〉 := |ndv〉 ⊗ |nM〉, where,
using the Dirac notation, the states |ndv〉 and |nM〉 with quantum numbers ndv and nM form
1D basis states in the directions of x and y, respectively. For the y-direction, we choose the
eigenstates that correspond to the discrete part of the spectrum of the 1D Morse oscillator
ĤM := −(h̄2/2m)∂2

y +VM(y). The quantum number nM then runs from 0 to nM max −1, where

nM max =
[√

2mDe

aMh̄
+

1

2

]
(C.2)

is the number of bound states of the 1D Morse oscillator. The matrix with elements
〈nM|ĤM|n′

M〉 is then diagonal with the Morse oscillator energies on the diagonal, i.e.

〈nM|ĤM|n′
M〉 = EM(nM)δnM n′

M
, EM(nM) = −a2

Mh̄2

2m

(
nM +

1

2
−

√
2mDe

aMh̄

)2

. (C.3)
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In order to compute the matrix elements of Ĥ α with respect to the product states we also need
the matrix elements 〈nM|p̂y |n′

M〉, where p̂y is the momentum operator p̂y = −ih̄∂y . For the
elements above the diagonal, we get (see, e.g., [vJBv85])

〈nM|p̂y |n′
M〉 = (−1)nM−n′

M−1i

(
bnMbn′

M
nM!�(2β − nM)

2β2n′
M!�(2β − n′

M)
mD

)1/2

, nM > n′
M, (C.4)

where

bnM = 2β − 2nM − 1, β =
√

2mDe

aMh̄
. (C.5)

The diagonal elements vanish and the elements below the diagonal can be obtained from the
elements above the diagonal,

〈nM|p̂y |nM〉 = 0, 〈n′
M|p̂y |nM〉 = −〈nM|p̂y |n′

M〉. (C.6)

In the x-direction we choose a so-called discrete value representation [LHL85] which
consists of a basis set |ndv〉, ndv ∈ Z, for which the wave functions 〈x|ndv〉 are localized in
space on a discrete grid. Concretely, we choose the ‘sinc’ functions

〈x|ndv〉 =
√

�x

sin

(
π

�x
(x − ndv�x)

)
π(x − ndv�x)

, (C.7)

where �x is a positive constant (the grid spacing). The states |ndv〉 are normalized and
orthogonal. The matrix elements of the kinetic energy operator p̂2

x/(2m) are easily worked
out to give

〈
ndv| p̂2

x

2m
|n′

dv

〉
=




1

6

h̄2π2

m�x2
, ndv = n′

dv,

(−1)ndv−n′
dv

h̄2

m�x2(ndv − n′
dv)

2
, ndv �= n′

dv.

(C.8)

Similarly, we get for the above-diagonal matrix elements of the momentum operator p̂x in this
representation

〈ndv|p̂x |n′
dv〉 = (−1)n

′
dv−ndv i

h̄

(n′
dv − ndv)�x

, ndv > n′
dv. (C.9)

The diagonal elements vanish and the elements below the diagonal can be obtained from the
elements above the diagonal,

〈ndv|p̂x |ndv〉 = 0, 〈n′
dv|p̂x |ndv〉 = −〈ndv|p̂x |n′

dv〉. (C.10)

The matrix elements of the potential VE, or more precisely the complexified potential
V α

E (x) = VE(exp(iα) x), have to be computed from numerical quadrature.
Using the results above, we find that the matrix elements Ĥ α

(ndv,nM;n′
dv,n

′
M)

:=
〈nM, ndv|Ĥ α|ndv, nM〉 of the full operator Ĥ α are given by

Ĥ α
(ndv,nM;n′

dv,n
′
M) = e−2iα〈ndv| p̂2

x

2m
|n′

dv〉δnMn′
M

+ 〈ndv|V̂ α
E |n′

dv〉δnM n′
M

+ EM(nM)δndv n′
dv
δnM n′

M
+ e−iα〈ndv|p̂x |n′

dv〉〈nM|p̂y |n′
M〉. (C.11)

In our numerical study of the 2 DoF system we chose nM ∈ {0, . . . , 13} (for our choice of
parameters in section 7.2 the Morse oscillator has 14 bound states), ndv ∈ {−50, . . . , 50} and
�x = 0.1. This led to a matrix of size 1414 × 1414. In our numerical study of the 3 DoF
system we chose ndv ∈ {−25, . . . , 25}, �x = 0.16, nM;2 ∈ {0, . . . , 6} and nM;3 ∈ {0, . . . , 6}
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(for our choice of parameters in section 7.3 the 1D Morse oscillators have 14 and 17 bound
states, respectively). This led to a matrix of size 2499 × 2499. We computed the eigenvalues
of these matrices using the function eigs in Matlab. For both systems we chose the scaling
angle to be α = 1.2.

References

[AKN88] Arnol’d V I, Kozlov V V and Neishtadt A I 1988 Mathematical aspects of classical and celestial
mechanics Dynamical Systems III (Encyclopaedia of Mathematical Sciences vol 3) ed V I Arnol’d
(Berlin: Springer)

[Ali85] Ali M K 1985 The quantum normal form and its equivalents J. Math. Phys. 26 2565–72
[AM78] Abraham R and Marsden J E 1978 Foundations of Mechanics 2 edn (Reading, MA: Benjamin-

Cummings)
[Arn78] Arnold V I 1978 Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics

vol 60) (Berlin: Springer)
[AS65] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
[AYAD03] Ammal S C, Yamataka H, Aida M and Dupuis M 2003 Dynamics-driven reaction pathway in an

intramolecular rearrangement Science 299 1555–7
[Bal98] Ballentine L E 1998 Quantum Mechanics revised edn (River Edge, NJ: World Scientific) (A modern

development. (MR MR1629320 (99k:81001))
[BGP99] Bambusi D, Graffi S and Paul T 1999 Normal forms and quantization formulae Commun. Math. Phys.

207 173–95 (MR MR1724855 (2001f:81048))
[BHC05] Bach A, Hostettler J M and Chen P 2005 Quasiperiodic trajectories in the unimolecular dissociation

of ethyl radicals by time frequency analysis J. Chem. Phys. 123 021101
[BHC06] Bach A, Hostettler J M and Chen P 2005 Nonstatistical effects in the dissociation of ethyl radical:

finding order in chaos J. Chem. Phys. 125 024304
[BJ05] Bligaard T and Jónsson H 2005 Optimization of hyperplanar transition states: application to 2D test

problems Comput. Phys. Commun. 169 284–8
[Bog92] Bogomolny E B 1992 Semiclassical quantization of multidimensional systems Nonlinearity

5 805–66
[Bow06] Bowman J M 2006 Skirting the transition state, a new paradigm in reaction rate theory Proc. Natl

Acad. Sci. 103 16061–2
[Bru71] Bruno A D 1971 Analytical forms of differential equations Trans. Moscow Math. Soc. 25 131–288
[BV90] Bellissard J and Vittot M 1990 Heisenberg’s picture and noncommutative geometry of the semiclassical

limit in quantum mechanics Ann. Inst. H Poincaré Phys. Théor. 52 175–235 (MR MR1057445
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[Chr03a] Chruściński D 2003 Quantum mechanics of damped systems J. Math. Phys. 44 3718–33
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