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I. THEORETICAL ANALYSIS

We consider water wave propagation in a main guide
of width d supporting two contiguous channels of width
2a and heights (b1, b2). Using the assumptions of an in-
viscid, incompressible fluid, and irrotational motion, the
linearized equation for the velocity potential φ(x, y, z) is

∆φ = 0,
∂φ

∂z
(x, y, 0) =

ω2

g
φ(x, y, 0), ∇φ · n|Γ = 0,

with g = 9.81 m.s−2 the gravity and ω the frequency (in
the harmonic regime with time dependence e−iωt). z is
the vertical coordinate with z = 0 the undisturbed free
surface and z = −h the sea bottom (x the axis of the
guide); Γ denotes the boundaries of the vertical walls of
the guide and side channels and the horizontal (rigid) sea
bottom. The free surface elevation η(x, y) is defined as

η(x, y) =
iω

g
φ(x, y, 0).

With h the constant water depth, the above equations
simplify to the two-dimensional Helmholtz equation

(∇2 + k2)η = 0, ∇η · n|γ = 0, (1)

where γ denotes the rigid boundaries of the guide and
side channels reduced to segments in the (x, y) plane and
where k is the wavenumber satisfying the dispersion rela-
tion ω2 = gk tanh(kh). In the main waveguide of width
d, we shall only need that the solution can be approxi-
mated by η(x, y) ' η(x) governed by η′′(x)+k2η(x) = 0.
Similarly, in the two channels, we have η(x, y) ≈ ηn(y),
n = 1, 2, governed by η′′n(y) + k2ηn(y) = 0. With
ηs = η1 + η2, ηa = η1 − η2, being the symmetric and
antisymmetric fields in the side channels and we define
η = 1

2 (η+ + η−) and [η] = (η+ − η−) to be the aver-
age and the jump of η across the junction at x = 0
(η± = η(0±)).

[η] = B dη′ − B̂a

2
aη′a(0), d[η′] + aη′s(0) = 0,

ηs(0) = 2η +
Bs

2
aη′s(0), ηa(0) = −B̂a dη′ +

Ba

2
aη′a(0).

(2)
In [? ], the above jump conditions have been demon-
strated and the analysis has been further developed for

identical side channels. Here we extend the result to
side channels of different heights b1 = b(1 − ε) and
b2 = b(1 + ε). The solution for an incident wave eikx

reads η(x) = eikx +Re−ikx, x ∈ (−∞, 0),
ηn(y) = An cos k(y − bn), n = 1, 2, x = 0,
η(x) = Teikx, x ∈ (0,+∞).

The scattering coefficients (R, T ) are deduced from (2)
and they read

T =
<(zsz

∗
a )− z2

z∗s z
∗
a + z2

, R = − i=(zsz
∗
a ) + 2z

z∗s z
∗
a + z2

, (3)

where, introducing xn = ka tan kbn, n = 1, 2,

zs = 1− iγs

2kd
, za = 1 +

ikdγa

2
, z = − B̂a

2D
(x1 − x2) ,

γa = B +
B̂2

a

2D
(x1 + x2 − 2Bsx1x2) ,

γs = − 2

D
(x1 + x2 − 2Bax1x2) ,

with D = 1− 1
2 (Ba + Bs)(x1 + x2) + BaBsx1x2. Note that

the parameters used in the main document are linked to
those defined in [? ] by the relations

δa =
π

4
Ba, δs =

π

4
Bs, δ0 =

π

8
(Bs+Ba−B), δ =

π

4
B̂a.

which allow for more compact expressions. In the main
document, Eqs. (8-9) correspond to Taylor expansions of
(R, T ) in (3) near the resonance at kb = π/2 (and (4-5)
to the case of identical channels with b1 = b2 as in [? ]).

An important result given by this analysis is that two
separate transmission zeros are obtained and, depending
on the sign of

∆ = ∆0 +

(
πb

2a

)2

ε2, ∆0 = (δ0 − δa)2 − δ2, (4)

they correspond to real (∆ > 0) or complex conjugate
(∆ < 0) wavenumbers k. We also stress that in (4) ∆0

depends only on the geometry of the junction as the di-
mensionless parameters (δa, δs, δ0, δ) do, and the depen-
dence of ∆ on ε = (b2 − b1)/(b1 + b2) is explicit.
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II. DERIVATION OF THE RELATION
BETWEEN Aa AND As

The analysis of the experimental results in figure 6
(main text) suggests that PA is achieved for a particu-
lar balance between the symmetric As = (A1 + A2) and
antisymmetric As = (A1 − A2) complex amplitudes in
the channels, of the form As = i tan(ka/2)Aa. Below we
show that this relationship is consistent with a calcula-
tion in which the two channels are replaced by two point
sources separated by a distance a/2 (at the center bottom
of each channels) and imposing corresponding amplitudes
A1 and A2. To do so, we introduce the Green’s function
g(x, y) satisfying

(∇2 + k2)g(x, y) = 0, x ∈ (−∞,+∞), y ∈ (0, d),

along with the boundary conditions ∂g
∂y (x, 0) = 0, and

∂g
∂y (x, d) = δ(x). We then have

lim
|x|→+∞

g(x, y) =
ieik|x|

2kd
,

see e.g. [? ]. We now consider the field ϕ(x, y) generated
in the waveguide by two point sources on the upper wall
at y = d, one located at x = −a/2 of amplitude A1 and
one located at x = a/2 of amplitude A2. From above we
have

lim
|x|→+∞

ϕ(x, y) =
i

2kd

(
A1e

ik|x+a/2| +A2e
ik|x−a/2|

)
.

Highly non-symmetric emission by these two sources is
obtained, for what we are interested in, when the radiated
field vanishes at x→ −∞, which is obtained when A1 =
−A2e

ika. We notice that this is equivalent to superposing
a symmetric source with amplitude As = (A1 +A2) and
a anti-symmetric source with amplitude Aa = (A1 −A2)
satisfying

As = i tan(ka/2)Aa,

as observed experimentally for which we have
tan(ka/2) = 0.48 at the PA.
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