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I. THEORETICAL ANALYSIS

We consider water wave propagation in a main guide
of width d supporting two contiguous channels of width
2a and heights (b1, b2). Using the assumptions of an in-
viscid, incompressible fluid, and irrotational motion, the
linearized equation for the velocity potential ¢(x,y, z) is
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with g = 9.81 m.s~2 the gravity and w the frequency (in
the harmonic regime with time dependence e~™?). z is
the vertical coordinate with z = 0 the undisturbed free
surface and z = —h the sea bottom (z the axis of the
guide); T denotes the boundaries of the vertical walls of
the guide and side channels and the horizontal (rigid) sea
bottom. The free surface elevation n(z,y) is defined as

n(z,y) = %<Z>(x,y70)-

With h the constant water depth, the above equations
simplify to the two-dimensional Helmholtz equation

(v2 + k2)77 =0, Vi - ny = 0, (1)
where v denotes the rigid boundaries of the guide and
side channels reduced to segments in the (x,y) plane and
where k is the wavenumber satisfying the dispersion rela-
tion w? = gktanh(kh). In the main waveguide of width
d, we shall only need that the solution can be approxi-
mated by 7(z,y) =~ n(z) governed by 1" (x)+ k?n(z) = 0.
Similarly, in the two channels, we have n(z,y) ~ n,(y),
n = 1,2, governed by n”(y) + k*n,(y) = 0. With
N, = 1M + N2, 7. = M — 72, being the symmetric and
antisymmetric fields in the side channels and we define
7=3Mm"+n7) and [n] = (" —n~) to be the aver-
age and the jump of n across the junction at x = 0
(% = n(0*)).
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In [? ], the above jump conditions have been demon-
strated and the analysis has been further developed for
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identical side channels. Here we extend the result to
side channels of different heights b = b(1 — ¢) and
by = b(1 +¢). The solution for an incident wave e**®
reads

n(z) = e** 4 Re= e, z € (—0,0),
Nn(y) = Ancosk(y —bn), n=12 =0,
n(x) = Te*®, z € (0, +00).

The scattering coefficients (R,T') are deduced from (2)
and they read
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where, introducing x, = katankb,, n = 1,2,
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with D =1— (B, + B.)(x1 + x2) + B,B.xix2. Note that
the parameters used in the main document are linked to
those defined in [? ] by the relations
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which allow for more compact expressions. In the main
document, Egs. (8-9) correspond to Taylor expansions of
(R,T) in (3) near the resonance at kb = 7/2 (and (4-5)
to the case of identical channels with b; = bg asin [? ]).

An important result given by this analysis is that two
separate transmission zeros are obtained and, depending
on the sign of

2
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they correspond to real (A > 0) or complex conjugate
(A < 0) wavenumbers k. We also stress that in (4) A,
depends only on the geometry of the junction as the di-
mensionless parameters (,,d,,do,d) do, and the depen-
dence of A on € = (ba — b1)/(by + b2) is explicit.



II. DERIVATION OF THE RELATION
BETWEEN A, AND A,

The analysis of the experimental results in figure 6
(main text) suggests that PA is achieved for a particu-
lar balance between the symmetric A; = (41 + A3) and
antisymmetric A, = (A; — As) complex amplitudes in
the channels, of the form A, = itan(ka/2)A,. Below we
show that this relationship is consistent with a calcula-
tion in which the two channels are replaced by two point
sources separated by a distance a/2 (at the center bottom
of each channels) and imposing corresponding amplitudes
Aq and As. To do so, we introduce the Green’s function

g(x,y) satisfying

(V2 + kZ)g(m7y) =0, T € (—OO,+OO), y e (07d)7

along with the boundary conditions 8—5(9&,0) = 0, and
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see e.g. [? ]. We now consider the field ¢(z, y) generated
in the waveguide by two point sources on the upper wall
at y = d, one located at x = —a/2 of amplitude A; and
one located at x = a/2 of amplitude As. From above we
have

lim _ (A ik|z+a/2| A zk|x7a/2|> )
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Highly non-symmetric emission by these two sources is
obtained, for what we are interested in, when the radiated
field vanishes at x — —oco, which is obtained when A; =
—Aset @ We notice that this is equivalent to superposing
a symmetric source with amplitude A; = (A + A3) and
a anti-symmetric source with amplitude A, = (A; — As)
satisfying

As =itan(ka/2)A,,

as observed experimentally for which we have

tan(ka/2) = 0.48 at the PA.
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