Supplementary Material for 'Perfect resonant absorption of guided water-waves by Autler-Townes Splitting'

L.-P. Euvé ${ }^{1}$, K. Pham ${ }^{2}$, R. Porter ${ }^{3}$, P. Petitjeans ${ }^{1}$, V. Pagneux ${ }^{4}$, A. Maurel ${ }^{5}$
${ }^{1}$ PMMH, ESPCI, Sorbonne Université, Université PSL, 1 rue Jussieu, 75005 Paris, France,
${ }^{2}$ IMSIA, ENSTA Paris, Université Paris-Saclay, bd des Maréchaux, 91732 Palaiseau, France,
${ }^{3}$ School of Mathematics, University Walk, University of Bristol, Bristol, BS8 1TW, United Kingdom,
${ }^{4}$ LAUM, av. O. Messiaen, 72085 Le Mans, France, and
${ }^{5}$ Institut Langevin, ESPCI Paris, Université PSL, CNRS, 1 rue Jussieu, 75005 Paris, France

I. THEORETICAL ANALYSIS

We consider water wave propagation in a main guide of width d supporting two contiguous channels of width $2 a$ and heights $\left(b_{1}, b_{2}\right)$. Using the assumptions of an inviscid, incompressible fluid, and irrotational motion, the linearized equation for the velocity potential $\phi(x, y, z)$ is
$\Delta \phi=0, \quad \frac{\partial \phi}{\partial z}(x, y, 0)=\frac{\omega^{2}}{g} \phi(x, y, 0), \quad \nabla \phi \cdot \mathbf{n}_{\mid \Gamma}=0$,
with $g=9.81 \mathrm{~m} . \mathrm{s}^{-2}$ the gravity and ω the frequency (in the harmonic regime with time dependence $\left.e^{-i \omega t}\right) . z$ is the vertical coordinate with $z=0$ the undisturbed free surface and $z=-h$ the sea bottom (x the axis of the guide); Γ denotes the boundaries of the vertical walls of the guide and side channels and the horizontal (rigid) sea bottom. The free surface elevation $\eta(x, y)$ is defined as

$$
\eta(x, y)=\frac{i \omega}{g} \phi(x, y, 0)
$$

With h the constant water depth, the above equations simplify to the two-dimensional Helmholtz equation

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \eta=0, \quad \nabla \eta \cdot \mathbf{n}_{\mid \gamma}=0 \tag{1}
\end{equation*}
$$

where γ denotes the rigid boundaries of the guide and side channels reduced to segments in the (x, y) plane and where k is the wavenumber satisfying the dispersion relation $\omega^{2}=g k \tanh (k h)$. In the main waveguide of width d, we shall only need that the solution can be approximated by $\eta(x, y) \simeq \eta(x)$ governed by $\eta^{\prime \prime}(x)+k^{2} \eta(x)=0$. Similarly, in the two channels, we have $\eta(x, y) \approx \eta_{n}(y)$, $n=1,2$, governed by $\eta_{n}^{\prime \prime}(y)+k^{2} \eta_{n}(y)=0$. With $\eta_{\mathrm{s}}=\eta_{1}+\eta_{2}, \eta_{\mathrm{a}}=\eta_{1}-\eta_{2}$, being the symmetric and antisymmetric fields in the side channels and we define $\bar{\eta}=\frac{1}{2}\left(\eta^{+}+\eta^{-}\right)$and $[\eta]=\left(\eta^{+}-\eta^{-}\right)$to be the average and the jump of η across the junction at $x=0$ $\left(\eta^{ \pm}=\eta\left(0^{ \pm}\right)\right)$.

$$
\begin{cases}{[\eta]=\mathcal{B} d \overline{\eta^{\prime}}-\frac{\hat{\mathcal{B}}_{\mathrm{a}}}{2} a \eta_{\mathrm{a}}^{\prime}(0),} & d\left[\eta^{\prime}\right]+a \eta_{\mathrm{s}}^{\prime}(0)=0, \tag{2}\\ \eta_{\mathrm{s}}(0)=2 \bar{\eta}+\frac{\mathcal{B}_{\mathrm{s}}}{2} a \eta_{\mathrm{s}}^{\prime}(0), & \eta_{\mathrm{a}}(0)=-\hat{\mathcal{B}}_{\mathrm{a}} d \overline{\eta^{\prime}}+\frac{\mathcal{B}_{\mathrm{a}}}{2} a \eta_{\mathrm{a}}^{\prime}(0) .\end{cases}
$$

In [?], the above jump conditions have been demonstrated and the analysis has been further developed for
identical side channels. Here we extend the result to side channels of different heights $b_{1}=b(1-\varepsilon)$ and $b_{2}=b(1+\varepsilon)$. The solution for an incident wave $e^{i k x}$ reads

$$
\left\{\begin{array}{lll}
\eta(x)=e^{i k x}+R e^{-i k x}, & x \in(-\infty, 0), \\
\eta_{n}(y)=A_{n} \cos k\left(y-b_{n}\right), & n=1,2, & x=0, \\
\eta(x)=T e^{i k x}, & x \in(0,+\infty)
\end{array}\right.
$$

The scattering coefficients (R, T) are deduced from (2) and they read

$$
\begin{equation*}
T=\frac{\Re\left(z_{\mathrm{s}} z_{\mathrm{a}}^{*}\right)-z^{2}}{z_{\mathrm{s}}^{*} z_{\mathrm{a}}^{*}+z^{2}}, \quad R=-\frac{i \Im\left(z_{\mathrm{s}} z_{\mathrm{a}}^{*}\right)+2 z}{z_{\mathrm{s}}^{*} z_{\mathrm{a}}^{*}+z^{2}}, \tag{3}
\end{equation*}
$$

where, introducing $\mathrm{x}_{n}=k a \tan k b_{n}, n=1,2$,

$$
\begin{aligned}
& z_{\mathrm{s}}=1-\frac{i \gamma_{\mathrm{s}}}{2 k d}, \quad z_{\mathrm{a}}=1+\frac{i k d \gamma_{\mathrm{a}}}{2}, \quad z=-\frac{\hat{\mathcal{B}}_{\mathrm{a}}}{2 D}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right), \\
& \gamma_{\mathrm{a}}=\mathcal{B}+\frac{\hat{\mathcal{B}}_{\mathrm{a}}^{2}}{2 D}\left(\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathcal{B}_{\mathrm{s}} \mathrm{x}_{1} \mathrm{x}_{2}\right), \\
& \gamma_{\mathrm{s}}=-\frac{2}{D}\left(\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathcal{B}_{\mathrm{a}} \mathrm{x}_{1} \mathrm{x}_{2}\right),
\end{aligned}
$$

with $D=1-\frac{1}{2}\left(\mathcal{B}_{\mathrm{a}}+\mathcal{B}_{\mathrm{s}}\right)\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+\mathcal{B}_{\mathrm{a}} \mathcal{B}_{\mathrm{s}} \mathrm{x}_{1} \mathrm{x}_{2}$. Note that the parameters used in the main document are linked to those defined in [?] by the relations
$\delta_{\mathrm{a}}=\frac{\pi}{4} \mathcal{B}_{\mathrm{a}}, \quad \delta_{\mathrm{s}}=\frac{\pi}{4} \mathcal{B}_{\mathrm{s}}, \quad \delta_{0}=\frac{\pi}{8}\left(\mathcal{B}_{\mathrm{s}}+\mathcal{B}_{\mathrm{a}}-\mathcal{B}\right), \quad \delta=\frac{\pi}{4} \hat{\mathcal{B}}_{\mathrm{a}}$.
which allow for more compact expressions. In the main document, Eqs. (8-9) correspond to Taylor expansions of (R, T) in (3) near the resonance at $k b=\pi / 2$ (and (4-5) to the case of identical channels with $b_{1}=b_{2}$ as in [?]).

An important result given by this analysis is that two separate transmission zeros are obtained and, depending on the sign of

$$
\begin{equation*}
\Delta=\Delta_{0}+\left(\frac{\pi b}{2 a}\right)^{2} \varepsilon^{2}, \quad \Delta_{0}=\left(\delta_{0}-\delta_{\mathrm{a}}\right)^{2}-\delta^{2} \tag{4}
\end{equation*}
$$

they correspond to real $(\Delta>0)$ or complex conjugate $(\Delta<0)$ wavenumbers k. We also stress that in (4) Δ_{0} depends only on the geometry of the junction as the dimensionless parameters $\left(\delta_{\mathrm{a}}, \delta_{\mathrm{s}}, \delta_{0}, \delta\right)$ do, and the dependence of Δ on $\varepsilon=\left(b_{2}-b_{1}\right) /\left(b_{1}+b_{2}\right)$ is explicit.

II. DERIVATION OF THE RELATION BETWEEN A_{a} AND A_{s}

The analysis of the experimental results in figure 6 (main text) suggests that PA is achieved for a particular balance between the symmetric $A_{s}=\left(A_{1}+A_{2}\right)$ and antisymmetric $A_{s}=\left(A_{1}-A_{2}\right)$ complex amplitudes in the channels, of the form $A_{s}=i \tan (k a / 2) A_{a}$. Below we show that this relationship is consistent with a calculation in which the two channels are replaced by two point sources separated by a distance a/2 (at the center bottom of each channels) and imposing corresponding amplitudes A_{1} and A_{2}. To do so, we introduce the Green's function $g(x, y)$ satisfying

$$
\left(\nabla^{2}+k^{2}\right) g(x, y)=0, \quad x \in(-\infty,+\infty), \quad y \in(0, d)
$$

along with the boundary conditions $\frac{\partial g}{\partial y}(x, 0)=0$, and $\frac{\partial g}{\partial y}(x, d)=\delta(x)$. We then have

$$
\lim _{|x| \rightarrow+\infty} g(x, y)=\frac{i e^{i k|x|}}{2 k d}
$$

see e.g. [?]. We now consider the field $\varphi(x, y)$ generated in the waveguide by two point sources on the upper wall at $y=d$, one located at $x=-a / 2$ of amplitude A_{1} and one located at $x=a / 2$ of amplitude A_{2}. From above we have

$$
\lim _{|x| \rightarrow+\infty} \varphi(x, y)=\frac{i}{2 k d}\left(A_{1} e^{i k|x+a / 2|}+A_{2} e^{i k|x-a / 2|}\right) .
$$

Highly non-symmetric emission by these two sources is obtained, for what we are interested in, when the radiated field vanishes at $x \rightarrow-\infty$, which is obtained when $A_{1}=$ $-A_{2} e^{i k a}$. We notice that this is equivalent to superposing a symmetric source with amplitude $A_{s}=\left(A_{1}+A_{2}\right)$ and a anti-symmetric source with amplitude $A_{a}=\left(A_{1}-A_{2}\right)$ satisfying

$$
A_{s}=i \tan (k a / 2) A_{a}
$$

as observed experimentally for which we have $\tan (k a / 2)=0.48$ at the PA.

