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Abstract

The interaction of plane waves propagating within a uniform ice sheet above sea
water with narrow cracks of arbitrary shape is considered in this paper. The motion
of the fluid is described by linearised theory and the ice sheet is modelled as as thin
elastic plate. A complete description of the solution is shown to be expressible in terms
of pairs of functions related to the jumps in the gradient across, and elevation of, the
narrow cracks in the ice sheet. These functions are determined by the solution of a set
of coupled integro-differential equations which can, in principle, be solved numerically
for any crack shape. However, attention focuses on the case of multiple straight-line
cracks, of arbitrary orientation, for which further simplifying analytic progress can be
made before computations are performed. Results presented showing diffracted wave
patterns, stress intensity factors at the ends of cracks and the elevation of the ice sheet
along the cracks.

The problem of determining flexural wave diffraction by narrow cracks in a thin
elastic plate with no fluid loading is a much simpler limiting case of the present problem.

1 Introduction

This paper is a continuation of a series of papers involving the current author on the subject
of wave scattering by cracks in thin ice sheets over water. The problems considered are
intended to assist understanding of the wave scattering processes that occur in the large
regions of the Arctic and Antartic seas known as the marginal ice-zone, situated between
the open oceans and the shore-fast sea ice, where there is a dense packing of large ice sheets
which continually crack and reform under the action of waves and currents. The wave energy
originates from the ocean waves and propagtes far into the marginal ice-zone in the form of
flexural-gravity waves supported at the interface between the atmosphere, the ice sheet and
the underlying fluid. Experimental evidence (see Squire et al (1995), for example) suggest
that classical thin plate theory is a good model for ice sheets although more complicated
models have also been used (see Balmforth & Craster (1999), for example). Models of wave
scattering by cracks can be useful in determining if, and where, further breakup of ice is
likely to occur, but also as a remote sensing tool for determining variations in ice sheet size
and thickness (see Williams (2005) or Vaughan & Squire (2006)). Another application area
is in the offshore industry where cracks may occur (or be part of the design) in so-called very
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large floating structures such as those being proposed and tested for use as offshore runways
in Japan where the same governing equations are employed.

Previous work in this subject area includes wave scattering by a single infinitely long
crack between two semi-infinite ice sheets by Evans & Porter (2003) who took advantage
of the symmetry of the geometry to decompose the problem into two separate problems for
the symmetric and antisymmetric components of the solution. Reflection and transmission
coefficients were computed for a range of parameters and it was also shown that edge waves
could propagate along the crack, without radiating energy away from the crack. The work
of Evans & Porter (2003) was very closely related to work by researchers in New Zealand
including Barrett & Squire (1999), Squire & Dixon (2001) and Williams & Squire (2002). The
work on the single crack was generalised to multiple infinitely long parallel cracks in Porter &
Evans (2006a) who introduced the use of ‘source functions’ as a simple and elegant method
for representing the solution. Thus, in the problem considered in Porter & Evans (2006a)
the entire scattering process was shown to be represented by an incident wave plus a pair of
generalised line sources placed along each of the cracks in the configuration. Outgoing waves
are generated by the source functions by imposing certain jump conditions in the function
and its derivatives at the source. Other work on multiple cracks includes that of Williams
& Squire (2004) using Green functions.

Following that, the problem of finite straight parallel cracks was considered in Porter &
Evans (2006b). In this problem, advantage was taken of the fact that Fourier Transforms
in the direction of the cracks reduced the problem to the quasi-two dimensional problem of
Porter & Evans (2006a). That work also relied heavily on the work of Andronov & Belinskii
(1995) who had considered scattering by a single finite length crack in a thin elastic plate in

vacuo. Scattering by semi-infinite cracks in unloaded elastic plates has been undertaken by
Norris & Wang (1994).

The present piece of work represents a substantial departure from that which has gone
before. Here, we formulate the solution to the problem of scattering by a general connfigura-
tion of multiple cracks of arbitrary shape. However, the present work is a natural extension
of previous papers by the author in that the solution can be represented by a superposition
of an incident wave from infinity plus a distribution of a pair of generalised point source
functions, w1 and w2 of source strength Pi(s) and Qi(s), s ∈ Ci, along each of the N cracks,
Ci, i = 1, . . . , N .

By applying the two boundary conditions along each of the N cracks results in 2N
coupled integro-differential equations 2N unknown functions Pi(s) and Qi(s), i = 1, . . . , N .

Despite the apparent elegance of the solution method described above, there are many
technical difficulties associated with trying to compute solutions to the integro-differential
equations (for a general overview see Martin (2006, §5.3.1) where they are called hypersingu-
lar integral equations). The first, also encountered in Porter & Evans (2006b), is identifying
and then treating the most singular part of the source functions as they would otherwise give
rise to divergent integrals (being two and four derivatives of a logarithm). The second is that
the pair of generalised source functions are found to be complicated second and third-order
differential operators associated with the boundary conditions on the cracks applied to a
relatively straightforward canonical Green function. The integro-differential equations that
determine the functions Pi(s) and Qi(s) involve a second application of the same differential
operators implying that the kernels of certain integral operators are compound fourth to
sixth-order differential operators defined in coordinates local to the crack of varying shape.
Thus, whilst the problem is easy to formulate, the implementation of a numerical scheme to
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find solutions appears to be a non-trivial task.
In this paper, we have removed some of this difficulty by only considering results for

cracks which are straight, but consider multiple cracks which can be oriented at arbitrary
angles to one another, a case not possible using the transform approach of Porter & Evans
(2006b). In fact it is shown that the system of equations derived and computed in Porter &
Evans (2006b) is recovered from current method if all cracks are parallel.

The mathematical formulation of each part of this paper is quite treacherous and much
of the lengthy algebraic detail has had to be suppressed. In the next section, we concentrate
on the case of a single curvilinear crack and present the equations governing the motion of
the ice sheet and the fluid as well as the various boundary conditions that must be imposed
including those along the cracks, at the ends of the cracks and at infinity. In section 3, a
set of equations and conditions are stated which define the pair of source functions which
are to be distributed along each crack. An integral representation for the solution is then
presented in terms of these source functions. The source functions are then derived in closed
form by taking double Fourier transforms in the surface of the elastic plate and using the
various definitions of the source functions to show that they are related to a fundamental
Green function for an elastic plate over water, described in an obscure report by Fox &
Chung (1998), but rederived for completeness in the Appendix of the present paper. In
the last parts of section 3 the coupled integro-differential equations for the undetermined
functions P (s) and Q(s) are presented, by application of the two boundary conditions on
the crack and we give a detailed description of how to treat the potentially singular part
of the integral equations. In particular, we suggest that straight-line cracks appear to of-
fer the only way of proceeding analytically from this point onwards. Thereafter, the paper
considers multiple straight-line cracks at arbitrary angles to one another. Thus in section 4
the integro-differential equations are reduced to infinite systems of equations by expanding
the unknown functions in an infinite series of judiciously chosen functions which include the
correct weighting at the ends of the cracks The integro-differential equations are thus con-
verted into an infinite algebraic system of equations by the Rayleigh-Ritz method (equivalent
to Galerkin’s method) and efficient numerical solutions are found by truncation to a small
finite system. An integral representation of the Hankel function and a re-alignment of the
coordinate system to that of each crack in turn is the key to the success of the method which
results in a system of equations in which the matrix elements just involve the computation
of relatively straightforward and highly convergent infinite integrals.

In section 5, we show how to recover, from the solution to the system of equations, the
elevation of the elastic plate, the far-field diffracted wave amplitudes and the stress intensity
factors at the ends of the cracks. Finally, in section 6, numerical results are presented and
we summarise the paper in section 7.

2 Governing equations

Cartesian coordinates, (x, y, z) are defined with z directed vertically upwards. When at rest,
the lower surface of an ice sheet of small thickness d occupies the plane z = 0 and the water
is bounded below by z = −h. A plane wave is incident from infinity and propagates along
the ice sheet at an angle ϕ with respect to the positive x-axis.

For simplicity, we initially concentrate on the case where there is just a single crack.
The subsequent extension to multiple cracks is relatively straightforward. Thus the incident
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Figure 1: Geometrical description of the ice sheet containing a crack over water

wave is diffracted by a narrow crack in the ice sheet represented by the two-dimensional
line C, and parametrised by the arclength along the curve, s where −L < s < L, so that
(x(s), y(s)) ∈ C. The length of the crack is thus 2L.

The ice sheet is modelled as a thin elastic plate using Kirchhoff theory and at the edges
of the cracks the bending moment and shearing stress must vanish (see Timoshenko &
Woinowsky-Krieger (1959), for example)

2.1 Equations governing the motion of the fluid and the ice sheet

Under the assumptions of linearised theory, that the fluid is incompressible and inviscid and
that the motion is irrotational and of small amplitude, we may define a velocity potential,
Φ(r, t), where r = (x, y, z) in the fluid region W = {(x, y) ∈ R

2,−h < z < 0} where
R

2 = {−∞ < x, y < ∞}, and assuming a time harmonic dependence of angular frequency
ω we write

Φ(r, t) = <{−iωφ(r)e−iωt}. (2.1)

The elevation of the fluid surface and hence the deflection of the ice sheet from equilibrium
is defined by <{η(ρ)e−iωt} where ρ = (x, y) and

η(ρ) =
∂φ

∂z

∣∣∣∣
z=0

, ρ ∈ R
2\C. (2.2)

It follows that φ(r) satisfies
∆φ = 0, r ∈ W (2.3)

where ∆ is used to denote the three-dimensional Laplacian operator, ∆ = ∇2 + ∂2/∂z2,
where ∇ = (∂/∂x, ∂/∂y),

∂φ

∂z
= 0, z = −h,ρ ∈ R

2, (2.4)
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and (
Lφ
)
(ρ) ≡

(
D∇4 + 1 − δ

)
η − κφ|z=0 = 0, ρ ∈ R

2\C. (2.5)

In the above, κ = ω2/g where g is gravitational acceleration and D is defined by D =
Ed3/(12ρwg(1−ν2)) where E is the Young’s Modulus, ν is Poisson’s ratio, d is the thickness
of the ice sheet and ρw is the density of the fluid. Also δ = (ρi/ρw)κd where ρi is the density
of ice.

Worthy of note is the non-dimensionalisation described in detail in Williams (2005) (also
see Williams & Squire (2004)) in which characteristic lengthscales and timescales are defined
which reduce the number of parameters appearing in the governing equations (excluding any
parametrisation of the crack) to just two. This can be useful in analysing the results to certain
simpler problems, although it proves to be of no benefit here.

2.2 Boundary conditions on the cracks

Before considering the boundary conditions at the edges of the cracks, we are required to
consider certain features associated with the curve C. Thus the unit vectors tangential to
and normal to C, as a function of arclength s are defined (respectively) by

ŝ(s) = (x′(s), y′(s))/µ(s)

n̂(s) = (y′(s),−x′(s))/µ(s)

}
where µ(s) =

√
x′(s)2 + y′(s)2 (2.6)

and primes deonte differentiation with respect to the argument.
In particular, we denote the angle between the positive x-direction and the direction

of n̂ by θ(s), so that θ′(s) is simply the curvature of C. Then n̂ = cos θi + sin θj and
ŝ = − sin θi + cos θj and we have

n̂.∇ ≡ ∂

∂n
= cos θ

∂

∂x
+ sin θ

∂

∂y
, ŝ.∇ ≡ ∂

∂s
= − sin θ

∂

∂x
+ cos θ

∂

∂y
,

and it follows that the two-dimensional Laplacian can be written

∇2 =
∂2

∂n2
+

∂2

∂s2
+ θ′(s)

∂

∂n
(2.7)

with the auxiliary equation

∂

∂n

∂

∂s
− ∂

∂s

∂

∂n
+ θ′(s)

∂

∂s
= 0 (2.8)

which demonstrates that ∂/∂n and ∂/∂s do not, in general, commute in these generalised
coordinates.

We can now define conditions that apply along the free edges C− and C+ (defined such
that n̂ points in the direction from C− to C+) either side of the curve C. First, the bending
moment vanishes at the edges of the crack, and this is expressed by the operator equation

(
Bη
)
(ρ) ≡

(
∇2 − ν1

(
∂2

∂s2
+ θ′(s)

∂

∂n

))
η → 0, as ρ → C± (2.9)

and secondly the shearing stress is zero along the edges, which is expressed as

(
Sη
)
(ρ) ≡

(
∂

∂n
∇2 + ν1

∂

∂s

(
∂

∂s

∂

∂n
− θ′(s)

∂

∂s

))
η → 0, as ρ → C± (2.10)
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where ν1 = 1 − ν. Note that the definitions of the operators in (2.9) and (2.10), which
strictly are defined only on C itself, have been extended to points away from C. Note also
that the limits in (2.9) and (2.10) and hereafter, expressed as ρ → C± are to be intepreted
as meaning (ρ − (x(s), y(s))).ŝ = 0 with (ρ − (x(s), y(s))).n̂ → 0±. That is, that the point
approaches the curve in the direction normal to the curve.

As a consequence of (2.9) and (2.10),
[(
Bη
)
(ρ)
]

=
[(
Sη
)
(ρ)
]

= 0, (2.11)

where here we have used, and will continue to use, the square bracket notation to indicate
the jump in the enclosed quantities across C in a direction normal to C from C+ to C−. That
is, for a general function u(ρ),

[
u(ρ)

]
≡ lim

ρ→C+

{u(ρ)} − lim
ρ→C−

{u(ρ)}. (2.12)

2.3 Separation solutions and the radiation condition

To complete the formulation of the problem we need to impose a radiation condition on the
diffracted wave field and before doing this we first consider separable solutions of (2.3) for
an ice sheet which contains no cracks. These are given by

exp{ikn.ρ}Yn(z), for n = −2,−1, 0, 1, . . . (2.13)

where kn = kn(coswn, sinwn) for some arbitrary angle wn ∈ [0, 2π). and where

Yn(z) = cosh kn(z + h) (2.14)

are depth eigenfunctions and kn are the roots of the dispersion relation

K(kn) ≡ (Dk4
n + 1 − δ)kn sinh knh− κ cosh knh = 0. (2.15)

In (2.13) and (2.14), k0 is the positive real root of (2.15). There are an infinite sequence
of pure imaginary roots of (2.15) and kn, n = 1, 2, . . . are defined as those with positive
imaginary parts arranged such that |kn| < |kn+1|. In addition, there are four (generally)
complex roots of (2.15) which are defined as ±p ± iq, p, q > 0 and k−1 is defined as p + iq,
whilst k−2 = −p + iq. For certain (somewhat extreme) values of physical parameters, the
complex roots can move onto the imaginary axis. Details of the location and nature of the
roots is discussed in detail in Williams (2005). Also see Squire et al (1995).

The depth eigenfunctions satisfy a generalised orthogonality relation

κ

∫ 0

−h

Yn(z)Ym(z)dz +D(k2
m + k2

n)Y
′
m(0)Y ′

n(0) = Cnδnm (2.16)

which can be established by integrating by parts (see, for example, Lawrie & Abrahams
2002) where

Cn = 1
2
{κh+ (5Dk4

n + 1 − δ)[Y ′
n(0)/kn]

2} (2.17)

and δmn is the Kronecker Delta.
An incident wave from infinity, propagating at an angle of ϕ with respect to the positive

x-axis, is described by the potential

φ0(r) = eik0(x cos ϕ+y sinϕ)Y0(z) (2.18)
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with corresponding surface elevation given by

η0(ρ) = eik0(x cos ϕ+y sin ϕ)Y ′
0(0). (2.19)

For an incident wave of (complex) amplitude A a scaling of A/Y ′
0(0) should be applied to both

η and φ throughout. Then the radiation conditions to be satisfied by both u = φd = φ− φ0

and u = ηd = η − η0 is

√
ρ

(
∂

∂ρ
− ik0

)
u→ 0, as ρ = |ρ| =

√
x2 + y2 → ∞, (2.20)

holding throughout −h < z < 0 in the former definition.

2.4 Properties associated with cracks

In the course of the analysis, it will be shown that the quantities

Q(s) = [η], P (s) =

[
∂η

∂n

]
, −L < s < L (2.21)

where 2L is the length of the crack, play a significant role. Thus, Q(s) and P (s) represent
the jumps, across the crack, in the elevation and the component of gradient normal to the
crack (respectively).

Certain conditions also apply at the two ends of the crack. First

[η] ∼ (L2 − s2)3/2,

[
∂η

∂n

]
∼ (L2 − s2)1/2,

[
∂η

∂s

]
∼ (L2 − s2)1/2, as s→ −L+, L−.

(2.22)
The above expressions are Meixner conditions (see Andronov & Belinskii (1995), for example)
which can be derived from a local analysis of the plate deflection in the neighbourhood of a
crack tip.

Also, the requirement that no concentrated forces exist at the ends of the crack, implies

[
∂2η

∂n∂s

]
=

[(
∂2

∂s∂n
− θ′(s)

∂

∂s

)
η

]
= 0, as s→ −L+, L−, (2.23)

conditions which will be of use later.

3 Formulation of integral equations

Integral equations can be derived in one of two ways. The first comes about from a direct
application of Green’s Identity to a source in the fluid with the function φ and follows using
much of the analysis from equation (3.16) onwards. The second approach, presented here, is
arguably more natural and allows the general solution to be presented rather than derived,
once a pair of ‘source’ functions have been appropriately defined. The hard work is relegated
to the derivation of expressions for these source functions.

7



3.1 Definition of a pair of source functions

The first step is to construct point ‘source’ functions which act along at points ρ0 ∈ C
along the curve, where we may also write ρ0 ≡ (x0, y0) ≡ (x(s0), y(s0)), −L < s0 < L.
These functions will be then used to formulate a solution to the problem defined in the
previous section. Thus, we seek a pair of functions ψi(r; ρ0), i = 1, 2 satisfying the following
conditions,

∆ψi = 0, r ∈ W (3.1)

with
∂ψi

∂z
= 0, z = −h, ρ ∈ R

2 (3.2)

and
(Lψi

)
(ρ; ρ0) ≡

(
D∇4 + 1 − δ

)
wi − κψi|z=0 = 0, for ρ 6= ρ0 (3.3)

where

wi(ρ; ρ0) =
∂ψi

∂z

∣∣∣∣
z=0

(3.4)

for i = 1, 2, is the surface elevation associated with the functions ψi. We require that ψi and
hence wi represent outgoing waves as |ρ| → ∞, and hence satisfy (2.20). Finally we impose
the following jump conditions as defined by (2.12)

[
w1

]
= 0,

[
∂w1

∂n

]
= δ(s− s0), −L < s, s0 < L (3.5)

and [
w2

]
= δ(s− s0),

[
∂w2

∂n

]
= 0, −L < s, s0 < L (3.6)

where δ(x) is the Dirac delta function which provide the only source of forcing for ψ1 and ψ2.
These are supplemented by jump conditions associated with the free edge operators defined
by (2.9) and (2.10),

[(
Bwi

)
(ρ; ρ0)

]
=
[(
Swi

)
(ρ; ρ0)

]
= 0, −L < s, s0 < L (3.7)

for i = 1, 2. The source functions will be derived in section 3.3.

3.2 An integral represention for the solution

Assuming the existence of the functions ψi the general solution, in terms of undetermined
functions P (s0) and Q(s0), may be written as

φ(r) = φ0(r) +

∫ L

−L

{
P (s0)ψ1(r; ρ0) +Q(s0)ψ2(r; ρ0)

}
ds0 (3.8)

with corresponding surface elevation clearly following as

η(ρ) = η0(ρ) +

∫ L

−L

{
P (s0)w1(ρ; ρ0) +Q(s0)w2(ρ; ρ0)

}
ds0. (3.9)

The justification for this form of the solution follows since (2.4), (2.5) and (2.6) are clearly
satisfied. Also, from (3.7) since it can be seen from (3.9) that η(ρ) satisfies (2.11) and the
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radiation condition (2.20). Finally, by taking jumps in η and ∂η/∂n from (3.9) and using
the imposed conditions in (3.6) on w1 and w2 justifies the definition of P and Q in (2.21).

The remaining conditions that are not satisfied by (3.9) are the edge conditions (2.9) and
(2.10), although the satisfication of (2.11) by (3.9) implies that these only need to be applied
from one side of C.

It is helpful to interpret the solution presented in (3.8), (3.9) as a distribution of two
different types of “sources” along the crack, each having an associated “source strength”,
being the two functions P and Q. Indeed, this is a rather natural viewpoint to take, as
the only source of scattering is the crack itself whilst the fact that two sources are needed
can either be attributed to the order of the differential operator defining the motion of the
ice sheet, or (in fact, equivalently) that two boundary conditions are required on the crack.
Furthermore, it is a natural generalisation of similar solution methods developed for more
specific problems (see Porter & Evans (2006a,b)).

3.3 Calculation of the source functions

In order to construct the functions ψi, we take Fourier transforms in x and y, defining

ψi(α, β, z; ρ0) =

∫ ∞

−∞

∫ ∞

−∞

ψi(r; ρ0)e
i(αx+βy) dxdy. (3.10)

It is straightforward to show from (3.1) and (3.2) that

ψi(α, β, z; ρ0) = Ai(α, β) cosh k(z + h) (3.11)

for i = 1, 2 where k2 = α2 + β2 and Ai(α, β) is to be determined from the transform of the
surface condition (3.3),

0 =

∫ ∞

−∞

∫ ∞

−∞

(
Lψi

)
(x, y; ρ0)e

i(αx+βy) dxdy = (Dk4 + 1 − δ)wi − κψi +DIi (3.12)

where

wi(α, β; ρ0) =
∂ψi

∂z

∣∣∣∣
z=0

(3.13)

and

Ii = Ii(α, β; ρ0) =

∫ ∞

−∞

∫ ∞

−∞

G(∇4wi) dxdy − k4wi (3.14)

where we have introduced, for brevity,

G = G(ρ;α, β) = ei(αx+βy). (3.15)

The result (3.12) follows since Fourier transforms of wi and ψi can immediately be taken
(integrals of functions with at most finite jump discontinuities are well defined), but not
Fourier transforms of higher derivatives of wi which require more care.

In order to evaluate the integral in (3.14), we use Greens Identity applied to the bihar-
monic operator to write

Ii =

∫ ∞

−∞

∫ ∞

−∞

(
G(∇4wi) − wi(∇4G)

)
dxdy

=

∫

C−∪C+

(
G
∂

∂n
(∇2wi) − wi

∂

∂n
(∇2G) − (∇2wi)

∂G

∂n
+ (∇2G)

∂wi

∂n

)
ds (3.16)
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and there is also a contribution from the contour at infinity which has been set to zero by
assuming that the frequency ω has a small negative imaginary part, which will eventually
be made to tend to zero. The integral along C− ∪ C+ can be replaced by a single integral
along C, with the integrand being replaced by the jump in the original integrand across C in
the direction normal to the curve. Thus we have

Ii =

∫

C

[
G
∂

∂n
(∇2wi) − wi

∂

∂n
(∇2G) − (∇2wi)

∂G

∂n
+ (∇2G)

∂wi

∂n

]
ds (3.17)

and it is to be understood that the jumps apply only to wi and its derivatives since G and
its derivatives are continuous.

We now substitute the edge conditions satisfied by wi on the curve C implied by (3.7)
using the definitions of (2.9) and (2.10) to give

Ii =

∫

C

[
(∇2G)

∂wi

∂n
− wi

∂

∂n
(∇2G)

]
ds+ J

(1)
i + J

(2)
i (3.18)

where

J
(1)
i = −ν1

∫

C

[
G
∂

∂s

(
∂2

∂s∂n
− θ′(s)

∂

∂s

)
wi

]
ds (3.19)

J
(2)
i = −ν1

∫

C

[
∂G

∂n

(
∂2

∂s2
+ θ′(s)

∂

∂n

)
wi

]
ds. (3.20)

Integrating by parts twice, in equation (3.19) first, gives

J
(1)
i = −ν1

[
G

(
∂2

∂s∂n
− θ′(s)

∂

∂s

)
wi

]∣∣∣∣
L

−L

+ ν1

[
∂G

∂s

∂wi

∂n
− θ′(s)

∂G

∂s
wi

]∣∣∣∣
L

−L

−ν1

∫

C

[
∂2G

∂s2

∂wi

∂n
− ∂

∂s

(
θ′(s)

∂G

∂s

)
wi

]
ds. (3.21)

On account of the conditions (2.22) and (2.23) it is seen that the first and seconds term in
the above equation vanish.

This leaves

J
(1)
i = −ν1

∫

C

[
∂2G

∂s2

∂wi

∂n
− ∂

∂s

(
θ′(s)

∂G

∂s

)
wi

]
ds. (3.22)

Next, we consider J
(2)
i in (3.20) and integrate by parts twice to obtain

J
(2)
i = −ν1

[
∂G

∂n

∂wi

∂s

]∣∣∣∣
L

−L

+ ν1

[
∂2G

∂s∂n
wi

]∣∣∣∣
L

−L

− ν1

∫

C

[
∂3G

∂s2∂n
wi + θ′(s)

∂G

∂n

∂wi

∂n

]
ds (3.23)

and again (2.22) can be used to show the first two terms vanish so that

J
(2)
i = −ν1

∫

C

[
∂3G

∂s2∂n
wi + θ′(s)

∂G

∂n

∂wi

∂n

]
ds. (3.24)

Using (3.22) and (3.24) in (3.18) and collecting together terms proportional to wi and
∂wi/∂n gives

Ii =

∫

C

[(
BG
)
(ρ;α, β)

∂wi

∂n
− wi

(
SG
)
(ρ;α, β)

]
ds

=

∫

C

{(
BG
)
(ρ;α, β)

[
∂wi

∂n

]
−
(
SG
)
(ρ;α, β)

[
wi

]}
ds (3.25)
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And now with i = 1, 2 separately and using (3.5), (3.6) we have

I1 =
(
BG
)
(ρ;α, β)|ρ=ρ0

, I2 = −
(
SG
)
(ρ;α, β)|ρ=ρ0

. (3.26)

Using these expression in (3.12) with (3.11) to determine Ai(α, β) we readily obtain

ψ1 = −D cosh k(z + h)

K(k)

(
BG
)
(ρ;α, β)|ρ=ρ0

(3.27)

and

ψ2 = D
cosh k(z + h)

K(k)

(
SG
)
(ρ;α, β)|ρ=ρ0

. (3.28)

Hence, if the function Ψ is defined by

Ψ(r; ρ0) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

cosh k(z + h)

K(k)
eiα(x0−x)eiβ(y0−y)dαdβ. (3.29)

It then follows, from taking inverse transforms of (3.27) and (3.28) that

ψ1(r; ρ0) = −D
(
B0Ψ

)
, ψ2(r; ρ0) = D

(
S0Ψ

)
(3.30)

where B0 and S0 denote the same operators as in (2.9) and (2.10), but with (n0, s0) replacing
(n, s). That is, these operators act on the source variables as opposed to the field variables.

3.4 The Green function for the sheet and its properties

A series expansion for the function Ψ is derived in the Appendix and is given by

Ψ(r; ρ0) =
i

4

∞∑

r=−2

Yr(z)Y
′
r (0)

Cr

H0(krR) (3.31)

where R = |ρ−ρ0| = ((x−x0)
2 +(y− y0)

2)1/2. All other terms in (3.31) are defined in §2.3.
The function Ψ is no more than the Green function for the time-harmonic point forcing
of unit strength of the ice sheet at ρ0. Associated with Ψ is the corresponding ice sheet
elevation, defined by

W (ρ; ρ0) =
∂Ψ

∂z

∣∣∣∣
z=0

=
i

4

∞∑

r=−2

τrH0(krR) (3.32)

where

τr =
(Y ′

r (0))2

Cr

. (3.33)

On first inspection, W appears to possess a logarithmic singularity as R→ 0, inherited from
the behaviour of the Hankel function of the first kind, H0(krR) ≡ H

(1)
0 (krR). However, this

turns out not to be the case as we shall demonstrate. Using (3.30) in (3.13) in conjunction
with (3.31) and (3.32) above shows that

w1(ρ; ρ0) = −D
(
B0W

)
, w2(ρ; ρ0) = D

(
S0W

)
. (3.34)

The asymptotic expansion for H0(krR) is (see Abramowitz & Stegun (1965), for example)

H0(z) = M0 +
2i

π
log z − iz2

2π
log z +M1z

2 +M2z
4 log z +M3z

4 + . . . , z → 0. (3.35)
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for certain coefficients M0, . . . ,M3 which we do not need to specify. Using this in combination
with the relations

∞∑

r=−2

τr =

∞∑

r=−2

τrk
4
r = 0, and

∞∑

r=−2

τrk
2
r = 1/D, (3.36)

which were proved in the Appendix of Porter & Evans (2003) shows that

W (ρ; ρ0) ∼M4 +
R2 logR

8πD
+M5R

2 +M6R
4, R → 0 (3.37)

in terms of coefficients M4,M5,M6 which again do not need to be specified. Thus, the
elevation of the sheet due to a source of point forcing is bounded at the point of the forcing
(as R → 0) since there are no terms proportional to logR. We also note that there is no
term proportional to R4 logR in the expression for W .

With this in mind, we write

W (ρ; ρ0) = Ŵ (ρ; ρ0) +
R2 logR

8πD
(3.38)

where

Ŵ (ρ; ρ0) =
i

4

∞∑

r=−2

τr

(
H0(krR) − 2i

π
logR +

ik2
r

2π
R2 logR

)
(3.39)

now has at least six bounded derivatives as R→ 0.

3.5 Integral equations for the unknown functions P and Q

It remains for us to apply the two conditions at the edges of the crack and this will allow us
to determine P (s0) and Q(s0) and hence the solution everywhere from (3.8). Thus, a careful
application (explained in detail below) of (2.9) to (3.9) gives

− 1

8π
B
(∫

C

P (s0)B0(R
2 logR)ds0

)
+

∫

C

{
P (s0)

(
Bŵ1

)
(ρ; ρ0) +Q(s0)

(
Bw2

)
(ρ; ρ0)

}
ds0 = −

(
Bη0

)
(ρ) (3.40)

and then (2.10) to (3.9) gives

1

8π
S
(∫

C

Q(s0)S0(R
2 logR)ds0

)
+

∫

C

{
P (s0)

(
Sw1

)
(ρ; ρ0) +Q(s0)

(
Sŵ2

)
(ρ; ρ0)

}
ds0 = −

(
Sη0

)
(ρ) (3.41)

both (3.40) and (3.41) holding for ρ ∈ C. The hatted functions ŵ1 and ŵ2 indicate that Ŵ
defined in (3.39) replaces W in the definitions (3.34).

In the derivation of the integral equations above, we have been careful to note that the
compounded application of second and third-order boundary operators {B,S}, {B0,S0} to
the most singular part of the function W (namely R2 logR/(8πD) where R2 = (x − x0)

2 +
(y − y0)

2) is potentially singular. Thus it can be confirmed that B(B0(R
2 logR)) is of order

12
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n0

n
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y

x
Ci

Cj

αi

αj

s0

s

n0

n

Nijn̂0

Sijŝ0

R

Figure 2: Definition of local coordinates on a single crack with curvature and two straight-line
cracks.

R−2 and S(S0(R
2 logR)) is of order R−4, as R → 0 and so the order of differentiation and

integration cannot be interchanged (in the conventional sense) in the first terms of (3.40)
and (3.41), as they have been for the second terms in each equation. It is possible to
formulate hypersingular integral equations in which the differential operator is taken inside
the integral, provided the integral is defined appropriately as a Hadamard finite part integral.
For a detailed discussion of singular integral operators see Martin (2006, chapter 5).

Although the terms B(S0(R
2 logR)) and S(B0(R

2 logR)) also appear to be singular and
of order R−3, in fact they can be shown to be bounded as R→ 0 if, as has been assumed, C
is a smooth curve. Thus, using the expression (3.42) below, it can be shown that ∂R/∂n =
∂R/∂n0 = 0 whilst ∂(logR)/∂n = −∂(logR)/∂n0 = 1

2
θ′(s0) for points on C as R → 0.

The principal difficulty now is in applying boundary operators to functions of R. An
alternative expression for R for a curve C with curvature θ′(s), is

R =

((
−
∫ s

s0

sin θ(ξ)dξ + n cos θ(s) − n0 cos θ(s0)

)2

+

(∫ s

s0

cos θ(ξ)dξ + n sin θ(s) − n0 sin θ(s0)

)2
)1/2

(3.42)

being the relative distance between points (n, s) and (n0, s0), n and n0 measuring the distance
away from, in a direction normal to, C at distances s and s0 (respectively) along C. This
expression for R, is (arguably) the most useful if one wishes to apply the different operators
B0, S0 etc. to the components of the Green function which require that derivatives are taken
in s, s0, n and n0 (noting both n and n0 are ultimately set to zero, when R represents the
distance between two points on C itself).
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An obvious simplification occurs if we take θ′(s) = 0. Indeed, attempting to work with
θ′(s) 6= 0 appears to be frighteningly difficult, at least if one wishes to avoid resorting to
fully numerical methods to solve (3.40) and (3.41).

Henceforth we shall consider cracks which are straight, at some fixed angle θ(s) = α
(measured anti-clockwise from the positive y-direction). This simplifies matters considerably
and nearly every result below takes advantage of θ′(s) = 0. Then (3.42) reduces to

R = {((n− n0) cosα− (s− s0) sinα)2 + ((n− n0) sinα+ (s− s0) cosα)2}1/2.

Also, B = B0, S = −S0 whilst it can be shown (after some algebra) that

∇2(R2 logR) = 4 + 4 logR,
∂2

∂s2
(R2 logR) = (1 + 2 logR + 2R2

s)

where Rs ≡ ∂R/∂s. On C when n = n0 = 0, R = |s − s0| and Rs = sgn(s − s0). Thus we
find that

− 1

8π
(B(B0(R

2 logR))) = − 1

8π

(
−2ν1

∂2

∂s2
∇2 + ν2

1

∂4

∂s4

)
(R2 logR) =

σ

π

∂2

∂s2
log |s− s0|

where σ = 1
4
(1 − ν)(3 + ν) is the same as the quantity defined in Porter & Evans (2006b).

We also find (using ∂2(logR)/∂n2 = −∂2(logR)/∂s2) that

1

8π
(S(S0(R

2 logR))) =
σ

π

∂4

∂s4
log |s− s0|.

Another important relation, which results from choosing θ′(s) = 0 is that ∂R/∂n = −∂R/∂n0 =
0 for n = n0 and for all s, s0 ∈ (−L, L) and this implies that

(
Bw2

)
(ρ; ρ0) =

(
Sw1

)
(ρ; ρ0) = 0

for ρ,ρ0 ∈ C.
Bringing everything together under our simplifying assumption of θ′(s) = 0 allows (3.40)

and (3.41) to be written

σ

π

d2

ds2

∫

C

P (s0) log |s− s0|ds0 +

∫

C

P (s0)
(
Bŵ1

)
(ρ; ρ0)ds0 = −

(
Bη0

)
(ρ) (3.43)

and

σ

π

d4

ds4

∫

C

Q(s0) log |s− s0|ds0 +

∫

C

Q(s0)
(
Sŵ2

)
(ρ; ρ0)ds0 = −

(
Sη0

)
(ρ) (3.44)

for ρ = (x(s), y(s)) ∈ C.

3.6 Multiple cracks

A single straight-line crack and multiple parallel straight-line cracks have already been con-
sidered in the paper of Porter & Evans (2006b). Thus, in order that we use this method in a
novel way, we shall consider the case of N distinct straight-line cracks which are orientated
at arbitrary angles (and are of arbitrary length). This requires a slight modification to the
formulation for the single crack previously presented.
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In the case of N cracks, labelled Ci, i = 1, 2, . . . , N , the integral representation of the
solution is found by superposition

φ(r) = φ0(r) +

N∑

i=1

∫

Ci

{
Pi(s0)ψ1(r; ρ0) +Qi(s0)ψ2(r; ρ0)

}
ds0 (3.45)

with corresponding surface elevation

η(ρ) = η0(ρ) +

N∑

i=1

∫

Ci

{
Pi(s0)w1(ρ; ρ0) +Qi(s0)w2(ρ; ρ0)

}
ds0. (3.46)

Now the 2N functions Pi(s0) and Qi(s0), i = 1, 2, . . . , N represent the jumps in gradient and
elevation across each of the N cracks.

Application of the boundary conditions at each of the cracks gives 2N coupled integral
equations for the 2N unknowns,

σ

π

d2

ds2

∫

Cj

Pj(s0) log |s− s0|ds0 +

∫

Cj

Pj(s0)
(
Bŵ1

)
(ρ; ρ0)ds0

N∑

i=1
6=j

∫

Ci

{
Pi(s0)

(
Bw1

)
(ρ; ρ0) +Qi(s0)

(
Bw2

)
(ρ; ρ0)

}
ds0 = −

(
Bη0

)
(ρ) (3.47)

and

σ

π

d4

ds4

∫

Cj

Qj(s0) log |s− s0|ds0 +

∫

Cj

Qj(s0)
(
Sŵ2

)
(ρ; ρ0)ds0

N∑

i=1
6=j

∫

Ci

{
Pi(s0)

(
Sw1

)
(ρ; ρ0) +Qi(s0)

(
Sw2

)
(ρ; ρ0)

}
ds0 = −

(
Sη0

)
(ρ) (3.48)

for ρ ∈ Cj, j = 1, . . . , N .

4 Reduction of the integral equations to an algebraic

system of equations

The principal difficulty, already alluded to earlier, is in applying the boundary operators
B0, S0 etc... to the Green function, W . This is still the case even after having made the
simplifying assumption that each crack is straight.

The function W is a sum over Hankel functions of argument kR (here k ≡ kr for brevity).
We find the integral representation of the Hankel function useful in what follows,

H0(kR) =
1

iπ

∫ ∞

−∞

eilY e−λ|X|

λ(k, l)
dl (4.1)

where λ(k, l) = (l2−k2)1/2 = −i(k2 − l2)1/2 and R = |ρ−ρ0|, where ρ = (x, y), ρ0 = (x0, y0)
and X = x − x0, Y = y − y0. To be consistent with earlier work in this paper and to keep
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the notation as simple as possible, variables with subscript zero will be associated with the
crack Ci and those without with crack Cj. We write the vector ρ−ρ0 in terms of coordinates
(n0, s0) local to Ci

ρ − ρ0 = Xn̂0 + Y ŝ0

where n̂0 and ŝ0 are unit vectors aligned with the positive n0 and s0 directions, and the
previous definitions of X and Y have been replaced with

X = Nij − n0 + s sinAij + n cosAij

Y = Sij − s0 + s cosAij − n sinAij

}
, Aij = αi − αj (4.2)

where Nijn̂0 + Sij ŝ0 is the vector from the centre of crack Ci (at an angle αi) to crack Cj

(at an angle αj) in terms of coordinates local to crack Ci. Angles of the cracks are measured
counterclockwise from the positive y direction – see figure 2. Then

(B(B0(H0(kR)))) =
1

iπ

∫ ∞

−∞

f11(k, l, Aij)
eil(Sij−s0+s cos Aij)e−λ|Nij+s sin Aij |

λ
dl (4.3)

where
f11(k, l, A) = (k2 − ν1l

2)(k2 − ν1(l cosA± iλ sinA)2). (4.4)

Henceforth the upper/lower signs indicate that the quantity Nij+s sinAij is positive/negative
for all s ∈ [−Lj , Lj] (in other words ± can be replaced with sgn(Nij) and ∓ by −sgn(Nij)).
This imposes a geometric restriction, that the extension of any one crack cannot intersect any
other crack. Note that only once the appropriate operators have been applied, are n and n0

set to zero so that ρ0 ∈ Ci and ρ ∈ Cj. Note also that if αi = αj (either because s and s0 are
identified with the same crack, or because cracks are parallel) then f11(k, l, 0) = (k2 − ν1l

2)2.
We also have corresponding expressions for the compound operators B(S0), S(B0), S(S0)

acting on H0(kR) with the functions f12, f21 and f22 (respectively) taking the place of f11

in (4.3). Then we find

f12(k, l, A) = ±λ(k2 − ν1(l cosA± iλ sinA)2)(k2 + ν1l
2) (4.5)

f21(k, l, A) = −i(l sinA∓ iλ cosA)(k2 − ν1l
2)(k2 + ν1(l cosA± iλ sinA)2) (4.6)

and

f22(k, l, A) = ∓iλ(l sinA∓ iλ cosA)(k2 + ν1l
2)(k2 + ν1(l cosA± iλ sinA)2). (4.7)

As before, considerable simplification occurs if αi = αj.
Next, the unknown functions are expanded in an appropriate set of basis functions.

According to (2.22) Pi(s)/(L
2
i −s2)1/2 andQi(s)/(L

2
i −s2)3/2, are bounded for all s ∈ [−Li, Li]

and can therefore be expanded in a complete set in L2[−Li, Li]. Thus we write

Pi(s0) =
(L2

i − s2
0)

1/2

L3
i

∞∑

n=0

a(i)
n

einπ/2

(n+ 1)
Un(s0/Li), s0 ∈ (−Li, Li) (4.8)

and

Qi(s0) =
2(L2

i − s2
0)

3/2

L4
i

∞∑

n=0

b(i)n

einπ/2

(n + 1)(n+ 2)(n+ 3)
C(2)

n (s0/Li), s0 ∈ (−Li, Li) (4.9)
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where the coefficients a
(i)
n , b

(i)
n , for i = 1, 2, . . . , N are to be determined and Un, C

(2)
n are the

Chebychev polynomial of the second kind and the ultraspherical Gegenbauer polynomial,
respectively. The extra normalising factors are included in (4.8) and (4.9) for later algebraic

convenience and also to ensure that a
(i)
n and b

(i)
n are dimensionless (according to the definition

of η, the dimensions of Pi and Qi are inverse length squared and inverse length respectively).
The particular choice of orthogonal polynomials are made because of their association

with the weighting functions in (4.8) and (4.9). In particular, they satisfy the orthogonality
relationships ∫ Li

−Li

(L2
i − s2

0)
1/2Un(s0/Li)Um(s0/Li)ds0 = 1

2
πL2

i δmn; (4.10)

∫ Li

−Li

(L2
i − s2

0)
3/2C(2)

n (s0/Li)C
(2)
m (s0/Li)ds0 = 1

8
πL4

i (m+ 3)(m + 1)δmn. (4.11)

Expansions similar to (4.8), (4.9) were used by Porter & Evans (2006b) following An-

dronov & Belinksii (1995) who noted that the functions Un and C
(2)
n may be regarded as the

eigenfunctions of the singular parts of the integral equations in the sense that they satisfy

d2

ds2

∫ Li

−Li

ln |s− s0|(L2
i − s2

0)
1/2Un(s0/Li)ds0 = π(n + 1)Un(s/Li) (4.12)

and

− d4

ds4

∫ Li

−Li

ln |s− s0|(L2
i − s2

0)
3/2C(2)

n (s0/Li)ds0 = π(n + 3)(n+ 2)(n+ 1)C(2)
n (s/Li) (4.13)

for s ∈ (−Li, Li). These are crucial results which allow the hypersingular integrals (as Martin
(2006) calls them) to be evaluated explicitly.

Also needed in making the required calculations that follow are the results

∫ Li

−Li

eius0(L2
i − s2

0)
1/2Un(s0/Li)ds0 =

einπ/2(n+ 1)πL2
i

Liu
Jn+1(Liu) (4.14)

and

∫ Li

−Li

eius0(L2
i − s2

0)
3/2C(2)

n (s0/Li)ds0 =
einπ/2(n + 3)(n+ 2)(n+ 1)πL4

i

2(Liu)2
Jn+2(Liu) (4.15)

(see for example, Gradshteyn & Ryzhik (1981)) where Jn is the Bessel function.
Finally, it can be shown, starting with the integral representation of the logarithm,

log |x| =
1

2

∫ ∞

−∞

e−|t| − eitx

|t| dt

that
d2

ds2

∫ L

−L

u(s0) log |s− s0|ds0 =
1

2

∫ ∞

−∞

|l|
∫ L

−L

u(s0)e
il(s−s0)ds0dl (4.16)

and

− d4

ds4

∫ L

−L

u(s0) log |s− s0|ds0 =
1

2

∫ ∞

−∞

l2|l|
∫ L

−L

u(s0)e
il(s−s0)ds0dl (4.17)
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for suitable functions u such that the integrals exist.
Using these results, we can implement the following procedure – the details of the calcu-

lation are lengthy, but tedious and will therefore be omitted. Thus, we first substitute the
expansions (4.8) and (4.9) into (3.47) and (3.48). The definitions of w1, w2 and their hatted

versions defined by (3.34) with W , Ŵ defined by (3.32) and (3.39) are simultaneously in-
serted into (3.47) and (3.48), where the representations (4.3) to (4.7) are used. The equation
representing what was originally (3.47) is multiplied by the function Um(s/Lj) and what

started out as (3.48) is multiplied by C
(2)
m (s/Lj) and both are integrated between −Lj and

Lj. The various results (4.10)–(4.17) quoted above allow all the integrals over the cracks to
be performed analytically.

The procedure outlined above is actually nothing more than the Rayleigh-Ritz/Galerkin
method to the integral equations in which the residual is made orthogonal to the space
spanned by Pi(s) and Qi(s). If, as is here, the set of functions used in the expansion
of Pi(s) and Qi(s) are complete in the appropriate space, then the residual must be zero
and the integral equations for unknowns Pi and Qi have been replaced with an infinite
algebraic system of equations for unknown expansion coefficients a

(i)
n and b

(i)
n . Numerically,

the infinite system of equations is truncated and the solution of the finite system is then
only an approximation to the solution of the integral equations.

The system of equations that result from this process is written

σ

(m+ 1)
a(j)

m +

∞∑

n=0

a(j)
n K

(11)
jjmn +

N∑

i=1
6=j

∞∑

n=0

{
a(i)

n K
(11)
ijmn + b(i)n K

(12)
ijmn

}
= G

(1)
jm (4.18)

and

− σ

(m + 2)
b(j)m +

∞∑

n=0

b(j)n K
(22)
jjmn +

N∑

i=1
6=j

∞∑

n=0

{
a(i)

n K
(21)
ijmn + b(i)n K

(22)
ijmn

}
= G

(2)
jm. (4.19)

It will take some time to define all the coefficients occurring in the above two equations.
First

K
(11)
ijmn = −

DL3
j

2Li

∫ ∞

−∞

∞∑

r=−2

τr
f11(kr, l, Aij)

λ(kr, l)
exp{ilSij − λ(kr, l)|Nij|)}

×Jn+1(Lil)Jm+1(Lj(l cosAij ± iλ(kr, l) sinAij))

(Lil)(Lj(l cosAij ± iλ(kr, l) sinAij))
dl.

If i = j, then Ajj = 0 and Njj = Sjj = 0 so that

K
(11)
jjmn = L2

j

∫ ∞

−∞

{
−D
2

∞∑

r=−2

τr

(
f11(kr, l, 0)

λ(kr, l)
− ν2

1 l
2|l|
)
− σ|l|

}
Jn+1(Ljl)Jm+1(Ljl)

(Ljl)(Ljl)
dl

(4.20)
in which terms included within the brackets are O(1/|l|3) and the integrand decays like 1/l6

as |l| → ∞. The addition of the term σ|l| is responsible for this decay and is derived from

the term R2 logR which is included in the definition of Ŵ . The term ν2
1 l

2|l| has zero net
contribution to the sum, on account of the relation (3.33). Its appearance is as a direct
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result of the term proportional to the logR term in the definition of Ŵ and makes the decay
of the series explicit.

From Gradshteyn & Ryzhik (1981, §6.538) we have
∫ ∞

−∞

Jn(Ljl)Jm(Ljl)

|l| dl =
δmn

m
, m = 1, 2, . . . (4.21)

which can be used to confirm that the first term in (4.18) is cancelled by the σ|l| term in
(4.20) and is an alternative view on the addition and subtraction of the R2 logR term in the

definition of Ŵ .
Next, we have

K
(12)
ijmn =

DL3
j

2

∫ ∞

−∞

∞∑

r=−2

τr
f12(kr, l, Aij)

λ(kr, l)
exp{ilSij − λ(kr, l)|Nij|}

×Jn+2(Lil)Jm+1(Lj(l cosAij ± iλ(kr, l) sinAij))

(Lil)2(Lj(l cosAij ± iλ(kr, l) sinAij))
dl.

Then,

K
(21)
ijmn = −

DL4
j

2Li

∫ ∞

−∞

∞∑

r=−2

τr
f21(kr, l, Aij)

λ(kr, l)
exp{ilSij − λ(kr, l)|Nij|}

×Jn+1(Lil)Jm+2(Lj(l cosAij ± iλ(kr, l) sinAij))

(Lil)(Lj(l cosAij ± iλ(kr, l) sinAij))2
dl

and

K
(22)
ijmn =

DL4
j

2

∫ ∞

−∞

∞∑

r=−2

τr
f22(kr, l, Aij)

λ(kr, l)
exp{ilSij − λ(kr, l)|Nij|}

×Jn+2(Lil)Jm+2(Lj(l cosAij ± iλ(kr, l) sinAij))

(Lil)2(Lj(l cosAij ± iλ(kr, l) sinAij))2
dl.

For i = j in the last equation, we get

K
(22)
jjmn = L4

j

∫ ∞

−∞

{
D

2

∞∑

r=−2

τr

(
f22(kr, l, 0)

λ(kr, l)
− ν2

1 l
4|l|
)

+ σl2|l|
}
Jn+2(Ljl)Jm+2(Ljl)

(Ljl)2(Ljl)2
dl

(4.22)
where again the presence of the term σl2|l| is on account of the R2 logR term and (4.21) can
be used to show that its contribution directly cancels the first term of (4.19). The integrand
in (4.22) decays like 1/l6 as |l| → ∞.

Finally, the right-hand side terms in (4.18), (4.19) which are derived from the forcing
from the incident wave are given by

G
(1)
jm = 2k2

0L
3
j(1 − ν1 sin2(ϕ− αj))Y

′
0(0)

×exp{ik0(xj cosϕ+ yj sinϕ)}Jm+1(k0Lj sin(ϕ− αj))

k0Lj sin(ϕ− αj)
(4.23)

and

G
(2)
jm = 2ik3

0L
4
j(1 + ν1 sin2(ϕ− αj)) cos(ϕ− αj)Y

′
0(0)

×exp{ik0(xj cosϕ+ yj sinϕ)}Jm+2(k0Lj sin(ϕ− αj))

(k0Lj sin(ϕ− αj))2
(4.24)

19



y

xϑ

ρ

βi

Ri

(xi, yi)

Li

Rs0

n0

αi

(x, y)

Ci

Figure 3: Geometrical description of the position of a crack relative to the origin.

where the centre of the jth crack, angled at αj to the positive y-axis and of length Lj, is
at (xj, yj) with respect to the fixed Cartesian origin. As a reminder, ϕ is the angle of the
incident wave measured from the positive x-axis.

All the elements of the coupled systems of equations in (4.8), (4.9) are dimensionless,
and it should be noted that the integration variable l has dimensions of a wavenumber.

The system of equation coincides exactly with that of Porter & Evans (2006b) in the case
where αi = 0 for all i = 1, . . . , N .

5 Properties of the solution

5.1 Plate elevation and far field diffracted waves

Here, we are interested in the behaviour of the diffracted wave elevations on the elastic plate,
given by

lim
ρ→∞

φd(r) = lim
ρ→∞

(φ(r) − φ0(r)) =

√
2π

kρ
A(ϑ;ϕ)ei(kρ−π/4)Y0(z) (5.1)

where ρ = |ρ| =
√
x2 + y2, (x, y) = ρ(cosϑ, sin ϑ). Here, A(ϑ;ϕ) is the diffraction coefficient

(or directivity) measuring the circular wave amplitude in the direction ϑ due to an incident
wave travelling at an angle ϕ. Of course, ηd = ∂φd/∂z|z=0.

We use the integral representation given by (3.8) assuming that the functions Pi and Qi

are given by (4.8), (4.9) and the coefficients have been found from solving the linear system
of equations (4.18) and (4.19). First, we align coordinate axes with the ith crack, so that
the relative vector Xn̂0 + Y ŝ0 between two points, one based on the crack itself is

X = ρ cos(ϑ− αi) −Ri cos(βi − αi) − n0, Y = ρ sin(ϑ− αi) − Ri sin(βi − αi) − s0

where (xi, yi) = Ri(cos βi, sin βi) are the polar coordinates to the centre of the ith crack,
angled αi to the positive y-direction. The variable s0 ∈ (−Li, Li) measures the distance

20



along that crack, n0 will eventually be set to zero once the differential operators have been
applied. This is used in (4.1) so that

(B0H0(kR)) =
1

πi

∫ ∞

−∞

g1(k, l)

λ
exp{iρ(l sin(ϑ− αi) ± iλ cos(ϑ− αi))}

×exp{−iRi(l sin(βi − αi) ± iλ cos(βi − αi))}e−ils0dl

where
g1(k, l) = −(k2 − ν1l

2)

and, as before the upper/lower signs correspond to the sign of the quantity ρ cos(ϑ− αi) −
Ri cos(βi − αi), which measures if the field point is to the ‘right’ or ‘left’ (in terms of the
local coordinates) of the ith crack.

The corresponding expression for (S0H0(kR)) is as above, but with g1 replaced by

g2(k, l) = ∓λ(k2 + ν1l
2).

After some algebra, we find that

φd =
D

4

N∑

i=1

{
∞∑

n=0

a(i)
n U

(i)
n (ρ, ϑ, z) +

∞∑

n=0

b(i)n V
(i)
n (ρ, ϑ, z)

}
(5.2)

where

U (i)
n (ρ, ϑ, z) = − 1

Li

∞∑

r=−2

Y ′
r (0)Yr(z)

Cr

∫ ∞

−∞

g1(kr, l)

λ(kr, l)
exp{iρ(l sin(ϑ− αi) ± iλ(kr, l) cos(ϑ− αi))}

×exp{−iRi(l sin(βi − αi) ± iλ(kr, l) cos(βi − αi))}
Jn+1(Lil)

Lil
dl

and

V (i)
n (ρ, ϑ, z) =

∞∑

r=−2

Y ′
r (0)Yr(z)

Cr

∫ ∞

−∞

g2(kr, l)

λ(kr, l)
exp{iρ(l sin(ϑ− αi) ± iλ(kr, l) cos(ϑ− αi))}

×exp{−iRi(l sin(βi − αi) ± iλ(kr, l) cos(βi − αi))}
Jn+2(Lil)

(Lil)2
dl.

The expressions above can be used to define the elevation of the elastic plate throughout
the entire (x, y) domain. In order to determine the far field wave amplitudes, we make a
change of integration variable, writing l = k0 sinw and hence λ(k0, l) = −ik0 cosw. The
contour of integration in the complex w-plane is chosen to lie along the three line segments
{−1

2
π + i∞ < w < − 1

2
π} ∪ {−1

2
π < w < 1

2
π} ∪ {1

2
π < w < 1

2
π − i∞}. Then,

U (i)
n (ρ, ϑ, z) ∼ − iY ′

0(0)Y0(z)

LiC0

∫
g1(k0, k0 sinw)exp{±ik0ρ cos(ϑ− αi ∓ w)}

×exp{∓ik0Ri cos(βi − αi ∓ w)}Jn+1(k0Li sinw)

k0Li sinw
dw

where we have anticipated the fact that the r = 0 propagating mode will have the dominant
effect in the far field. The dominant contribution from the integral, in the limit as ρ → ∞
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is given by the saddle point method, which finds the stationary point to be at w = ϑ − αi

for −1
2
π < ϑ− αi <

1
2
π and w = π − ϑ + αi for 1

2
π < ϑ− αi <

3
2
π. Then,

U (i)
n (ρ, ϑ, z) ∼

√
2π

k0ρ
ei(k0ρ−π/4)

{
−iY ′

0(0)Y0(z)

LiC0
g1(k0, k0 sin(ϑ− αi), αi)

×exp{−ik0Ri cos(βi − ϑ)}Jn+1(k0Li sin(ϑ− αi))

k0Li sin(ϑ− αi)

}
(5.3)

Similarly, we find

V (i)
n (ρ, ϑ, z) ∼

√
2π

k0ρ
ei(k0ρ−π/4)

{
∓ Y ′

0(0)Y0(z)

C0
g2(k0, k0 sin(ϑ− αi), αi)

×exp{−ik0Ri cos(βi − ϑ)}Jn+2(k0Li sin(ϑ− αi))

(k0Li sin(ϑ− αi))2

}
(5.4)

These expressions are bounded at ϑ = αi, a fact which follows from the behaviour of the
Bessel functions for small argument.

It follows from using (5.3) and (5.4) in (5.2) with (5.1) that

A =
DY ′

0(0)

4C0

N∑

i=1

e−ik0Ri cos(βi−ϑ)

∞∑

n=0

{
a

(i)
n

Li
g1(k0, k0 sin(ϑ− αi))

Jn+1(k0Li sin(ϑ− αi))

k0Li sin(ϑ− αi)

∓b(i)n g2(k0, k0 sin(ϑ− αi))
Jn+2(k0Li sin(ϑ− αi))

(k0Li sin(ϑ− αi))2

}
.

Finally, a comparison with (4.23) and (4.24) reveals that a much more compact expression
for the diffracted wave field exists

A(ϑ;ϕ) = − D

8C0

N∑

i=1

∞∑

n=0

{
a

(i)
n

(
G

(1)
in

)∗

L4
i

+
b
(i)
n

(
G

(2)
in

)∗

L4
i

}

where ∗ denotes complex conjugation.
A check on the numerical procedure is provided by the conservation of energy relation

(see Porter & Evans (2006b), for example),

Σ =
1

2π

∫ 2π

0

|A(ϑ;ϕ)|2dϑ = − 1

π
<{A(ϕ;ϕ)} (5.5)

where Σ is called the scattering cross-section. It is likely, (although it has not been proved)
that this energy relation is satisfied automatically by any approximation (i.e. any truncation
of the infinite system of the equations).

5.2 Stress intensity factors

At the ends of each of the cracks, an important quantity to consider is the stress intensity
factor (SIF), a measure of the magnitude of the lateral stresses acting at the crack tip.
According to linear elastic theory, the stresses are singular at the tip (in reality, no singularity
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would exist and there would be a small region of plastic deformation at the tip), and so the
SIF is defined to be a multiplicative factor associated with that singularity. Thus, we define,

K± = lim
s→±L±

i

√
±2π(s− L±

i )σn(s)

in which the definition of s is extended outside the interval [−Li, Li] so that the limit is taken
approaching the ends of the cracks from within the elastic plate. The stress in a direction
normal to the direction of the crack is given by

σn(s) =
Ed

2(1 − ν2)

(
ν
∂2η

∂s2
+
∂2η

∂n2

)

evaluated at its maximum on the upper and lower surfaces of the plate. A prolonged calcu-
lation, the details of which can be found in Porter & Evans (2006b) for the case of parallel
straight line cracks gives an identical result to Porter & Evans (2006b), namely

K±
i = i

√
π

Li

Ed(3 + ν)

8(1 + ν)L2
i

∞∑

n=0

a(i)
n e±inπ/2.

This is not surprising, since the SIF is dominated by the effects local to the crack itself, and so
its orientation and proximity with respect to other cracks will not feature in this expression.
It is also worthy of note that the SIF can be seen to be proportional to the rate of change
of the jump in elevation along the crack. Thus, using the property, Un(±1) = (n+ 1)(±1)n,
of the Chebychev polynomial shows that

Pi(s) ∼
(L2

i − s2)1/2

L3
i

∞∑

n=0

a(i)
n e±inπ/2, as s→ −L+

i , L
−
i .

6 Numerical procedure and results

The majority of the computational effort goes into the calculation of the infinite integrals
K

(11)
ijmn etc. The main aim has been to compute these integrals to an 8 decimal place accuracy

using a simple 10-point Gaussian quadrature rule. When i 6= j, the integrals are very easy to
compute since they have an exponential factor (which is exponential in both the integration
variable l and the summation index r) to assist convergence. The rate of exponential decay
is determined by the minimum distance between any two points on a crack, as projected
normal to the crack (the value of |Nij| − Lj| sinAij|).

The most difficult integrals to compute are K
(11)
jjmn and K

(22)
jjmn whose convergence is not

assisted by exponential decay, but nevertheless have integrands which decay like 1/l6. Thus,
it was found that sufficient accuracy was obtained by truncating infinite integrals to the
range −2 < l < 2 and choosing 10000 Guass points. The infinite series in r was truncated
to a maximum of 2000, although this figure was only ever needed for i = j when there was
no assisted convergence from exponential decay.

The remaining parameter that ultimately determines the accuracy of the scheme is the
level of truncation of the infinite system of equations (4.18) and (4.19). The choice of
truncation size required for a desired level of accuracy depends upon the ratio of wavelength
to the length of a crack. This is because the oscillations along the crack, which increase with
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Figure 4: Diffraction coefficient A(ϑ;ϕ) for two cracks in a right-angled V formation – see
text for parameters: (a) λ = 200m; (b) λ = 100m; (c) λ = 50m.

the ratio of length of crack to wavelength, need a sufficient number of functions to model
them accurately. Experimentation has shown that the truncation size should be determined
by the value of the integer part of maxi{k0Li}. For example, a wavelength of 100m impinging
on a series of cracks of maximum length 200m would require truncation to six terms in the
series for five decimal place accuracy in the solution, whereas a wavelength of 200m would
only require three terms for the same accuracy. Thus the truncated versions of equations
(4.18) and (4.19) represent a relatively small system of equations which can be solved quite
efficiently.

The energy relation (5.5) is used to check the results although it gives no indication of
the accuracy of the method because the integral in (5.5) is approximated numerically (also
see remarks made after (5.5). When there is only one crack, or there are multiple parallel
cracks, we recover the results of Porter & Evans (2006b), although this is expected since
the formulation of the system of equations is identical to that of Porter & Evans (2006b) in
these cases. We shall therefore focus results on multiple, non-parallel crack configurations.

The physical parameters used are as follows (these are typical values used for sea ice).
So E = 5 × 109Pa, ν = 0.3, ρw = 1025kgm−3, ρi = 925.5kgm−3, g = 9.81ms−2 We shall
perform all calculations with an ocean depth of h = 40m and for an ice thickness of d = 1m;
results for larger depths are almost identical to results for this depth whilst the qualitative
aspects are altered only very slightly with different values of d.

In figure 4 we show typical results for the diffraction coefficient A(ϑ;ϕ) measuring the
wave amplitude factor of outgoing waves in the direction ϑ due to an incident wave propa-
gating at ϕ. The arrangement considered in figure 4 are for waves of wavelength (a) 200m,
(b) 100m and (c) 50m impinging on two cracks with geometric parameters (xi, yi, Li, αi) of:
i = 1 (-80m, 0m, 100m, 135◦), i = 2 (80m, 0m, 100m, 45◦). The cracks are thus of length
200m and are at 90◦ to one another, roughly forming a V. The symmetry of the configuration
implies that we need only consider −90◦ < ϕ < 90◦. What can be noticed is that there are
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Figure 5: Snapshot of the ice sheet elevation for two cracks (xi, yi, Li, αi) of: i = 1 (-20m,
0m, 100m, 0◦), i = 2 (20m, 0m, 100m, 10◦) and ϕ = 45◦, λ = 50m.
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Figure 6: Plan view of a snapshot of the ice sheet elevation for two cracks (xi, yi, Li, αi)
of: i = 1 (-110m, 0m, 100m, 100◦), i = 2 (110m, 0m, 100m, 80◦) and ϕ = 70◦, λ = 50m.
Light/dark shading represent peaks/troughs.

large peaks in the diffraction due to reflection (and to a lesser extent transmission) of the
plane waves from the straight cracks, which become more pronounced as the wavelength
decreases and little sign of interaction between the cracks resulting in any other significant
peak in the diffraction coefficient.

In figure 5 we show a snapshot in time of the wave elevation on the ice sheet for two cracks
angled at 10◦ to one another – see figure caption for details. The surface elevation data is
generated on a Cartesian grid, which is awkward to resolve on cracks which are not aligned
with the x or y axes. Convention dictates that the incident wave is set at unit amplitude.
The largest amplitudes throughout a period of incident wave are found at the leeward edge
of the left-hand crack, being approximately four.

A plan view of the wave field in the presence of two cracks of a different configuration is
shown in figure 6. In this example, in which there is a small (≈ 20m) gap between two slightly
out-of-line cracks each of length 200m, the diffracted wave pattern can clearly be seen. There
is substantial reflection from the two cracks, giving rise to quite large amplitudes (up to four)
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Figure 7: Snapshot of the ice sheet elevation for four cracks (xi, yi, Li, αi) of: i = 1 (-60m,
-93m, 100m, 100◦), i = 2 (60m, -31m, 100m, 80◦), i = 3 (-60m, 31m, 100m, 100◦), i = 4
(60m, 93m, 100m, 80◦) and ϕ = 90◦, λ = 100m.

along the front faces of the cracks. This is unsurprising since the reflection coefficient for
an infinitely long straight-line crack at this wavelength is close to unity (see Evans & Porter
(2003), for example). There is little response from the ice sheet in the small gap between
the cracks although a circular wave front can be observed propagating outwards from the
gap on the leeward side in addition to the circular waves transmitted from the outer edges
of the two cracks.

Figure 7 provides another snapshot for an arrangement of four nearly parallel cracks
under beam incidence. Again, the cracks are all 200m in length and the wavelength is
chosen to be 100m. Here the response in elevation in the region around the cracks is quite
large, being up to five times the incident wave height.

In the last two figures, ??(a) and (b) stress intensity factors are presented as a function
of wavenumber k0 (2π/wavelength).

7 Conclusions

In this paper, we have considered the scattering of plane flexural gravity waves in ice sheets
on water by narrow cracks of arbitrary shape. The main result has been to show that the
solution of the problem may be expressed in terms of functions which are determined as
the solution of a coupled system of integro-differential equations. Two key difficulties have
been identified with the computation of numerical solutions to these equations the case
of general-shaped cracks. The first is how to treat the component of the equations which
contains the integro-differential operator and the second is how to compute the bounded
parts of the kernels, which are defined to be complicated differential operators associated
with the edge conditions on the cracks applied twice to a non-trivial Green function. It is
possible that both difficulties may be overcome by using a fully numerical scheme to solve the
integro-differential equations although this would appear to be non-trivial and has not been
considered further in this paper. Instead, we have focused on multiple straight-line cracks
of arbitrary orientation and have shown in this case that both difficulties can be overcome
although the details are somewhat complicated. A key part of the success of the approach
we have used is to expand the unknown functions in the space of functions which include
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the correct behaviour at the end points of the cracks. We have also made use of an integral
representation of the Green function and changes in coordinate systems to assist in the
application of the fourth to sixth order differential operators. The system of equations that
are derived and the numerical results we have computed match up with those independently
computed for parallel straight-line cracks in Porter & Evans (2006b).

When the density of the fluid, ρw is set to zero, one the problem is reduced to that
of flexural wave diffraction with cracks in a thin elastic sheet in vacuo. In this case, the
dispersion relation is reduced to k4 = ρidω

2/F where F = Ed3/(12(1 − ν2)) is the flexural
rigidity of the sheet. The two independent roots are k = (ρidω

2/F )1/4 and ik. The Green
function, W (ρ; ρ0), defined in (3.32) is replaced with

W =
i

8k2D
(H0(kR) −H0(ikR))

where R = |ρ− ρ0| (see Norris & Vermula (1995), eqn.(28)) which can be derived by taking
Fourier transforms. As R → 0, it can be shown that

W ∼ i

8k2D
+
R2 logR

8πD
.

That is, the Green function for the in vacuo case has the same properties as the Green
function for the ice sheet but is very much reduced in complexity, being just the difference
of two Hankel functions. It follows that the same methods used in this paper can be applied
to the problem of an elastic plate in vacuo.

It is also anticipated that the methods introduced in this paper should be capable of being
adpated for the simpler case of ‘pinned’ lines in elastic plates, either in vacuo or bounded
by a fluid. Indeed, this problem will be somewhat simpler, as the second and third order
boundary conditions Bη = 0 and Sη = 0 are replaced by η = 0 and ∂η/∂n = 0. A further
extension being considered involves cracks in elastic plates which contain sharp corners or
kinks.

Appendix: The function Ψ

Consider a function Ψ(r; ρ0) which satisfies

∆Ψ = 0, r ∈ W
with ∂Ψ/∂z = 0 on z = −h and

(LΨ)(ρ; ρ0) ≡ (D∇4 + 1 − δ)Ψz|z=0 − κΨ|z=0 = δ(x− x0)δ(y − y0).

This is a Green function for a time-harmonic forcing of unit strength of an ice sheet at a
point ρ0. By taking transforms in x and y in the manner outlined at the beginning of §3,
we readily find that

Ψ(r; ρ0) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

cosh k(z + h)

K(k)
eiα(x0−x)eiβ(y0−y)dαdβ (A.1)

where k2 = α2 + β2. This is the function introduced in the main part of the paper in (3.29)
and K(k) is defined in (2.15). It follows that

Ψ =
1

2π

∫ ∞

0

cosh k(z + h)

K(k)
kJ0(kR)dk (A.2)
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where R = |ρ−ρ0| after making the substitutions α = k cosw, β = k sinw, x−x0 = R cos v,
y − y0 = R sin v and and using the identity

J0(kR) =
1

2π

∫ 2π

0

eikR cos wdw. (A.3)

Following Fox & Chung (1998), we define

f(ζ) =
cosh ζ(z + h)

K(ζ)
(A.4)

where f(ζ) has poles at ζ = ±kr, r = −2,−1, 0, 1, . . .. Then consider the integral, for
ζ 6= ±kr,

1

2πi

∮

C

f(ζ ′)

ζ ′ − ζ
dζ ′ = f(ζ) +

∞∑

r=−2

(
Res(f : kr)

kr − ζ
− Res(f : −kr)

kr + ζ

)
(A.5)

where C is a circular contour whose radius tends to infinity and Res(f : k) denotes the
residue of the function f(ζ) at ζ = k. Setting ζ = 0 in the above gives

1

2πi

∮

C

f(ζ ′)

ζ ′
dζ ′ = f(0) +

∞∑

r=−2

(
Res(f : kr)

kr

− Res(f : −kr)

kr

)
. (A.6)

Now
1

2πi

∮

C

f(ζ ′)

ζ ′
dζ ′ =

1

2πi

∮

C

cosh ζ ′(z + h)

ζ ′K(ζ ′)
dζ ′ = 0

since the integrand is O(k−6) as |k| → ∞. We can use the fact that Res(f : kr) = cosh kr(z+
h)/K ′(kr) = Yr(z)/K

′(kr) where K ′(ζ) = −K ′(−ζ) so show that Res(f : kr) = −Res(f :
−kr). This results in the identity

f(0) = −2
∞∑

r=−2

Res(f : kr)

kr

(A.7)

which translates to
∞∑

r=−2

Yr(z)Y
′
r (0)

k2
rCr

= 1

once f(0) = −1 and K ′(kr) = 2krCr/Y
′
r (0), with Cr defined by (2.17) have been used.

Subtracting (A.6) from (A.5) gives

ζ

2πi

∮

C

f(ζ ′)

ζ ′(ζ ′ − ζ)
dζ ′ = f(ζ) +

∞∑

r=−2

2krRes(f : kr)

k2
r − ζ2

and now it can be shown that the left-hand side vanishes (Fox & Chung (1998)) so that
finally,

f(ζ) =
∞∑

r=−2

2krRes(f : kr)

ζ2 − k2
r

Returning to the definition of f in (A.4) and substituting into (A.3) and (A.2) we have

Ψ =
1

π

∞∑

r=−2

kr cosh kr(z + h)

K ′(kr)

∫ ∞

0

kJ0(kR)

k2 − k2
r

dk
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and the integral can be evaluated explicitly (see Abramovitz & Stegun (1965)) to 1
2
πiH0(krR)

where H0(x) denotes the Hankel function of the first kind to give

Ψ =
i

4

∞∑

r=−2

Yr(z)Y
′
r (0)

Cr
H0(krR)

after substituting for K ′(kr).
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