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Metastructures composed of closely-spaced plate array have been widely used in bespoke8
manipulation of waves in contexts of acoustics, eletromagnetics, elasticity and water waves.9
This paper is focused on scattering of waves by discrete plate array metasctructures10
of arbitrary cross section, including isolated vertical metacylinders, periodic arrays, and11
horizontal surface-piercing metacylinders. A suitable transform-based method has been12
applied to each problem to reduce the influence of barriers in a two-dimensional problem to13
a set of points in a one-dimensional wave equation wherein the solution is constructed using14
a corresponding Green’s function. A key difference from the existing work is the use of an15
exact description of the plate array rather than an effective medium approximation, enabling16
the exploration of wave frequencies above resonance where homogenisation models fail but17
where the most intriguing physical findings are unravelled. The new findings are particularly18
notable for graded plate array metasctructures that produce a dense spectrum of resonant19
frequencies, leading to broadband “rainbow reflection” effects. This study provides new ideas20
for the design of structures for the bespoke control of waves with the potential for innovative21
solutions to coastal protection schemes or wave energy converters.22

Key words: Wave-structure interactions; plate-arrays; rainbow reflection; graded metamate-23
rials24

1. Introduction25

Structures comprised of closely-spaced parallel arrays of thin plates are useful devices in the26
bespoke manipulation of waves in several physical settings including acoustics (Zhu et al.27
2013; Jan & Porter 2018; Porter 2021; Bravo & Maury 2023), electromagnetics (Putley et al.28
2022, 2023), elasticity (Colombi et al. 2016; Colquitt et al. 2017; Ponti et al. 2022) and water29
waves (Kucher et al. 2023; Zheng et al. 2020; Porter et al. 2022; Wilks et al. 2022; Zheng30
et al. 2024). The key underpinning feature in all such applications is how flux is restricted by31
the narrow channels between adjacent plates in the device, compared to the isotropic nature32
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of propagation in the surrounding medium. The wavelength is thus implicitly assumed to33
be much larger than the characteristic separation between adjacent plates. This contrast in34
lengthscales and the unusual wave phenomena, such as negative refraction (Porter 2021),35
that can result from the anisotropy has led to such plate-array devices being classified as36
a type of metamaterial (Maier 2017). Additionally, the finite length of the channels within37
compact devices means that they typically support local resonant modes thereby allowing38
small devices (less than a wavelength, say, in size) to have a disproportionately large effect39
on the external wavefield (Zheng et al. 2020).40

Owing to the contrast in scales, several studies have investigated the effect of plate-array41
metastructures on waves by replacing the discrete structure of the plate array with an effective42
medium after implementing a low-frequency homogenisation approach. This allows wave43
interaction with plate-array devices having certain simple geometrical shapes to be analysed44
using established mathematical techniques for solving partial differential equations. For45
example, rectangular and cylindrical structures lend themselves to separation methods (e.g. as46
considered in Porter (2021), Zheng et al. (2020)) and, in rare cases, mathematical methods can47
be applied to more complex geometries (e.g. Jan & Porter (2018) who considered a trapezoidal48
plate-array cavity in a waveguide wall). One of the restrictions of homogenisation, however,49
is that it does not apply close to internal channel resonance where local effects destroy the50
assumption of a contrast in scales. Thus, it has been shown in Putley et al. (2022) and51
Jan & Porter (2018) for example that the problems become ill-posed in frequency intervals52
where resonance is present on account of the assumptions of low-frequency homogenisation53
having been violated. Problems can be regularised by the introduction of a small amount of54
dissipation (as in Jan & Porter (2018); Zheng et al. (2020)) into the effective field equations,55
but this “sticking-plaster approach” overlooks the precise nature of the influence of the local56
channel scale.57

In this paper we present a methodology which allows us to investigate wave interaction58
with structures comprised of discrete plate-arrays; that is without the homogenisation. Such59
an approach is not new: see Porter (2021) who used Fourier transform methods to compare60
wave scattering by an infinitely-long rectangular strip filled with a periodic array of tilted61
plates with the equivalent homogenisation theory. Resonant amplification is not encountered62
in this problem and the discrete plate array description was shown to converge rapidly to63
the homogenised description with near-identical results for the far-field scattered amplitudes64
when the channel width to length ratio fell below 0.1. Experimental results of Kucher et al.65
(2023) also supported this conclusion. The idea of using Fourier transforms also underpins the66
current work where the focus is on methods for determining wave scattering by more general,67
non-regular, metastructures. In particular, we focus on the effect on wave propagation of so-68
called graded plate-arrays in which the width of the channels in the device is non-constant69
(typically increasing linearly, and thus forming a wedge).70

Graded metamaterials have been of interest to researchers in a range of different appli-71
cations since they produce broadbanded effects. For example, in Colombi et al. (2016);72
Colquitt et al. (2017) a graded array placed on the surface of an elastic half-space was shown73
to deflect surface Rayleigh waves into elastic body waves and it was later proposed (e.g.74
Brûlé et al. (2020)) as a scheme for protecting infrastructure from earthquakes. In acoustics75
Zhu et al. (2013) have graded structures to provide broadbanded absorption of sound by a76
metasurface and Jan & Porter (2018); Bravo & Maury (2023) showed that a metamaterial77
plate-array cavity could suppress acoustic transmission in waveguides over a wide range78
of frequencies. In water waves Wilks et al. (2022) have similarly shown the broadbanded79
reflective qualities of a graded array of plates submerged through the surface and also been80
proposed its extension as a wave energy harnessing device. So-called rainbow reflection and81
rainbow trapping and absorption by graded metamaterials have also featured in the work82



3

of Tsakmakidis et al. (2007); Jimenez et al. (2017); Bennetts et al. (2018); Chaplain et al.83
(2020); Ponti et al. (2022). Circular metacylinders comprised of a plate array are also graded,84
although not linearly, and have exhibited (e.g. Zheng et al. (2020); Putley et al. (2023)) similar85
features: a slowing wave speed and amplification of wave energy through the structure with86
a strong broadbanded reflective quality.87

We consider three problems all set in the context of linearised water waves although the88
first two problems have analogues in other physical settings. In all three problems oblique89
plane waves are scattered by metastructures consisting of a discrete plate array with elements90
which are arbitrary in separation and width allowing us to consider metastructures of general91
shape. In the first problem, described in Section 2, we consider a single such device consisting92
of vertical plates extending fully through the water depth. In Section 3 the second problem93
involves an infinite periodic array of these devices. In the final problem (Section 4) the plates94
extend only partially through the fluid depth, this problem being identical to that studied by95
Wilks et al. (2022).96

We propose a common method of solution based on transforms (infinite Fourier for the97
first problem, and finite transforms for the last two) in which the solution in the presence of98
𝑁 + 1 plates of varying position and length is shown to be expressed by the same simple99
characteristic formulation. This simplicity, an overlooked highlight of the related work of100
Noad & Porter (2015), is in contrast with, for example, Wilks et al. (2022); Roy et al. (2019)101
who use separation solutions in each of the channel-based domains and then performed102
matching from one channel to the next using relatively convoluted methods.103

Although there is a focus on the method of solution to these problems the main emphasis is104
on the results which are presented in Section 5. Here we compare discrete plate array results105
with existing results including those determined by homogenisation and present extensions106
to results inaccessible to homogenisation methods with a focus on resonance. This includes107
looking at the effects of graded arrays with a view to application as sea defence systems. We108
conclude the work in Section 6.109

2. A plate array metastructure in an open domain110

We consider waves on a fluid of constant depth ℎ with a free surface whose rest position111
is given by 𝑧 = 0, 𝑧 being the vertical coordinate, directed upwards out of the fluid. We112
suppose that a parallel array of 𝑁 + 1 thin vertical barriers occupy the surfaces 𝑥 = 𝑥 𝑗 ,113
−ℎ < 𝑧 < 0, |𝑦 | < 𝑏 𝑗 , for 𝑗 = 0, . . . , 𝑁 , as illustrated in figure 1. A surface wave of angular114
frequency 𝜔 is incident from infinity, heading at an anti-clockwise angle 𝜃0 with respect to115
the positive 𝑥-direction. On the assumptions of linearised water wave theory, its motion and116
the subsequent response of the fluid due to the interaction with the array of barriers may be117
described by a velocity potential (e.g. Linton & McIver (2001))118

Φ(𝑥, 𝑦, 𝑧, 𝑡) = Re{𝜙(𝑥, 𝑦)𝜓0(𝑧)e−i𝜔𝑡 } (2.1)119

where the uniformity of the geometry through the depth allows us to factorise a depth120
dependence121

𝜓0(𝑧) = 𝑁−1/2
0 cosh 𝑘 (𝑧 + ℎ), and 𝑁0 =

1
2

(
1 + sinh 2𝑘ℎ

2𝑘ℎ

)
(2.2)122

is a normalising factor whilst 𝑘 is the positive real root of123

𝜔2/𝑔 ≡ 𝐾 = 𝑘 tanh 𝑘ℎ, (2.3)124

the usual dispersion relation for water waves with gravitational acceleration given by 𝑔.125
The wave elevation is proportional to 𝜙(𝑥, 𝑦). Consequently, the reduced two-dimensional126
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Figure 1: Sketch of wave interactions with a plate-array metastructure.

complex velocity potential 𝜙(𝑥, 𝑦) satisfies the wave equation127 (
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝑘2
)
𝜙 = 0. (2.4)128

Within this framework the incident wave is described by the function129

𝜙𝑖𝑛𝑐 (𝑥, 𝑦) = ei𝛼0𝑥ei𝛽0𝑦 (2.5)130

where 𝛼0 = 𝑘 cos 𝜃0, 𝛽0 = 𝑘 sin 𝜃0 and we require that 𝜙(𝑥, 𝑦) − 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) represents131
outgoing waves as 𝑘𝑟 → ∞ where 𝑟 = (𝑥2 + 𝑦2)1/2. Specifically, we write132

𝜙(𝑥, 𝑦) − 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) ∼ 𝐴(𝜃; 𝜃0)
√︂

2
𝜋𝑘𝑟

ei𝑘𝑟−i𝜋/4 (2.6)133

where (𝑥, 𝑦) = 𝑟 (cos 𝜃, sin 𝜃) and 𝐴(𝜃; 𝜃0) is defined as the diffraction coefficient, measuring134
the amplitude of circular waves scattered in the direction 𝜃 due to an incident wave heading135
𝜃0.136

Scattering of waves is due to the presence of barriers on which the following conditions137
apply138

𝜕𝜙

𝜕𝑥
= 0, 𝑥 = 𝑥±𝑗 , |𝑦 | < 𝑏 𝑗 , ( 𝑗 = 0, . . . , 𝑁). (2.7)139

We remark that the boundary-value problem posed above can be interpreted in physical140
settings other than water waves including, for example, two-dimensional acoustics or141
Tranverse Electrically-polarised electromagnetics, in which the factorisation of the 𝑧-142
dependence and the dispersion relation will both differ.143

The method of solution for this problem is described in the work of Noad & Porter (2015)144
but we include below a key simplification to the solution method which will be reused in145
later sections. Thus, we introduce the Fourier transform pair146

𝜙(𝑥; 𝛽) =
∫ ∞

−∞
[𝜙(𝑥, 𝑦) − 𝜙𝑖𝑛𝑐 (𝑥, 𝑦)]e−i𝛽𝑦 d𝑦 (2.8)147

and148

𝜙(𝑥, 𝑦) = 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) +
1

2𝜋

∫ ∞

−∞
𝜙(𝑥; 𝛽)ei𝛽𝑦 d𝛽. (2.9)149

Then the governing wave equation is transformed to150 (
d2

d𝑥2 − 𝛾2
)
𝜙 = 0, 𝑥 ≠ 𝑥 𝑗 (2.10)151
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( 𝑗 = 0, . . . , 𝑁) where152

𝛾 =

{ √︁
𝛽2 − 𝑘2, |𝛽 | ⩾ 𝑘,

−i𝛼, |𝛽 | < 𝑘
(2.11)153

where 𝛼 =
√︁
𝑘2 − 𝛽2 and the choice of complex branch of the square root function is made154

to satisfy the radiation condition at infinity (this becomes clear only later on). We note the155
transformation of the barrier conditions lead to the jump conditions156

𝜙𝑥 (𝑥+𝑗 ; 𝛽) − 𝜙𝑥 (𝑥−𝑗 ; 𝛽) = 0 (2.12)157

and158

𝜙(𝑥+𝑗 ; 𝛽) − 𝜙(𝑥−𝑗 ; 𝛽) = 𝑃 𝑗 (𝛽) (2.13)159

for 𝑗 = 0, . . . , 𝑁 where160

𝑃 𝑗 (𝛽) =
∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦)e−i𝛽𝑦 d𝑦 (2.14)161

using the definition162

𝜙(𝑥+𝑗 , 𝑦) − 𝜙(𝑥−𝑗 , 𝑦) =
{
𝑝 𝑗 (𝑦), |𝑦 | < 𝑏 𝑗 ,

0, |𝑦 | > 𝑏 𝑗 .
(2.15)163

Rather than expand the solution in each of the 𝑁 + 2 domains 𝑥 < 𝑥0, 𝑥 𝑗−1 < 𝑥 < 𝑥 𝑗164
( 𝑗 = 1, . . . , 𝑁) and 𝑥 > 𝑥𝑁 and match using (2.12) and (2.13), as in Noad & Porter (2015),165
we adopt a much more elegant approach which results in the same final expression and is166
easy to adapt to other problems.167

Let us define the canonical function 𝑔(𝑥, 𝑥 𝑗 ; 𝛽) as the solution of168 (
d2

d𝑥2 − 𝛾2
)
𝑔 = 0, 𝑥 ≷ 𝑥 𝑗 (2.16)169

satisfying jump conditions 𝑔𝑥 (𝑥+𝑗 , 𝑥 𝑗 ; 𝛽) −𝑔𝑥 (𝑥−𝑗 , 𝑥 𝑗 ; 𝛽) = 0 and 𝑔(𝑥+
𝑗
, 𝑥 𝑗 ; 𝛽) −𝑔(𝑥−𝑗 , 𝑥 𝑗 ; 𝛽) =170

1 such that 𝑔 is outgoing (when |𝛽 | < 𝑘) or exponentially decaying (when |𝛽 | > 𝑘) as171
𝑘 |𝑥 − 𝑥 𝑗 | → ∞. It is straightforward to confirm that172

𝑔(𝑥, 𝑥 𝑗 ; 𝛽) = −1
2

sgn(𝑥 − 𝑥 𝑗)e−𝛾 |𝑥−𝑥 𝑗 | . (2.17)173

The solution of (2.10), (2.12), (2.13), with outgoing waves at infinity is given by the weighted174
superposition175

𝜙(𝑥; 𝛽) =
𝑁∑︁
𝑗=0

𝑃 𝑗 (𝛽)𝑔(𝑥, 𝑥 𝑗 ; 𝛽) = −1
2

𝑁∑︁
𝑗=0

𝑃 𝑗 (𝛽)sgn(𝑥 − 𝑥 𝑗)e−𝛾 |𝑥−𝑥 𝑗 | . (2.18)176

The general solution throughout the domain is given by inverting the transform, thus177

𝜙(𝑥, 𝑦) = 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) −
1

4𝜋

𝑁∑︁
𝑗=0

sgn(𝑥 − 𝑥 𝑗)
∫ ∞

−∞
e−𝛾 |𝑥−𝑥 𝑗 |ei𝛽𝑦

∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦′)e−i𝛽𝑦′ d𝑦′ d𝛽.

(2.19)178
We note that this representation of the general solution may also be obtained by distributing179
Green’s functions over the barriers and applying the conditions on the barriers. The particular180
form expressed above requires that the integral representation of the Hankel function181
(representing the Green’s function) given by (A 2) is used and the ordering of integrals182
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is interchanged. The advantage of using the representation (2.19) of the solution, rather183
than a Green’s function representation, is that we encounter no technical issues relating to184
convergence. In contrast, the Green’s function approach leads to integrals with hypersingular185
kernels having to be treated as Hadamard finite-part integrals (see Martin (1991) for example).186

The particular solution is determined by applying the barrier conditions (2.7) which result187
in the coupled integral equations188

1
4𝜋

𝑁∑︁
𝑗=0

∫ ∞

−∞
𝛾e−𝛾 |𝑥 𝑗−𝑥𝑘 |ei𝛽𝑦

∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦′)e−i𝛽𝑦′ d𝑦′ d𝛽 = −i𝛼0ei𝛼0𝑥𝑘ei𝛽0𝑦 , |𝑦 | < 𝑏𝑘

(2.20)189
for 𝑘 = 0, . . . , 𝑁 for the 𝑁 + 1 unknown functions 𝑝 𝑗 (𝑦). We approximate solutions to (2.20)190
by writing191

𝑝 𝑗 (𝑦) ≈
2𝑄+1∑︁
𝑝=0

𝑎
( 𝑗 )
𝑝 𝑤𝑝 (𝑦/𝑏 𝑗) (2.21)192

where 𝑄 is a truncation parameter, 𝑎 ( 𝑗 )𝑝 are designated unknown expansion coefficients, and193

𝑤𝑝 (𝑢) =
ei𝜋𝑝/2

(𝑝 + 1)𝜋
√︁

1 − 𝑢2U𝑝 (𝑢) (2.22)194

are expansion functions where U𝑝 (·) represents the Chebychev polynomial of the second-195
kind. We note the relation (see (Gradshtyen & Ryhzik 1965, 10§3.715 (13), (18)))196

𝐷 𝑝 (𝜆) =
∫ 1

−1
𝑤𝑝 (𝑢)e−i𝜆𝑢 d𝑢 =

{
J𝑝+1(𝜆)/𝜆, 𝜆 ≠ 0,
1
2𝛿𝑝0, 𝜆 = 0

(2.23)197

and J𝑝 (·) is a Bessel function of order 𝑝 whilst 𝛿 represents the Kronecker delta. The198
representation (2.21) thus accounts explicitly for the anticipated square-root behaviour in199
𝑝 𝑗 (𝑦) as |𝑦 | → 𝑏−

𝑗
. We implement Galerkin’s method which involves substituting (2.21) into200

(2.20) before multiplying by the conjugate function 𝑤∗
𝑞 (𝑦/𝑏𝑘) and integrating over |𝑦 | < 𝑏𝑘 ,201

where the asterisk ∗ denotes the complex conjugate. This results in the following system of202
equations for the expansion coefficients:203

2𝑄+1∑︁
𝑝=0

𝑁∑︁
𝑗=0
𝑎
( 𝑗 )
𝑝 𝐾

( 𝑗𝑘 )
𝑝𝑞 = −i𝛼0𝑏𝑘ei𝛼0𝑥𝑘𝐷𝑞 (𝛽0𝑏𝑘), 𝑞 = 0, . . . , 2𝑄+1, 𝑘 = 0, . . . , 𝑁 (2.24)204

where205

𝐾
( 𝑗𝑘 )
𝑝𝑞 =

𝑏 𝑗𝑏𝑘

4𝜋

∫ ∞

−∞
𝛾e−𝛾 |𝑥 𝑗−𝑥𝑘 |𝐷 𝑝 (𝛽𝑏 𝑗)𝐷𝑞 (𝛽𝑏𝑘) d𝛽. (2.25)206

Computational savings are available by making further manipulations which, in part, reflect207
the symmetry about 𝑦 = 0 of the geometry and, in part, exploit the logarithmic singularity208
that is embedded in the formulation despite us having avoided the use of Green’s functions.209
We note that 𝐷 𝑝 (𝜆) = (−1) 𝑝𝐷 𝑝 (−𝜆) whilst 𝛾 is symmetric in 𝛽 with 𝛾 ∼ |𝛽 | as 𝛽 → ±∞.210
Furthermore we note an orthogonality relation for Bessel functions (Gradshtyen & Ryhzik211
1965, 10§6.5382(2))212 ∫ ∞

0

J2𝑝+1+𝜈 (𝑢)J2𝑞+1+𝜈 (𝑢)
𝑢

d𝑢 =
1

4𝑝 + 2𝜈 + 2
𝛿𝑝𝑞 (2.26)213

for 𝜈 = 0, 1. Taken together, this allows the original system (2.24) to be decoupled into the214
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pair of second-kind systems of equations215

1
2𝜋

𝑎
(𝑘 )
2𝑞+𝜈

4𝑞 + 2𝜈 + 2
+

𝑄∑︁
𝑝=0

𝑁∑︁
𝑗=0
𝑎
( 𝑗 )
2𝑝+𝜈𝐾

( 𝑗𝑘 )
2𝑝+𝜈,2𝑞+𝜈 = −i𝛼0𝑏𝑘ei𝛼0𝑥𝑘𝐷2𝑞+𝜈 (𝛽0𝑏𝑘),

{
𝑞 = 0, . . . , 𝑄,

𝑘 = 0, . . . , 𝑁
(2.27)216

(𝜈 = 0, 1 encode symmetric and antisymmetric components) where, for 𝑘 ≠ 𝑗 ,217

𝐾
( 𝑗𝑘 )
2𝑝+𝜈,2𝑞+𝜈 =

𝑏 𝑗𝑏𝑘

2𝜋

∫ ∞

0
𝛾e−𝛾 |𝑥 𝑗−𝑥𝑘 |𝐷2𝑝+𝜈 (𝛽𝑏 𝑗)𝐷2𝑞+𝜈 (𝛽𝑏𝑘) d𝛽 (2.28)218

are dimensionless exponentially-convergent integrals whilst, for 𝑗 = 𝑘 ,219

𝐾
( 𝑗 𝑗 )
2𝑝+𝜈,2𝑞+𝜈 =

𝑏2
𝑗

2𝜋

∫ ∞

0
(𝛾 − 𝛽)𝐷2𝑝+𝜈 (𝛽𝑏 𝑗)𝐷2𝑞+𝜈 (𝛽𝑏 𝑗) d𝛽 (2.29)220

contain oscillatory integrands whose amplitude decays as 𝑂 (1/𝛽3) accelerated from a221
𝑂 (1/𝛽) decay in the original system (2.24) with (2.25). Furthermore,222

𝐾
( 𝑗𝑘 )
2𝑝+𝜈,2𝑞+𝜈 = 𝐾

(𝑘 𝑗 )
2𝑝+𝜈,2𝑞+𝜈 = 𝐾

( 𝑗𝑘 )
2𝑞+𝜈,2𝑝+𝜈 (2.30)223

are symmetric with respect to ( 𝑗 , 𝑘) and (𝑝, 𝑞) pairs.224
We note that in the special arrangement 𝑥 𝑗 = 𝑗𝑐 and 𝑏 𝑗 = 𝑏, representative of a rectangular225

metastructure with regular spacing between array elements,226

𝐾
( 𝑗𝑘 )
2𝑝+𝜈,2𝑞+𝜈 =

𝑏2

2𝜋

∫ ∞

0
𝛾e−𝛾 | 𝑗−𝑘 |𝑐𝐷2𝑝+𝜈 (𝛽𝑏)𝐷2𝑞+𝜈 (𝛽𝑏) d𝛽 (2.31)227

depends only on | 𝑗 − 𝑘 | = 0, . . . , 𝑁 and requires only 𝑁 + 1 integrals for each (𝑝, 𝑞) pair,228
rather than (𝑁 + 1) (𝑁 + 2)/2 evaluations. Computation of the elements of the matrix system229
is thus an 𝑂 (𝑁) task rather than 𝑂 (𝑁2) for this special case. The matrix size scales with 𝑁230
and although the inversion of a Toeplitz matrix can be reduced from 𝑂 (𝑁3) to 𝑂 (𝑁2) and231
this part of the computation remains the limiting factor as 𝑁 becomes very large.232

The values of 𝑎 ( 𝑗 )𝑝 are numerically determined from the solution of (2.27) where, typically,233
a value of 𝑄 = 5 is sufficient for convergence to five or more decimal places unless the234
frequency is high when 𝑄 must be increased. Subsequently, this allows 𝜙 to be determined235
everywhere by using236

𝜙(𝑥, 𝑦) = 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) +
𝑁∑︁
𝑘=0

𝑄∑︁
𝑝=0

𝑎
(𝑘 )
𝑝 Λ

(𝑘 )
𝑝 (2.32)237

where Λ
(𝑘 )
𝑝 can be alternatively expressed as238

Λ
(𝑘 )
𝑝 = − 𝑏𝑘

4𝜋

∫ ∞

−∞
sgn(𝑥 − 𝑥𝑘) 𝐷 𝑝 (𝛽𝑏𝑘)e−𝛾 |𝑥−𝑥𝑘 |+i𝛽𝑦d𝛽 (2.33)239

or240

Λ
(𝑘 )
𝑝 = − i

4

∫ 𝑏𝑘

−𝑏𝑘

𝑘 (𝑥 − 𝑥′)
𝜚

𝐻1(𝑘 𝜚)𝑤𝑝 (𝑦′/𝑏𝑘)d𝑦′ (2.34)241

where the expression (2.34) has applied the integral representation of Hankel function, see242
appendix A for details. In the computation of wave field, equation (2.33) is used when243
|𝑥 − 𝑥𝑘 | > 𝜖 due to the exponential decay factor, and expression (2.34) is adopted otherwise.244

We have particular interest in the diffraction coefficient which may be calculated from245
(2.20) using 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 and employing a stationary phase approximation246
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following the parametrisation of 𝛽 ∈ (−∞,∞) as 𝛽 = 𝑘 sin𝜓 for (−𝜋/2, 𝜋/2) and247
𝛽 = ±𝑘 cosh 𝑢 for 𝑢 ∈ (0, 𝜃) via the relationship 𝜓 = ±𝜋/2 ∓ i𝑢. In the limit 𝑘𝑟 → ∞248
the dominant contribution to the far field comes from the integral over −𝜋/2 < 𝜓 < 𝜋/2 at249
𝜓 = 𝜃 or 𝜓 = 𝜃 + 𝜋 depending on the value of 𝜃. Within this branch, 𝛾 = −i𝛼 = −i cos𝜓 and250
it is the negative sign of the branch, chosen earlier, that dictates that the scattered waves are251
outgoing. After some algebra we find252

𝐴(𝜃; 𝜃0) ≈ − 𝑘 cos 𝜃
4

𝑁∑︁
𝑘=0

e−i𝑘𝑥𝑘 cos 𝜃
𝑄∑︁
𝑝=0

𝑎
(𝑘 )
𝑝 𝑏𝑘𝐷 𝑝 (𝑘𝑏𝑘 sin 𝜃) (2.35)253

and the dependence on 𝜃0 is embedded in the coefficients 𝑎 (𝑘 )𝑝 whose values are determined254
by the incident wave forcing in (2.27). We note that the diffraction coefficient satisfies the255
so-called optical theorem (Maruo 1960)256

𝜎 =
1

2𝜋

∫ 2𝜋

0
|𝐴(𝜃; 𝜃0) |2 d𝜃 = −Re[𝐴(𝜃0; 𝜃0)] (2.36)257

and represents the total scattering cross-section, or scattering energy.258
We are also interested in the total hydrodynamic force in the 𝑥-direction of the 𝑗-th plate259

in the array which is proportional to260

𝐹
( 𝑗 )
𝑥 = −i𝜔𝜌

∫ 0

−ℎ
𝜓0(𝑧)

∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦) d𝑦 d𝑧 ≈ −i𝜔𝜌
𝑁

−1/2
0 sinh 𝑘ℎ

2𝑘
𝑎
( 𝑗 )
0 𝑏 𝑗 . (2.37)261

3. An infinite periodic array of plate array metastructures262

We assume now that the metastructure considered in the previous section is repeated peri-263
odically in the 𝑦-direction with spacing between a reference point within adjacent identical264
structures given by 2𝑑. This is commonly referred to as the scattering of oblique waves by265
a periodic diffraction grating as described in the context of plate-array metastructures by266
Putley et al. (2022). When 𝜃0 = 0 the periodicity allows the problem to be interpreted as267
geometrically equivalent to the reflection and transmission of incident waves by a single268
metastructure on the centreline of a uniform channel of width 2𝑑 with impermeable walls.269
However, we retain the generality of oblique incidence here and demonstrate that both the270
solution method and numerical procedure are very similar to that encountered in the open271
domain problem considered in the previous section. The usual arguments for plane wave272
scattering by a periodic grating follow. Thus, since 𝜙𝑖𝑛𝑐 (𝑥, 𝑦 + 2𝑑) = e2i𝛽0𝑑𝜙𝑖𝑛𝑐 (𝑥, 𝑦) with273
𝛽0 = 𝑘 sin 𝜃0 as before it also must follow that 𝜙(𝑥, 𝑦 + 2𝑑) = e2i𝛽0𝑑𝜙(𝑥, 𝑦) and this allows274
one to consider the scattering problem in a fundamental cell, say 𝑦 ∈ [−𝑑, 𝑑], −∞ < 𝑥 < ∞275
provided we also impose periodic boundary conditions on the lateral edges of the cell, these276
being277

𝜙(𝑥, 𝑑) = e2i𝛽0𝑑𝜙(𝑥,−𝑑), and 𝜙𝑦 (𝑥, 𝑑) = e2i𝛽0𝑑𝜙𝑦 (𝑥,−𝑑). (3.1)278

The extension to 𝑦 ∉ [−𝑑, 𝑑] is provided by 𝜙(𝑥, 𝑦 + 2𝑚𝑑) = e2i𝛽0𝑚𝑑𝜙(𝑥, 𝑦) for 𝑚 ∈ Z. As279
well as restricting the domain to a strip of width 2𝑑, the far-field conditions also change to280

𝜙(𝑥, 𝑦) − 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) ∼
𝑛+∑︁

𝑛=−𝑛−
𝑅𝑛e−i𝛼𝑛𝑥ei𝛽𝑛𝑦 , 𝑘𝑥 → −∞ (3.2)281
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and282

𝜙(𝑥, 𝑦) ∼
𝑛+∑︁

𝑛=−𝑛−
𝑇𝑛ei𝛼𝑛𝑥ei𝛽𝑛𝑦 , 𝑘𝑥 → ∞ (3.3)283

where 𝑅𝑛, 𝑇𝑛 are complex-valued reflection and transmission coefficients,284

𝛽𝑛 = 𝛽0 + 𝑛𝜋/𝑑, 𝑛 ∈ Z (3.4)285

and286

𝛼𝑛 =

√︃
𝑘2 − 𝛽2

𝑛, −𝑛− ⩽ 𝑛 ⩽ 𝑛+ (3.5)287

are real wavenumber components with 𝛼0 = 𝑘 cos 𝜃0 as before and288

𝑛− = ⌊𝑘𝑑 (1 + sin 𝜃0)/𝜋⌋, 𝑛+ = ⌊𝑘𝑑 (1 − sin 𝜃0)/𝜋⌋ (3.6)289

define the number of propagating diffracted modes. We choose to write290

𝛾𝑛 =

√︃
𝛽2
𝑛 − 𝑘2 ≡ −i𝛼𝑛 (3.7)291

such that 𝛾𝑛 is real if 𝑛 ∉ [−𝑛− , 𝑛+]. The notation and definition mimic (2.11) and we292
are ready to follow the methods of the previous section. Thus we define the finite Fourier293
transform pair294

𝜙𝑛 (𝑥) =
1

2𝑑

∫ 𝑑

−𝑑
[𝜙(𝑥, 𝑦) − 𝜙𝑖𝑛𝑐 (𝑥, 𝑦)]e−i𝛽𝑛𝑦 d𝑦 (3.8)295

for 𝑛 ∈ Z and296

𝜙(𝑥, 𝑦) = 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) +
∞∑︁

𝑛=−∞
𝜙𝑛 (𝑥)ei𝛽𝑛𝑦 (3.9)297

which follows from the orthogonality relation298

1
2𝑑

∫ 𝑑

−𝑑
ei𝛽𝑚𝑦e−i𝛽𝑛𝑦 d𝑦 = 𝛿𝑚𝑛. (3.10)299

The governing wave equation is reduced to300 (
d2

d𝑥2 − 𝛾2
𝑛

)
𝜙𝑛 = 0, 𝑥 ≠ 𝑥 𝑗 , ( 𝑗 = 0, . . . , 𝑁) (3.11)301

and the transform of continuity of 𝜙𝑥 (𝑥, 𝑦) at 𝑥 = 𝑥 𝑗 for all 𝑦 ∈ [−𝑑, 𝑑] is expressed as302

𝜕

𝜕𝑥
𝜙𝑛 (𝑥+𝑗 ) −

𝜕

𝜕𝑥
𝜙𝑛 (𝑥−𝑗 ) = 0, 𝑗 = 0, . . . , 𝑁. (3.12)303

Likewise, we readily find that304

𝜙𝑛 (𝑥+𝑗 ) − 𝜙𝑛 (𝑥−𝑗 ) = 𝑃𝑛, 𝑗 , 𝑗 = 0, . . . , 𝑁 (3.13)305

where306

𝑃𝑛, 𝑗 =
1

2𝑑

∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦)e−i𝛽𝑛𝑦 d𝑦 (3.14)307

and 𝜙(𝑥+
𝑗
, 𝑦) − 𝜙(𝑥−

𝑗
, 𝑦) = 𝑝 𝑗 (𝑦) for |𝑦 | < 𝑏 𝑗 and is zero for 𝑏 𝑗 < |𝑦 | < 𝑑. With reference308

to the approach outlined in the previous section the transform solution can now clearly be309
written as310

𝜙𝑛 (𝑥) =
𝑁∑︁
𝑗=0

𝑃𝑛, 𝑗𝑔𝑛 (𝑥, 𝑥 𝑗) (3.15)311
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where 𝑔𝑛 (𝑥, 𝑥 𝑗) satisfies (3.11), has continuous 𝑥-derivative at 𝑥 = 𝑥 𝑗 , has a jump of unity312
in its value from 𝑥+

𝑗
to 𝑥−

𝑗
and is outgoing at infinity for 𝑛 ∈ [−𝑛− , 𝑛+] and exponentially313

decaying towards infinity otherwise. This gives314

𝑔𝑛 (𝑥, 𝑥 𝑗) = −1
2

sgn(𝑥 − 𝑥 𝑗)e−𝛾𝑛 |𝑥−𝑥 𝑗 | (3.16)315

and so the solution in physical space is316

𝜙(𝑥, 𝑦) = 𝜙𝑖𝑛𝑐 (𝑥, 𝑦) −
1

4𝑑

𝑁∑︁
𝑗=0

∞∑︁
𝑛=−∞

sgn(𝑥 − 𝑥 𝑗)e−𝛾𝑛 |𝑥−𝑥 𝑗 |ei𝛽𝑛𝑦
∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦′)e−i𝛽𝑛𝑦′ d𝑦′.

(3.17)317
By comparing (3.17) to (3.2) and (3.3) in the limits 𝑘𝑥 → −∞ and 𝑘𝑥 → +∞ respectively318
we can deduce simply that319

𝑅𝑛 =
1

4𝑑

𝑁∑︁
𝑗=0

ei𝛼𝑛𝑥 𝑗

∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦′)e−i𝛽𝑛𝑦′ d𝑦′ (3.18)320

and321

𝑇𝑛 = 𝛿𝑛,0 −
1

4𝑑

𝑁∑︁
𝑗=0

e−i𝛼𝑛𝑥 𝑗

∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦′)e−i𝛽𝑛𝑦′ d𝑦′ (3.19)322

for −𝑛− ⩽ 𝑛 ⩽ 𝑛+.323
Coupled integral equations for the unknowns 𝑝 𝑗 (𝑦) are constructed by applying the barrier324

conditions (2.7) at 𝑥 = 𝑥𝑘 , so that325

1
4𝑑

𝑁∑︁
𝑗=0

∞∑︁
𝑛=−∞

𝛾𝑛e−𝛾𝑛 |𝑥 𝑗−𝑥𝑘 |ei𝛽𝑛𝑦
∫ 𝑏 𝑗

−𝑏 𝑗

𝑝 𝑗 (𝑦′)e−i𝛽𝑛𝑦′ d𝑦′ = −i𝛼0ei𝛼0𝑥𝑘ei𝛽0𝑦 , |𝑦 | < 𝑏𝑘

(3.20)326
and 𝑘 = 0, . . . , 𝑁 . This equation is the analogue of (2.20) in the open domain case: infinite327
integrals over continuous variables 𝛽 are replaced by infinite sums over discrete variables328
𝛽𝑛. The approximation to the integral equations follows as in the previous section and the329
final system of equations that need to be solved in this problem remains (2.24) but with330

𝐾
( 𝑗𝑘 )
𝑝𝑞 =

𝑏 𝑗𝑏𝑘

4𝑑

∞∑︁
𝑛=−∞

𝛾𝑛e−𝛾𝑛 |𝑥 𝑗−𝑥𝑘 |𝐷 𝑝 (𝛽𝑛𝑏 𝑗)𝐷𝑞 (𝛽𝑛𝑏𝑘) (3.21)331

with 𝐷 𝑝 (𝜆) still defined by (2.23).332
It follows that333

𝑅𝑛 ≈
𝑁∑︁
𝑗=0

𝑏 𝑗

4𝑑
ei𝛼𝑛𝑥 𝑗

2𝑄+1∑︁
𝑝=0

𝑎
( 𝑗 )
𝑝 𝐷 𝑝 (𝛽𝑛𝑏 𝑗), (3.22)334

and335

𝑇𝑛 ≈ 𝛿𝑛,0 −
𝑁∑︁
𝑗=0

𝑏 𝑗

4𝑑
e−i𝛼𝑛𝑥 𝑗

2𝑄+1∑︁
𝑝=0

𝑎
( 𝑗 )
𝑝 𝐷 𝑝 (𝛽𝑛𝑏 𝑗), (3.23)336

for −𝑛− ⩽ 𝑛 ⩽ 𝑛+. These reflection and transmission coefficients satisfy the conservation of337
energy condition (see, e.g., Porter & Evans (1996))338

𝐸𝑅 + 𝐸𝑇 = 1 with 𝐸𝑅 =

𝑛+∑︁
𝑛=−𝑛−

𝛼𝑛

𝛼0
|𝑅𝑛 |2 and 𝐸𝑇 =

𝑛+∑︁
𝑛=−𝑛−

𝛼𝑛

𝛼0
|𝑇𝑛 |2, (3.24)339

Rapids articles must not exceed this page length
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where 𝐸𝑅 and 𝐸𝑇 represent total reflected and transmitted energy, respectively.340

4. Arrays of partially-submerged surface-piercing barriers341

In order to showcase the method further, we consider a different type of problem which342
is still geometrically two-dimensional. An array of 𝑁 + 1 vertical barriers are assumed to343
extend indefinitely and uniformly in the 𝑦-direction and, instead of extending fully through344
the depth of the fluid, are truncated. Thus, the barrier at 𝑥 = 𝑥 𝑗 occupies −∞ < 𝑦 < ∞, and345
−𝑏 𝑗 < 𝑧 < 0, with 𝑏 𝑗 < ℎ ( 𝑗 = 0, . . . , 𝑁), as in figure 2. We remark that 𝑏 𝑗 now denotes the346
full length of the plate that has previously been represented by 2𝑏 𝑗 a choice made to connect347
with earlier sections. We retain the generality of oblique incidence of incoming surface waves348
and, although we can no longer trivially factorise out the depth dependence, the uniformity349
of the barriers in 𝑦 allows us to write350

Φ(𝑥, 𝑦, 𝑧, 𝑡) = Re[𝜙(𝑥, 𝑧)ei𝛽0𝑦e−i𝜔𝑡 ], (4.1)351

where 𝛽0 = 𝑘 sin 𝜃0 is the component of the wavenumber aligned with the 𝑦-axis. Now the352
problem is given by353 (

𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑧2 − 𝛽2
0

)
𝜙 = 0 (4.2)354

with355

𝜙𝑧 = 0, on 𝑧 = −ℎ (4.3)356

and357

𝜙𝑧 − 𝐾𝜙 = 0, on 𝑧 = 0 (4.4)358

along with359

𝜙𝑥 = 0, on 𝑥 = 𝑥±
𝑗
, −𝑏 𝑗 < 𝑧 < 0 ( 𝑗 = 0, . . . , 𝑁). (4.5)360

Within this revised framework an obliquely-incident wave is described by the potential361

𝜙𝑖𝑛𝑐 (𝑥, 𝑧) = ei𝛼0𝑥𝜓0(𝑧) (4.6)362

where 𝛼0 = 𝑘 cos 𝜃0. The conditions in the far field are363

𝜙(𝑥, 𝑧) − 𝜙𝑖𝑛𝑐 (𝑥, 𝑧) ∼
{
𝑅e−i𝛼0𝑥𝜓0(𝑧), 𝑘𝑥 → −∞
(𝑇 − 1)ei𝛼0𝑥𝜓0(𝑧), 𝑘𝑥 → ∞

(4.7)364

where 𝑅 and𝑇 are reflection and transmission coefficients (respectively); 𝜙−𝜙𝑖𝑛𝑐 is outgoing365
of course. We solve the problem above by first defining orthonormal depth eigenfunctions366
for a domain without barriers as (e.g. Linton & McIver (2001))367

𝜓𝑛 (𝑧) = 𝑁−1/2
𝑛 cos 𝑘𝑛 (𝑧 + ℎ), 𝑁𝑛 =

1
2

(
1 + sin 2𝑘𝑛ℎ

2𝑘𝑛ℎ

)
(4.8)368

for 𝑛 ⩾ 1 and 𝑘𝑛 are an increasing sequence of real positive roots of369

𝐾 = −𝑘𝑛 tan 𝑘𝑛ℎ. (4.9)370

We can extend the definition to 𝑛 = 0 by letting 𝑘0 = −i𝑘 and then371

1
ℎ

∫ 0

−ℎ
𝜓𝑛 (𝑧)𝜓𝑚(𝑧) d𝑧 = 𝛿𝑚𝑛 (4.10)372

for all 𝑚, 𝑛 = 0, 1, . . ..373
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Figure 2: Sketch of wave scattering by an array of surface-piercing barriers.

We write374

𝜙𝑛 (𝑥) =
1
ℎ

∫ 0

−ℎ
[𝜙(𝑥, 𝑧) − 𝜙𝑖𝑛𝑐 (𝑥, 𝑧)]𝜓𝑛 (𝑧) d𝑧 (4.11)375

such that376

𝜙(𝑥, 𝑧) = 𝜙𝑖𝑛𝑐 (𝑥, 𝑧) +
∞∑︁
𝑛=0

𝜙𝑛 (𝑥)𝜓𝑛 (𝑧) (4.12)377

follows from (4.11) and (4.10). It follows that378 (
d2

d𝑥2 − 𝛾2
𝑛

)
𝜙𝑛 (𝑥) = 0, 𝑥 ≠ 𝑥 𝑗 , ( 𝑗 = 0, . . . , 𝑁) (4.13)379

where, now,380

𝛾𝑛 =

√︃
𝑘2
𝑛 + 𝛽2

0 (4.14)381

is real for 𝑛 ⩾ 1 but, for 𝑛 = 0, 𝛾0 = −i𝛼0.382
We note that 𝜙𝑥 is continuous everywhere including across 𝑥 = 𝑥 𝑗 for all −ℎ < 𝑧 < 0 and383

so it follows that384
𝜕

𝜕𝑥
𝜙𝑛 (𝑥+𝑗 ) =

𝜕

𝜕𝑥
𝜙𝑛 (𝑥−𝑗 ). (4.15)385

Defining 𝑝 𝑗 (𝑧) = 𝜙(𝑥+𝑗 , 𝑧) − 𝜙(𝑥−𝑗 , 𝑧) which is zero for −ℎ < 𝑧 < −𝑏 𝑗 means that386

𝜙𝑛 (𝑥+𝑗 ) − 𝜙𝑛 (𝑥−𝑗 ) = 𝑃𝑛, 𝑗 ≡
1
ℎ

∫ 0

−𝑏 𝑗

𝑝 𝑗 (𝑧)𝜓𝑛 (𝑧) d𝑧 (4.16)387

represents the ‘depth transform’ of the pressure jump across the 𝑗 th barrier. With reference388
to the two preceding sections, we are immediately able now to write down the transform389
solution as390

𝜙𝑛 (𝑥) = −1
2

𝑁∑︁
𝑗=0

𝑃𝑛, 𝑗sgn(𝑥 − 𝑥 𝑗)e−𝛾𝑛 |𝑥−𝑥 𝑗 | (4.17)391

(and we can confirm this satisfies all the conditions above). Thus392

𝜙(𝑥, 𝑧) = 𝜙𝑖𝑛𝑐 (𝑥, 𝑧) −
1

2ℎ

𝑁∑︁
𝑗=0

sgn(𝑥−𝑥 𝑗)
∞∑︁
𝑛=0

e−𝛾𝑛 |𝑥−𝑥 𝑗 |𝜓𝑛 (𝑧)
∫ 0

−𝑏 𝑗

𝑝 𝑗 (𝑧′)𝜓𝑛 (𝑧′) d𝑧′ (4.18)393

is the general solution, expressed in terms of the unknown functions 𝑝 𝑗 (𝑦). We take the limit394
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𝑘𝑥 → −∞ in the above, comparing to (4.7) to get395

𝑅 =
1

2ℎ

𝑁∑︁
𝑗=0

ei𝑘𝑥 𝑗

∫ 0

−𝑏 𝑗

𝑝 𝑗 (𝑧′)𝜓0(𝑧′) d𝑧′ (4.19)396

and397

𝑇 = 1 − 1
2ℎ

𝑁∑︁
𝑗=0

e−i𝑘𝑥 𝑗

∫ 0

−𝑏 𝑗

𝑝 𝑗 (𝑧′)𝜓0(𝑧′) d𝑧′. (4.20)398

The unknowns 𝑝 𝑗 (𝑧) are determined by imposing the remaining no-flow conditions (4.5) on399
𝑥 = 𝑥𝑘 to give400

1
2ℎ

𝑁∑︁
𝑗=0

∞∑︁
𝑛=0

𝛾𝑛e−𝛾𝑛 |𝑥 𝑗−𝑥𝑘 |𝜓𝑛 (𝑧)
∫ 0

−𝑏 𝑗

𝑝 𝑗 (𝑧′)𝜓𝑛 (𝑧′) d𝑧′ = −i𝛼0ei𝛼0𝑥𝑘𝜓0(𝑧), −𝑏𝑘 < 𝑧 < 0

(4.21)401
for 𝑘 = 0, . . . , 𝑁 . The coupled integral equations are solved using the method first described402
in Porter & Evans (1995) in which403

𝑝 𝑗 (𝑧) ≈
𝑄∑︁
𝑝=0

𝑎
( 𝑗 )
𝑝 𝑤𝑝 (𝑧/𝑏 𝑗) (4.22)404

and405

𝑤̂𝑝 (𝑢) = 𝑤𝑝 (𝑢) − 𝐾𝑏 𝑗

∫ 𝑢

−1
𝑤𝑝 (𝑠) d𝑠 (4.23)406

where407

𝑤̂𝑝 (𝑢) =
2(−1) 𝑝
(2𝑝 + 1)𝜋

√︁
1 − 𝑢2U2𝑝 (𝑢) (4.24)408

is designed to ensure that the free surface condition (4.4) is satisfied as well as retaining the409
correct local square-root behaviour of the pressure jump in the vicinity of the lower edge of410
the plates. It follows that (Porter & Evans 1995)411

𝐷
( 𝑗 )
𝑛𝑝 =

∫ 0

−𝑏 𝑗

𝜓𝑛 (𝑧)𝑤𝑝 (𝑧/𝑏 𝑗) d𝑧 = 𝑁−1/2
𝑛 cos(𝑘𝑛ℎ)

∫ 0

−𝑏 𝑗

cos(𝑘𝑛𝑧)𝑤̂𝑝 (𝑧/𝑏 𝑗) d𝑧 (4.25)412

after integrating by parts, is given by413

𝐷
( 𝑗 )
𝑛𝑝 = 𝑁

−1/2
𝑛 cos(𝑘𝑛ℎ)J2𝑝+1(𝑘𝑛𝑏 𝑗)/(𝑘𝑛𝑏 𝑗) (4.26)414

which, for 𝑛 = 0, is better expressed as415

𝐷
( 𝑗 )
0𝑝 = (−1) 𝑝𝑁−1/2

0 cosh(𝑘ℎ)I2𝑝+1(𝑘𝑏 𝑗)/(𝑘𝑏 𝑗) (4.27)416

where I𝑝 (·) is a modified Bessel function of the first kind of order 𝑝. Substituting (4.22) into417
(4.21), and multiplying through by 𝑤𝑞 (𝑧/𝑏𝑘) before integrating over −𝑏𝑘 < 𝑧 < 0 gives the418
system of equations419

𝑁∑︁
𝑗=0

𝑄∑︁
𝑝=0

𝑎
( 𝑗 )
𝑝 𝐾

( 𝑗𝑘 )
𝑝𝑞 = −i𝛼0ei𝛼0𝑥𝑘𝐷

(𝑘 )
0𝑞 , 𝑘 = 0, . . . , 𝑁, 𝑞 = 0, . . . , 𝑄. (4.28)420
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where421

𝐾
( 𝑗𝑘 )
𝑝𝑞 =

𝑏 𝑗𝑏𝑘

2ℎ

∞∑︁
𝑛=0

𝛾𝑛e−𝛾𝑛 |𝑥 𝑗−𝑥𝑘 |𝐷 ( 𝑗 )
𝑛𝑝𝐷

(𝑘 )
𝑛𝑞 . (4.29)422

For 𝑗 ≠ 𝑘 the series is exponentially-convergent. When 𝑗 = 𝑘 , the series defining 𝐾 ( 𝑗 𝑗 )
𝑝𝑞423

resembles that encountered in Porter & Evans (1995) for a plate in isolation in which terms424

decay like 𝑂 (1/𝑛2). It is possible to accelerate the convergence of the series defining 𝐾 ( 𝑗 𝑗 )
𝑝𝑞425

by subtracting the leading-order asymptotic behaviour of each term in the series which can426
be deduced from 𝑘𝑛ℎ ∼ 𝑛𝜋, 𝑁𝑛 ∼ 1

2 , 𝛾𝑛ℎ ∼ 𝑛𝜋 as 𝑛 → ∞. The infinite series which427
compensates for the subtraction can then be evaluated as a different infinite series (see Paris428
(2018)) which, for the present purposes, is not worth pursuing.429

In the case that plates are positioned at regular intervals, 𝑥 𝑗 = 𝑗𝑐, with spacing 𝑐 and430
submerged to the same depth, 𝑏 𝑗 = 𝑏0 = 𝑏, which corresponds to the case considered by431
Huang & Porter (2023) then432

𝐾
( 𝑗𝑘 )
𝑝𝑞 =

𝑏2

2ℎ

∞∑︁
𝑛=0

𝛾𝑛e−𝛾𝑛 | 𝑗−𝑘 |𝑐𝐷 (0)
𝑛𝑝𝐷

(0)
𝑛𝑞 (4.30)433

depends only on | 𝑗 − 𝑘 | and only needs 𝑁 + 1 evaluations for | 𝑗 − 𝑘 | = 0, . . . , 𝑁 .434
Using (4.22) in (4.19) and (4.20) gives435

𝑅 ≈
𝑁∑︁
𝑗=0

𝑏 𝑗

2ℎ
ei𝑘𝑥 𝑗

𝑄∑︁
𝑝=0

𝑎
(𝑞)
𝑝 𝐷

( 𝑗 )
0𝑝 (4.31)436

and437

𝑇 ≈ 1 −
𝑁∑︁
𝑗=0

𝑏 𝑗

2ℎ
e−i𝑘𝑥 𝑗

𝑄∑︁
𝑝=0

𝑎
(𝑞)
𝑝 𝐷

( 𝑗 )
0𝑝 (4.32)438

and these coefficients should satisfy |𝑅 |2 + |𝑇 |2 = 1.439

5. Results in open domain440

5.1. A circular cylinder441

We first consider the scattering of waves by a circular metacylinder, as first studied by Zheng442
et al. (2020) and later by Putley et al. (2022). Both used homogenisation to replace the discrete443
plate array with an effective medium. The present work allows us to validate the numerical444
method described in this paper by demonstrating convergence to the homogenisation results445
as 𝑁 , the number of plates in the discrete array, increase. Figure 3 depicts the scattering446
energy 𝜎, defined in (2.36), as a function of the nondimensional wavenumber 𝑘𝑎 under the447
oblique wave excitation (𝜃0 = 45◦), where 𝑎 denotes the radius of the metacylinder. We448
present curves associated with metacylinders having 𝑁 = 10, 15, and 20 channels of constant449
width which can be seen to converge to the results of Zheng et al. (2020) (the homogenisation450
results have been obtained by truncating their numerical system of equations at 20 terms)451
as 𝑁 increases for 𝑘𝑎 < 𝜋/2. The vertical line corresponds to 𝑘𝑎 = 𝜋/2 which signals the452
onset of fluid resonance in narrow channels and the homogenisation method fails for 𝑘𝑎453
beyond this value (Putley et al. 2023). Our method therefore allows us to consider results for454
𝑘𝑎 > 𝜋/2. A general observation is that larger𝑁 are required for convergence as the frequency455
increases and that the scattering energy generally increases with the wavenumber and exhibits456
oscillations near integer multiples of 𝜋/2, representing the onset of new gap resonance modes457
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Figure 3: Scattering energy 𝜎 by circular metacylinders with different number of channels
𝑁 under the quartering wave excitation 𝜃0 = 45◦ as a function of nondimensional

wavenumber 𝑘𝑎. Comparison is made with the homogenisation solution by Zheng et al.
(2020) which is valid when 𝑘𝑎 < 𝜋/2.
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Figure 4: Comparison of scattering energy by circular metacylinders composed of 𝑁 = 20
channels for different plate separation constrained by constant channel aspect ratio and

equal spacing. Comparison is made with the homogenisation solution valid for 𝑘𝑎 < 𝜋/2.

in the central channel (Molin et al. 2002). It is noteworthy that the wavenumbers 𝑘𝑎 = 𝑛𝜋/2458
with 𝑛 ∈ Z+ for gap resonance in the central channel are determined by the assumption of459
homogeneous Dirichlet conditions 𝜙 = 0 at the ends of the channel. However, this assumption460
holds true only if the gap width is very small (Liang et al. 2023).461

In figure 4 we compare the results of figure 3 for 𝑁 = 20 channels of uniform width with462
a distribution the plates within the metacylinder which maintains a constant aspect ratio of463
channel width to (mean) length. This new scheme therefore concentrates plates towards the464
two extremes of the cylinder. Although there are only small differences, the uniform width465
case is found to marginally improve convergence to the 𝑁 = ∞ limit.466

This observation is made clearer in figure 5 where a comparison of the effect of plate467
distribution and the value of 𝑁 on the free surface is presented. A wave incident from468
𝜃0 = 45◦ at frequencies determined by 𝑘𝑎 = 1 (left column), 2 (middle) and 3 (right). In469
the first and third rows, the channel spacing is uniform and there are 𝑁 = 10, 𝑁 = 20470
channels, respectively. In the second and fourth rows 𝑁 = 10, 𝑁 = 20 once again but the471
plate distribution maintains constant channel aspect ratio. The final row shows results from472
homogenisation. Note that the final two results for 𝑘𝑎 = 2, 𝑘𝑎 = 3 are invalid since there473
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is resonance inside the cylinder which violates the homogenisation assumptions. The plot474
shows more significant differences in the results for different spacing schemes at higher475
frequencies. We also note the presence of large local resonance within the cylinder, and the476
wave amplitude displayed is chopped to 2.0.477

5.2. Rectangular and graded metawedge478

As a sequel to the study on circular metacylinders, we now investigate wave scattering by479
metarectangles and graded metawedges, which have been less explored in the literature.480
Figure 6 presents the instantaneous wave patterns at 𝑡 = 0 scattered by a metarectangle for481
different aspect ratios, including AR = 1.0 and AR = 5.0, shown in the top and bottom rows,482
respectively. Here, the aspect ratio (AR) is defined as the ratio of the length to the width of483
the metarectangle. Wave patterns for 𝑘𝑏 = 𝜋/2 and 𝑘𝑏 = 𝜋 are presented in the left and right484
columns.485

For the metasquare (AR = 1.0), shown in the top row, the symmetrical property with486
respect to 𝑦 = 𝑥 is disrupted due to the presence of channels. Notably, wave trapping in the487
channel on the upwave side is observed at 𝑘𝑏 = 𝜋. In the case of an elongated metarectangle488
(AR = 5.0), depicted in the bottom row, large free surface responses are observed in the489
first channel facing the wave incidence. Besides, there is a noticeable wave twisting within490
the metarectangle, similar to the phenomenon described by Porter (2021) for an infinite491
setting. Unlike the perfect transmission reported in Porter (2021), however, the presence of492
end effects leads to appreciable disturbances riding on the wave crest/trough.493

In figure 7, we consider the diffraction energy 𝜎 under the normal wave incidence 𝛽 =494
0◦ for a metasquare and a metawedge, depicted in the left and right panels, respectively.495
Here we define the base ratio of the metawedge as ℓ = 𝑏𝑁/𝑏0, and the mean semiwdith496
𝑏𝑚 = (𝑏0 + 𝑏𝑁 )/2. When the base ratio is unequal to unity ℓ ≠ 1, the constant aspect ratio497
separation strategy is employed in the configuration of the metawedge. The results show a498
good agreement between the two alternative representations provided by Eq. (2.36), thereby499
confirming the accuracy of the computation. In both cases, the scattering energy exhibits500
a step-shaped increase. For the metasquare, depicted in the left subplot, strong oscillations501
occur at the beginning of the step. Although the metawedge, shown in the right subplot, also502
exhibits fluctuations in the scattering energy, the oscillation amplitude is much smaller.503

Figure 8 illustrates the free surface elevation along the center line of the metasquare (ℓ = 1)504
and metawedge (ℓ = 3), shown in the left and right panels, respectively, as a function of the505
normalised wavenumber 𝑘𝑏𝑚 ranging from 0 to 10. The white lines indicate the locations of506
the plates, and the layout is identical to the setup in figure 7.507

Within the metastructure, significant wave trapping accompanied by large-amplitude wave508
responses is observed – see figure 9. For the metasquare, wave trapping occurs at discrete509
frequencies, whereas for the metawedge, waves are trapped over a broad range of frequencies,510
demonstrating a “rainbow reflection” behaviour. In both cases, the downwave side of the511
metastructure experiences minimal disturbance, exhibiting shielding effects; see figure 8 for512
𝑥 > 𝑏𝑚. Notably we see from figure 8 that the metawedge provides superior shielding effects513
compared to the metasquare because of rainbow reflection, resulting in a larger quiet region514
over a wide range of frequencies.515

6. Results for periodic arrays516

Following the physical findings of wave scattering by a single metastructure in open domain517
considered in § 5, our focus now turns to the analysis of periodic array scenarios as studied518
in § 3. Specifically, we aim at delving into the underlying physics of wave patterns associated519
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Figure 5: Modulus of wave patterns scattered by a circular metacylinder for different
number of plates and separation strategies. The wave patterns associated with 10 channels

uniform spacing (top row), 10 channels constant aspect ratio (second row), 20 channels
uniform spacing (third row), 20 channels constant aspect ratio (fourth row), and

homogenisation solution (bottom row) are exhibited for 𝑘𝑎 = 1.0 (left), 2.0 (middle) and
3.0 (right).
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Figure 6: Instantaneous wave patterns at 𝑡 = 0 scattered by a rectangular metacylinder for
different aspect ratios at 𝑘𝑏 = 𝜋/2 (left) and 𝑘𝑏 = 𝜋 (right). The top, middle and bottom

rows show the results for AR = 1.0 and 5.0, respectively.
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Figure 7: Scattering energy 𝜎 under the normal wave excitation (𝛽 = 0◦) as a function of
non-dimensional wavenumber 𝑘𝑏𝑚 for base ratios ℓ = 1 (left panel, metasquare) and ℓ = 3

(right panel, metawedge).

with nearly total reflection and nearly perfect transmission, as predicted by the energy relation520
given by (3.24).521

6.1. Circular metacylinder522

We first study the scattering of waves by a periodic array of circular metacylinders. Figure 10523
illustrates the reflection energy 𝐸𝑅, defined in (3.24), by a periodic array of circular524
metacylinders as a function of the nondimensional wavenumber 𝑘𝑎, where 𝑎 represents the525
radius of metacylinder. Both normal incidence (𝜃0 = 0◦) and oblique incidence (𝜃0 = 45◦)526
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Figure 8: Free surface elevation along the centre line of the metasquare ℓ = 1 (left) and
metawedge ℓ = 3 (right) varying with the normalised wavenumber 𝑘𝑏𝑚.
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Figure 9: Demonstration of rainbow trapping in the 1st, 6th, 16th and 20th channels at
𝑘𝑏𝑚 = 2.90, 2.25, 1.35, 1.02, respectively. The colourbar indicates the modulus of free

surface elevation.

are presented, displayed in the left and right subplots, respectively. In this configuration, half527
the centre-to-centre distance between adjacent metacylinders is twice the radius (𝑑 = 2𝑎). In528
this setup, the lowest resonant wavenumber 𝑘𝑎 = 𝜋/2 in the metacylinder coincides with the529
crossing mode wavenumber 𝑘𝑑 = 𝜋.530

In the left subplot depicting normal incidence, we observe a sharp transition in the reflection531
energy. As the wavenumber approaches 𝑘𝑎 = 𝜋/2, the reflection changes from nearly-perfect532
transmission (𝐸𝑅 → 0) to nearly-total reflection (𝐸𝑅 → 1) occurred at 𝑘𝑎 ≈ 1.5036 and533
𝑘𝑎 ≈ 1.5707, respectively. On the other hand, under oblique wave excitation, as in the534
right subplot, there exists specific wavenumbers where reflection is inconsequential, whereas535
complete reflection does not occur in this setup.536

To further elucidate the underlying physics governing the phenomena of nearly total537
transmission and nearly perfect reflection described in figure 10, we examine the free surface538
responses at these wavenumbers.539

Figure 11 presents the wave patterns scattered by a circular metacylinder under the action540
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Figure 10: Reflection energy for a periodic array of circular metacylinders with 𝑎/𝑑 = 0.5
for 𝜃0 = 0◦ (left) and 𝜃0 = 45◦ (right). The vertical line corresponds to 𝑘𝑎 = 𝜋/2, where 𝑎

denotes the radius of the circular metacylinder.
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Figure 11: Wave patterns scattered by a periodic array of circular metacylinders under
normal wave incidence (𝜃0 = 0◦) at 𝑘𝑎 = 1.5036 with a normalised radius of 𝑎/𝑑 = 0.5,

illustrating nearly perfect wave transmission. The top and bottom subplots exhibit the
modulus and real part of the wave pattern, respectively.

of normal incidence (𝜃0 = 0◦) at 𝑘𝑎 = 1.5036 corresponding to nearly total transmission.541
The top and bottom subplots show modulus and instantaneous wave patterns, respectively. It542
is notably observed that that waves are trapped within the gaps of the plate arrays constituting543
the circular metacylinder, resulting in large free surface responses. Furthermore, at significant544
distances from the metacylinder, the wave field maintains the profile of the incident waves,545
indicating the occurrence of perfect transmission.546

Figure 12 illustrates the diffraction wave field at 𝑘𝑎 = 1.5707 under the head wave547
excitation 𝜃0 = 0◦, at which waves are nearly totally reflected. On the downwave side, however,548
the flow field still remains disturbed, and the crossing mode cos(𝜋𝑦/𝑑) is predominant549
exhibiting standing wave behaviours. Considering the wavenumber 𝑘𝑎 = 1.5707, slightly550
less than 𝜋/2, it can be expressed as 𝑘𝑑 = 2𝑘𝑎 = 𝜋 − 𝜖 , where 𝜖 ≪ 1. The characteristic551
wavenumber 𝛾1 is approximated as:552

𝛾1 =
√︁
𝜋2/𝑑2 − (𝜋 − 𝜖)2/𝑑2 ≈

√︁
2𝜖𝜋/𝑑2. (6.1)553

The smallness of the characteristic wavenumber 𝛾1 leads to a slow decay of the associated554
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Figure 12: Wave patterns scattered by a periodic array of circular metacylinders with a
normalised radius of 𝑎/𝑑 = 0.5 under normal wave incidence (𝜃0 = 0◦) at 𝑘𝑎 = 1.5707

close to crossing mode wavenumber 𝑘𝑎 = 𝜋/2, exhibiting nearly total reflection. The top
and bottom subplots exhibit the modulus and real part of the wave pattern, respectively.

evanescent mode. Although this mode will eventually diminish at a significant distance from555
the metacylinder, it persists within a fairly large region surrounding the metacylinder.556

In the case of oblique wave excitation, we focus on the wavenumber 𝑘𝑎 = 1.5025,557
characterised by minimal energy reflection. Figure 13 showcases the wave patterns scattered558
by a periodic array of circular metacylinders at 𝑘𝑎 = 1.5025, where the energy reflection559
is minimal, leading to nearly total transmission. Notably, the transmitted waves propagate560
at a different angle compared to the incident waves. Specifically, at 𝑘𝑎 = 1.5025, the far-561
field transmitted waves are dominated by the components 𝑇−1 and 𝑇0, with |𝑇−1 | > |𝑇0 |.562
As a consequence, the propagation of transmitted waves is primarily governed by the angle563
𝜃−1 = arctan(𝛽−1/𝛼−1) ≈ −19.78◦. Therefore, if the component 𝑇0 is smaller than other564
components, the transmitted waves will propagate at an angle different from the incident565
waves, resulting in wave bending effects. This feature of metagratings was also discussed by566
(Putley et al. 2022).567

6.2. Metasquare568

We turn our attention to wave scattering by a periodic array of metasquares, where the plate569
width is 𝑏/𝑑 = 0.5. Figure 14 depicts the variation of reflection energy 𝐸𝑇 with respect to570
the nondimensional wavenumber 𝑘𝑏 considering both head wave incidence (𝜃0 = 0◦) and571
oblique wave incidence (𝜃0 = 45◦) displayed in the left and right subplots, respectively.572
Under the normal wave incidence as in the left subplot, the reflection energy experiences573
strong oscillations near 𝑘𝑏 = 𝜋/2, rapidly alternating between total transmission and perfect574
reflection. The same oscillatory behaviours were also observed in the scattering of acoustic575
wave by a rectangular metamaterial cavity (Jan & Porter 2018) due to complex interference.576
In the oblique wave excitation as in the right subplot, the strong oscillations near 𝑘𝑏 = 𝜋/2577
are also observed, and there exist a dense discrete wavenumbers at which the nearly perfect578
wave transmission occurs. However, the value of reflection energy 𝐸𝑅 does not exceed 0.5579
within the considered wavenumber range, and thus perfect reflection is not achieved.580

To illustrate the total reflection 𝐸𝑅 → 1 under the normal wave incidence by a metasquare,581
we examine the wave patterns at 𝑘𝑏 = 1.5350, where the wave transmission is minimised, as582
shown in figure 15. Unlike the scenario of perfect reflection by a periodic array of circular583
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Figure 13: Wave pattern scattered by a periodic array of circular metacylinders with a
normalised radius 𝑎/𝑑 = 0.5 under the oblique wave excitation (𝜃0 = 45◦) at a

wavenumber 𝑘𝑎 = 1.5025, showing nearly perfect wave transmission and wave bending
effects on the downwave side.
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Figure 14: Reflection energy for a periodic array of metasquares with 𝑏/𝑑 = 0.5 under
head wave incidence 𝜃0 = 0◦ (left) and oblique incidence 𝜃0 = 45◦ (right). The vertical
line corresponds to 𝑘𝑏 = 𝜋/2, where 𝑏 denotes semi-width of the plate constituting the

metasquare.

metacylinders in figure 12, where the wavenumber 𝑘𝑎 = 1.5707 closely aligns with the584
crossing mode wavenumber 𝑘𝑎 = 𝜋/2, the current wavenumber deviates from the crossing585
mode wavenumber. As a consequence, the evanescent mode, associated with the characteristic586
wavenumber 𝛾1, decays rapidly with distance from the metasquare, resulting in a quiescent587
flow field on the downwave side of the structure.588

To showcase the perfect wave transmission predicted by the reflection energy plot, shown589
in the right subplot of figure 14, for the scattering of an array of metasquares by oblique590
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Figure 15: Wave pattern scattered by a periodic array of metasquares with a semi-width
ratio of 𝑏/𝑑 = 0.5, under head wave excitation (𝜃0 = 0◦) at 𝑘𝑏 = 1.5350, illustrating

nearly total wave reflection. The top and bottom subplots exhibit the modulus and real part
of the wave pattern, respectively.

waves (𝜃0 = 45◦), wave patterns at a wavenumber 𝑘𝑏 = 1.3975 are presented in figure 16.591
It is observed that the upwave flow field is minimally disturbed, indicating nearly perfect592
transmission of wave energy. Additionally, the wave field downstream aligns closely with the593
incident wave pattern, different from the scenario of oblique wave interactions with an array594
of circular metacylinders shown in figure 13, where wave propagation bends. In the current595
setup, however, the transmitted wave associated with 𝑇0 predominates over the component596
with 𝑇−1, i.e., 𝑇0 ≫ 𝑇−1. Therefore, wave propagation remains unchanged, with only a phase597
shift occurring.598

6.3. Metawedge599

For a periodic array of metawedges, we consider the setup with an averaged semi-width of600
𝑏𝑚/𝑑 = 0.5 and a ratio of longer base to shorter base ℓ = 3.0. Figure 17 presents the reflection601
energy under the head wave incidence (𝜃0 = 0◦) and oblique wave incidence (𝜃0 = 45◦),602
displayed in the left and right subplots, respectively. One notable feature in the left subplot is603
the nearly total reflection of waves across a wide spectrum of wavenumbers, indicating that604
the device can act as a ‘broadband wave reflector’. Under the quartering wave excitation as in605
the right subplot, neither total wave reflection nor perfect wave transmission occurs within606
the considered range of wavenumbers.607

To illustrate the near-perfect reflection achieved by the metawedge array, figure 18 presents608
the modulus, real part, and imaginary part of the wave pattern corresponding to 𝑘𝑏𝑚 = 1.1980609
under head sea excitation. The setup of the metawedge is identical to the one considered in610
figure 17. In this case, the wave energy experiences complete reflection resulting in a quiet611
flow field on the downwave side. On the upwave side, the real part is predominant whereas612
the imaginary part is negligible. As a consequence, the wave pattern on the upwave side613
manifests standing wave characteristics. Moreover, the wave crestlines are straight except the614
flow region in the vicinity of the metawedge, then exhibiting two dimensional behaviours.615
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Figure 16: Wave pattern scattered by a periodic array of metasquares with a semi-width
ratio of 𝑏/𝑑 = 0.5, under the action of oblique waves (𝜃0 = 45◦) at 𝑘𝑏 = 1.3975,

illustrating nearly perfect wave transmission. The top and bottom subplots exhibit the
modulus and real part of the wave pattern, respectively.
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Figure 17: Reflection energy for a periodic array of metawedges with the averaged
semi-width 𝑏𝑚/𝑑 = 0.5 and base ratio ℓ = 3.0 under the actions of head waves 𝜃0 = 0◦
(left) and oblique waves 𝜃0 = 45◦ (right). The vertical line corresponds to 𝑘𝑏𝑚 = 𝜋/2.

7. Results for surface-piercing plate-arrays616

Finally, we investigate the scattering of waves by an array of two-dimensional partially-617
submerged surface-piercing barriers.618

7.1. Verification619

For verification purposes, we show in figure 19 the modulus of the reflection coefficient, |𝑅 |,620
for an array of vertical barriers with uniform truncated depth 𝑏. The results presented on the621
left and right side of the figure correspond to a gap width of 𝑐/𝑏 = 0.5 and 𝑐/𝑏 = 0.05, and622
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Figure 18: Wave pattern scattered by a periodic array of metawedges, with an averaged
semi-width of 𝑏𝑚/𝑑 = 0.5 and longer-to-shorter base ratio ℓ = 3, under the excitation of
head waves (𝜃0 = 0◦) at 𝑘𝑏𝑚 = 1.1980 illustrating nearly perfect reflection. The top and

bottom subplots exhibit the modulus and real part of the wave pattern, respectively.

the top and bottom rows exhibit the results for 𝑁 = 1 and 𝑁 = 10 cavities, respectively. Good623
agreement is made with the solutions obtained from the discrete model developed in Huang624
& Porter (2023).625

In the case of a single cavity, depicted in the top row, the reflection coefficient experiences626
a transition from total transmission |𝑅 | = 0 to perfect reflection |𝑅 | = 1. This transition627
becomes sharp as the cavity gap 𝑐/𝑏 decreases, and it occurs in the vicinity of the resonance628

frequency 𝜔 ≈
√︁
𝑔/𝑏 corresponding to 𝐾𝑏 ≈ 1 (Newman 1974). For multiple cavities as629

shown in the bottom row the solution exhibits increasingly rapid oscillations as the frequency630
approaches the resonant frequency for a single cavity and practically no transmission631
for frequencies beyond. As discussed in Huang & Porter (2023), oscillations arise from632
constructive/destructive interference effects from the ends of the array compounded with633
a retardation of the effective wave speed through the array (exemplified in figure 21) as634
resonance is approached.635

7.2. Uniform and graded plate-arrays636

We continue by making a comparison between uniform arrays of Huang & Porter (2023) and637
the graded arrays considered in Wilks et al. (2022). Figure 20 presents reflection coefficient638
|𝑅 | for both uniform and graded surface-piercing plate-arrays under normal wave incidence639
(𝜃0 = 0◦). The metastructure is composed of 𝑁 = 20 cavities, spanning the interval 𝑥/ℎ ∈640
[−0.5, +0.5], with an average plate immersion of 𝑏𝑚/ℎ = 0.5. For the graded plate-array, we641
adopted a constant aspect ratio strategy, with a base length ratio of 𝑏𝑁/𝑏0 = 3.0.642

As already described, |𝑅 | for the uniform plate-array exhibits rapid oscillations between643
|𝑅 | = 0 and peaks approaching |𝑅 | = 1 at resonance. The region of strong oscillations is644
magnified in the right panel. In contrast, the reflection curve for the graded plate-array is645
smooth, free of oscillatory behaviours, transitioning to |𝑅 | = 1 at 𝐾𝑏𝑁 = 1, corresponding646
to 𝐾𝑏𝑚 = 2/3 plotted by the gray vertical line in the figure.647

Figure 21 exhibits the imaginary part of spatial potential distribution Im[𝜙(𝑥, 𝑧)] within the648
flow field for wave scattering by a surface-piercing plate-array. The top and middle panels649
illustrate potential distribution for a uniform plate-array at 𝐾𝑏𝑚 = 0.977698 and 𝐾𝑏𝑚 =650
0.978375, respectively. Despite slight variation in wavenumber, the reflection coefficient651
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Figure 19: Modulus of the reflection coefficient |𝑅 | by an array of vertical identical
barriers for gaps 𝑐/𝑏 = 0.5 (left) and 𝑐/𝑏 = 0.05 (right) at 𝑏/ℎ = 0.2, where 𝑐 denotes the
distance between adjacent barriers and 𝑏 is the truncated depth. Top and bottom rows are
for 𝑁 = 1 and 𝑁 = 10 cavities, respectively. Comparison is made with the discrete model

by Huang & Porter (2023).
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Figure 20: The modulus of the reflection coefficient |𝑅 | by an array of uniform and graded
vertical barriers for 𝜃0 = 0◦ with the right panel highlighting the area where the reflection

curve for the uniform array touch the zero. The vertical gray line at 𝐾𝑏𝑚 = 2/3
corresponds to the lowest resonant wavenumber for the graded plate-array over which

perfect reflection occurs.

undergoes a sharp transition from |𝑇 | = 0 to |𝑇 | = 1 corresponding to complete transmission652
and perfect reflection, respectively, indicating a dramatic shift in the flow field dynamics.653
The top panel shows a multiple interference effect from the ends of the array with large fluid654
response within the cavities and the middle panel shows an exponential decay through the655
array. In contrast, the bottom panel exhibits the scenario where the plate-array is graded,656
where perfect reflection is observed for all 𝐾𝑏𝑚 ≳ 0.66. In this configuration a wave is657
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Figure 21: Distribution of the imaginary part of the velocity potential in the flow field for
wave scattering by a surface-piercing plate-array under normal incidence 𝜃0 = 0◦. Top:

uniform plate-array at 𝐾𝑏𝑚 = 0.977698; middle: uniform plate-array at 𝐾𝑏𝑚 = 0.978375;
bottom: graded plate-array at 𝐾𝑏𝑚 = 0.977698.

trapped within the middle cavity where the group velocity has slowed to zero and hardly any658
fluid motion is observed downwave of this.659

The theory developed in the paper allows for oblique wave incidence, but we found that660
the results did not change too much in character after replacing 𝑘 by 𝑘 cos 𝜃0, being the661
𝑥-component of the wavenumber.662

7.3. Semi-circular plate-array663

Finally we consider the wave scattering by a semi-circular profiled plate-array. Figure 22664
depicts the reflection curve as a function of non-dimensional wavenumber 𝑘𝑎, where 𝑎665
denotes the radius of the semi-circle. This is also a graded array with the onset of resonance666
associated with the longest channel, therefore at 𝐾𝑎 = 1. We observe a similar type of667
behaviour in |𝑅 | and the plot for the potential field as for graded arrays. That is, we transition668
to |𝑅 | = 1 for 𝐾𝑎 > 1 preceded by a small number of oscillations in the reflection before669
𝐾𝑎 = 1; and the fluid motion dies downwave of the cavity at which resonance occurs.670

Similar as figure 21, figure 23 presents the imaginary components of the potential671
distribution, Im[𝜙(𝑥, 𝑧)], within the flow field for wave scattering by a semi-circular profiled672
plate array. The top and bottom panels illustrate the cases of total transmission and perfect673
reflection at 𝐾𝑎 = 0.958022 and 𝐾𝑎 = 1.092743, respectively, corresponding to |𝑅 | = 0674
and |𝑅 | = 1 as in figure 22. Due to the graded nature of the semi-circular metastructure, the675
physical properties are analogous to those of the wedge-shaped plate-array.676

8. Conclusions677

In this paper we have considered a variety of settings in which water waves interact with678
metastructures consisting of dense plate arrays. These settings include the scattering of plane679
waves by isolated vertical metacylinders extending uniformly through the depth in an open680
ocean, scattering of plane waves by periodic arrays of vertical metacylinders and oblique681
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Figure 22: The modulus of the reflection coefficient |𝑅 | by an array of vertical barriers
subject to semi-circular profile for 𝜃0 = 0◦.
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Figure 23: Distribution of the imaginary part of the velocity potential in the flow field for
wave scattering by a semi-circular profiled surface-piercing plate-array under normal
incidence 𝜃0 = 0◦ at 𝐾𝑎 = 0.958022 (top panel) and 𝐾𝑎 = 1.092743 (bottom panel).

wave scattering by horizontal surface-piercing metacylinders. The metacylinders are formed682
by closely-spaced parallel arrays of thin barriers whose variable length defines the shape of683
the structure. We have concentrated on square, rectangular, wedge and circular structures in684
this paper. In each setting, local fluid resonance in the cavities between the plates produces685
a global effect on the wave field which produces an unorthodox behaviour.686

The key novelty of the work is that we have used an exact description of the plate array687
rather than replacing it by an effective medium. This has allowed us to consider wave688
frequencies above resonance where the effective medium theory breaks down and where the689
most interesting results are found. The method of solution that has been used is also novel and690
has been crucial in simplifying the otherwise complicated interaction between the multiple691
plate elements of the metastructures. We have shown how to apply transform-based approach692
in each of the three settings to reduce the problem to a canonical type meaning that all three693
problems, though superficially quite different, are resolved as solutions to almost identical694
systems of equations.695

A range of results have been produced across the three settings which have been shown696
to compare favourably to existing results (where that is possible) but showing new results,697
especially highlighting the role that resonance plays. Arguably, the most interesting results698
involve graded arrays in which the length of the plates in the array increase with distance699
into the structure (forming a wedge-shaped metacylinder). This produces a dense spectrum700
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of resonance frequencies associated with the variable length of the cavities in the array701
and allow for broadbanded “rainbow reflection” effects. We imagine these results will be702
of interest to coastal engineers developing defence schemes or devices with the potential to703
manufacture bespoke wave control or harness wave energy. The problems in this paper are704
set in the context of water waves but the methodology developed herein can be applied to705
problems in the areas of acoustics, elasticity and electromagnetics.706

Appendix A. Far-field scattering waves707

The potential in (2.19) indicates that the scattering potential 𝜙𝑠𝑐𝑎 = 𝜙 − 𝜙𝑖𝑛𝑐 is written as708

𝜙𝑠𝑐𝑎 (𝑥, 𝑦) ≈ − 1
4𝜋

𝑁∑︁
𝑘=0

2𝑄+1∑︁
𝑝=0

𝑎
(𝑘 )
𝑝 sgn(𝑥 − 𝑥𝑘)

∫ ∞

−∞

∫ 𝑏𝑘

−𝑏𝑘

e−𝛾 |𝑥−𝑥𝑘 |+i𝛽 (𝑦−𝑦′ )𝑤𝑝 (𝑦/𝑏𝑘) d𝑦′ d𝛽.

(A 1)709
By using the integral form of the zeroth-order Hankel function (Twersky 1962)710

𝐻0(𝑘 𝜚) =
1
𝜋i

∫ ∞

−∞

e−𝛾 |𝑥−𝑥′ |+i𝛽 (𝑦−𝑦′ )

𝛾
d𝛽, 𝜚 =

√︃
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 (A 2)711

where 𝛾 has been defined in (2.11) the scattering potential can be rewritten as713

𝜙𝑠𝑐𝑎 (𝑥, 𝑦) ≈ − i
4

𝑁∑︁
𝑘=0

2𝑄+1∑︁
𝑝=0

𝑎
(𝑘 )
𝑝

∫ 𝑏𝑘

−𝑏𝑘

[
𝜕

𝜕𝑥′
𝐻0(𝑘 𝜚)

]
𝑥′=𝑥𝑘

𝑤𝑝 (𝑦′/𝑏𝑘) d𝑦′

= − i
4

𝑁∑︁
𝑘=0

2𝑄+1∑︁
𝑝=0

𝑎
(𝑘 )
𝑝

∫ 𝑏𝑘

−𝑏𝑘

[
𝑘 (𝑥 − 𝑥′)

𝜚
𝐻1(𝑘 𝜚)

]
𝑥′=𝑥𝑘

𝑤𝑝 (𝑦′/𝑏𝑘) d𝑦′.

(A 3)714

In the limit that 𝑘𝑟 = 𝑘
√︁
𝑥2 + 𝑦2 → ∞, 𝜚 → 𝑟 and 𝑥 − 𝑥𝑘 → 𝜚 cos 𝜃, 𝜃 = tan−1(𝑦/𝑥)715

and using the asymptotic representation of first-order Hankel function for large argument716
(Abramowitz & Stegun 1964)717

𝐻1(𝑘𝑟) ∼
√︂

2
𝜋𝑘𝑟

ei(𝑘𝑟−3𝜋/4) , (A 4)718

the scattering potential in the far field 𝑘𝑟 → ∞ is approximated as719

𝜙𝑠𝑐𝑎 (𝑥, 𝑦) ∼
√︂

2
𝜋𝑘𝑟

𝐴(𝜃; 𝜃0)ei(𝑘𝑟−𝜋/4) (A 5)720

such that the scattering amplitude 𝐴(𝜃; 𝜃0) is approximated numerically by721

𝐴(𝜃; 𝜃0) ≈ − 𝑘 cos 𝜃
4

𝑁∑︁
𝑘=0

𝑏𝑘e−i𝑘𝑥𝑘 cos 𝜃
2𝑄+1∑︁
𝑝=0

𝑎
(𝑘 )
𝑝 𝐷 𝑝 (𝑘𝑏𝑘 sin 𝜃). (A 6)722
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