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Abstract

Inthis paper, surface waves in the presence of an infinite periodic array of obstacles of rectangular cross-section are considered.
Rayleigh—Bloch surface waves are described by a localised wave motion which does not propagate energy away from the array.
The periodicity of the array implies the existence of a cut-off frequency below which Rayleigh-Bloch surface waves may be
sought. Such solutions are well established and Rayleigh—Bloch surface waves have been shown to exist for all rectangular
cross-section. In the present paper, we generate examples of Rayleigh—Bloch surface waves for the more complicated case
of frequencies lying above the first cut-off, such waves correspond mathematically to eigenvalues embedded in the continuous
spectrum of the field operator. Numerical results are given for rectangular cross-sections based on an integral equation formulation
of the problem. Finally, strong numerical evidence is given for embedded Rayleigh—Bloch waves that exist for a single family
of rectangular cross-section above the second cut-off.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with the solution of the two-dimensional Helmholtz equation for a fuhtior) in
the presence of an infinite periodic array on which a Neumann condiipe=(0) is satisfied. Thus, it may be
regarded as a problem in linear acoustics involving a diffraction grating, or a scalar problem in electromagnetics,
or as a problem in linear surface gravity waves. This latter interpretation arises if we regard the lower half-space to
be occupied by an ideal fluid under gravity bounded by a free surface, a horizontal bottom boundary ata depth
and an infinite periodic ‘cliff’ extending throughout the depth of the fluid. Then the linearised water wave equations
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allow us to extract the depth dependence from the three-dimensional harmonic potential function describing the
flow, thereby reducing the problem to seeking solutig(s y) satisfying

Pxx + ¢yy + k2¢ =0
wherek is the real positive root of
w? = gk tanhkh

and a simple harmonic time variation of'&’ has been assumed. Because of the authors’ experience in the field,
it will be in the surface gravity wave context that the paper will be developed although some readers may be more
comfortable with the acoustic setting in whikh= w/c, wherec is the speed of sound.

In recent years, there has been a substantial body of work dedicated to an investigation of the conditions undel
which surface gravity waves are trapped by infinite periodic arrays of obstacles. This has been prompted by the
discovery of Callan et a[1] of the existence of trapped modes about a circular cylinder placed on the centreline of
an open-ended water-filled channel. Such trapped modes describe motions of finite energy localised in space in th
vicinity of the cylinder. By reflections in the channel walls they also correspond to localised standing waves about an
infinite periodic array of identical circular cylinders. The existence of trapped modes about any symmetrical obstacle
(such as a circular cylinder) placed on the centreline of the channel can be made plausible by the following argument.
By considering antisymmetric wave motions about the channel centreline and using separation of variables far away
from the obstacle it can be demonstrated that no outward propagating waves can exist provided the wakenumber
(wherek = 27/) anda is the wavelength) is below @ut-offvalue of/2d, where 2/ is the width of the channel.

It is, therefore, reasonable to seek trapped modes in the presence of a cylinder in the parameter<regibd
and in fact a rigorous proof of the existence of antisymmetric channel trapped modes about symmetric obstacles
has been given by Evans et H#l].

The existence of trapped modes is less clear when either the wavenilmib@&hosen to lie above the cut-off
for the channel, or when the obstacle itself is not symmetric with respect to the channel centreline. In both these
cases waves are able to propagate along the channel to infinity and there is no guarantee that localised wave fielc
will exist. Nevertheless, Evans et §8] were able to show that trapped modes could occur for a thin vertical plate
aligned with the channel walls but moved from the centre of the channel. It was subsequently shown by Davies
and ParnovsKi3] (also see Groved 0]) that the existence of these trapped modes can be proved rigorously, since
there are also cut-off wavenumbers that exist for particular problems involving thin plates aligned with channel
walls below which trapped modes may be found. Very recently, Linton &2l have found trapped modes using
a numerical technique for more general obstacles which are not symmetrically placed in the channel.

The first example of trapped modes occurratgpvea cut-off was shown numerically by Evans and Pof&r
who considered the case of a circular cylinder on the channel centreline but with waveriuatizese the first
channel cut-off but below the second channel cut-off suchstfizd < k < 3r/2d. Trapped modes above the cut-
off are termedembeddetrapped modes, since they are mathematically equivalent to the existence of an eigenvalue
of the two-dimensional Laplacian operatek2 which lies in the continuous spectrum of the operator, in the case
discussed above for antisymmetric motions about a symmetric obstacle thés[ig/2d, oo). Whereas trapped
modes below the cut-off (or below the continuous spectrum) occur for a large class of symmetrical obstacles, the
embedded trapped mode of Evans and Pd8Ewas shown to occur at a single precise cylinder radius and at
a single wavenumber. More recently, it has been shown by Mclver g5lthat the circular cylinder lies on a
branch of trapped mode values for a class of symmetrical obstacle in which two geometric parameters are allowed tc
vary simultaneously. For example, by considering elliptical cylinder cross-sectioné ¢ (y/b)? = 1, embedded
trapped modes were shown to exist for a family of ellipses givenbyu(b), whence trapped mode wavenumbers are
given byk = k(b). This characteristic of embedded trapped modes, namely that by changing one of the parameters
in the problem and being able to adjust another in the appropriate fashion in order to retain a trapped mode, is ar
argument central to the present work.
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The new feature presented in this paper is the extension of the concept of embedded trapped modes, now well
established for channel problems, to Rayleigh—Bloch surface waves. A discussion of Rayleigh—Bloch waves in the
diffraction-grating context is given by Wilcof20]. Because of the correspondence between the acoustic problem
and the depth-extracted surface gravity wave problem, the discussion in Wilcox also applies in the gravity wave
context provided a Neumann condition is assumed on the periodic structure. Rayleigh—Bloch surface waves describe
alocalised or trapped wave in the presence of infinite periodic arrays of cylinders and are characterised by a dominant
wavenumber of motiong, along the array. The channel trapped modes referred to previously may be regarded as
a special case of a Rayleigh—Bloch surface wave for wisiechw/2d, where 2 refers to the spacing between
adjacent cylinders in the array, when a standing wave solution is encountered. These are commonly referred to as
Neumann trapped modes on account of the Neumann conditions satisfied by the field potential on the channel walls.
A different type of standing wave solution occurs fbe= 0 and are referred to in the literature as Dirichlet trapped
modes; channel modes for which the condition on the channel walls are of the Dirichlet type. These modes have
also been investigated by, for example, Evans and P[@}e6ee also Maniar and Newm#§h3] and Evans and
Linton [7].

Using separation of variable arguments similar to those already described for channel trapped modes, itis possible
to argue that a cut-off exists for the problem of Rayleigh—Bloch surface waves. Thus, there is a range of wavenumber
k, given by O< k < 8 < r/2d, for which waves cannot propagate away from the array. This argument has led to
the discovery of surface waves along a variety of cylinder cross-sections including circular cylinders, rectangular
blocks, thin plates and more general cross-sections (see Porter andEldosa general review). Rayleigh—Bloch
surface waves were also shown by Porter and Ej#afito be important in determining trapped modes for channels
spanned by an arbitrary number of periodically spaced cylinders whilst the corresponding wavenumbers at which
they occur have been shown by Utsunomiya and Eatock-Tai#jrto be closely related to the phenomenon of
near-trapping occurring in the scattering of waves by finite arrays of cylinders.

The purpose of the present work, therefore, is to investigate the existence of Rayleigh—Bloch surface waves
abovethe cut-off and in accordance with the terminology used, such solutions will be called embedded Rayleigh—
Bloch modes. The motivation for the existence of such modes is now clear. Results from Mclvdi g} hhve
established the existence of embedded channel trapped modes corresporgiiad@tandr/2d for plates and
rectangular blocks having particular dimensions and occurring at specific valkabo¥e the cut-off. By varying
B from these values in the range<08 < n/2d and simultaneously also varying a geometrical parameter of the
problem (such as plate length, for example), we may reasonably expect that the embedded mode is preserved. This
is precisely the procedure we employ and apply it here to arrays of rectangular blocks, for which the simplicity
of the geometrical configuration lends itself to powerful analytical techniques similar to those used previously in
Evans and FernyhoudB].

The existence of embedded Rayleigh—Bloch surface waveswitti(8) (k > B) for a given periodic geometry
has profound implications for the corresponding scattering of an incident wave by that geometry. Thus, for those
particular values dk, g, to the scattered field due to a wave making an angle’®gg) with the axis of the periodic
array may be added any multiple of the Rayleigh—Bloch surface wave solution, thus rendering the scattering problem
non-unique.

As mentioned at the beginning of this section, this problem also has an interpretation in electromagnetic theory
and there is a large body of literature dedicated to the study of surfaces waves (guided waves or slow waves as they
are sometimes called) in the application to microwave devices. In particular, microwaves devices including periodic
elements are used to generate surface waves, which have the property that their phase speed, gefnedis
is slower than the speed of light, = w/k, for waves below the cut-off < 8. This feature enables interaction
between these travelling surface waves or ‘slow waves’ and electron beams which typically can only travel at 10 or
20% of the speed of light (see Chaterjgg chapter 9 or Elliof4], p. 423, for example). The present work which
focusses ot > g, therefore demonstrates that surface waves may also exist having phasegspatmithan the
speed of light. It is not clear what implications this may have for the design of microwave devices and whether this
new property can be harnessed for useful applications.
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In Section2, the governing equations that describe Rayleigh—Bloch surface waves are established in terms
of a two-dimensional complex scalar field potential. Since the potential satisfies homogeneous conditions it may
be modified by an arbitrary complex constant and a careful choice of the phase of this constant is made that
is crucial in identifying how Rayleigh—Bloch solutions are to be determined from the subsequent formulation.
In Section3, eigenfunction expansions for the potential in two rectangular subdomains are derived with par-
ticular attention drawn to the number of wave-like modes present in each region. These are crucial in deter-
mining where possible embedded Rayleigh-Bloch solutions may li&, i) (parameter space and a heuristic
wide-spacing argument described in Sectibshows why this is so. In Sectidb, the solution is formulated
in terms of integral equations for unknown functions relating to velocities across gaps in a manner similar to
Evans and Fernyhoudb]. These show that Rayleigh—Bloch waves above the first cut-off correspond to the van-
ishing of a real 2« 2 determinant plus the satisfaction of a real side condition. It is the realness of both these
conditions that allows solutions to be found and occurs as a direct consequence of the scaling in the potential
chosen at the outset. In Sectiénthe method of solution for the integral equations is described being based
on a Galerkin technique similar to that used in Evans and FernyhfghNumerical results are given in Sec-
tion 7, where embedded Rayleigh—Bloch waves above the first cut off are shown to correspond to the crossing
of two curves in a two-dimensional plane. In Secti®na consideration of Rayleigh—Bloch waves above the
second cut-off, where existence is anticipated on account of the number of geometrical parameters available. It
is found numerically that there is indeed one such family of solutions for which this new type of mode exists.
Finally, some conclusions are drawn in Sectfbin which the practical importance of these new types of em-
bedded surface waves is discussed with reference to scattering problems and guided or slow waves in microwave
theory.

2. Governing equations

Identical rectangular blocks each uniform in cross-section, lengtarn2 width 2, are arranged to form an
infinite linear periodic array of periodicity2and placed in an ideal fluid of constant deptfseeFig. 1). Adjacent
blocks are separated by a distances@ch that + ¢ = d. Cartesian coordinate are chosen witk 0 coinciding
with the mean free surface of the fluid antheasured vertically downwards. Time harmonic motion of frequency
w/2m is assumed, and since the blocks extend uniformly throughout the depth we may write the linearised velocity
potential® as

®(x, y. 2. ) = Re{g(x, y) coshk(z — h)e ")

Fig. 1. Coordinate system and dimensions for a periodic array of rectangular blocks.
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wherek is the real positive root of the linear dispersion relation

2
©” _ ktanhkh
g

andg is gravitational acceleration. In the context of acoustics, this equation is repladeg by/c,, wherec, is
the speed of sound in the fluid. The two-dimensional complex velocity potéritial) satisfies

(V2 + k?)¢(x, y) = 0, (2.1)
in the fluid wherev? is the two-dimensional Laplacian,

¢ . .

po 0, on solid boundaries (2.2)
and

¢ — 0, as|x| - oo. (2.3)

It is well known, see, for example, Evans and Fernyhofijhthat the periodicity of the infinite array implies a
Floquet relation for the solution given by

¢(x, y+ 2md) = €"Pg(x.y), mel (2.4)

for some real parametet. This condition allows one to confine attention to any rectangular strip of width 2
containing a single period of the infinite array by imposing coupled conditions on two parallel boundaries of the
strip. For example,

o(x, 2d) = P p(x,0),  ¢y(x, 2d) = P (x,0). (2.5)

Onceg(x, y) has been determined in the stip= {—oco0 < x < 00, 0 < y < 24}, it can be extended to the rest of
the fluid domain using2.4).

The task is to find values &{8) for prescribed values ¢f for which (2.1)—(2.3)are satisfied by some non-trivial
function ¢(x, y). Such solutions are known as Rayleigh—Bloch surface waves in the context of electromagnetics,
although Evans and Fernyhouffl] chose to call them edge waves in accordance with the terminology used for
related wave phenomena in water waves.

We need only consider values pfn the interval O< 8 < /2d, since it can easily be confirmed thak{f3) is a
solution then so i&(z/d — B), k(B + jr/d) for j € Z. (see, for exampl&3 in Porter and Portdd 8]). Rayleigh—

Bloch waves have been shown to exist for a wide class of obstacle cross-section wher @B < 7/2d and the
purpose of this paper is to construct Rayleigh—Bloch waves in theicasg. The difference between these two
cases is discussed later in this section.

The symmetry of the infinite array about lines= ¢ + 2jd, j € Z plays animportantrole in determining solutions
for k > B. Solutions of the homogeneous E{3.1)—(2.3)may be determined to within an arbitrary multiplicative
complex constant and we can use the symmetry of the infinite array to scale the solution by a phase factor which
turns out to be beneficial in later calculations. First, we introduce a new origin=aty — ¢ = 0 which is located
half way between adjacent blocks in the array. The#(if, y') is a solution o0f(2.1)—(2.4)s0 is¢(x, —y’) and,
assuming that these functions are linearly dependent, they may be related by an arbitrary c@rsagntyhence

¢(xv y/) = Cd)(xv _y/)'

Replacingy’ by —y’ shows thatC| = 1 in the above. Since the functigifx, y) is the solution of a homogeneous
system of equations and boundary conditions, it may be scaled by an arbitrary constant and therefore we choose to
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rescale withC = 1 so that

o(x, ') = ¢(x, =) (2.6)
is satisfied. The complex potentialis now decomposed into its real and imaginary parts by writing

P(x,y) = ¢°(x, y) +ig%(x, ) 2.7)
from which (2.6) may be used to show that

P°(x, Y) = %x, =), ¢%x, ) = —¢%(x, —). (2.8)

A similar decomposition was used in Porter and EVaii$. The choice of scaling of the potentiaihas allowed us

to identify the real and imaginary parts@fvith its symmetric and antisymmetric components, respectively, which
explains the use of superscripts s and a in the notati@@.8). It follows that the componenis® and ¢? satisfy,
respectively, Neumann and Dirichlet conditions on the lihe- 0 (or y = ¢). Note that using the form af given

by (2.7)in (2.4)with m = 1 and taking real and imaginary parts results in

¢S(x, ¢ + 2d) = cos(PBd)¢S(x, c) — sin(28d)¢3(x, c)
@3(x, ¢ + 2d) = sin(28d)¢S(x, c¢) + cos(PBd)¢p¥(x, c)

with a similar pair of equations fcwi’a. These coupled boundary conditions which now apply to a problem posed
on the stripS, = {—00 < x < 00, ¢ < y < ¢ + 2d} decouple in two cases. First, whgn= 0 to give

¢%3(x, c +2d) = ¢p%%(x, ). $3%(x. ¢+ 2d) = ¢5%(x. )
and secondly wittg = x/2d to give
¢S, c+2d) = —¢%%(x.).  PS(x. ¢+ 2d) = —¢5(x, o).

Combining these identities in turn wi{{2.8) shows that the functiong® and ¢? satisfy Neumann and Dirichlet
conditions (respectively) obothlinesy = ¢ andy = ¢ + 2d. Note that whers = 0 andk < z/d, it is known that
¢° = 0, whilstwhenk < B = /2d, $* = 0 (see Mclver and LintoflL.4].) Moreover, the decoupling of the problem
in the caseg = 0 andB = /24 has some profound implications on the nature of the existence of Rayleigh—Bloch
solutions which will be referred to later in this section.

The final step in the formulation of the problem comes from consideration of independent motions that are
symmetric and antisymmetric about the line= —a. We concentrate here on symmetric motions, such that

¢r=0, onx=—a. (2.9)

The corresponding condition for antisymmetric motiong is 0 onx = —a.

3. Eigenfunction expansions

The governing equations are now in place. To summarise, we seek non-trivial fungfiong in the semi-
infinite strip —a < x < 00, 0 < y < 2d satisfying(2.1)—(2.3), (2.5), (2.6) and (2.99r a giveng in the interval
0 < B < 7/2d. The solution may be constructed using separation of variables in two rectangular sub-domains of the
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strip Sp. First, in the inner region;-a < x < 0, bounded by the sides of adjacent blocks we represent the potential
by writing

$(x,y) =D An cosha, (x + a)yu(y) (3.1)

n=0

whereA,, are coefficients to be determined,

¥a(y) = /%" cospuy,  pn = % € = {; Z i (1)’ 3.2)
and 2 = 2(d — ¢) is the thickness of the block. Also,

anz(pg—k2)1/2>0, n=PP+1,...; o,=—ik,, where

ky = (k> = p2)Y2>0, n=0,...,P-1 (3.3)

andP = 1 + [2kc/n] where [x] represents the integer partofClearly,kg = k > 0 and saP > 1. The firstP terms
in the summation ir{3.1), therefore represent standing wave-like modes between the blocks and there is at least
one such mode.

In the outer regiony > 0, extending to infinity we write

¢(r,y) = Y B.&W(y) (3.4)

n=—0oo

whereB,, are also coefficients to be determined and

u(y) = M09 with §, = p+ n/d (3.5)
such tha(2.5)is satisfied and

ye=B2—k)Y2>0, ng{Q_.....04}; yn=—ik,, where

= k2= Y2 >0, nefQ-.....04) (3.6)
where

0. - [1E=P).

The total number of wave-like modes present in the expang®a}is given by

0=1+0_+ 0.

When O< k < 8 < m/2d, Q = 0 and all modes in > O decay exponentially with increasimxdn (3.4).
Note also the orthogonality relations

1 2d - 1 2c -
Z () ¥n(y)dy = 2% Vn (D) ¥ () dy = Smns (3.7)
0 cJo
wheres,,,, is the Kronecker delta. Crucially, the eigenfunctiohqy) and ¥, (y) defined for the inner and outer
regions, respectively, have been scaled such that their real parts are even aboahd their imaginary parts are
odd functions aboug = ¢. From the form of the potential assumed(th7) this scaling immediately ensures that
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the coefficients,, in (3.1) are real for alln whilst B,, in (3.4) are also real for values af ¢ {Q_, ..., 04} (i.e.
for all decaying modes).

We have already seen that no wave-like modes eglst(0) in the outer region extending to infinity provided
0 < k < B < m/2d and in this region of{, 8) parameter spac@.3) is automatically satisfied. This observation
allowed Evans and Lintof®] and later Evans and Fernyhoufh and Porter and Evaii$7] to construct Rayleigh—
Bloch waves for several families of cylinder cross-section. We need to consider carefully how we can motivate
the construction of a solution for which it is possible to satigf8) whenk > 8. For this we need to classify the
number of wave-like terms in the expansions in the two regions throughout,tBeglane, recalling that we only
need to consider the interval® 8 < n/2d.

Fig. 2 summarises the numbeiR,andQ, of wave-like modes present in the inner regien < x < 0 and in
the outer regiony > 0, respectively, throughout thé,(8) plane. The short dashed horizontal lines represent cut-
off wavenumbers in the inner region between the blocksk Agreases across one of these lines, the number of
wave-like modesP, increases by one. The longer dashed diagonal lines represent similar cut-off wavenumbers in
the outer regiorx > 0. Starting with a value o = 0in 0 < k < 8 < 7/2d, the value ofQ increases by one as
kincreases across each such line. Thus, each pakt 8f parameter space can be characterised by the number of
wave-like modes present in each region by labellingit@) in Fig. 2

The vertical linegs = 0 andn/2d require special consideration, since in these two cases we have already shown
that the problem decouples into either Neumann or Dirichlet problems for potentials lapebed ¢? that are
symmetric and antisymmetric, respectively, about both the parallel jireg andy = ¢ + 24 between which a

Kk
an -7
d=1"~.
S_Tt “:I:#_(_‘!’.s.).__t: N e e e e m
2c S~
T~ (3,4)
(3.3) ~dee
_ 2d
NP
. \\\\ =
£ R ’......\.ﬁ\%&‘\.‘%%\\ R L
C . -
(2,3 .-
n -7
d >~ (2,2)
g Tl
z (2!1) = ~
L ?-:‘.\_‘:___.
2c \(1‘23%l
-7 2d
(1.1 -
7 (1,0)
0" -
0 s B

Fig. 2. The number of wave-like modes in the inner and outer regidhg?), represented ink( ) space for a periodic array of rectangular
blocks.



R. Porter, D.V. Evans / Wave Motion 43 (2005) 29-50 37

block is centrally placed. Thus, the problem reduces, in these cases, to a single block ofawidthchannel of

width 24. Embedded Rayleigh—Bloch modes have previously been considered in these two cases first by Evans
and Portef8] then by Mclver et al[15] and Linton et al[12] where they are called Neumang £ /2d) and

Dirichlet (8 = 0) embedded trapped modes. However, itis a useful exercise to demonstrate how the Rayleigh—Bloch
formulation of the problem for generglreduces to these special cases. Because of the symmetry properties built
into the eigenfunctiong,, (y) and¥, (y), the general expansions for the potential in the two regions also separate for
these values g8 = 0 andn/2d. Thus, theyo,(y) are symmetric across= ¢ and they,,1(y) are antisymmetric

acrossy =c.Soin—a<x <0

¢(x.y) =Y _ Az, cOShurz, (x + a)r2a(y) (3.8)
n=0
whilst
¢(x, ¥) =Y Azu11COSha, 11(x + @)yr2nta(y) (3.9)
n=0

and in each case the value Bfrepresenting the number of wave-like modes, needs to redefined accordingly to
PS = 1+ [ke/n], P2 =[5 + ke/7].

In the outer regionr > 0, wheng = nr/2d, we find that_,_1 = —8,,, so thaty_,_1 = y,, and this allows us to
write

5. 3) =) Bre " cosp(y — ) (3.10)
n=0

whereB; = B, + B_,_1 are revised unknown coefficients. Since the sum now starts at zero the number of wave-like
modes is now given b@® = 1+ @ in this case.
Wheng = 0, we haves_,, = 8,, and thusy, = y_, also and so

o
9°(x,3) =) _ Bre " sinBu(y — c) (3.11)
n=1
whereB2 = B, + B_, are new unknown coefficients. In the expansion above the sum starts atand so here
the number of wave-like modes in> 0 is given byQ“ = Q.. In general, on the line§ = 0 andg = n/2d, the
values ofP andQ are reduced. Particular intervalslofor these two values ¢# for which P > Q are indicated on
Fig. 2 by bold labels rotated through @0Notice that we have not considered for 8 = /2d nor ¢° for g = 0.
The reason for this is that, in both these cases, the number of wave-like madesQris one more than in the
two cases that have been detailed above and there are, therefore, no corresponding intefoalstoth P > Q.
To summarise then, fg# = /24 we confine attention to the Neumann problemg#®and ong = 0, the Dirichlet
problem forg?.
We are particularly interested in regions @f g) parameter space in which > Q for reasons that will be
explained in the following section.

4. Wide-spacing arguments

We confine attention to regions of,(8) space where? > Q > 1 which are labelled bold ifrig. 2 In fact,
P = Q + 1inevery such region and sketchedig. 2are regions labelled (8), (3, 2), (2 1), but the existence of
each of these regions is dependent on the width of the rectangular block unlike@hegdion. Thus, the triangular
(2, 1) region only exists provided > %d, the (3 2) region exists provided > %d and so on.
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We shall adopt the arguments used by Mclver efld] to motivate the existence of their embedded mode to
justify the possible existence of a Rayleigh—Bloch mode, whenever there are more wave-like modes in the inner
region,—a < x < 0, than in the outer region, > 0.

Consider a region ofk( B) parameter space which is labelle@ ¢ 1, Q), for Q > 1, i.e. there is at least
one possible wave-like mode in the outer region. As a first step consider the case where the blocks extend from
—o00 < x < 0 and construct a sequence Bf= Q0 +1 scattermg problems involving waves propagating in the
positivex direction fromx = —oo of the form &n¥y;,.(y), m = , 0. Leto,,(x, y) be the potential associated
with each scattering problem. Thep (x, y) satisfieq2.1), (2.2) and (2.4):)ut instead 0f2.3) and (2.9we have

0
elkmxwm(y) + Z Rn1,ne_|k”x¢n(y)7 x = =00

n=0
FCOEE PN
Z T n €W, (), x — 00
n=0

whereR,, , andT,, , are thenth modal reflected and transmitted wave coefficients due tonthéncident wave
mode. Next, define a new potentiglx, y), being the combination

0
X(6, ) =Y dutpu(x, y)

n=0

where the coefficientsl,, are to be chosen to satisfy
[Y
> dyTun=0 m=0,..0-1
=0

which can be done to within an arbitrary multiplicative constant. Then

0 0
X(-x, y) ~ Z (dnelk,,x + Z dmRm,nelknx> ¢n(y), ¥ — —00

n=0 m=0
0, X — 00

which has the desired decaysat> co. In order to apply this to a periodic array of blocks of length 2> 1,
we use a wide-spacing argument in a similar fashion to Mclver ¢15]). A Rayleigh—Bloch mode for blocks of
length 21 is approximated by imposing the conditigp|,——, = 0 which in turn requires

Q

0
> (dne_z”‘"“ -> d,,,R,n,n) =0
m=0

n=0

to be satisfied. This is certainly the case if

ZIk’la_deRmn’ m=0’~"aQ
m=0

holds. However, this argument requires thiat- 1 equations are met simultaneously, and we would therefore expect
that at leas + 1 independent parameters are required to satisfy this.
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Forexample, wittQ = 1,do = —d17T1,0/ To,0 and then the approximate conditions to be satisfied for the existence
of a Rayleigh—Bloch mode turn out to be

~2ikoa _ po o To,0Ro,1

e -
1.0
’ 4.1
o2k _ p T10R10 (4.1)
= l’l -_ .
To,0

This formula may be applied in any (2) region of &, 8) space (se&ig. 2). In the case previously discussed,
Mclver et al.[15] considered Rayleigh—Bloch waves in such a region, thediaen/2d, with n/d < k < 3n/2d,
for a thin plate where they are equivalent to Neumann trapped modes. The only independent parameters that can be
varied in this case afeanda, but this is sufficient to simultaneously satisfy the two conditions above for particular
values ofk anda.

So far, examples of embedded waves have only been found in the special cAse9aindr/2d. In the next
section, we look for embedded modesdabitrary g by confining attention to the region of parameter space shaded
grey inFig. 2and given byr/2¢ < k < w/d — Bfor0 < B8 < m/c — m/2d which is above the first cut-off but below
the second.

5. Integral equation formulation

Rather than using the wide-spacing arguments presented in the previous section which require the solution of a
sequence of semi-infinite scattering problems and which only provide an approximate condition for the existence
of Rayleigh—Bloch waves we seek Rayleigh—Bloch wave solutions directly using an integral equation formulation
similar to Evans and Fernyhoudy.

An integral equation formulation is developed for theXRregion of parameter space shaded grdyign 2and
given byn/2c < k < /d — B, 0 < B < m/c — /2d which correspond to Rayleigh—Bloch waves above the first
cut-off. The changes required to the formulation when we go above the second cut-off are given briefly in&ection

We start with the expansions for the potentiabHin < x < 0 andx > 0 given by(3.1) and (3.4)respectively. In
order to proceed, we mat¢hande, from the two expressions for the potential along the common boundar
and 0< y < 2c and must also impose no normal flowoa= 0 for 2c < y < 24. Following Evans and Fernyhough
[5], we define

o] 00 .
>_n=0 Anttn Sinhapayn(y), 0 <y < 2c,
U(y) = ¢xlx0 = B(—v) ¥ () = = 5.1
()= rdmo= 32 Bul=ma) {O’ 2 <y =2 (5.1)
Multiplying by ¥, (y) and integrating over & y < 2d gives
2c
By, = —(2ymd)*1/ U, dy, m=0,+1,+2, ..., (5.2)
0

where the fact that/(y) = 0 for 2c < y < 2d has been used. Again, multiplyir{g.1) by v, (y) and integrating
now over 0< y < 2c gives

2c
Am = (o sinhay,a) ™t / UWYmdy, m=0,12,.... (5.3)
0

Continuity of¢ acrossc = 0 is expressed as

o0 o0
> BaWa(y) = > Ancoshuap(y), 0<y=<2c (5.4)

n=—0o0 n=0
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where we have chosen to g& = 0, a requirement of the solution, and the prime denotes thertesd is omitted
from the summation. We later introduce an additional condition that tests if the conflifien0 has in fact been
met. Substituting intd5.4) from (5.2) and (5.3whilst extracting the: = 0, 1 terms from the right-hand side of
(5.4)gives

2c
KU)(y) = / U(t)K(y, t)dt = —Agcoskoayp(y) — A coskiayi(y), O <y < 2c (5.5)
0
where
<, 1 & cothaya -
KO0= 30 5, OO+ 30 =5 SO (5.6)
We letu, (1), n = 0, 1 satisfy
(Kun)(y) = ¥n(y), O0<y<2 (5.7)
whence
U(t) = —Aouo(t) coskoa — A1u1(r) coskia (5.8)

satisfieg5.5). Note that Cu, v) = (1, Kv), where we have used the inner product notation

2c
(mw=Ameﬁw

and so the operatd( is self-adjoint. Furthermore, itis readily shown thigi(, ©) > 0 and sdC is a positive operator.
Using(5.8)in (5.3)with m = 0, 1 gives

2Aokoc Sinkga = AoSo,0 COSkoa + A1S0,1 COSk1a (5.9)
2A1k1cSinkia = AoS1,0 COSkoa + A1S1,1 COSk1a '
where we have defined
Smn = Wn,¥m), n=0,1;m=0,1,... (5.10)

The S,,.» can be shown to be real. This follows from the condit{@6) we imposed omp(x, y) from which we
were able to make the decomposition(#h7) with (2.8) into symmetric and antisymmetric parts about the line of
symmetry,y = ¢. We can therefore make a corresponding decomposition of the furié{ignwriting

U()=U(Y) +iU%y), whereUS(y') = UX(~y') andU%(y) = ~U%(~)

andy’ = y — c. By (5.8), a similar decomposition can be applied to the functiess), i = 0, 1, sinceAp and A1
have already been established as being real coefficients. Then

2c
Smn = (n, ¥im) = erln/zim/ (uy () + iud(y) cos(@) dy
0 2c

and straightforward algebra shows that

¢ 2m
wmwm=k%/}mwwmw( ”)w
0 C
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whilst
(tn, Yom—1) = Zﬁ/oc ul(c — y)sin <(2m—cl)ny> dy.

and hences,, , are real fom = 0,1 and forallm =0, 1, .. ..

Using(5.7)and the properties &€ we haveS, ,, = (um, Kun) = Kum, un) = (n, Kum) = Su.n = Sm.n. FUI-
thermore, sinc& is a positive operatof, , > 0,n = 0, 1 with equality only ifu,, = 0.

For a Rayleigh—Bloch mode to exist we require that the pair of &) written as

So.0 — 2koc tankoa S A 0
0,0 ocC 04 30,1 ,\ 0 _ (511)
S1.0 S1.1 — 2kictankia A1 0

possess a hon-trivial solution fdyp = Agcoska, A1 = A1 coskia. In other words, the determinant of the matrix
must vanish, and so

det®) = (So,0 — 2koc tankoa)(S1,1 — 2kic tankia) — So.151.0 = 0. (5.12)

When this real equation is satisfied, valuesigf A1 can be found, being the eigenvector of the 2 matrixSin
(5.11)corresponding to the zero eigenvalue.

In addition to the conditiof5.12) being satisfied, we must reintroduce the corresponding valugs ahd A4
via (5.8)into (5.2) with m = 0 to ensure that there are no propagating wave modes-ifd. Thus, we require the
solution of(5.11)to satisfy

2ikodBo = {AgPo.o+ A1Po1} =0 (5.13)

where we have written
2c .
Poon = (i, W) = / un()e 0=y, n =01, (5.14)
0

In a similar fashion to before, we can use the decompositian (@) into symmetric and antisymmetric parts to
show that

C
Poow =2 / [13(c — ) COSBuy + u3(c — y) Sin ] dy
0

forn =0,1andm € Z andP,, , are therefore real. Thus, the conditi@@13)is real.

To summarise, in order to show the existence of a Rayleigh—Bloch wave, we must{(salyéor unknown
functionsu;(y), i = 0, 1, such that two real Eq$5.12) and (5.13are simultaneously satisfied. Notice that the fact
that we have to satisfy two conditions is consistent with the heuristic wide-spacing arguments presented at the end
of the previous section.

6. Method of solution
Evans and FernyhoudB] describe in detail how the approximation to the solution of the integra{¥d) can

be made using a powerful Galerkin method. The procedure here is almost identical and only details are given to the
derivation of the final system of equations.
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We make approximations tg(y) in the form
N
wi(y)~ > alv,(y), 0<y<2
n=0

where the set of functionf, ()} are chosen to incorporate the expectd—1/3(2c — y)~1/3) behaviour in the
functionsu;(y), and to provide maximum simplification in the final system of equations. We choose

2225 (n + 1/3)(2yc)Y/3(2c — y)1/3 " c )

vn(y) =

(see Evans and Fernyhoudb]) where C},(x) is an orthogonal Gegenbauer polynomial satisfy@jg(x) =
(=1)"Cy,(x). It can readily be seen thab,(y) are real functions which are even about ¢, whilst va,+1(y)
are imaginary functions which are odd abeut c. This is precisely the property that is required of the functions

ui(y).
Applying a Galerkin approximation to the integral E§.7)results in the algebraic system of equations

N
Zaz(zi)Km,n = F,(,f), m=0,1,...,N
n=0

for the unknown coefficients!), i = 0, 1. Here,

OO/ 1
Knn = (Kvp,vp) = ——— = In+1/6(Brc)Int1/6(Brc
m,n ( n m) r;w ZJ/rd(ﬁrC)l/g m+1/ (ﬁr ) n+1/ (IBr )

00 1/3
cotha,a [ 2 1 1
+ E Er,m,n ( ) Jm+1/6 (?rn) Jn+1/6 (jrn)
e 20,¢ r

SO thatKm n = Kn.m With Ey . = 3[(—1) + (=1)"][(—1) + (—1)"] and

12 (2 1/6 1
2 — -
0, m even

6
0) _ —
FrSz) = (WO, Um) = m5m0,

The elements; ; defined in(5.10)are approximated by
N B B
Sij~ Y aPFO. i j=01
n=0
and finally, from(5.13)

N
. ~ - 1
2ikodBg ~ E {Aoaflo) + Alagl)} (7ﬂc)1/6 Jnt1/6(Bc)
n=0

Notice thatk,, , and F{) are real and therefore so ar, S; ; and 2 iod Bo.
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7. Results

Recall that our objective is to locate Rayleigh—Bloch waves above the first cut-off. That is, we seek values of
k(B) in the regionr/d — B < k < t/2c, where O< B8 < m/d — 7t/2c which is the triangular (21) region of &, B)
parameter space shaded greyig. 2

Locating embedded Rayleigh—Bloch waves for the case of a general rectangular array and for a general value
of B is not straightforward due to the number of independent parameters that can be varied. For example, for some
given value ofg and non-dimensional block width/d, we can vary the remaining two paramet&sanda/d,
referring to the non-dimensional wavenumber and block length such that for particular pkitsnda/d the
two real conditiong5.12) and (5.13are met simultaneously. Consequently, it is extremely important to employ a
systematic procedure to save on computational time and to ensure that all possible solutions have been found. We
describe this procedure in detail below where the branch structure of the solutions is also revealed.

The first step is to compute results f8r= 0 on the intervalr/2c < k < 7/d which is non-empty provided
b/d < % The reason for starting with the liffe= 0, 7/2¢ < k < m/d is that it is adjacent ink, ) parameter space
to the region in which we seek Rayleigh—Bloch waves above the first cut-off and that the solutions on this line
correspond t®irichlet trapped wavesgrefer to the discussion in SectioBsand 4in the case whep = 0). These
are significantly easier to calculate for reasons that follow. First, Dirichlet trapped modes forr are below
the first cut-off and are known to exist for all lengtigl and for all widths of block in the interval 8 b/d < %

(see, for example, the introduction of Porter and Ej&hs Secondly, Dirichlet trapped waves can be determined
numerically by satisfying a single condition rather than two conditions simultaneously as is the case for Rayleigh—
Bloch waves above the first cut-off. We explain briefly how this occurs. When0, the full potential decouples

into potentialsg®?2, that are symmetric and antisymmetric about the line ¢ as described in Sectighwhilst in
Sectiod it is argued that it is the latter that is likely to give rise to trapped modes which satisfy a Dirichlet condition
ony = c. A reworking of the integral equation formulation can be made for the funeti¢n y) defined in(3.9)

and (3.11) where forn/2c < k < m/d, there is one wave-like mode between adjacent blocks in the array and no
wave-like modes away from the array. The same result can be obtained by setting all contributions to the solution
that are symmetric abouwt= ¢ to zero in Sectiol, resulting inAg = 0, Po.1 = So,1 = 0 and saBp = 0O is satisfied
automatically whils{5.10)reduces simply to

2kictankia — S11 =0 (7.1)

in conjunction with the integral E§5.7)usingn = 1 only. Curves showing computed values&dat which Dirichlet
trapped waves occur with/d for values ofb/d = 0, 0.15, 0.3, 0.45 are shown irFig. 3. This problem has also
been considered by Shipway (private communication).

The next step in the procedure, now that Dirichlet trapped wave solutions correspongirg @chave been
established is to choose a non-zero valug ef ¢ > 0 wheree is small. Since3 £ 0 there are now two conditions
that need to be satisfied in order for a solution to exist. The first is givéh.th)which states that the determinant
of the 2x 2 matrixSin (5.11)vanishes. This condition fg# > O replace¢7.1)for g = 0. The additional condition
is given by(5.13)which uses the resulting non-trivial values 4§ and A1. However, rather than having to look
throughout the whole range of valueslaf anda/d, for 8 = ¢, we know that the condition d&) = 0 will be
satisfied close to values computed fbe= 0 shown inFig. 3. Along each of these curves the valueRy can be
monitored to see if it passes through a zero. Where it does pass through a zero both cqadit®)rand (5.13are
satisfied simultaneously and we have numerically located an embedded Rayleigh—Bloch soltiendofhese
values are indicated drig. 3by the boxes. The particular isolated values indicate the starting point of a branch of
embedded Rayleigh—Bloch solution along the positive valugs ©his branch can then be tracked numerically for
a sequence of increasing valuesgaising the values found fgf = e.

Results showing sets of values for which embedded Rayleigh—Bloch waves above the first cut-off occur are
shown inFigs. 4 and 5These results, like all other results in this paper, have been produced using a truncation
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Fig. 3. Dirichlet trapped modeg (= 0) showing variation okd with a/d for different block widths>/d: 0 (—), 0.15 (—-), 0.3 (---), 0.45 (.).
The boxes indicate the start of a branch ifte 0.
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Fig. 4. Variation of (akd and (b)a/d with Sd for arrays of thin platesi/d = 0). Refer to the text for labelling.
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Fig. 5. Variation of (akd, (b) a/d with Bd for Rayleigh—-Bloch waves above the first cut-off for for different block widijig: 0 (—), 0.15
(==),0.3(---), 0.45(- -). Refer to text for labelling.

parametetN = 10 which gives at least five figure accuracy in all cases. This is the case even when the width of
the rectangular block is reduced to zebgd = 0). Similar accuracy was reported in Evans and Fernyhd¢b&pgh
although it should be noted that in the casé i = 0 the test functions used in the expansion for the unknown
functions in Sectior no longer correctly model the singular behaviour at the edge of the plate which is increased
in strength to an inverse square-root singularity. Further confirmation of the resuligdfes O is provided by
comparing with results using the residue calculus technique applicable for thin plates. These results form the
basis for a future paper in which a rigorous proof of the existence of embedded Rayleigh—Bloch surface waves is
established.

In Fig. 4(a and b) the variation &&d anda/d with the non-dimensionalised wavenumigeris shown for arrays
of thin plates /d = 0). There is an infinite sequence of branches of Rayleigh—Bloch wave solutions of which only
the first few are shown ifig. 4a and b) and which can be classified with reference to the Dirichlet trapped mode
results shown ifrig. 3. Each curve irFig. 4a and b) is a branch which originates from a boxed poifign 3and is
labelled by a pair of integers. The first number in the pair indicates from which of the solid cuRigs 3counting
from left to right, the branch originates. The second number indicates the order along each curve from which the
branch originates. Thus, the sequence of curvesid = 1, 2, 3, 4 in Fig. 4a and b) all branched from values of
kd anda/d given by the boxed points on the leftmost solid curvé-ig. 3. It can be observed that the sequence
of branches labelled, I exist for all values of8 in 0 < 8 < 7r/2d whilst all other branches disappear through the
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second cut-off illustrated iRig. 4(a) by the dotted diagonal line before the valugdet 7/2d is reached. There is
no obvious explanation for this behaviour.

A similar labelling technique is employed Fig. 5a and b) where the variation &fl anda/d with gd is again
shown, but for blocks of widths/d = 0, 0.15, 0.3, 0.45. For each value di/d only two branches are sketched.
They are labelled (11) and (2 1) which indicate that they are branches that originate from the first boxed values
along the first two set of curves for Dirichlet trapped modes showrign3. FromFig. 5a) it can be seen that as
b/d is increased the values kdl also increase whilst the interval 8l over which Rayleigh—Bloch solutions exist
decreases. This is in accordance with the wide-spacing arguments of Skuafiich predicted that modes could
only exist in the regionr/2¢ < k < w/d and for O< 8d < /d — 7/2¢. Only the curve fob/d = 0 labelled 11
has Rayleigh—Bloch solutions throughout the entire interval < 7/d — 7/2¢, whilst all other curves disappear
through the second cut-off before the limiting valugBo& n/d — r/2¢ is reached.

8. Rayleigh—Bloch waves above the second cut-off

The wide-spacing approximation at the end of Secfialiowed us to argue the possibility of finding Rayleigh—
Bloch waves whenever the number of wave-like modes between adjacent blocks is greater than in the region away
fromthe blocks. Throughoutthe course ofthe present paper we have concentrated on thef2ging < =/d — 8
for 0 < B < m/d — m/2c for which this is the case. IRig. 2, this regime is represented by the triangular region of
(k, B) space shaded grey and labelled with a boldL§2lying above the first diagonal dashed line and below the
second. The Rayleigh—Bloch solutions that we have found in this regime are, therefore, said to be above the first
cut-off and below the second cut-off for the periodic array where the number of possible wave-like modes away
from the array increases by onekais increased across each cut-off.

Whenk is increased beyond the second cut-off we can consider the possibility of finding Rayleigh—-Bloch waves
in the regimer/c < k < n/d + B, n/c — n/d < B < 3n/2d which only exists ifb < %d. This region of g, )
parameter space is represented by the hashed triangle labelled with a,I®)lth(Big. 2 indicating that there are
three possible wave-like modes between adjacent blocks in the array and two wave-like modes away from the array

The motivation for seeking Rayleigh—Bloch modes above the second cut-off comes from the wide-spacing
arguments of Sectiod. These indicate that three conditions need to be satisfied which may be possible for the
rectangular array, since the problem involves three independent pararkéteyd, andb/d.

Itis a straightforward matter to adapt the integral equation formulation of Séstticzonsider possible Rayleigh—

Bloch modes above the second cut-off. The outcome indeed turns out to hikrdeakal conditions need to be
satisfied for such a mode to exist, the first being the vanishing of the determinant of axr@ayanmetric matrix
and the other two being supplementary conditions to ensure the amplitudes of mede®i(in this caseBy and
B_,) are both zero.

In this case, the integral E¢p.7) applies now for = 0, 1, 2 and with a slightly revised kernel,

<1 & cothaya -

K(y.1) = _Z 3,a POV + > PR AOIZI0 (8.1)
n=—0o n=3

where the double dash indicates thatithe 0 andn = —1 terms are omitted from the infinite sum. Also note the

second summation startsrat= 3. The integral operatde thus retains the properties it possessed in the working of

Sectionb. The solutions of the integral equations are use@bih0)to give a real symmetric system of equations

So0.0 — 2koc tankoa So.1 So0.2 Ao 0
S1.0 S1.1 — 2kictankia S1.2 Al =10 (8.2)
S2.0 S21 S22 — 2kpc tankaa Az 0
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In order for a Rayleigh—Bloch wave to exist the determinant of the3matrix, S, above must vanish to yield
non-trivial real coefficients\,,, n = 0, 1, 2 which must then also simultaneously satisfy plaé of real side condi-
tions

2ikgdBg = {AOP0,0 + A1P0,1 + AzPo,z} =0 } (8.3)

2ik_1dB_1 = {AoP_10+ A1P_114 A2P_12} =0

with P, , defined by(5.14)as before.

The solution of the integral equations and the valuess,pf, and P, , are determined using the Galerkin
approximation employed in Sectidwith appropriate modifications. However, the numerical procedure used for
locating Rayleigh—Bloch solutions is rather more complicated since three conditions need to be met simultaneously.
Instead of identifying a solution as being the crossing of two curvekdyu(d) space, it turns out that a solution
above the second cut-off for some given valugafow corresponds to the intersection at a point of three surfaces
drawnin &d, a/d, b/d) space on each of which one of the three conditions is met.

As in the case with Rayleigh—Bloch waves above the first cut-off the main difficulty that needs to be overcome
is to ascertain where in parameter space one should start looking for a Rayleigh—Bloch solution numerically. To
assist in this we use the results of Mclver et [46] who have produced curves for Neumann trapped modes
above the first cut-off for rectangular blocks. These Neumann trapped modes correspongbhere/27 and for
n/c < k < 3m/2d—an interval orFig. 2labelled with a rotated bold (2). The significance of the results of Mclver
et al.[16] is that they are adjacent ik, (8) parameter space to the region in which we wish to seek Rayleigh—Bloch
waves above the second cut-off. The curves in Mclver g1Lé].are generated by simultaneously satisfyirgag
of conditions, but oncg is taken to have a value of less thaf2d the satisfaction othreeconditions are needed
to produce a Rayleigh—Bloch solution.

The procedure we use is similar to that already described in detail for Rayleigh—Bloch waves above the first
cut-off. We choose a value @¢f= 7/2d — € wheree is small and use the solutions generated in Mclver ¢16].to
identify a starting point for a branch of Rayleigh—Bloch solutions by generating a similar set of curves that satisfy
two of the three conditions, namely d8t(= 0 and By = 0. Along each of these curves we monitor the value of
B_1 and look for a change in sign indicating that, has passed through zero along one of these curves. Where
it passes through zero all three conditions are met simultaneously and we have, therefore, located numerically a
Rayleigh—Bloch solution. In fact this only happens for a single set of valudsiod (d, b/d) which are marked on
Fig. 6with a box.Fig. 6repeats the curves in Figs. 2 and 3 of Mclver efi8] showing embedded Neumann trapped

= 1 1 1 1 1 0~5 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

(a) b/d (b) b/d

Fig. 6. Variation of (akd, (b) a/d with b/d for Neumann trapped modes (Rayleigh—Bloch waves ith= 7r/2) above the first cut-off (see
Mclver et al.[16] for detailed labelling).
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Fig. 7. Variation of (akd, (b) a/d and (c)b/d with Bd for Rayleigh—Bloch waves above the second cut-off (dotted line).

wave parameters, by using the integral equation methods outlined in this paper. Once the set didial A/ d)

have been found fg# = 7/2d — ¢ indicating the starting point of a branch indo< /24, the branch can be tracked

for decreasing values @fto find howkd, a/d andb/d vary with g resulting in the set of three curveshig. 7(a—c).

To the authors’ knowledge these are the first examples of any form of embedded wave solution occurring above a
second cut-off.

Although the procedure outlined above is sufficient to produce accurate numerical results, it may be argued that
it is not a rigorous numerical proof of existence of Rayleigh—-Bloch waves above the second cut-off, since in the
procedure outlined above the valueRf; is being evaluated using values on curves that are only approximate since
they have been generated numerically. A stronger piece of evidence for the existence of Rayleigh—Bloch waves
above the second cut-off is demonstrateBim 8a and b). Here, curves on which d&t& 0, Bg = 0 andB_1 = 0
are drawn inkd, a/d) space for two values df/d. Here, as in Evans and Por{&]), we have defined modified
quantitiesBy and B_, which are defined away from the curve @t& 0 using coefficientst,,, n = 0, 1, 2 that are
defined to be the eigenvector @.2) generated by the smallest eigenvalue in modulus of the nfatiixhenever
curves of elthelBo = 0 or B_1 = 0 cross the curve d&) = 0 the smallest eigenvalue is clearly zero and therefore
the values of3, coincide withB,, n = 0, —1 at those points. The crucial point is thafiiy. 8a and b) each of the
three curves are generatedependentlpf one another. Clearly in each figure both curve8gf= 0 andB_, = 0
cross the curve de3f = 0. The characteristic difference betweeg. 8a and b) is that the order in which the two
curvesBy = 0 andB_1 = 0 intersect the curve d&) = 0. Since the curves vary continuouslyigd is increased

444 . . : 4.44 — :
/" Bg=0
440l B_1=0 1 442 L 1
44| d
yd
i det(S) = 0
/ {
4.38 | H -
436 i~ 1
iB—1=0
¢ . 4.34 L : :
0.84 0.86 0.88 0.9 0.92 0.84 0.86 0.88 0.9 0.92
(a) a/d (b) a/d

Fig. 8. Curves showing zeros of the three conditions that are required for a Rayleigh—Bloch solution above the second cut4aff infdhe (
plane for (a)p/d = 0.25 and (b)»/d = 0.26 whengd = 1.5.
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from 0.25 inFig. 8@&) to 0.26 inFig. §b), there must be a value in the intervegll/ € (0.25, 0.26) where all three

curves intersect at a single point. Since the curves are computed independently, any small error introduced into the
numerical solution of the integral equations will not alter the ordering of the crossing in the two figures and therefore
the existence of a single crossing point is established.

9. Conclusions

Convincing numerical evidence for the existence of embedded Rayleigh—Bloch surface waves has been presented
using an accurate Galerkin approximation to certain integral equations. Arguments for the existence of such modes
was provided using a wide-spacing approach which illustrated the importance of the number of wave-like modes
in each of two regions. Results for embedded Rayleigh—Bloch modes above the first cut-off indicate that for a
given block width to spacing ratio satisfyimgd < % for everygin 0 < B8 < m/2d there exists a Rayleigh—Bloch
mode for discrete values of block lengtfd with corresponding values of wavenumlet his differs from results
obtained for the same geometrical configuration by Evans and Fernylisjugho showed that below the cut-off
Rayleigh—Bloch waves existed under the above conditionalfmalues ofa/d. In going above the second cut-off,
we have found that for each value gfin 0 < 8. < B < 7/2d Rayleigh—Bloch modes exist for a single unique
value ofkd, a/d andb/d.

In each of these regimes, the scattering of an incident wave at an anglé/g@ to the axis of the array would
result in either one or two specularly reflected waves. At the parameter values corresponding to the Rayleigh—Bloch
modes the scattering problem in each case becomes non-unique. It would be of interest to examine, for example,
the variation of the reflection coefficients as the Rayleigh—Bloch mode solutions is approached through varying the
angle of incidence for appropriate geometric parameters.

In the electromagnetic context Rayleigh—-Bloch waves are described as slow, surface, or guided waves. See,
for example, chapter 7 of Jongkl] where an approximate solution for the guided waves propagating along the
outside of an axisymmetric corrugated rod is obtained. There is no reason why the methods described here for the
two-dimensional periodic rectangular array should not carry over to give accurate results for the corrugated rod,
including the prediction of the higher-order solutions above the first or second cut-off.
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