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a  b  s  t  r  a  c  t

Scattering  of  a  monochromatic  train  of  surface  gravity  waves  incident  on  a  finite  region  of  arbitrary
three-dimensional  smoothly  varying  bathymetry  is  considered  in this  paper.  The  full  three-dimensional
linear  water  wave  theory  is approximated  by  the  depth-averaged  modified  mild-slope  equations  and  a
Greens  function  approach  is  used  to derive  domain  a integral  equation  for  the  function  relating  to  the
unknown  surface  over  the  varying  bed.  A simple  but robust  and  effective  numerical  scheme  is  described
eywords:
ocusing
ater waves

nderwater lens
rbitrary bathymetry

to  approximate  solutions  to  the  integral  equation.  The  method  is applied  to bathymetries  which  exhibit
focusing  in  the  high-frequency  ray-theory  limit  and  used  to illustrate  that  focusing  occurs  at  finite  wave-
lengths  where  both  refractive  and  diffractive  effects  are  included.  Specifically,  examples  of  elliptical  and
bi-convex  lens  bathymetries  are  considered.

© 2011 Elsevier Ltd. All rights reserved.

ild slope equations

. Introduction

The idea of focusing of surface waves by underwater lenses was
rst proposed by [17]. The basic concept is rather simple: oblique
aves are refracted by changes in depth and so as a wave passes

rom a depth h1 to a smaller depth h2, say, the refractive index n
etermined by n = k2/k1 > 1 allows oblique waves to ‘straighten out’,
here k1 and k2 are the wavenumbers for travelling waves deter-
ined by the linear dispersion relation K ≡ ω2/g = ki tanh kihi, i = 1,

 [17] and subsequent later work by these authors used this idea to
onsider the focusing of surface waves by lenses which comprised
orizontal underwater plates forming a ‘Fresnel lens’ (the type used

n lighthouses and overhead projectors for example) in plan form,
lthough a conventional bi-convex lens would work equally well.
hus incoming waves passing across the lens are transformed into a
ircular wave which converges at the focal point of the lens (see, for
xample, [26] and references therein). Linear theory and, later, non-
inear theory which accounted for the large amplitudes that arise in
he vicinty of the focal point, were used with success in predicting
arge amplification of waves at focal points and these methods com-
ared favourably with experiments in [26]. The theory used in this
arly work assumed that the effect of the depth dependence was
imply manifested in a change in wavenumber which resulted in a
wo-dimensional wave equation in which the depth dependence
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

as removed. Later, a numerical method based on fully three-
imensional linear theory was used by [20] to explore focusing by
resnel and bi-convex lens [10] have used a different mechanism
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E-mail address: richard.porter@bristol.ac.uk (R. Porter).
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for focusing surface waves. Using a large periodic array of verti-
cal cylinders whose diameters are much smaller than the incident
wavelength, they appealed to homogenisation theory to argue large
arrays of cylinders alter the wavenumber to create refraction. Using
over 600 cylinders arranged to form a bi-convex lens, they demon-
strated using direct numerical methods that focusing did indeed
occur as homogenisation theory predicted.

Ref. [13] used similar ideas to previous authors, again employ-
ing a submerged horizontal plate in the shape of a lens to refract
waves. In plan form the lens had an elliptical-arc leading edge and
a circular-arc trailing edge. Here, the authors were exploiting ray
theoretical result that incoming parallel rays entering an elliptical
domain with refractive index n = 1/� where � is the ellipticity are
exactly focussed on the far focal point P of the ellipse. By placing the
centre of curvature of the trailing edge circular-arc at P the incom-
ing rays refracted by the leading elliptical edge will be focussed on
P. Experiments performed by [13] showed that this idea worked as
predicted.

In this work we also take advantage of the elliptical lens focus-
ing used by [13] and consider focusing of waves by an elliptical
sea mount. Specifically, we  examine the refraction of waves in oth-
erwise constant depth h1 incident on an elliptical mound, with a
plateau at depth h2 < h1. According to geometric ray theory high
frequency surface waves will be refracted by an abrupt change in
depth and focus above the far focal point of the elliptical plateau
(see Section 2 for a description of this apparently little known
result). Of course, the change in depth could be effected by hav-
ace waves by variable bathymetry. Applied Ocean Research (2011),

ing waves pass across a submerged elliptical plate. Such a problem
was considered by [30] and though they do mention focusing of
waves, it is evidently clear that they are unaware of the ray theory
result of exact focusing.

dx.doi.org/10.1016/j.apor.2011.08.004
dx.doi.org/10.1016/j.apor.2011.08.004
http://www.sciencedirect.com/science/journal/01411187
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When waves pass across raised bathymetry, refraction often
esults in amplification of waves behind the bathymetry and many
apers have investigated this phenomenon. Three heavily cited
apers in this area are due to [11,6,29] presumably because these
apers include experimental data. In [11,29] amplification of waves
y paraboidal and ellipsoidal shoals on a flat bed are considered [6]
sed a rotated ellipsoidal protrusion sitting on a linear sloping bed
rofile and produced numerical results based on mild slope equa-
ions, a ray theory approach showing the formation of a caustic
ehind the protrusion and experimental results. In none of these
ieces of work consider geometries which predict perfect focusing
nder ray theory.

In this paper, we consider smoothly varying bathymetries moti-
ated by the presence of perfect focusing as predicted by ray
heory. A domain integral equation approach is developed to solve
he problem based on the modified mild-slope equations (see,
or example, [7])  which represent the three-dimensional fluid

otion by two-dimensional depth-averaged equations based on
he assumption that the gradient of the bed is small compared
o the non-dimensional wavelength. It is perhaps worthy of note
hat the same assumption is used in a short-wavelength geomet-
ic optics approach to predict refraction over varying bathymetry,
here ray paths are orthogonal to the phase lines S(x, y) equals a

onstant where S satisfies the eikonal equation S2
x + S2

y = k2(x, y)
nd k tanh (kh(x, y)) = ω2/g. See, for example, the description in
18]. The modified mild-slope approximation can be extended (e.g.,
24,2])  to larger bed gradients and made increasingly accurate by
he introduction of more vertical modes in the depth averaging
rocedure.

There is a difference in how rays bend when confronted with an
brupt change in depth and a gradual change in depth, though the
nal ray directions are the same. Hence the perfect focusing result
escribed earlier and outlined in Section 2 for the vertically sided
lliptical sea mount is lost once the change is depth is smoothed out.
his is not an issue that we are overly concerned with as ray theory
s introduced mainly for the purpose of motivation. Indeed, as we
re concerned with surface gravity waves, the wavelengths con-
idered here will be large enough that the defocusing effects of the
radual change in depth is probably not as important as the finite
avelength effect. Moreover, the formulation we propose allows

or diffractive as well as refractive effects. Thus, in order to max-
mise the focusing of wave energy, we require a minimal amount
f diffraction from the submerged bathymetry and this provides a
econdary reason for the use of a smoothly varying bed.

In this problem we therefore consider bathymetries which rises
radually and smoothly from the open depth h1 onto plateau
f depth h2. We  will consider plateau of both elliptical and bi-
onvex lens shapes to demonstrate focusing effects. In Section 3 we
escribe the implementation of the mild-slope approximation to
he fully three-dimensional problem and the formulation of domain
ntegral equations from the reduced two-dimensional mild-slope
quations using a Greens function approach, similar to that used
n [23]. Section 4 outlines a simple but effective numerical dis-
retisation method used to approximate solutions to the integral
quations based on rectangular and circular based discretisations
f the horizontal projection of the undulating bed. There are some
imilarities between our approach in this paper and the dual reci-
rocity boundary element method of [31] although our method
ppears much more straightforward both to formulate and imple-
ent numerically.
Finally, in Section 5, we produce a selection of graphical demon-

trations of focusing of surface waves, illustrating focusing close
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

o predictions from ray theory as the wavelength is decreased. In
oing so, we indicate that an elliptical lens provides better focusing
han the bi-convex lenses used previously by authors examin-
ng wave focusing. In addition, we assess the convergence of the
 PRESS
 Research xxx (2011) xxx– xxx

numerical method and compare our results with the experimental
results of [11,29].

2. Motivation: geometric ray theory

2.1. Elliptical lens

The following description can be found in [19]. Consider an ellip-
tical domain with refractive index n > 1 and major axis 2a, minor
axis 2b. Then the eccentricity is defined as � =

√
1 − b2/a2 and the

focal points P and P′ lie at ±a� (see Fig. 1). According to ray theory,
a ray parallel to the major axis is incident on the ellipse, and makes
an angle �i with the normal NN′ to the boundary at O. The ray pro-
ceeds from O at an angle �r with respect to NN′ where Snell’s relates
�i to �r by sin �i/sin �r = n. The ray intercepts the major axis at P and
P′ is the point at which a ray from P is reflected at O by the bound-
ary onto the axis. Then ∠ONP = � − �i and by the sine rule OP = nNP.
Also ∠NOP′ = �r whilst ∠ONP′ = �i and now the sine rule gives us
OP′ = nNP′. Adding these two results together gives POP′ = nPNP′ and
if this is to be independent of the point O, then we  have P and P′ at
the focal points when we get 2a = n2a�. In other words, we require
n = 1/�.

When considering water waves in the short wavelength limit,
a wave approaching the point O at which the elliptical boundary
representing a change in depth is locally straight. By insisting that
there is no change in the component of the wavenumber parallel
to this boundary, we  arrive at the relation k1 sin �i = k2 sin �r where
k1 and k2 are wavenumbers of propagating waves in depths h1 and
h2 outside and inside the elliptical boundary. Thus in order to focus
waves we  require the relation

n = k2

k1
= 1
�
, (2.1)

to be satisfied. Hence, given the frequency ω,  h1 and h2, we may
use (2.1) to determine � for focusing under the ray-theory limit.

2.2. Convex lens

The focal length, f, of a bi-convex lens is determined by the
lensmakers’ equation (see, for example, [9, p. 248, eqn. 6.2]),

1
f

= (n − 1)
(

2
R

− (n − 1)d
nR2

)
, (2.2)

where n is determined by (2.1), d is the thickness of the lens from
front to back and R is the radius of curvature of the lens.

3. Diffraction of waves by arbitrary three-dimensional
bathymetry

3.1. Specification of the problem

The problem is described using Cartesian coordinates with the
x and y axes lying in the mean free surface and z directed vertically
upwards. The bed elevation is then given by z = − h(x, y) where h(x,
y) is a continuous function with continuous derivatives over the
varying part of the bathymetry, an arbitrary finite simply connected
domain (x, y) ∈ D, and is such that h(x, y) = h1, a constant, when (x,
y) /∈ D. Thus we require h = h1 on (x, y) ∈ ∂D, the boundary of D, but
can allow ∇h to be discontinuous across ∂D.

Under the usual assumption of linearised water wave theory,
there exists a velocity potential given by �{(− ig/ω)˚(x, y, z) e−iωt}
where a time-harmonic dependence of angular frequency ω has
ace waves by variable bathymetry. Applied Ocean Research (2011),

been imposed and g is gravitational acceleration. We  seek the time-
independent complex potential ˚(x, y, z) which satisfies

(∇2 + ∂zz)  ̊ = 0, −h(x, y) ≤ z ≤ 0, −∞ < x, y < ∞,  (3.1)

dx.doi.org/10.1016/j.apor.2011.08.004
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Fig. 1. Focusing of a ray on

here ∇ = (∂x, ∂y),

z − K  ̊ = 0, on z = 0, (3.2)

here K = ω2/g,

z + ∇h · ∇  ̊ = 0, on z = −h(x, y). (3.3)

n addition  ̊ is required to satisfy a radiation condition at infinity
hich we set out to specify now. Outside the region (x, y) /∈ D where

he bed is flat (3.3) reduces simply to the condition

z = 0, on z = −h1 for (x, y) /∈ D, (3.4)

nd separable solutions may  be sought. In particular, a wave of unit
mplitude progressing from infinity over the flat bed and making an
ngle  ̌ with respect to the positive x-axis is given by the potential

inc(x, y, z) = cosh k1(h1 + z)
cosh k1h1

eik1(x cosˇ+y sinˇ), (3.5)

here we have written k1 to denote the real, positive root of the
sual linear dispersion relation

1 tanh k1h1 = K. (3.6)

ince the governing equations are linear the total potential is writ-
en as the sum of the incident wave potential, ˚inc, and a scattered
ave potential, thus

(x, y, z) = ˚inc(x, y, z) + ˚sc(x, y, z), (3.7)

here ˚sc(x, y, z) results from the interaction of the incident wave
ith the undulating part of the bathymetry in (x, y) ∈ D and must

epresent outgoing circular waves at large distances from this
egion. To be more precise, ˚sc must satisfy the Sommerfeld radi-
tion condition,

k1r)
1/2

(
∂

∂r
− ik1

)
˚sc∼o(1), as k1r → ∞,  (3.8)

here r2 = x2 + y2 which implies

sc(x, y, z)∼A(�; ˇ)
(

2
�k1r

)1/2
ei(k1r−�/4) cosh k1(h1 + z)

cosh k1h1
,

k1r → ∞.  (3.9)

ere A(�; ˇ) is a measure of the scattered wave amplitude in the
irection � = tan −1(y/x) to the positive x-axis due to an incident
ave propagating in the direction ˇ.

.2. The mild-slope approximation

The solution to the boundary-value problem specified above
ould, in principle, be approximated numerically by resorting
o fully numerical methods, although these are computationally
xpensive and the application of the radiation condition is non-
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

rivial.
We therefore seek to approximate its solution by invoking

he mild-slope approximation. This has the effect of reducing the
imension of the problem by approximating the vertical structure
ar focal point of an ellipse.

of the velocity potential and averaging over the depth. Many ver-
sions of the mild-slope approximation have been (and continue
to be) developed. Here, we use the modified mild-slope equations
(MMSE) developed by [7] which extended the original mild-slope
equations of [5,25] to include terms proportional to the bed gra-
dient and curvature and which have been shown to produce more
accurate results than previous models including the original MSE.

Thus we  write

˚(x, y, z) ≈ cosh k(z + h)
cosh kh

�(x, y), (3.10)

in which k(h(x, y)) denotes the positive, real root of the local dis-
persion relation

k tanh kh = K, (3.11)

where the depth is h(x, y). In water of constant depth, for exam-
ple when h(x, y) = h1, k(h(x, y)) coincides with the definition k1
seen in (3.6) and (3.10) is exact. Where h(x, y) is varying, (3.10)
is approximate in three different respects:  ̊ is not separable as
(3.10) suggests; the vertical structure of fluid motion is treated as
though only propagating waves are present; the form of the depth
dependence implies that  ̊ locally satisfies a flat-bed condition and
not a sloping-bed condition.

Variants of mild-slope approximations attempt to overcome one
or more of these deficiencies but often at the cost of simplicity of
the final equations. For example, the extended mild-slope equa-
tions (EMSE) derived by [24], expands ˚ in a truncated series of
depth eigenfunctions, thereby refining the vertical structure of the
fluid flow. The couple-mode Mild-Slope Equations of [2] augment
those depth eigenfunctions in the EMSE with a single extra ‘bed
mode’ which also ensures that the sloping bed condition is satis-
fied exactly. Each of these developments lead to coupled systems
of equations and add greatly to the complexity of the model.

A notable extension to the MMSE  is the CMSE (the comple-
mentary MSE) introduced by [12] and a scalar version of this, the
PMSE (pseudo-potential MSE), developed recently by [28]. Using
the streamfunction to describe the flow-field, a single propagat-
ing mode with a separable depth dependence exactly satisfying
the sloping bed condition is adopted. Thus, the simplicity of the
original MSE/MMSE is retained whilst one of its approximations is
overcome. Although PMSE can be used in the problems we consider
in this paper to derive integral equations, the structure of the PMSEs
leads to complications in the numerical approximation method and
therefore we have adopted the MMSE  here.

Though there are no formal bounds on the error incurred by
various MSE  models, the underlying assumption in each model is
that |∇h/kh | 
 1. Some analytical error estimates were produced
by [22] for specific bed shapes.

Ref. [7] implemented the approximation (3.10) using a vari-
ational principle having (3.1)–(3.3) as its natural conditions, a
ace waves by variable bathymetry. Applied Ocean Research (2011),

procedure which replaces those equations by the single MMSE

∇ · (u0∇�) + v0� = 0, −∞ < x, y < ∞,
with v0 = k2u0(h) + u1(h)∇2h + u2(h)(∇h)2.

}
(3.12)

dx.doi.org/10.1016/j.apor.2011.08.004
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he positive-valued function u0(h(x, y)) is given by

0 = sech2 kh(2kh  + sinh 2kh)/4k, (3.13)

hilst the remaining coefficients in (3.12),  u1 and u2, need not be
iven explicitly here, as they will shortly be subsumed into other
erms. We  remark, however, that (3.12) reduces to the original

ild-slope equation of [5] if the terms u1 and u2 are discarded. A
urther simplification occurs in the long wave limit kh 
 1 when
3.12) reduces to the familiar shallow water equation in which
0 = h and v0 = k2h = K .

We note that use of (3.10) in the decomposition (3.7) implies

(x, y) = �inc(x, y) + �sc(x, y), (3.14)

here

inc(x, y) = eik1(x cos ˇ+y sin ˇ), (3.15)

nd

sc(x, y)∼A(�; ˇ)
(

2
�k1r

)1/2
ei(k1r−�/4), as k1r → ∞.  (3.16)

he function �(x, y), which determines the approximation to ˚,  is
ompletely defined by (3.12)–(3.16).

We transform the equation (3.12) into its canonical form, by
riting

(x, y) =
{

u0(h1)
u0(h(x, y))

}1/2

 (x, y). (3.17)

hen   satisfies

2  + �(x, y)  = 0, −∞ < x, y < ∞, (3.18)

here

(x, y) = k2 + A(h)∇2h + B(h)(∇h)2, (3.19)

here A(h(x, y)) and B(h(x, y)), which include the functions u1 and
2 appearing in (3.12),  are given by

A(h) = −2k
P + sinhP

,

B(h) = k2{P4 + 4P3 sinh P + 3P2(2 cosh2 P + 1) + 18P  sinh P

+3 sinh2 P(2 cosh P + 5)}/{3(P + sinh P)4},
he abbreviation P = 2kh having been used. Where there is a pos-
ible discontinuity in ∇h, allowed in our specification along the
oundary ∂D of D, a direct integration of (3.18) across ∂D readily
ields

n · ∇ ]+− = −A(h1) [n · ∇h]+− = A(h1) (n · ∇h)∂D− (3.20)

also see [22]) where n is the outward normal to the curve (x, y) ∈ ∂D
nd the square brackets denotes the jump in the enclosed quantity
rom values on ∂D+, exterior to D, to values on the interior, ∂D−, of
. The final step in (3.20) is made from ∇h = 0 for (x, y) /∈ D where

 = h1, a constant.
The ‘flux’ condition (3.20) is attributed to the ∇2h term and has

sed the fact that  ,  a proxy for the surface elevation (see (3.33)),
ust be continuous everywhere. The condition (3.20) appears

o have been overlooked in other applications of the mild slope
quations to numerical solutions of wave scattering over variable
athymetry which often include bathymetries with discontinuities

n the bed slope, presumably in favour of the intuitive condition
n · ∇ ]+− = 0. For a recent example see [21].

Finally we mimic  the decomposition of � in (3.14) and write
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

(x, y) =  inc(x, y; ˇ) +  sc(x, y), (3.21)

here

inc(x, y; ˇ) = eik1(x cos ˇ+y sin ˇ) = eik1r cos(�−ˇ), (3.22)
 PRESS
 Research xxx (2011) xxx– xxx

and

 sc(x, y)∼A(�; ˇ)
(

2
�k1r

)1/2
ei(k1r−�/4), k1r → ∞. (3.23)

3.3. Integral equation formulation

The boundary-value problem for  , (3.18)–(3.23) will be refor-
mulated as an integral equation, making using of the fact that, for
(x, y) /∈ D, (3.18) reduces to the Helmholtz equation

(∇2 + k2
1)  = 0. (3.24)

To carry this out we  introduce the Greens function G(x, y;x′, y′)
defined by

(∇2 + k2
1)G = ı(x − x′)ı(y − y′), −∞ < x, y, x′, y′ < ∞,  (3.25)

and the radiation condition (3.8). The Greens function is simply
given by

G(x, y; x′, y′) = −1
4

iH0(k1	) (3.26)

(see for example, [18]) where H0(x) ≡ H(1)
0 (x) = J0(x) + iY0(x) is the

Hankel function of the first kind and 	2 = (x − x′)2 + (y − y′)2. We
make note of the behaviour

G(x, y; x′, y′)∼ − 1
4

i
(

2
�k1	

)1/2
ei(k1	−�/4), as k1	 → ∞,  (3.27)

and

G(x, y; x′, y′)∼ 1
2�

ln(k1	), as k1	 → 0, (3.28)

which will be needed later.
To implement the solution process, we  apply Green’s Identity to

 sc(x, y) and G(x, y;x′, y′) over the whole (x, y)-plane by summing the
contributions from separate applications in D and in R

2 \ D, inside
and outside the boundary ∂D to give∫ ∞

−∞

∫ ∞

−∞
( sc∇2G − G∇2 sc) dx dy

= lim

 →∞

∫ 2�

0

(
 sc

∂G

∂r
− G

∂ sc
∂r

)
r=



 d�

=
∫
∂D

[
 sc

]+
−(n · ∇G) − G

[
n · ∇ sc

]+
− ds. (3.29)

Using (3.18), (3.21), (3.23), (3.25), (3.20) and (3.27) in the above
results in

 (x′, y′) +
∫ ∫
D

[�(x, y) − k2
1]G(x, y; x′, y′) (x, y) dx dy

+ A(h1)

∫
∂D

G(x, y; x′, y′) (x, y)(n · ∇h)∂D− ds

=  inc(x
′, y′; ˇ), (3.30)

for −∞ < x′, y′ < ∞.
Eq. (3.30),  when restricted to (x, y) ∈ D, serves as an integral

equation for the unknown reduced potential  (x, y) on the domain
D, whilst when applied to points (x, y) /∈ D allows the value of   to
be computed in terms of those values solved for on (x, y) ∈ D. Notice
ace waves by variable bathymetry. Applied Ocean Research (2011),

that the incident wave angle, ˇ, only appears in the right-hand side
of (3.30),  a fact that can lead to computational savings.

In order to determine the scattering amplitude A(�; ˇ), we
express the point (x′, y′) in the Greens function in terms of polar

dx.doi.org/10.1016/j.apor.2011.08.004
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Dij

= 1
4�

[[
xy(ln(k2

1(x2 + y2)) − 3) + x2 tan−1
(
y

x

)

+y2 tan−1
(
x
)]xi−x′+(1/2)�x

]yj−y′+(1/2)�y

. (4.6)
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oordinates (r′, �′) located at the origin and find that

0(k1	)∼
(

2
�k1r′

)1/2
ei(k1r

′−�/4)e−ik1(x cos �′+y sin �′),

as k1r
′ → ∞,  (3.31)

here x′ = r′ cos �′ and y′ = r′ sin �′. Using this and (3.26) in (3.30)
nd taking the limit as k1r′→ ∞ gives

(�′; ˇ) = 1
4

i

∫ ∫
D

[�(x, y) − k2
1] (x, y) inc(x, y; � + �′) dx dy

+ 1
4

iA(h1)

∫
∂D

 (x, y) inc(x, y; � + �′)(n · ∇h)∂D− ds.

(3.32)

he total free surface elevation due to an incident wave of unit
mplitude is given by �{�(x, y)e−iωt}, where

(x, y) = ˚(x, y, 0) =
{

u0(h1)
u0(h(x, y))

}1/2

 (x, y), (3.33)

nd u0 is given by (3.13).
Another quantity of interest is the total energy distributed in

ircular scattered waves to infinity. A measure of this quantity is
efined to be

= 1
2�

∫ 2�

0

|A(�; ˇ)|2 d�. (3.34)

t can be shown that E = −�{A(ˇ; ˇ)} ([16]), a relation which in
ther physical contexts is known as the optical theorem.

The quantities A  and E are most easily calculated by expanding
inc in the (3.32) using the identity

inc(x, y; ˇ) = eik1r cos(�−ˇ) =
∞∑

n=−∞
inJn(k1r)ein(�−ˇ). (3.35)

hen (3.32) can be written as a Fourier series

(�′; ˇ) =
∞∑

n=−∞
Anein�′

, (3.36)

here

n = 1
4

i1−n
∫ ∫
D

[�(x, y) − k2
1]Jn(kr)e−in� (x, y) dx dy

+ 1
4

i1−nA(h1)

∫
∂D

Jn(kr)e−in� (x, y)(n · ∇h)∂D− ds, (3.37)

nd it follows that

 =
∞∑

n=−∞
|An|2 = −�

{ ∞∑
n=−∞

Aneinˇ

}
, (3.38)

he second equation being on account of the optical theorem. The
umerical scheme implemented in Section 4 to solve the inte-
ral equation satisfies this second equation in (3.38) exactly (to
ithin machine precision) for any numerical discretisation; readers

amiliar with the properties of Galerkin’s approximation to integral
quations on such relations will not be surprised by this.

. Numerical solution
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

The use of bathymetry with discontinuous bed slopes at the con-
ection between the undulating part of the bed and the constant
epth gives rise to line integrals in the formulation, see (3.30), (3.32)
nd (3.37).  The aims of this paper, which concentrates on focusing of
 PRESS
 Research xxx (2011) xxx– xxx 5

waves by bathymetry with large raised plateaus, can be achieved by
assuming bathymetry which connects smoothly with the constant
depth, thus avoiding an unnecessary complication to the numer-
ical solution method. Therefore we restrict ourselves henceforth
to cases where (n · ∇h)∂D− = 0 with one minor exception outlined
later in Section 5.

4.1. Solution based on a rectangular domain

The simplest case to consider is when the undulating part of the
bed, D, is confined within the boundaries of a rectangular domain
Dab = {| x | ≤ a, | y | ≤ b}. Since � = k2

1 in Dab \ D, (3.30) and (3.32) hold
with D replaced by the larger domain Dab.

We make an approximation to the unknown  (x, y), writing

 (x, y) ≈
N∑
i=1

M∑
j=1

aij ij(x, y), (4.1)

where aij are undetermined coefficients,

 ij(x, y) =
{

1, (x, y) ∈ Dij,
0, otherwise,

(4.2)

are discrete step basis functions, and Dij = {| x − xi | < (1/2)�x,
| y − yj | < (1/2)�y}, with⎧⎨
⎩
xi = −a +

(
i − 1

2

)
�x, i = 1, . . . , N, �x = 2a

N
,

yj = −b +
(
j − 1

2

)
�x, j = 1, . . . , M,  �y = 2b

M
.

(4.3)

Before using this approximation, we  decompose G into singular and
bounded components with G = Gs + Gb where

Gb(x, y; x′, y′) = − i
4
H0(k1	) − 1

2�
ln(k1	)∼ − i

4

+ 1
2�

(
 − ln 2),  as k1	 → 0, (4.4)

Ref. [1],  where 
 = 0.5772. . . is Euler’s constant and Gs(x, y;x′,
y′) = (2�)−1 ln (k1	). Inserting (4.2) into (3.30) approximates (3.30)
by

 (x′, y′) +
N∑
i=1

M∑
j=1

aij[�(xi, yj) − k2
1]{�x�yGb(xi, yj; x′, y′)

+ Gsij(x
′, y′)} =  inc(x

′, y′; ˇ), (4.5)

in which the integral involving the smooth part of the Greens func-
tion, Gb, has been approximated by a simple mid-point rule, and
where the integral of the singular part is carried out exactly to give

Gsij(x
′, y′) =

∫ ∫
Gs(x, y; x′, y′) dx dy
ace waves by variable bathymetry. Applied Ocean Research (2011),

y xi−x′−(1/2)�x yj−y′−(1/2)�y

Here, Gs
ij
(x′, y′) is a smooth function of (x′, y′) over the whole domain.

Hence, multiplying (4.5) by  pq(x′, y′) and integrating over Dab(a

dx.doi.org/10.1016/j.apor.2011.08.004
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rocess which characterises the Galerkin method) and approximat-
ng integrals by the mid-point rule gives

pq +
N∑
i=1

M∑
j=1

aij[�(xi, yj) − k2
1]{�x�yGb(xi, yj; xp, yq) + Gsij(xp, yq)}

=  inc(xp, yq; ˇ), (4.7)

or p = 1, . . .,  N, q = 1, . . .,  M.  The solution to the system of equations
4.7) can be used to reconstruct   using (4.5), and hence the free
urface using (3.33).  The scattered wave amplitude, on substitution
f (4.1) into (3.32),  is approximated by

(�′; ˇ) = 1
4

i�x�y

N∑
i=1

M∑
j=1

aij[�(xi, yj) − k2
1] inc(xi, yj; � + �′),

(4.8)

hose Fourier coefficients, defined by (3.36),  are given by

n = 1
4

i1−n�x�y

N∑
i=1

M∑
j=1

aij[�(xi, yj) − k2
1]Jn(krij) e−in�ij , (4.9)
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

ith rij = (x2
i

+ y2
j
)
1/2

, tan �ij = yj/xi.
We  note finally that the approximation (4.1) with (4.2) and the

valuation of integrals be a mid-point rule whilst being simple to
mplement is crude and could most certainly be improved upon.
ouble-cosine bed defined by (5.1) with a/h1 = b/h1 = 20, hmax/h1 = 1/2, k1h1 = 1,  ̌ = 0.

However, the results converge quickly enough for our purposes as
we shall see.

4.2. Solution based on a circular domain

If D is more closely aligned to a circular domain, it may  be
more effective to discretise the integral equation over Db, a circular
domain of radius b. The steps outlined above for the approximation
and numerical solution follow in a similar fashion. We  change the
independent variables from (x, y) to (r, �) and write

 (r, �) =
N∑
i=1

M∑
j=1

aij ij(r, �), (4.10)

where

 ij(r, �) =
{

1, (r, �) ∈ Dij
0, otherwise,

(4.11)

and now Dij = {| r − ri | < (1/2)�r, | � − �j | < (1/2)��} with
ace waves by variable bathymetry. Applied Ocean Research (2011),

⎧⎨
⎩
ri =

(
i − 1

2

)
�r, i = 1, . . . , N, �r = b

N
,

�j =
(
j − 1

2

)
��, j = 1, . . . , M, �� = 2�

M
.

(4.12)

dx.doi.org/10.1016/j.apor.2011.08.004
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/h1 = 5.3333x/h1 = 8.

s before, we need to calculate the contribution from the singular
art of the Greens function, which is given in this context by

s
ij(r

′, �′) = 1
4�

∫ ∫
Dij

ln(k2
1(r2 + r′2 − 2rr′ cos(� − �′)))r  dr d�.

(4.13)

ere, integration over domain variables r and � cannot both be
one analytically as in the Cartesian case and, after integrating with
espect to r, we are left with

s
ij(r

′, �′) ≈ ri
4�

∫ �j+(1/2)��

�j−(1/2)��

[
r ln(k2

1(r2 + �2)) − 2r
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

+2� tan−1
(
r

�

)]ru
rl

d�, (4.14)

here � = r′ sin (� − �′), ru = ri + (1/2)�r − r′ cos (� − �′) and
11] for a circular shoaling domain with parabolic height profile along sections y = 0,

rl = ri − (1/2)�r − r′ cos (� − �′) which must be calculated numeri-
cally. Then the analogue of (4.5) is

 (r′, �′) +
N∑
i=1

M∑
j=1

aij[�(ri, �j) − k2
1]{ri�r��Gb(ri, �j; r′, �′)

+ Gsij(r
′, �′)} =  inc(r

′, �′; ˇ), (4.15)

where the coefficients aij satisfy

apq +
N∑
i=1

M∑
j=1

aij[�(ri, �j) − k2
1]{ri�r��Gb(ri, �j; rp, �q)
ace waves by variable bathymetry. Applied Ocean Research (2011),

+ Gsij(rp, �q)} =  inc(rp, �q; ˇ), (4.16)

for q = 1, . . .,  N, p = 1, . . .,  M.  Note that here, in polars, we may  write
 inc(r, �;ˇ) = eik1r cos(�−ˇ).

dx.doi.org/10.1016/j.apor.2011.08.004
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xperimental M2  results of [29].

Subsequently, the scattering amplitude may  be computed from
 minor adaptation of (4.7) to give

(�′; ˇ) = 1
4

i�r��

N∑
i=1

M∑
j=1

riaij[�(ri, �j) − k2
1] inc(ri, �j; � + �′).

(4.17)

.3. Bathymetry with symmetry

Computational savings can be made if the bathymetry z = h(x,
) has a plane of symmetry, say along y = 0. Then the original
oundary-value problem can be decomposed into its symmetric
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

nd antisymmetric components, by first writing

inc = 1
2

(
 sinc +  ainc

)
, (4.18)
e plot of |�|; (b) |�| along y = 0; (c) |�| along x = 6.1 m.  The circular dots represent the

where

 s,a
inc

=
(
 inc(x, y; ˇ) ±  inc(x, y; −ˇ)

)
, (4.19)

such that ∂y sinc = 0 on y = 0 and  a
inc

= 0 on y = 0. The forcing from
each component implies a response satisfying the same symmetry
conditions on y = 0, and thus we decompose the total potential  
similarly into symmetric and antisymmetric components,

  = 1
2

(
 s +  a

)
, such that ∂y 

s(x, 0) = 0,  a(x, 0) = 0,

(4.20)
ace waves by variable bathymetry. Applied Ocean Research (2011),

and the problems for  s,a can be solved in the half-plane y > 0
with the boundary conditions (4.20) in place and the relations
 s,a(x, − y) = ±  s,a(x, y) providing the extension to the lower-half
plane.

dx.doi.org/10.1016/j.apor.2011.08.004
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Table 1
Two  error measures as a function of truncation parameter for a double-cosine bed
profile: a/h1 = b/h1 = 20, �/h1 = 2�.

N RMS error in |�|
relative to N = 192

Error in E relative
to N = 192

24 0.02655 0.00065
48 0.00740 0.01476
72  0.00319 0.00683
96  0.00159 0.00349

120  0.00083 0.00184
144 0.00042 0.00092
ARTICLEPOR-789; No. of Pages 14
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It follows that the scattering coefficients As,a(�; ˇ) defined by
he solutions of these two problems, can be used to determine the
verall scattering coefficient using

 = 1
2

(
As + Aa

)
, (4.21)

here

s,a∼As,a(�; ˇ)
(

2
�k1r

)1/2
eik1r−i�/4, k1r → ∞, (4.22)

emains in place.
The change to the method of solution requires that the Greens

unction be adapted in each symmetry to reflect the particular
oundary condition (4.20) imposed on  s,a. Thus we simply define

s,a(x, y; x′, y′) = − i
4

(
H0(k1	) ± H0(k1	̂)

)
, (4.23)

here 	̂2 = (x − x′)2 + (y + y′)2, and the additional term is due to
n image source about the line y = 0. We  treat the singular parts
f each component of Gs,a analytically as outlined in (4.6) or (4.14)
n the case of a circular domain. The numerical discretisation now
as to be performed only over the domain y ≥ 0 and so, for the
ame numerical accuracy, the size of the linear systems of equation
s halved and little extra cost in terms of computing the matrix
oefficients.

Clearly, if x = 0 and y = 0 are both planes of geometric symmetry,
e may  decompose the problem further and define a sub-problem

ver one quadrant of the original domain.

. Results

.1. Validation

A series of tests of convergence have been performed on the
umerical method on a generic bed profile given by

 = h1 − 1
4
hmax

(
1 + cos

(
�x

a

))  (
1 + cos

(
�y

b

))
,

−a < x < a, −b < y < b, (5.1)

here hmax is the maximum height above h1 of the undulation. The
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

ethod of Section 4.3 is used to exploit the y = 0 plane of symme-
ry in this example and later ones also. With  ̌ = 0, hmax/h1 = 1/2,
/h1 = b/h1 = 20 and k1h1 = 1, Table 1 shows computations of two
easures of error in the solution, one a ‘near-field’ measure and

Fig. 5. Geometric specification of 
168 0.00016 0.00036

the other a ‘far-field’ measure, and both functions of increasing
numerical discretisation parameter N. We  have taken M = N/2, in
these calculations when symmetry is being used to discretise half
of a square domain. Errors are measured relative to the solution
computed with N = 192, as there are no exact solutions to compare
with. The root mean squared error in the maximum amplitude of
the surface elevation is computed by sampling surface amplitudes
on a regular 100 by 100 grid over the undulating domain. The error
in the total circular wave scattered energy, E defined by (3.34),  is
measured relative to N = 192. Similar results are shown in Table 2
for the same wavelength, �/h1 = 2�, relative to the depth at infin-
ity, but over a larger domain defined by a/h1 = b/h1 = 40. A careful
analysis of the results from convergence test suggest that the error
reduces roughly like O(1/N2). Using the numerical data and assum-
ing a 1/N2 decay extrapolated to N =∞ suggests that an error of
less than 1% can be obtained if the truncation parameter N is cho-
sen so that at least 12 grid points per wavelength is achieved, or
�/min (�x, �y) ≥ 12. For such a low resolution of the wave field, this
is an impressive result given the course numerical scheme used. The
computational cost associated with this numerical method is high,
requiring the inversion of a NM × NM complex-valued matrix (the
evaluation of the matrix elements is quick compared to inversion),
and so very short wavelength/large domain computations become
prohibitively processor and storage expensive.

Fig. 2(a) and (b) shows the instantaneous free surface and the
maximum free surface amplitudes for the parameters correspond-
ing to Table 2. It can be seen that roughly 6 wavelengths cross the
ace waves by variable bathymetry. Applied Ocean Research (2011),

undulating part of the bed and that there is some focusing behind
the raised double-cosine bed profile, which can be explained by
refraction from the two  sloping sides of the raised bed.

the two  lenses in plan view.

dx.doi.org/10.1016/j.apor.2011.08.004
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Table  2
Two error measures as a function of truncation parameter for a double-cosine bed
profile: a/h1 = b/h1 = 40, �/h1 = 2�.

N RMS  error in |�|
relative to N = 192

Error in E relative
to N = 192

24 0.37382 0.09998
48 0.02589 0.00339
72 0.01207 0.01228
96 0.00636 0.00804

120 0.00364 0.00469
144 0.00187 0.00248
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168 0.00075 0.00101

The method has also been applied to a circular shoaling domain
ith a parabolic height profile given by

(r, �) = h1 − hmax

(
1 − r2

b2

)
, r ≤ b,

hich has been used by [15,14,21] to compare against experimen-
al data from [11]. This bed profile which again has a peak height
f hmax above h1 has non-vanishing gradient on the boundary r = b
here hr(b, �) = 2hmax/b and so we are required to include the addi-

ional contribution from the boundary integral (3.32), (3.34), (3.37)
nto our method. This is relatively straightforward for a boundary

hich is aligned with a circular grid, the approximated additional
ontribution to the left-hand side of the discretised system (4.16)
eing given by

(h1)
M∑
j=1

aNjhr(b, �j)(b��Gb(b, �j; rp, �q) + G̃sj (rp, �q)),

here

˜ s
j (r

′, �′) = 1
4�

∫ �i−�′+(1/2)��

�i−�′−(1/2)��

ln(k1(b2 + r′2 − 2br′ cos t)) dt,

s evaluated numerically.
Results are displayed in Fig. 3. The experimental parame-

ers used by [11] are h1 = 0.15 m,  hmax = 0.1 m (so that the water
epth above the peak of the shoal is 0.05 m),  b = 0.8 m with an

ncident wavelength of 0.4 m and waveangle of  ̌ = 0. This gives
1h1 = 2.3561, b/h1 = 5.333. The three panels in Fig. 3 show the
aximum wave amplitude (normalised by the incident wave

mplitude), defined by (3.33) along the sections y = 0, x = b (the
ear of the shoal) and x = (3/2)b. The circles show the experimental
esults of [11] and each panel includes three almost indistinguish-
ble lines; two solid curves overlay one another almost exactly are
omputed using Cartesian and circular grids but do not include the
dditional contribution from the slope discontinuity along the edge
f the shoal. The dashed curve which deviates slightly from these
wo curves represents the inclusion of the additional term from
he bed discontinuity in the computation based on a circular grid.
hese curves appear to be a significant improvement in fig. 2 of [14]
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surface waves by variable bathymetry. Applied Ocean Research (2011),
doi:10.1016/j.apor.2011.08.004

nd compare favourably with those shown in [21] although there
re some small qualitative differences especially between our Fig. 3
nd figure 11 in [21].

We remark that although the additional contribution from the
oundary integral along the bed slope discontinuity makes a prac-
ically insignificant difference to the results shown in Fig. 3, its
mission in other more severe discontinuities could be important
see, for example, fig. 12 of [21]).

Fig. 6. In (a)–(c), the maximum free surface displacement |�| is shown for focusing
by  an elliptical lens for a/h1 = 40,  ̌ = 0, 
 = 0.8, and h2/h1 = 1/2 with: (a) k1h1 = 1/4,
b/h1 = 28.0; (b) k1h1 = 1/2, b/h1 = 27.7; (c) k1h1 = 1, b/h1 = 26.05 in (c). In (d), the instan-
taneous free surface corresponding to (c) is shown.

dx.doi.org/10.1016/j.apor.2011.08.004
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As a final test of the method, we apply it to the ellipsoidal bed
rotrusion of [29], given by

h

h1
= 2 − 5

3

(
1 −

(
x

3.81

)2
−

(
y

4.95

)2
)1/2

, for

(
x

3.05

)2
+

(
y

3.96

)2
≤ 1

units of metres) with h1 = 0.4572 m and maximum height
max = (2/3)h1 = 0.3048 m.  The incident wave period is 1.3 s which
ranslates to a non-dimensional wavenumber of k1h1 = 1.273 whilst

 = 0.
Fig. 4(a) illustrates the amplification of waves behind the ellip-

oidal protrusion in a surface plot whilst Fig. 4(b) and (c) shows
he surface elevation along the centreline, y = 0, of the geometry
nd along ‘transect 4’ of [29] at x = 6.1 m in our results where the
ed protrusion is centred on (0, 0). There is good agreement with
he experimental monochromatic M2  measurements of [29] and
avourable agreement with the more accurate ‘FUNWAVE’ set of
esults of [8] (figures 2 and 3) who used both a parabolic wave
odel which fails to account for reflective effects of the bed and

UNWAVE, a fully non-linear time-dependent Boussinesq model
f wave propagation.

.2. Elliptical lens

To describe the bathymetry used here, we  employ elliptical
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

oordinates (u, v) with x = c coshu cos v, y = c sinh u sin v. Here

 = a� =
√
a2 − b2 (with a > b) is the distance of the foci from

he origin defined so that the ellipse u = u0 with u0 = cosh −1(a/c)
ouches the sides of the rectangular domain Dab : = {− a < x < a,
= 10, b/h1 = 40,  ̌ = 0, 
 = 0.8, and h2/h1 = 1/2 with k1h1 = 1/4 in (a), 1/2 in (b), 1 in (c)

− b < y < b} – see Fig. 5. Then we define h(x, y) ≡ h(u, v) by

hh =
{
h2, u < u1

h1 − 1
2

(h1 − h2)
(

1 + cos
(
�(u − u1)
u0 − u1

))
, u1 < u < u0,

(5.2)

where u1 = 
u0 (these definitions are not related to those used
briefly in (3.12))  and 
 controls the distance over which shoaling
from the depth h1 to the depth of the plateau h2 occurs. Typically,
we have taken 
 = 0.8 so that roughly 80% of the undulating bed is
occupied by a flat elliptical plateau of height hmax = h1 − h2 and 20%
is reserved for shoaling. The depth function h is used to define � in
(3.19), and for this standard results in elliptical coordinates for the
gradient and Laplacian can be used.

Fig. 6 illustrates focusing over an elliptical lens which has its
length a/h1 fixed at 40, the height of the elliptical plateau, h2, set
at half the depth of the fluid outside the lens and the shoaling
parameter 
 set at 0.8. These results are typical of numerical exper-
iments with other parameters and exhibit the key features of those
results. In panels (a)–(c), we plot the maximum amplitude, |�|, of
the total wave field over a domain including the elliptical lens as the
wavenumber increases from k1h1 = 1/4 through 1/2 to a value of 1.
Corresponding wavelengths range from 8�h1 to 2�h1 representing
a varying bed which is between three to twelve wavelengths long.
This indicates the numerical parameters needed to discretise the
domain according to the rules established in the previous section.
The ray theory result in (2.1) is used to determine the ellipticity, �,
for focusing and this defines b/h1 for each value of k1h1, given in
the caption to Fig. 6. The results clearly indicate an increases focus-
ace waves by variable bathymetry. Applied Ocean Research (2011),

ing effect towards the far focal point of the ellipse (which varies
according to the value of � used, but is roughly centred at x/h1 = 30).
In particular, notice in Fig. 6(c) the shadow region formed in the
hind quarters of the elliptical domain due to the incident waves

dx.doi.org/10.1016/j.apor.2011.08.004
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Fig. 8. Maximum free surface displacement |�| and instantaneous surface for a bi-convex lens with a/h1 = 10, b/h1 = 40 and h2/h1 = 1/2, k1h1 = 1 and with oblique wave
incidence of  ̌ = �/6.

Fig. 9. The diffraction coefficient A(�; 0) a bi-convex lens with a/h1 = 10, b/h1 = 40,  ̌ = 0, 
 = 0.8, and h2/h1 = 1/2 with k1h1 = 1/4 (dot dash), 1/2 (dotted), 1 (dashed) and 2
(solid). Detail shown in (b).
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Table  3
Computational results for focal lengths and amplitudes compared against predic-
tions from ray theory.

k1h1 n Predicted f/h1 Measured f/h1 |�| at focus

1/4 1.407 118 33 1.21
1/2 1.386 124 90 1.82
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1  1.318 151 135 2.63
2  1.169 280 259 2.76

aving being bent round towards the focal point. Notice also how
he short wavelength results feature only a small diffracted wave
omponent; mostly the waves are being refracted by the varying
ed in this limit.

In Fig. 6(d) we also plot the instantaneous free surface amplitude
hich shows quite clearly the bending of the incident wave front

nd the focal point.

.3. Convex lens

The description of the bathymetry for a bi-convex lens is
omplicated by the need for a smoothly varying shoaling region
onnecting a bi-convex lens shaped plateau of depth h2 with the
onstant depth h1. As in the previous example, we use a parame-
er 
 to control what proportion of the undulating bed is used for
hoaling and design the bed to fit within a rectangular domain, Dab.
ee Fig. 5 for reference. The radius of curvature of the bi-convex
ens is defined by R, as in (2.2), and given by the solution of

2 = (b − (1 − 
)a)2 + (R − 
a)2. (5.3)

he region y2 + (R − 
a + | x |)2 < R2, defines the plateau in which

 = h2. When R < r1 < R1, where r1 = (y2 + (R − 
a + |x|)2)
1/2

and
1 = (R + (1 − 
)a) with |y |/(R  − 
a + | x |) < (b − (1 − 
)a)/(R − 
a), the
hoaling sides of the bed are defined by

 = h1 − 1
2

(h1 − h2)
(

1 + cos
(
�(r1 − R)
R1 − R

))
. (5.4)

inally, when r2 < R2 where r2 = (x2 + (|y| − b + (1 − 
)a)2)
1/2

, and
2 = (1 − 
)a with |y |/(R  − 
a + | x |) > (b − (1 − 
)a)/(R − 
a) then the
hoaling sections at the ends of the lenses are defined by

 = h1 − 1
2

(h1 − h2)
(

1 + cos
(
�r2
R2

))
. (5.5)

utside of these three regions, which connect smoothly with each
ther, the depth is h1. Here |∇h|2 = h2

r and ∇2h = hrr + (1/r)hr accord-
ng to the particular definition of r (r1 or r2) being used.

A value of 
 = 0.8 has been used for the results presented here.
or comparison with (2.2), the width of the lens is d = 2
a.

Fig. 7 shows a series of computed maximum free surface ampli-
udes for a fixed bi-convex lens geometry as the wavenumber, k1h1,
ncreases. As k1h1 increases, then so the wavelength decreases and,
ince the ratio h2/h1 is fixed (at a half), the refractive index changes
see Table 3) thus lengthing the focal distance of the lens. It is clear
hat waves become more focussed as the wavelength shortens and
he refractive effects of the lens become increasingly dominant over
iffractive effects.

Table 3 shows how numerical results illustrated in Fig. 7 com-
are with predictions from using the ray theory result, (2.2)
nd indicate a closer agreement with ray theory for shorter
avelengths. There is a small percentage difference between the
easured and predicted focal distances, but this may  be because
Please cite this article in press as: Griffiths LS, Porter R. Focusing of surf
doi:10.1016/j.apor.2011.08.004

f the shoaling from the bed to the plateau distorting ray paths as
escribed in the Introduction.

In Fig. 9, the scattered wave amplitude A(�; 0) is shown against
 between zero and 180◦ for the series of numerical experiments in
 PRESS
 Research xxx (2011) xxx– xxx 13

Fig. 7. It can be seen that as the wavelength is reduced, less diffrac-
tion is being produced and more wave energy is refracted in higher
concentrations towards � = 0.

Finally, we illustrate in Fig. 8 that focusing still occurs for short
waves obliquely incident on the same geometry used in Fig. 7. Thus,
the wave angle is  ̌ = �/6 and whilst ray theory does not predict
perfect focusing for oblique angle of incidence, it does predict the
formation of a cusp.

6. Conclusions

An integral equation formulation to the problem of surface wave
scattering by a finite region of arbitrary undulating bathymetry has
been presented. The assumptions of a smoothly varying bed have
allowed us to use the modified mild-slope equations to vertically
average the three-dimensional fluid motion. This formulation has
been used to consider focusing of plane incident waves by two types
of raised bathymetry, each motivated by ray-theory results for short
wavelengths. Thus we have considered focusing by a raised ellip-
tical plateau and by a raised bi-convex lens shaped plateau. The
numerical scheme used for computing solutions is basic but easy to
implement and we have outlined two types of discretisation based
on circular and rectangular domains. Although the numerical cost
is high as the numerical scheme is refined, results have suggested
good accuracy even with relatively course discretisations. We  have
shown that elliptical lenses can be much more effective at focus-
ing than conventional bi-convex lenses in the context of refraction
of surface waves by raised bathymetry. Although the elliptical lens
requires a larger raised area than a bi-convex lens, the geometry
of [13] which we  have not explored here should exhibit the same
focusing effects as the elliptical lens but which a much smaller area
of raised bed.

Focusing of wave energy may  be a useful way of increasing
energy capture by wave energy converters placed in the ocean
especially if used in moderate wave environments. For example,
in the convex lens example, waves of different frequencies focus
at different distances behind the lens and hence converters tuned
to different frequencies could be placed at the appropriate focal
lengths behind a lens.

The method of scattering of surface waves by an finite domain
of arbitrary slowly varying bathymetry has been applied here
to focusing, but can be extended in a number of directions,
such as interactions between multiple finite domains of varying
bathymetry, near trapping by long finite ridges and edge wave exci-
tation along semi-infinite ridges (see [27]). Other extensions may
include shoaling domains on sloping beds, as considered by [6,4]
using the Green’s function derived by [3].
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