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1 Introduction

This technical report describes work carried out by the author in March 2017 in preparation for con-
ference talks to be given at the British Applied Mathematics Colloquium at the University of Surrey in
April 2017 and on a Isaac Newton Institute program on sea ice at Cambridge in the Autumn of 2017.

The document outlines the mathematical details needed to compute eigensolutions describing the
free oscillations of an unloaded thin rectangular elastic plate with four free edges. We essentially re-
produce the solution of Ritz (1909) by using the variational method invented precisely to solve this
problem. Ritz was able to describe mathematically the frequencies and mode shapes recorded in ex-
periments by Chladni (1787). For a comprehensive review of the general eigenproblem involving thin
rectangular elastic plates with all 21 possible combinations of boundary condition, see Leissa (1969),
Leissa (1973). The excellent review article by Gander & Wanner (2012) is more recent and provides not
only a wonderful description of the history of the problem of the free elastic plate but also a solution
and code to accompany it. Gander & Wanner (2012) follow the analysis of Ritz and assume square
plates with diagonal symmetries. In their code, Gander & Wanner (2012) take advantage of a symbolic
algebra package to perform certain integrals even though they can be done exactly.

Most people interested in solutions to this problem will be able to use the references available to
determine solutions themselves. Indeed, this is what I have done, although determining the details
apparently not available elsewhere has been more painful than I imagined. This document simply aims
to bypass the pain of that derivation and provide necessary computational details (and a brief outline
of the derivation) for anyone interested in evaluating solutions. Thus, here, general aspect rectangular
plates are assumed and we compute all integrals by hand to provide an explicit numerical recipe for
computing the eigenmodes and eigenfrequencies for a rectangular elastic plate with free edges. A
selection of results are given to illustrate the output from this approach and to compare with existing
solutions and report other benchmark solutions. Fortran 77 code which uses a NAG library call for
computing eigenvalues/vectors of real symmetric matrices is also provided as an accompanying online
link.

It is quite possible the details provided here can found in other references although they were not
found in the preparation of this work. Enjoy.
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2 Equations governing the free motions of a two-dimensional

elastic plate

An unloaded thin elastic plate occupies the rectangular region (x, y) ∈ D = {(x, y)| − a < x < a,−b <
y < b}. The time harmonic vibrations perpendicular to the plane it occupies are described by the
function ℜ{W (x, y)e−iωt} and, according to Kirchhoff-Love plate theory, W (x, y) satisfies

(∇2∇2 − λ)W = 0 (2.1)

where ∇2 = ∂xx + ∂yy is the two-dimensional Laplacian and λ = ρsdω
2/D in terms of ρs, the areal

density of the plate, d, its thickness, and D, the flexural rigidity defined as 1
12
Ed3/(1− ν2) in terms of

the Young’s modulus E and Poisson’s ratio ν.
The four straight edges of the plate are free, requiring W (x, y) to satisfy

(BW ) ≡ Wnn + νWss = 0,

(SW ) ≡ Wnnn + (2− ν)Wnss = 0,

}
on |x| = a, |y| < b and on |y| = b, |x| < a. (2.2)

where n and s are used, respectively, to denote derivatives normal and tangential to the edge. The four
corners are free of twisting moments implying that

Wns = 0 (2.3)

as the corner is approached along the edge. Non-straight free edges require additional terms related to
curvature in the boundary conditions stated above.

The aim is to find the eigenvalues λ and the corresponding eigenmodes W (x, y) for the problem
stated above. For rectangular geometries these cannot be determined explicitly.

2.1 The one-dimensional problem

For the one-dimensional analogue of this problem, namely the identification of free bending modes of the
Euler-Bernoulli beam equation, solutions are explicit. Thus, the eigenmodes, wn(t) say, and eigenvalues,
k4
n say, satisfying the ordinary differential equation

w′′′′

n (t)− k4
nwn(t) = 0, |t| < 1 (2.4)

and free-edge boundary conditions w′′′

n (±1) = w′′

n(±1) = 0 are given by

w0(t) =
1

2
, (k0 = 0) (2.5)

w1(t) =
1

2
t, (k1 = 0) (2.6)

w2n(t) =
1

4

(
cosh k2nt

cosh k2n
+

cos k2nt

cos k2n

)
, (tanh k2n + tan k2n = 0) (2.7)

for n ≥ 1 and

w2n+1(t) =
1

4

(
sinh k2n+1t

sinh k2n+1

+
sin k2n+1t

sin k2n+1

)
, (tanh k2n+1 − tan k2n+1 = 0) (2.8)

again, n ≥ 1. The brackets contain the relations satisfied by kn, an increasing sequence of positive
values beyond k1.
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The eigenmodes defined above are orthogonal, so that

∫ 1

−1

wm(t)wn(t) dt = C2
nδmn, m, n ≥ 0. (2.9)

where C0 =
√

1
2
, C1 =

√
1
6
and Cn =

√
1
8
for n ≥ 2.

2.2 A variational principle

Consider the functional

L(W ) =
1

2

∫ b

−b

∫ a

−a

{(∇2W )2 − 2(1− ν)(WxxWyy −W 2
xy)− λW 2} dxdy. (2.10)

With some work it can be shown that this satisfies

δL =

∫ b

−b

∫ a

−a

δW (∇2∇2−λ)W dxdy+

∮

C

((SW )δW−(BW )(δW )n) ds+2(1−ν)[WxyδW ]corners. (2.11)

The closed loop integral is to be interpreted as the union of four distinct integrals along the four edges
of the rectangle. Thus, L is stationary at the solution of the boundary-value problem in §2.1 subject to
arbitrary variations in W and the normal component of its gradient. We use the variational principle
to approximate eigensolutions using Ritz’s method.

2.3 Approximation by Ritz’s method

We write

W (x, y) ≈

N∑

m=0

N∑

n=0

αm,n

wm(x/a)wn(y/b)

CmCn

(2.12)

where the test functions are the eigenmodes of the one-dimensional beam equation with normalising
factors in the denominator. These do not satisfy the exact free edge conditions but do allow arbitrary
variations in the function and in its first derivative.

Application of the Ritz method (i.e. substituting (2.12) into (2.10) and making L stationary with
respect to αm,n) results in the unknown coefficients (and the eigenvalue λ) satisfying the system of
equations

N∑

m=0

N∑

n=0

αm,n

(
Km,n,p,q

CnCmCpCq

− λa4Im,n,p,q

)
= 0 (2.13)

for p, q = 0, 1, . . . , N where

Km,n,p,q =

∫ 1

−1

∫ 1

−1

(
w′′

m(t)wn(u) + µ2wm(t)w
′′

n(u)
) (

w′′

p(t)wq(u) + µ2wp(t)w
′′

q (u)
)
dtdu

−(1 − ν)µ2

∫ 1

−1

∫ 1

−1

(
w′′

m(t)wn(u)wp(t)w
′′

q (u) + wm(t)w
′′

n(u)w
′′

p(t)wq(u)− 2w′

m(t)w
′

n(u)w
′

p(t)w
′

q(u)
)
dtdu

(2.14)

with µ = a/b while I is the Identity matrix with entries Im,n,p,q = δmpδnq.
Now ∫ 1

−1

w′′

m(t)w
′′

p(t) dt = k4
mδmp (2.15)
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by integrating by parts and using the ODE and BCs for wm(t) along with the orthogonality condition.
Also ∫ 1

−1

w′

m(t)w
′

p(t) dt = Lm − Jm,p (2.16)

where

Lm = [w′

m(t)wp(t)]
1
−1 and Jm,p =

∫ 1

−1

w′′

m(t)wp(t) dt. (2.17)

It follows that

Km,n,p,q = (k4
m + µ4k4

n)CmCnCpCqδmpδnq + νµ2(Jm,pJq,n + Jp,mJn,q) + 2µ2(1− ν)(Lm − Jm,p)(Ln − Jn,q).
(2.18)

The four intrinsic symmetry classes of a rectangular plate mean that many of these elements are zero
and (2.13) can be decoupled into four separate systems for each symmetry class.

In practical terms, we take advantage of this from the outset and write in place of (2.12)

W (µν)(x, y) =
N∑

m=0

N∑

n=0

α2m+µ,2n+ν

w2m+µ(x/a)w2n+ν(y/b)

C2m+µC2n+ν

(2.19)

with µ = 0, 1, ν = 0, 1 to denote symmetry/antisymmetry in x and y respectively. Note: it is an
unfortunate accident that µ and ν are simultaneously used as both parameters and indices; however, it
should be clear which values they take in relation to the context of their use.

After using this, (2.13) is replaced with four uncoupled equations for each symmetry group:

N∑

m=0

N∑

n=0

α2m+µ,2n+ν

(
K2m+µ,2n+ν,2p+µ,2q+ν

C2m+µC2n+νC2p+µC2q+ν

− λ(µν)a4I2m+µ,2n+ν,2p+µ,2q+ν

)
= 0. (2.20)

The terms required to calculate the necessary elements of the matrix Km,n,p,q directly are as follows.
First

L2m = 1
2
k2m tanh k2m (2.21)

for all m, and

J2m,2p =
L2m − L2p

1− k4
2p/k

4
2m

(2.22)

with special cases J0,2p = 0 for all p, J2m,0 = L2m − L0 for m ≥ 0 and

J2m,2m = 1
4
L2m − 1

2
L2
2m (2.23)

for m > 0.
Next, we have

L2m+1 =
1
2
k2m+1 coth k2m+1 (2.24)

for m > 0 and L1 =
1
2
whilst

J2m+1,2p+1 =
L2m+1 − L2p+1

1− k4
2p+1/k

4
2m+1

(2.25)

with J1,2p+1 = 0, for all p ≥ 0, J2m+1,1 = L2m+1 − L1 and when m = p 6= 0

J2m+1,2m+1 =
1
4
L2m+1 −

1
2
L2
2m+1 (2.26)

and this is all we need.
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Numerically, we compute the eigenvalues and eigenvectors of the four truncated real symmetric
matrices with entries

K2m+µ,2n+ν,2p+µ,2q+ν/(C2m+µC2n+νC2p+µC2q+ν) (2.27)

and assign them to a4λ
(µν)
i ; the corresponding eigenvectors represent α

(i)
2m+µ,2n+ν which can be then used

to determine the ith eigenmode W
(µν)
i (x, y) using (2.19).

2.4 Orthogonality of eigenmodes

Let Wi(x, y) and Wj(x, y) be any two eigenmodes belonging to the same set of any one of the four
different symmetry classes µ, ν = 0, 1 and having eigenvalues λi and λj respectively. Then consider

(λi − λj)

∫∫

D

WiWj dxdy =

∫∫

D

(
Wj∇

2∇2Wi −Wi∇
2∇2Wj

)
dxdy

=

∮

C

(
Wj∂n∇

2Wi −Wi∂n∇
2Wj − ∂nWj∇

2Wi + ∂nWi∇
2Wj

)
dxdy (2.28)

where C is the closed boundary of D after integrating by parts (via Green’s identity) twice. Use of the
free-edge boundary conditions with zero twisting moments on the corners can be used to show that the
right-hand side is zero. Within each symmetry group, the eigenvalues λi are distinct and so it follows
that

1

ab

∫ b

−b

∫ a

−a

W
(µν)
i (x, y)W

(µν)
j (x, y) dxdy = δijE

(µν)
i (2.29)

where

E
(µν)
i =

N∑

m=0

N∑

n=0

{α
(i)
2m+µ,2n+ν}

2 (2.30)

in terms of the eigenvector α
(i)
2m+µ,2n+ν associated with the ith eigenmode.

Eigenmodes belonging to different symmetry groups are clearly orthogonal.

3 Results

In the following we have presented computed values of the dimensionless eigenvalue parameters λ̂ =
λa4 = ρsdω

2a4/D.
In Tab. 1 the results of computations are displayed for a square plate a/b = 1 for the first five eigen-

values in each of the symmetry groups. Being square, the results for symmetry in x and antisymmetry
in y (SA) are identical to those for antisymmetry in x and symmetry in y (AS). The ‘fundamental’
eigenvalue for SS, SA and AS corresponding to rigid-plate motions are all zero, as expected.

Using N = 12, 24 and N = 48 in computations shown in Tab. 1 provide an indication of accuracy of
results. They confirm what has previously been observed (e.g. Leissa (1973)) that the the convergence
is slow. The results are accurate enough for the purposes intended for this work. Since the matrix size
is (N + 1)2, computational effort increases significantly with increasing N (presumably O(N6) or close
to this). I.e. doubling N results in 64 times the computational effort.

The results shown in Tab. 1 and accompanying mode shapes (illustrated by nodal lines) in Fig. 1
compare well with those reported in the literature, although the focus of Leissa (1969) and Gander &
Wanner (2012) appears to be in reproducing the results of Ritz (1909) rather than seeking to improve
on their accuracy.
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Mode SS SA = AS AA
1 0.0000 0.0000 12.4576
- 0.0000 0.0000 12.4562
- 0.0000 0.0000 12.4552
2 26.0289 81.0237 321.605
- 26.0032 80.9676 321.214
- 25.9900 80.9341 320.969
3 35.6911 235.804 375.938
- 35.6638 235.606 375.604
- 35.6495 235.500 375.420
4 269.639 731.221 1527.72
- 269.520 730.811 1527.14
- 269.437 730.513 1526.65
5 878.033 1106.35 2693.00
- 877.212 1105.05 2689.43
- 876.747 1104.26 2687.15

Table 1: Computations of the first five values of dimensionless eigenvalues λ̂
(µν)
i for i = 1, 2, 3, 4 and

µ = 0, 1(S,A), ν = 0, 1(A,S) for a/b = 1 (a square plate) and a Poisson ratio of 0.225. Values of
N = 12, 24, 48 (in order) are recorded against each mode.

In Tab. 2 we present similar numbers for a/b = 2. Now the SA modes are distinct from the AS
modes. Computations are now shown only with N = 24. Fig. 2 shows the eigenmodes corresponding
to the top four lines of Tab. 2.
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Figure 1: A matrix of nodal lines in the solutions to the first plate 5 eigenmodes (going downwards) in
each symmetry group (going across) from SS, SA, AS, AA corresponding to eigenvalues determined in
Tab. 1, for a/b = 1, ν = 0.225 and with N = 24. The axes are non-dimensionalised with respect to a.
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Figure 2: A matrix of the first plate 4 eigenmodes (going downwards) in each symmetry group (going
across) from SS, SA, AS, AA corresponding to eigenvalues determined in Tab. 2, for a/b = 2, ν = 0.225
and with N = 24. The horizontal axes are non-dimensionalised with respect to a.
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Mode SS SA AS AA
1 0.00000 0.00000 0.00000 48.58585
2 29.9240 231.847 229.455 686.9604
3 492.131 1688.91 697.557 3623.084
4 897.781 3781.80 2434.12 4287.587
5 1356.85 5633.82 2632.19 8217.760
6 4694.13 7285.95 8079.79 13115.61
7 5524.65 12177.5 10760.8 17925.72
8 13264.6 22114.2 15329.0 35225.41

Table 2: Computations of the first eight values of dimensionless eigenvalues λ̂
(µν)
i for i = 1, 2, . . . , 8 and

µ = 0, 1(S,A), ν = 0, 1(A,S) for a/b = 2 (a rectangle), and a Poisson ratio of 0.225. A value of N = 24
is used.
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