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An extension to the classical shallow water equation (SWE) is derived which exactly
satisfies the bed condition and can be regarded as an approximation to wave scattering at
the next order in the small parameter (h/λ)2 (depth to wavelength ratio squared.) In the
frequency domain, the extended SWE shares the same simple structure as the standard
SWE with coefficients modified by terms relating to the bed variation. In three dimensions
the governing equation demonstrates that variable topography gives rise to anisotropic
effects on wave scattering not present in the standard SWE with consequences for the
design of water wave metamaterials. Numerical examples illustrate that approximations
to wave scattering using the extended SWE are significantly improved in comparison
with the standard SWE.

1. Introduction

The linearised Shallow Water Equation (SWE) is used to describe the propagation
of surface gravity waves over variable bathymetry z = −h(x, y) in the long wavelength
limit, λ ≫ h, and is commonly expressed (e.g. Lamb (1932), Stoker (1957), Whitham
(1974)) in the form

g∇ · (h∇ζ) = ζtt (1.1)

where g is acceleration due to gravity, ∇ = (∂x, ∂y) and ζ(x, y, t) is the free surface
elevation assumed to be small in the sense that |∇ζ| ∼ |ζ|/λ ≪ (h/λ)3. This latter
assumption justifies the linearisation of the governing equations in what follows; see
Ursell (1953) or Mei & Le Méhauté (1966).
When time-harmonic motion is considered and ζ(x, y, t) = ℜ{η(x, y)e−iωt}, (1.1) is

transformed to

∇ · (h∇η) +Kη = 0 (1.2)

where K = ω2/g. Assuming that the local wavenumber k(x, y) = 2π/λ is determined
by the local depth h(x, y) as though the bed were flat we have k2h = K and this
corresponds to the long-wavelength (kh → 0) limit of the exact water wave dispersion
relation k tanhkh = K. Under the SWE waves are non-dispersive.
The SWE is practically limited to the study of very long waves such as tidal mod-

elling or tsunami wave simulation. For coastal wave dynamics, modern computations are
normally based on higher-order long-wavelength models which incorporate weakly dis-
persive and nonlinear effects. These tend to be classified as Boussinesq-type models (see
e.g. Brocchini (2013)). Recently the SWE has received renewed attention because of its
structural similarity to 2nd order partial differential equations describing waves in acous-
tics and electromagnetics and this analogue has seen it used as a model for producing
exotic effects in water wave scattering such as invisibility cloaking, negative refraction,
wave-shifting and other wave control mechanisms (see, e.g., Farhat et al. (2008), Chen
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et al. (2009), Farhat et al. (2010), Hu et al. (2011), Berraquero et al. (2013), Wang et al.

(2015), Dupont et al. (2015), Maurel et al. (2017).) Some of these studies include experi-
mental results (see, for example, Farhat et al. (2008), Berraquero et al. (2015)) in which
good agreement with shallow water theory is not always clear cut – understandable not
least because the conditions of shallow water theory are not easily met.
In the classical derivation of (1.1) the velocity and pressure fields along with the

free surface elevation are non-dimensionalised before being expanded in the small pa-
rameter µ2 = (H/L)2 in terms of characteristic depth and horizontal lengthscales, H
and L, which are substituted into the governing mass and momentum equations (see,
for example, Stoker (1957), Friedrichs (1948)). At leading order the vertical accelera-
tion is neglected and, as a consequence, the flow velocity is expressed as u(x, y, z, t) =
u(x, y, t)x̂+ v(x, y, t)ŷ+w(x, y, z, t)ẑ and it quickly follows that the governing equation
(1.1) results. Continuity implies that the leading order vertical velocity possesses a lin-
ear profile in z, the depth coordinate, detail which is not required in first-order models
but which is used when the governing equations are expanded to next order in µ2. This
expansion to higher-order in µ2 lies at the heart of Boussinesq models and the process
above is described in Peregrine (1967) (see also Madsen et al. (1991) Brocchini (2013)).
Presumably in pursuit of governing equations which capture typical effects observed in
shallow coastal waters, such accounts include nonlinearity by assuming an Ursell num-
ber of O(1); see Ursell (1953). It is less common to find studies based on the linearised
Boussinesq equations although exceptions exist; see for example Cho et al. (2007).
The main purpose of the present paper is to consider the extension of the linearised

shallow water equations to second order in µ2 (i.e. coinciding with the linearised Boussi-
nesq equations) and demonstrate how it is possible to transform the frequency-domain
versions of those equations back into the form of (1.2). There are several reasons for want-
ing to do this. The first is that we expect both improved accuracy and an extension of
the range of values of h/λ over which the SWE can reliably operate. The second is to pro-
vide an explanation for long-wavelength limit of the so-called Complementary Mild-Slope
Equation, considered recently by Porter (2019). The third is that the extended SWE will
be shown to possess a structure similar to (1.2) and therefore can be implemented within
existing computational schemes with minimal cost. The final reason is that the modi-
fied equations in a three-dimensional setting will be shown to demonstrate anisotropy in
wave speeds over variable bathymetry. Specifically local wave speeds depend on the wave
heading in a manner explicitly related to h(x, y). This could be particularly significant
in application areas referred to earlier in which wave control, designed using the trans-
formation media approach, requires anisotropic effects to be embedded in a SWE. This
has previously been achieved by introducing water wave metamaterials – microstructures
which mimic this anisotropy under a multiple scales/homogenisation approach.
The starting point for this paper could have been a linearised version of the equations

of Peregrine (1967) there are benefits to deriving the basis of the extended SWE afresh.
This allows us to remove the complication of scaling, expressed clearly, for example, in
the recent account of Duran et al. (2018) and assume from the outset the velocity fields
which apply at second order. It provides the reader with a clear quick derivation of the
equations which are subsequently under consideration and allows intermediate points in
the derivation to be discussed.
In addition to the Boussinesq model already mentioned, there are a wealth of shallow

water wave models which are designed to incorporate a variety of different effects from
fully to weakly non-linear to non-dispersive or weakly-dispersive as well as bathymetric
effects. Many of the weakly-dispersive models, when linearised, coincide with the lin-
earised Boussinesq equations and hence those that form the basis of the extended SWE
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here. This includes, for example, the linearised Green & Nagdhi (1976) equations which
themselves are a particular version of the Serre equations (see, e.g. Dias & Milewski
(2010)).
The development of the extended SWE is easiest to demonstrate in two dimensions and

we consider this next, before extending ideas to the three-dimensional problem in §3. In
§4 the extended SWE is tested against the standard SWE in two examples by comparing
with results from solving the unapproximated full linear equations. Some attention is
paid to bathymetry with sharp corners and one surprising outcome of the analysis is
that the extended SWE model predicts discontinuities in the free surface elevation above
discontinuities in h.

2. Formulation: two dimensions

The flow velocity is written u = (u(x, z, t), 0, w(x, z, t)) and, adopting the standard
assumptions of shallow water theory (see Stoker (1957) for example) we make the leading
order approximation that

u(x, z, t) ≈ U(x, t) (2.1)

and

w(x, z, t) ≈ (z/h(x) + 1)ζt(x, t) + (zh′(x)/h(x))U(x, t). (2.2)

This choice of w ensures that the kinematic (no-flow) condition on the bed z = −h(x),
expressed by

h′(x)u(x,−h(x), t) + w(x,−h(x), t) = 0 (2.3)

is satisfied exactly. On the surface z = ζ(x, t) the linearised kinematic condition

w(x, 0, t) = ζt(x, t) (2.4)

holds. The linear profile (2.2) is anticipated by Stoker (1957) and adopted by Peregrine
(1967).
We apply continuity ux + wz = 0 in a depth-averaged sense of

[w(x, z, t)]0
−h(x) = −

∫ 0

−h(x)

ux(x, z, t) dz. (2.5)

After substitution from (2.1) and use of the kinematic equations on the bed and the
surface, (2.3), (2.4), we arrive at

ζt = −(hU)x. (2.6)

a result which does not require the definition of w as expressed in (2.2). In passing, we
note that the use of (2.6) in (2.2) results in a simplified version of (2.2) namely

w ≈ ζt − zUx (2.7)

which is less intuitive than the form originally adopted, although it is clearer to see from
(2.7) that ux + wz = 0 is satisfied pointwise throughout the fluid.
The vertical component of the (linearised) momentum equation is

ρwt = −pz − ρg, −h(x) < z < 0 (2.8)

where ρ is the fluid density and p(x, z, t) is the pressure. In the derivation of the standard
SWE the term ρwt does not contribute at leading order and is therefore neglected.
Following arguments given in the Introduction we retain the ρwt term and, after using
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(2.2) in (2.8), we find

pz = −ρg − ρ(z/h(x) + 1)ζtt − ρ(zh′(x)/h(x))Ut (2.9)

(we could use (2.7) in place of (2.2), but there is no significant algebraic benefit in what
follows.) Integrating (to leading order) and enforcing p = pa, atmospheric pressure, on
z = ζ(x, t) gives

p(x, z, t) = pa + ρg(ζ − z)− ρ

(

z2

2h(x)
+ z

)

ζtt − ρ
z2h′(x)

2h(x)
Ut. (2.10)

This expression will now be used in the horizontal component of the momentum equation
which, like the continuity equation, is applied in a vertically-averaged sense. Thus

Qt = −
1

ρ

∫ 0

−h(x)

px dz

= −ghζx − 1
3h

2ζttx − 1
6hh

′ζtt +
1
6h

2h′Utx + 1
6 (h

2h′′ − hh′
2
)Ut (2.11)

expressed in terms of Q(x, t), the depth-averaged horizontal flux and includes contri-
butions beyond leading order terms in the expansion in the bed shallowness parame-
ter on the left-hand side of but can be made equal to its leading order value hU(x, t)
elsewhere. Henceforth the dependence of h upon x is dropped for clarity. The relation
hUtx = (hUt)x − h′Ut is used to express, via (2.6), the above in the form

{

1 + 1
3h

′2 − 1
6hh

′′
}

Qt = −ghζx −
1
3h

2ζttx − 1
3hh

′ζtt. (2.12)

Dividing by the bracketed term on the left-hand side and differentiating with respect to
x allows us to eliminate Q using (2.6) to obtain

ζtt =
∂

∂x

(

h(gζ + 1
3hζtt)x

1 + 1
3h

′2 − 1
6hh

′′

)

(2.13)

and this is the time-dependent extended SWE though not exactly aligned to the form ex-
pressed in (1.1). Assuming a time-harmonic dependence by writing ζ(x, t) = ℜ{η(x)e−iωt}
results in

(

h((1− 1
3Kh)η)

′

1 + 1
3h

′2 − 1
6hh

′′

)′

+Kη = 0 (2.14)

where K = ω2/g and writing ψ(x) = (1− 1
3Kh(x))η(x) allows us to express the SWE in

the same form as the original version (1.2), as

(ĥψ′)′ + K̂ψ = 0 (2.15)

where

ĥ(x) = h(x)/(1 + 1
3h

′2(x) − 1
6h(x)h

′′(x)),

K̂(x) = K/(1− 1
3Kh(x))

(2.16)

are scaled versions of h and K.
Instead of eliminating Q in favour of η we can return to (2.12), differentiate with

respect to t and use (2.6) to find that
{

1 + 1
3h

′2 − 1
6hh

′′
}

Qtt = h(gQx +
1
3hQttx)x, (2.17)

with ζt = −Qx, is an alternative to (2.13). If Q(x, t) = ℜ{q(x)e−iωt} then (2.17) reduces
to

(K̂−1q′)′ + ĥ−1q = 0, (2.18)
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with η = −(i/ω)q′, which becomes an alternative to (2.15) which retains the structure of
(1.2).
Whilst (2.15) and (2.18) provide equally valid descriptions of wave scattering by the

bed, h(x), the latter version is able cope with discontinuities in bed slopes since we can
use the differential equation to determine the jump condition

[q′(x)]c
+

c− = 1
6K̂(c)q(c)[h′(x)]c

+

c− (2.19)

where x = c is a point of discontinuity in h′(x). The relationship between q and the
surface elevation implies that η(x) is discontinuous whenever h′(x) is. This seems odd
but is simply an outcome of the underlying assumptions adopted in this approximation.
We remark that, in the standard SWE, η′(x) is discontinuous at corners in the bed for
similar reasons.
A transformed version of the SWE (2.18) can be developed by introducing the scaling

q(x) = ϕ(x)/
√

1− 1
3Kh (2.20)

which, after substituting into (2.18) and working through the algebra, results in

ϕ′′(x) + {K̂(1 + 1
3v(h)h

′2)/h}ϕ(x) = 0 (2.21)

where v(h) = 1 + 1
12K̂h ≈ 1 for Kh≪ 1. This form of the SWE does not contain terms

proportional to h′′(x) and thus ϕ(x) is continuous even when h′ is discontinuous. The
free surface is reconstructed in terms of ϕ(x) with

η(x) =
(−i/ω)

√

1− 1
3Kh

(ϕ′(x) + 1
6K̂h

′ϕ(x)) (2.22)

and discontinuities in η(x) at points of discontinuity of h′(x) are now clearly manifested
by the second term. If we further let Ω(x) = ϕ′(x), then (2.21) implies that Ω′(x) =
−{K̂(1 + 1

3v(h)h
′2)/h}ϕ(x) and it follows that

(ˆ̂hΩ′)′ +KΩ = 0 (2.23)

where

ˆ̂h(x) = h(x)
(1− 1

3Kh(x))

(1 + 1
3v(h)h

′2(x))
(2.24)

is once more aligned with (1.2) and becomes the alternative to (2.15) without disconti-
nuities in the dependent variable at points of discontinuity in the bed. The transformed
version of (2.22) is

η(x) =
(−i/ω)

√

1− 1
3Kh

(

Ω(x)−
1
6hh

′

1 + 1
3v(h)h

′2
Ω′(x)

)

. (2.25)

In practice ˆ̂h(x) as defined by (2.24) can be used in place of h(x) in (1.2) to furnish
results for the extended SWE for all continuous h(x).
For waves propagating over a flat bed, h(x) = h0 a constant, say, any one of (2.15),

(2.18), (2.21) or (2.23) can be used to show that solutions are given by η(x) = e±ik0x

where k0 satisfies k20h
2
0 = Kh0/(1 − 1

3Kh0). This agrees to second order in Kh0 with
the expansion of the exact dispersion relation for waves over constant depth h0, namely
K = k0 tanh k0h0 which is readily found to be k20h

2
0 ≈ Kh0(1 + 1

3Kh0 + O(Kh0)
2) for

Kh0 ≪ 1. In contrast, solutions of (1.2) are given in terms of a wavenumber satisfying
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k20h
2
0 = Kh0, which only captures the leading order behaviour. Thus, the extended SWE

includes weak dispersion not captured within the original SWE.
Porter (2019) has independently derived a version of (2.21) which agrees at leading

order in the bed slope h′ and its three-dimensional analogue seen later in (3.18) but
with K̂ = K, v(h) = 1 by considering the long-wavelength limit of the Complementary
Mild-Slope Equation, originally due to Kim & Bai (2004) and Toledo & Agnon (2010).
The long wavelength limit of Porter (2019) fails to capture the the factors 1 − 1

3Kh
responsible for the weakly-dispersive effect in (2.21), (2.22) nor the lower-order corrective
term v(h). It is supposed that this mismatch is a consequence of the fundamentally
different initial starting points that have been adopted in the modelling, Porter’s (2019)
derivation evolving from a variational formulation of the problem.
We also note the relationship of the equations we have derived to the work of Ehren-

mark (2005) who considered the effect of wave propagation over a constant plane slope
on the local dispersion relation. In that work a modified dispersion relation was proposed
which replaced the local depth h(x) by an effective depth h(x)/(1 + 1

3h
′2(x) + O(h′4))

which agrees at leading order with both the definition of ĥ(x) in (2.16) and of ˆ̂h(x) in
(2.24).

3. Three dimensions

Now the bed is given by z = −h(x, y) and the free surface by z = ζ(x, y, t). One can
easily show that the analogue of the continuity equation (2.6) is

ζt = −∇ · (hU) (3.1)

where U = (U(x, y, t), V (x, y, t)), ∇ = (∂x, ∂y) following an assumption that the flow
velocity takes the form

u ≈ (U, (z/h+ 1)ζt + (z/h)∇h ·U) (3.2)

and satisfies w = ζt on z = 0 and w +∇h ·U = 0 on z = −h(x, y).
Following the derivation in §2, with the momentum equation in the horizontal plane

written ρUt = −∇p leads to the equation for the depth-integrated flux Q (equal to hU
at leading order)

Qt = −gh∇ζ − 1
3h

2∇ζtt −
1
6h{ζtt + (∇h · (Qt/h))}∇h+ 1

6h
2∇(∇h · (Qt/h)) (3.3)

and this can be arranged in the form

Qt = −gh∇ζ − 1
3h

2∇ζtt −
hζtt
6

∇h− 1
3h(∇h · (Qt/h))∇h+ 1

6h∇(∇h ·Qt). (3.4)

With some more work, this equation can be reduced to

Qt +
1
3 (∇h ·Qt)∇h− 1

6hh
′′
Qt +

1
6hDQt = −∇(gζ + 1

3hζtt) (3.5)

where h
′′ represents the 2× 2 Hessian matrix of h(x, y) which multiplies vector Qt and

D =

(

0 t · ∇
−t · ∇ 0

)

(3.6)

is an antisymmetric differential operator where t = (−hy, hx) is directed along level
curves of h(x, y).
Introducing I as the 2× 2 Identity matrix and writing

h
′2 = (∇h)(∇h)T =

(

h2x hxhy
hxhy h2y

)

(3.7)
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– notation aligned to the two-dimensional setting – we may arrange (3.6) as

{I+ 1
3h

′2 − 1
6hh

′′ + 1
6hD}Qt = −h∇(gζ + 1

3hζtt). (3.8)

As it stands we are not able to make eliminate Q in favour of ζ as we did in the two-
dimensional case. If we decide to eliminate ζ in favour of Q by taking the time derivative
of (3.8) and substituting from (3.1) we find

h−1{I+ 1
3h

′2 − 1
6hh

′′ + 1
6hD}Qtt = ∇(g∇ ·Q+ 1

3h∇ ·Qtt) (3.9)

where ζt = −∇ ·Q. Thus, in the time domain, it appears that we can do no better than
the vector governing equation (3.9). With Q(x, y, t) = ℜ{q(x, y)e−iωt} we have

∇(K̂−1∇ · q) + h−1{I+ 1
3h

′2 − 1
6hh

′′ + 1
6hD}q = 0 (3.10)

with η(x, y) = −(i/ω)∇ · q and

K̂(x, y) = K/(1− 1
3Kh(x, y)) (3.11)

is the extension of (2.16) to functions of two variables.
Consider that the bed h(x, y) has a discontinuity in gradients at points c along the

curve Γ ∈ R
2 having unit normal n̂ directed from Γ− to Γ+. Then (3.10) shows that the

jump conditions for points c on Γ take the form

[∇ · q]
Γ+

Γ−
= 1

6K̂(c)n̂ · q(c) [n̂ · ∇h]
Γ+

Γ−
. (3.12)

Thus far, the three-dimensional case has failed to furnish a scalar equation either in
time or frequency domains and the vector equations for Q and q are complicated by the
appearance of the operator D, not present in the two-dimensional case.
However, as in the two-dimensional case, we can make further useful progress by in-

troducing the scaling

q(x, y) = ϕ(x, y)/
√

1− 1
3Kh (3.13)

into (3.10). After considerable, but routine, algebra we arrive at

∇(∇ · ϕ) + (K̂/h){I+ 1
3v(h)h

′2}ϕ = 0 (3.14)

and v(h) = 1 + 1
12K̂h is the same factor as derived in the previous section. Now the

function ϕ(x, y) is continuous even at discontinuities in the gradients of the bed. The
free surface is found to be related to ϕ by

η(x, y) =
(−i/ω)

√

1− 1
3Kh

(

∇ · ϕ+ 1
6K̂∇h · ϕ

)

. (3.15)

The simplified vector equation (3.14) also provides the platform for a scalar version of
the extended SWE in three dimensions since writing Ω(x, y) = ∇ · ϕ means that (3.14)
becomes

ϕ = −(ˆ̂h/K)∇Ω (3.16)

where

ˆ̂
h(x, y) = h(x, y)(1− 1

3Kh)(I+
1
3v(h)h

′2)−1

= h(x, y)(1− 1
3Kh)

(

I−
v(h)

(3 + v(h)|∇h|2)
h
′2

)

. (3.17)

Thus, we arrive at

∇ · (ˆ̂h∇Ω) +KΩ = 0 (3.18)
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as the scalar version of the extended SWE for Ω(x, y) presented in the form (1.2) but

with the scalar function h(x, y) replaced by the 2×2 matrix ˆ̂
h(x, y). The surface elevation

is reconstructed from Ω using

η(x, y) =
(−i/ω)

√

1− 1
3Kh

(

Ω− 1
6h∇h ·

(

(I+ 1
3v(h)h

′2)−1∇Ω
))

(3.19)

where discontinuities in ∇h can be seen to produce corresponding discontinuities in η.
The development from q through to Ω follows closely the work of Toledo & Agnon

(2010) (the variable Ω is used in recognition of this) who developed a scalar Complemen-
tary Mild-Slope Equation (CMSE) from the original vector equation derived by Kim &
Bai (2004). The CMSE, given in (A 2), is a depth-averaged model in which the depth
variation in the fluid is approximated in such a way to satisfy the bed condition exactly
and formally requires shallow bed gradients but is not restricted to long wavelengths. The
result of taking the limit Kh → 0 in Toledo & Agnon (2010)’s scalar equation is (A 3)
which coincides with (3.18) provided approximations to leading order in Kh are made
to K̂ ≈ K and v(h) ≈ 1. In other words there are differences between (A 3) and (3.18)
in higher order terms in Kh. This limit is also noted by Porter (2019), who derived the
same scalar Complementary Mild-Slope Equation but using a more general variational
principle to that used by Kim & Bai (2004).
Both the scalar equation (3.18) and the vector equation (3.14) representing three-

dimensional scattering demonstrate anisotropy. That is, waves taken to propagate in
different directions at the same point (x, y) in space will, in general, travel with different
speeds relating to the gradients of the bed in those directions. This might come as
a surprise to some readers but is possibly known to others not least since it can be
inferred from Toledo & Agnon (2010)’s work. What is most certainly useful is the explicit
dependence of those wave speeds on the function h(x, y) which can be inferred from (3.17).
Indeed, the real benefit of using the extended SWE in place of the CMSE is the simple
explicit dependence on h in the former compared to the complex implict dependence on
h in the latter – see (A 2).

4. Examples

4.1. Numerical solutions: two-dimensional wave scattering

In the case of reflection and transmission of waves of frequency ω incident from x = −∞
over a finite region of variable two-dimensional bathymetry between two flat semi-infinite
sections, numerical solutions of any of the versions of the SWE derived in §2 are easy
to compute. We shall outline the method applied to the version given by (2.23) for the
variable Ω(x) which does not require special treatment at discontinuities in the bed.
Assume that for x < 0, h(x) = h0 and for x > L, h(x) = hL and the h(x) is smooth.
Then in x < 0

Ω(x) = eik0x +Re−ik0x (4.1)

and in x > L

Ω(x) = T eikLx (4.2)

where k0h0 =
√

Kh0/(1−
1
3Kh0) and kLhL =

√

KhL/(1−
1
3KhL) and R, T represent

reflection and transmission coefficients. In 0 < x < L the solution is determined by
(2.23). Matching solutions across the two boundaries and elementary manipulation of
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Figure 1. Modulus of reflection coefficient against KL at Kh0 = 0.6, hL/h0 = 1

3
(the Booij

problem): full linear theory (dotted), standard SWE (dashed), extended SWE (solid).

the algebra that results shows us that R and T can be obtained from

(

R
T

)

=

(

i(K/k0)p2(1)− p1(1) eikLL

i(K/k0)q2(1)− q1(1) i(K/kL)e
ikLL

)−1 (
i(K/k0)p2(1) + p1(1)
i(K/k0)q2(1) + q1(1)

)

(4.3)
where pi(1), qi(1) are determined from solving the coupled first-order differential equa-
tions

p′i(ξ) = Lqi(ξ)/
ˆ̂h(Lξ), q′i(ξ) = −KLpi(ξ) 0 < ξ < 1 (4.4)

for i = 1, 2 subject to initial conditions p1(0) = 1, q1(0) = 0, p2(0) = 0, q2(0) =
1. On account of the scaling used to define the free surface in (2.25), the transmis-
sion coefficient associated with free surface amplitudes requires scaling by the factor
√

1− 1
3KhL/

√

1− 1
3Kh0.

The standard SWE uses the same scheme but with ˆ̂h replaced by h and the definition
of k0 and kL replaced by k0 =

√

K/h0 and kL =
√

K/hL. The additional scaling of the
transmission coefficient referred to above is not necessary.

4.2. The Booij problem

For historical reasons the Booij problem (Booij (1983)) has become a standard test case
for assessing two-dimensional scattering approximations. A linear slope connects the
depth h0 to hL over 0 < x < L and the particular set of results Booij generated are taken
for hL/h0 =

1
3 , Kh0 = 0.6 and |R| is plotted as a function of KL. Since Kh0 is fixed and

not especially small and the horizontal axis effectively measures steepness of slope, this
is not such an enlightening test of the SWE. Indeed, we see in Fig. 1 that the extended
SWE fails compared to the exact results as KL → 0 and the slope approaches vertical.
Neither the standard nor the extended SWE is designed to operate in this regime and it
is simply good fortune that the standard SWE stands as an acceptable approximation
up to the point of a vertical step. Instead, the extended SWE fails due to the presence

of the h′2 in the denominator of ĥ or ˆ̂h which drives the ‘effective depth’ to zero as
KL→ 0 and hence the reflection coefficient tends to unity. For smaller gradients (larger
values of KL) below 45◦ Fig. 1 shows that the extended SWE outperforms the standard
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Figure 2. Modulus of reflection coefficient against Kh0 for a linear ramp with hL/h0 = 1

3
and

h0/L = 1, 1

2
, 1

4
in (a),(b),(c): full linear theory (dotted), standard SWE (dashed), extended SWE

(solid). In (a) + are results from the CMSE, × results from the MMSEs.

SWE by a significant margin and results are in excellent agreement with the accurate
computations based on full linear theory (using the method of Porter & Porter (2000)).
Fig. 1 is very similar both qualitatively and quantitatively to Fig. 8 of Ehrenmark (2005)
and the explanation for this is connected to the discussion at the end of §2.
More informative results are shown in Figs. 2. These are again for a linear slope,

but the slope angle is fixed by fixing values of hL/h0 and h0/L in each plot and the
frequency of incident waves varies from the long wavelength limit Kh0 → 0 to shorter
waves for increasing Kh0. There is a quite remarkable improvement both in the relative
performance of the extended SWE over the standard version and in the range of values
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of Kh0 over which good agreement with the exact result is maintained. The standard
SWE provides closer agreement for shallower gradients as might be expected and the
extended SWE works well up to slopes close to 45◦ although the agreement falls away
rapidly for steeper slopes (as Fig. 1 has already shown).
Fig. 2(a) also provides, for comparison, results obtained using the scalar CMSE and the

MMSE, given in the Appendix. For values of Kh0 > 1.4, the CMSE and MMSE become
increasingly accurate whilst the extended SWE diverges from the exact results. The
extended SWE is arguably the best fit to the exact results forKh < 1. Similar conclusions
can be drawn in Figs. 2(b,c) through data from CMSE and MMSE simulations have not
been added to these plots as they are almost indistinguishable from the exact results
over the range of values of Kh0 plotted.

4.3. Roseau’s solution

Roseau (1976) provides the only exact solution for waves propagating over a non-constant
bathymetry. Thus we have

|R| =

∣

∣

∣

∣

sinh[(k0h0 − kLhL)/β]

sinh[(k0h0 + kLhL)/β]

∣

∣

∣

∣

(4.5)

and β ∈ (0, 1) is a shoaling parameter where the bed is given parametrically as z(ξ) =
−h(x(ξ)) with

x(ξ)/h0 = ξ − (2πβ)−1(1− hL/h0) ln(1 + e2βπξ + 2eβπξ cos(βπ)) (4.6)

z(ξ)/h0 = −1 + (πβ)−1(1 − hL/h0) tan
−1{sin(βπ)/(e−βπξ + cos(βπ))}. (4.7)

Then h′(x(ξ)) = −z′(ξ)/x′(ξ) and h′′(x(ξ)) = −(z′′(ξ)x′(ξ)− z′(ξ)x′′(ξ))/(x′(ξ))3.
In Fig. 3 exact results computed from (4.5) where kL and k0 are defined by K =

kL tanh kLhL = k0 tanh k0h0 are compared with the new and standard SWE for a shoal-
ing parameter β = 0.5 which gives a maximum gradient of 0.75 along the profile (see
Porter & Porter (2006) for an illustration of the bed shape). The results demonstrate
similar characteristics to those previously considered for the linear slope but without the
oscillations due to multiple interference effects caused by the corners at the ends of the
transition between the two depths.
Following Fig. 2(a) we have added results from the CMSE and the MMSE to Fig. 3

for comparison and we can draw similar conclusions here regarding the accuracy of the
extended SWE compared to those models for sufficiently low values of Kh0.

5. Conclusions

We have extended the Shallow Water Equations (SWEs) to include the effect of the
vertical acceleration of the fluid consistent with the the satisfaction of kinematic bound-
ary conditions on the bed and the fluid surface. The new equations can be regarded as
the approximation to the next order in the assumed small parameter (h/λ)2. The re-
sulting equation has the same structure in the frequency domain as the standard SWE,
and includes a depth modified by bed gradients and dispersion modified by depth in a
manner consistent with the leading order behaviour of the exact linear dispersion rela-
tion. In three dimensional scattering, the role of depth is replaced by a tensor-like term
which is associated with anisotropy of phase speeds over variable bathymetry. This ef-
fect could potentially be exploited for wave control designed through the transformation
media approach using normal bathymetric variations without the need for water wave
metamaterials.
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Figure 3. Modulus of reflection coefficient against Kh0 for the Roseau problem with
hL/h0 = 0.25, β = 0.5: full linear theory (dotted), standard SWE (dashed), extended SWE
(solid). Also, + are results from the CMSE, × results from the MMSEs.

Numerical examples have demonstrated that the extended SWE significant improve-
ments compared to the standard SWE when compared against results computed using
full linear theory and, provided bed gradients do not exceed 45◦, good agreement is
maintained over a large range of wavelengths. This suggests that the extended SWE can
be employed as a versatile and accurate model of wave scattering for many practical
applications.
The extended SWE coincides at leading order in Kh with the long-wavelength limit

of Complementary Mild-Slope Equation (CMSE) of Kim & Bai (2004), Toledo & Agnon
(2010) whilst the standard SWE is the long-wavelength limit of the Modified Mild-Slope
Equations (see Appendix). This is not surprising in the sense that the former treats
the bed condition exactly where the latter does not. The results obtained in this paper
reinforces previous evidence that the CMSE is a superior depth-averaged model of wave
scattering than the MMSE. Surprisingly, in the small sample of comparisons performed
here, the extended SWE is shown to perform at least as well as, and arguably better, than
both the CMSE and the MMSE for sufficiently long wavelength scattering problems.
Before drawing stronger conclusions further assessment of the extended SWE should

be made, especially in fully three-dimensional scattering problems. However, a fair test
will require accurate computations based on full linear theory and numerical software
such as WAMIT (www.wamit.com) would be needed for this.

Appendix A

The Modified Mild Slope Equation (MMSE) in the form presented in Porter (2003)
over the depth h(x, y) is given as

∇ · (k−2∇ϕ) + (1− w(h)|∇h|2)ϕ = 0 (A 1)

for a function ϕ(x, y) related to the free surface η(x, y) where k = k(h) satisfies K =
k tanh kh and

w(h) = −
κ4 + 4κ3 sinhκ+ 3κ2(cosh 2κ+ 2)− 3(2κ+ sinhκ)(sinh 2κ− sinhκ)

3(sinhκ+ κ)4
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where κ = 2Kh. Porter (2003) demonstrates that w(h) ≤ 0.030 and that w(h) ∼
(Kh)2/45 as Kh → 0 and w(h) = O(e−2Kh) as Kh → ∞. The long-wavelength limit
of the MMSE is thus easily seen to be the SWE, (1.2). The Complementary Mild-Slope
Equation (CMSE), as given in Toledo & Agnon (2010), and rederived in Porter (2019) is

∇ ·

(

k−2

{

∇ϕ−
γ(h)

1 + γ(h)|∇h|2
(∇ϕ · ∇h)∇h

})

+ ϕ = 0 (A 2)

for a function ϕ(x, y) related to the free surface η(x, y) where

γ(h) =
κ4 + 4κ3 sinhκ+ 3κ2(cosh 2κ− 2)− 6κ sinhκ+ 3 sinhκ(sinh 2κ+ sinhκ)

3(sinhκ+ κ)4
.

It can be determined that γ(h) → 1
3 (1 − (4/15)(Kh)2) as Kh → 0 and so the long-

wavelength limit of the CMSE is

∇ ·

(

h

{

∇ϕ−
1

3 + |∇h|2
(∇ϕ · ∇h)∇h

})

+Kϕ = 0. (A 3)
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