

Banner appropriate to article type will appear here in typeset article

1 Theoretical study into a novel design of Oscillating 2 Water Column with high broadband efficiency

3 Sasha Parry-Barnard¹ and Richard Porter²

4 ¹Mathematics Department, University College London, 25 Gordon Street, London WC1H 0AY, UK

5 ²School of Mathematics, Fry Building, Woodland Road, Bristol, BS8 1UG, UK

6 Corresponding author: Sasha Parry-Barnard, sasha.barnard.25@ucl.ac.uk

7 (Received xx; revised xx; accepted xx)

8 This paper considers the theoretical operation of a novel wall-mounted oscillating water
9 column wave energy device designed to be resonant over a broad range of frequencies.
10 A curved duct with a submerged opening in a vertical wall is partitioned into a number
11 of separate narrow channels of uniform width using thin annular baffles. Each channel
12 connects the submerged opening to its own internal free surface whose rise and fall drives
13 the air enclosed above through a Wells-type turbine through which energy is harvested.
14 The different channel lengths within the duct encourages, when subjected to forcing from
15 incident waves, resonance across a range of frequencies. The two-dimensional problem
16 described in this work is analysed using classical linearised water wave theory and the
17 geometric complexity of the partitioned duct is simplified by homogenisation. This allows
18 the solution to the water wave problem to be reduced to a scalar integral equation whose
19 solution is approximated using a standard numerical method. It is shown that it is possible,
20 even with the most basic choice of turbine power take-off strategies, to achieve efficiencies
21 close to 100% across much of the range of frequencies defined by the resonance associated
22 with the longest and shortest channels of the device. Viscous damping within the channels
23 is shown to have a negligible effect for practical configurations.

24 Key words: Surface gravity waves, Wave-structure interactions, Coastal engineering

25 1. Introduction

26 The Oscillating Water Column (OWC) concept (see Heath (2012), Falcão & Henriques
27 (2016), for example) is, to date, arguably the most commercially successful device for
28 converting ocean wave energy into electricity. Originally devised by Yoshio Masuda in the
29 1940s as a means of powering floating navigation buoys (see Masuda (1985)), a number of
30 modestly-sized plants have been installed in a variety of settings and operated with some
31 success, supplying energy to national electrical grids. For a recent review, see Gayathri *et*
32 *al.* (2024).

33 OWCs operate by isolating an internal air chamber from the open ocean via a surface-
34 piercing lip with an opening below the water line. The rise and fall of incoming waves
35 forces the enclosed air above the internal free surface back and forth through an air turbine
36 whose role is to generate electrical energy. A self-rectifying turbine, such as a Wells turbine
37 (described in Falcão & Henriques (2016)), is typically used; it is designed to spin in the
38 same direction regardless of the direction of the air flow. The success of the OWC lies in
39 its simplicity: the only moving part is the air turbine, located above the water line. Being
40 typically mounted at the shoreline mitigates the expense and difficulty of mooring, power
41 transmission and maintenance operations associated with offshore wave energy devices. On
42 the other hand, shore-mounted OWCs such as Kvaerner in Norway (see Falnes (1993)), the
43 pilot plants of PICO in the Azores (see Falcão *et al.* (2020)) and LIMPET on the Scottish
44 Island of Islay (see Boake *et al.* (2002)) are considered difficult to build with site-specific
45 constraints and a significant environmental impact. Additionally, the nearshore wave energy
46 resource is not as high as far offshore whilst being more vulnerable to violent wave breaking
47 events. Projects in Japan, India, China, Italy and Spain have involved installing OWC units
48 into sea walls to serve a dual purpose of coastal/harbour protection and energy generation.
49 To date, the largest and most successful of these is the Mutriku Wave Power Plant on the
50 northern coast of Spain. It comprises 16 OWCs set side-by-side in a harbour wall, rated
51 at 296kW, and in operation since 2011. It has since supplied over 3GWh to the grid (see
52 Lopez-Mendia *et al.* (2025)).

53 It was during the initial surge in interest in wave energy in the response to the oil crisis
54 of 1973 that the theoretical basis for the operation of wave energy converters, including
55 OWCs, was established (for an overview see Evans (1981)). Early, but instructive, work
56 on the OWC concept by Evans (1978) applied rigid-body theory to a simple OWC model.
57 By modelling the internal free surface as a weightless piston, it was demonstrated that
58 the resonant motion of the fluid within the internal chamber can be excited at certain
59 incident wave frequencies dependent on the depth of submergence of the duct. Shortly
60 afterwards, Falcão & Sarmento (1980) correctly accounted for the internal free surface
61 using a theory based on oscillating pressure variations within the air chamber of the
62 OWC device. This led to the general theoretical framework for multiple interacting OWCs
63 described by Evans (1982). Some years later Evans & Porter (1995), revisiting a problem
64 initially considered by Smith (1983), showed how a simple two-dimensional model of
65 a shore-mounted OWC could extract 100% of the incoming wave energy at an isolated
66 resonant frequency dependent on the size and shape of the submerged rectangular chamber.
67 In Evans & Porter (1995) only curves showing the maximum theoretical efficiency were
68 shown whilst the effect of air compressibility was overlooked. Porter (2025) has produced a
69 recent update of that paper addressing both these issues, showing that 100% efficiency can
70 still be achieved at a specific frequency associated with resonance and for a carefully-tuned
71 power control. Results highlight the effect that both non-optimally tuned power take-off
72 and air compressibility have on efficiency showing how efficiency can fall well below the
73 theoretical maximum presented in the work of Evans & Porter (1995).

74 The modelling of OWCs has advanced over the last 30 years and many theoretical studies
75 have been made of more complex OWC geometries in more realistic three-dimensional
76 settings including arrays of devices. See, for example, Martin-Rivas & Mei (2009), Zheng
77 *et al.* (2019) and references therein. In this paper we return to the simpler two-dimensional
78 setting in order to assess how a shift in fundamental OWC design affects its performance.
79 A submerged opening is connected to an internal free surface via an annular duct which is
80 divided into N (we suppose many) separate narrow annular channels with thin, rigid, curved
81 baffles. The air enclosed above each narrow channel is connected to the atmosphere via its
82 own Wells turbine. The idea of the design is to broaden the device response. Since there

83 are N channels of different lengths, the proposed device possesses resonances at N closely-
84 spaced frequencies, the largest/smallest of which are associated with the shortest/longest
85 channels within the array.

86 The idea of engineering multiple resonant frequencies within a single device is not new.
87 For example, the Belfast OWC concept of the 1970s (see Whittaker *et al.* (1985)) had two
88 chambers tuned to two different frequencies housed within a circular device. The Kvaerner
89 device described by Falnes (1993) was unique in that it was built into a natural harbour to
90 couple harbour resonance with device resonance. Closely related to the current proposal,
91 Wilks *et al.* (2022) considered a theoretical two-dimensional concept comprised of multiple
92 vertical channels of gradually increasing submerged depth separated by thin vertical baffles.
93 The oscillations of the fluid powered rigid pistons placed on the surface of each channel
94 and it was shown that efficiency close to 100% across a broad range of frequencies could be
95 achieved. The design of Wilks *et al.* (2022) was guided as much by the principle of graded
96 arrays and so-called rainbow reflection (the slowing of effective wave speed) as it was by
97 multiple resonance. Very recently, Hu *et al.* (2025) have considered the modification of the
98 Wilks *et al.* (2022) where rigid pistons are replaced by OWC chambers. In their work, 5
99 vertical channels of increasing immersed depth are considered using computational fluid
100 dynamics simulations which include turbulent effects and air compressibility, whilst the
101 incoming waves propagate from a model energy density spectrum. Despite turbulent losses
102 caused by flow separation around the sharp edges of the thin vertical barriers, the authors
103 report a broadband efficiency of more than 50% over the range of resonant frequencies.

104 The OWC device described in this paper is really a closely-packed system of N coupled
105 OWC devices, and so formally the general theory of Evans (1982) applies. However, a
106 different approach is taken here, one which has proved successful in other application
107 areas. The geometric complexity of the baffle-partitioned duct is replaced with an effective
108 medium using asymptotic homogenisation. This process is described in Section 2 of the
109 paper in the midst of the formulation of the problem and its solution. It formally applies
110 for $N \gg 1$, but in other problems has been shown to provide a good approximation
111 to the geometrically exact solution, provided the length to width ratio of the channels
112 is sufficiently large (roughly a factor of 10). See, for example, Liang *et al.* (2024) who
113 considered plane wave scattering parallel arrays of thin closely-spaced plates. In Section
114 2 it is shown how this simplification allows the problem to be reduced to a single scalar
115 integral equation solution. This is approximated numerically, in Section 4 of the paper,
116 using Galerkin's method. Two expressions for the efficiency of power capture are derived
117 in Section 3, one based on power capture at the device and one based on a far-field energy
118 flux calculation. These lead to independent numerical methods for computing the device
119 efficiency which is useful for validating the implementation of the numerical method. In
120 Section 5 we describe the simple changes needed to incorporate the damping effect of
121 viscous boundary layers due the oscillating fluid flow in the multiple narrow channels
122 of the duct. The results are presented in Section 6 where we consider the effects of air
123 compressibility and viscous damping. A summary of the paper with an outlook on the
124 prospects for the design is given in Section 7.

125 2. Problem specification and solution

126 Two-dimensional Cartesian coordinates, (x, z) , are used, $z = 0$ corresponding to the rest
127 position of the fluid surface and z directed vertically downwards. In $x < 0$ the fluid depth
128 is taken to be a constant, h . At $x = 0$ a vertical wall extends upwards from $z = h$ to $z = b$
129 and from $z = a$ through the surface. The gap in the wall $a < z < b$ connects the fluid in
130 $x < 0$ to an internal fluid surface in $a < x < b$ via a curved annular duct in $x > 0$. Its inner

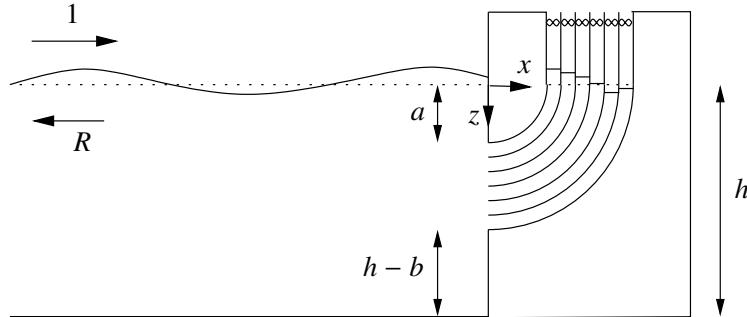


Figure 1. Definition sketch of the OWC device with N curved fluid filled channels with internal free surfaces above which air is pumped from an enclosed chamber through air turbines, indicated by bow ties.

131 and outer walls are described in polar coordinates, (r, θ) with $x = r \sin \theta$, $z = r \cos \theta$, by
 132 $r = a$ and $r = b$ for $0 \leq \theta \leq \pi/2$. The duct is divided into N curved channels of uniform
 133 width by $N - 1$ thin internal curved baffles along $r = r_j$, $1 \leq j \leq N - 1$ $0 \leq \theta \leq \pi/2$
 134 where $r_j = a + j\Delta$ for $0 \leq j \leq N$. Thus $\Delta = (b - a)/N$ is the uniform width of each fluid
 135 channel and we suppose that N is large enough that Δ/a is suitably small. This quantity
 136 defines the largest aspect ratio of width to length within the array of N fluid channels and
 137 its smallness is needed for the method of solution we propose.

138 It is supposed that above the internal free surface of each of the N partitioned channels
 139 lies an air chamber, which is isolated from the other N channels and connected to the
 140 external atmosphere by a duct containing its own self-rectifying Wells air turbine. Thus,
 141 when the fluid is set into motion, the rise and fall of the internal fluid surface within each
 142 channel drives the air back and forth through the turbine.

143 The water is assumed to be incompressible, inviscid (although viscous effects are
 144 considered later in the paper) and has density ρ ; its motion is assumed to be of small
 145 amplitude and irrotational. This allows us to describe the fluid velocity as the gradient of a
 146 velocity potential $\Phi(x, z, t)$ which we express as

$$\Phi(x, z, t) = \Re\{-(igA/\omega)\phi(x, z)e^{-i\omega t}\} \quad (2.1)$$

147 where $A \in \mathbb{C}$ is the incident wave amplitude (encoding a modulus and phase) and g is
 148 acceleration due to gravity. We have anticipated the linearity of the governing equations
 149 that follow implying that a monochromatic incident wave of angular frequency ω drives
 150 a response of the same frequency thereby allowing us to remove a time-harmonic factor
 151 from the motion; $\phi(x, z)$ is consequently a complex-valued velocity potential satisfying

$$\nabla^2 \phi = 0 \quad (2.2)$$

152 everywhere in the fluid. The surface elevation (measured upwards from $z = 0$) is
 153 represented by $\zeta(x, t) = \Re\{A\eta(x)e^{-i\omega t}\}$ such that the linearised kinematic condition
 154 can be written as

$$K\eta(x) = -\phi_z(x, 0), \quad (K = \omega^2/g) \quad (2.3)$$

155 on all free surfaces: both in $x < 0$, and in each of the channels across $a < x < b$. The
 156 pressure is defined as $P(x, z, t) = P_a + \Re\{A\rho g p(x, z)e^{-i\omega t}\}$ where P_a is the atmospheric
 157 pressure. Use of the linearised Bernoulli equation

$$P(x, z, t) = P_a - \rho\Phi_t + \rho g z \quad (2.4)$$

on the free surface $z = -\zeta(x, t)$, gives

$$\phi(x, 0) - \eta(x) = 0, \quad x < 0 \quad (2.5)$$

and on each internal free surface $r_{j-1} < x < r_j$ ($j = 1, \dots, N$) we have

$$p_j = \phi(x, 0) - \eta(x) \quad (2.6)$$

where $p = p_j$ represents the oscillating air pressure in the chamber above the j th channel. Combining (2.3) with (2.4) and (2.5) results in

$$\phi_z(x, 0) + K\phi(x, 0) = \begin{cases} 0, & x < 0 \\ Kp_j, & r_{j-1} < x < r_j. \end{cases} \quad (2.7)$$

The oscillating pressure drives a flow through the air turbine connected to the j th channel which is assumed to obey a standard semi-empirical law (see Sarmento & Falcão (1985), Martin-Rivas & Mei (2009)) relating pressure to the volume flux (per unit length) of fluid, $Q(t)$, across the mean free surface via

$$Q(t) = \lambda_1(P - P_a) + \lambda_2 \frac{dP}{dt}. \quad (2.8)$$

When applied in channel j (2.8) reduces to

$$q_j = i\Lambda_j p_j \quad (2.9)$$

where

$$q_j = - \int_{r_{j-1}}^{r_j} \phi_z(x, 0) dx \quad (2.10)$$

represents the volume flux (per unit length) of fluid crossing $z = 0$. In (2.9)

$$\Lambda_j = \rho\omega\lambda_{1,j} - i\rho\omega^2\lambda_{2,j}. \quad (2.11)$$

The law (2.8), applied to channel j , accounts for the compressibility of air (Sarmento & Falcão (1985), Martin-Rivas & Mei (2009)) with

$$\lambda_{2,j} = \frac{V_j}{\rho_a c_a^2} \quad (2.12)$$

143 where ρ_a is air density, V_j is the volume of air (per unit length) in the j th chamber (with
144 respect to the rest position of the fluid) and c_a is the speed of sound in air. The parameter
145 $\lambda_{1,j}$ can be written in terms of the control and design parameters of a Wells turbine, but
146 we imagine this is a free power control parameter.

No flow conditions apply on all fixed submerged boundaries in the flow and this is expressed as

$$\partial\phi/\partial n = 0, \quad (2.13)$$

147 representing the vanishing of the normal derivative of ϕ .

Finally, we need to impose a condition in the far field and write

$$\phi(x, z) = (e^{ikx} + R e^{-ikx})\psi_0(z), \quad \text{as } x \rightarrow -\infty \quad (2.14)$$

where $R \in \mathbb{C}$ is the reflection coefficient and

$$\psi_0(z) = \cosh k(h - z)/\cosh kh \quad (2.15)$$

is the depth dependence associated with propagating waves of wavenumber k , found from separating variables: k is defined to be the positive real root of

$$K = k \tanh kh. \quad (2.16)$$

148 The standard method of solution for solving the problem of N independent oscillating
 149 pressure distributions is to decompose the problem into $N + 1$ potentials: the scattering of
 150 incident waves in the absence of pressure distributions plus N radiation potentials defined
 151 by a prescribed isolated forcing in each of the N channels in the absence of incoming waves.
 152 The individual solutions are then coupled via the turbine law connecting volume fluxes
 153 and pressures in each of the N channels. The general theory can be found in Evans (1982).
 154 However, each problem is complicated and the complete solution is expressed in terms of
 155 $N \times N$ matrices. The advantage of this approach is that it does furnish an explicit condition
 156 maximising efficiency, but only by supposing that there is complex-valued control coupling
 157 each turbine to every other one, which is not practical.

We take a different approach, the first step of which combines the turbine law (2.9), (2.10) with the surface condition (2.7) to eliminate p_j resulting in

$$\phi_z(x, 0) + K\phi(x, 0) = i \frac{K}{\Lambda_j} \int_{r_{j-1}}^{r_j} \phi_z(x, 0) dx, \quad r_{j-1} < x < r_j \quad (2.17)$$

158 ($j = 1, \dots, N$).

159 2.1. Homogenisation in $x > 0$

Next, we aim to simplify the complexity of the duct containing the baffles by approximating the problem using homogenisation methods. The basis of this approximation is $\epsilon = \Delta/r_0 \ll 1$ (where $r_0 = a$) implying that the width of the channels is small compared to their length. First we non-dimensionalise the governing Laplace equation (2.2) in the duct by writing $r = r_0\hat{r}$, $\phi(r, \theta) = \hat{\phi}(\hat{r}, \theta)$ so that we have

$$\left(\frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} + \frac{1}{\hat{r}^2} \frac{\partial}{\partial \theta^2} \right) \hat{\phi}(\hat{r}, \theta) = 0, \quad \hat{r}_{j-1} < \hat{r} < \hat{r}_j, \quad 0 < \theta < \frac{1}{2}\pi \quad (2.18)$$

for $j = 1, \dots, N$ where $\hat{r}_j = r_j/r_0$, noting that the condition (2.13) applied to the channel walls is expressed as

$$\frac{\partial \hat{\phi}}{\partial \hat{r}} = 0, \quad \hat{r} = \hat{r}_j, \quad 0 < \theta < \frac{1}{2}\pi. \quad (2.19)$$

Next we make a multiple-scales approximation in which $R = \hat{r}/\epsilon$ where $\epsilon = \hat{r}_j - \hat{r}_{j-1} \ll 1$ is the dimensionless distance between adjacent baffles is defined as the fast (channel) scale and we write

$$\hat{\phi}(\hat{r}, \theta) = \hat{\phi}_0(\hat{r}, R, \theta) + \epsilon \hat{\phi}_1(\hat{r}, R, \theta) + \epsilon^2 \hat{\phi}_2(\hat{r}, R, \theta) + \dots \quad (2.20)$$

Consequently (2.18) is to be written as

$$\left(\left(\frac{\partial}{\partial \hat{r}} + \frac{1}{\epsilon} \frac{\partial}{\partial R} \right)^2 + \frac{1}{\hat{r}} \left(\frac{\partial}{\partial \hat{r}} + \frac{1}{\epsilon} \frac{\partial}{\partial R} \right) + \frac{1}{\hat{r}^2} \frac{\partial^2}{\partial \theta^2} \right) (\hat{\phi}_0(\hat{r}, R, \theta) + \epsilon \hat{\phi}_1(\hat{r}, R, \theta) + \dots) = 0, \\ 0 < R < 1, \quad 0 < \theta < \frac{1}{2}\pi \quad (2.21)$$

whilst (2.19) becomes

$$\left(\frac{\partial}{\partial \hat{r}} + \frac{1}{\epsilon} \frac{\partial}{\partial R} \right) (\hat{\phi}_0(\hat{r}, R, \theta) + \epsilon \hat{\phi}_1(\hat{r}, R, \theta) + \dots) = 0, \quad R = 0, 1, \quad 0 < \theta < \frac{1}{2}\pi. \quad (2.22)$$

From (2.21), (2.22) the $O(1/\epsilon^2)$ problem for $\hat{\phi}_0$ is defined by

$$\frac{\partial^2 \hat{\phi}_0}{\partial R^2} = 0, \quad 0 < R < 1 \quad (2.23)$$

160 with $\partial_R \hat{\phi}_0 = 0$ on $R = 0, 1$. This clearly integrates to give $\hat{\phi}_0 \equiv \hat{\phi}_0(\hat{r}, \theta)$ (i.e. independent
161 of R , the channel scale).

For the problem at $O(1/\epsilon)$ (2.21), (2.22) give

$$\frac{\partial^2 \hat{\phi}_1}{\partial R^2} = 0, \quad 0 < R < 1, \quad \text{with} \quad \frac{\partial \hat{\phi}_1}{\partial R} = -\frac{\partial \hat{\phi}_0}{\partial \hat{r}}, \quad \text{on } R = 0, 1 \quad (2.24)$$

and so

$$\hat{\phi}_1(\hat{r}, R, \theta) = -R \frac{\partial \hat{\phi}_0}{\partial \hat{r}} + \chi_1(\hat{r}, \theta) \quad (2.25)$$

where χ_1 is an arbitrary function. From (2.21) the governing equation at $O(1)$ turns out to be, after simplifying using (2.25),

$$\frac{\partial^2 \hat{\phi}_2}{\partial R^2} - \frac{\partial^2 \hat{\phi}_0}{\partial \hat{r}^2} + \frac{1}{\hat{r}^2} \frac{\partial^2 \hat{\phi}_0}{\partial \theta^2} = 0, \quad 0 < R < 1 \quad (2.26)$$

and the associated boundary conditions are

$$\frac{\partial \hat{\phi}_2}{\partial R} = R \frac{\partial^2 \hat{\phi}_0}{\partial \hat{r}^2} - \frac{\partial \chi_1}{\partial \hat{r}}, \quad R = 0, 1. \quad (2.27)$$

Integrating (2.26) over $0 < R < 1$ and using (2.27) results in the leading order governing equation for $\hat{\phi}_0$, namely

$$\frac{\partial^2 \hat{\phi}_0}{\partial \theta^2} = 0. \quad (2.28)$$

This is what we might have expected as it implies that the leading order flow is parallel to the channel walls (plug flow); (2.28) integrates to

$$\hat{\phi}_0(\hat{r}, \theta) = B(r_0 \hat{r})\theta + C(r_0 \hat{r}) \quad (2.29)$$

where B, C are arbitrary functions of the macroscale variable, r . Meanwhile on the boundary $z = 0$, equivalent to $\theta = \frac{1}{2}\pi$, the transformation applied to (2.17) gives

$$\left(Kr_0 - \frac{1}{\hat{r}} \frac{\partial}{\partial \theta} \right) \left(\hat{\phi}_0(\hat{r}, \frac{1}{2}\pi) + \dots \right) = -i \frac{K\Delta}{\Lambda_j} \int_0^1 \frac{1}{\hat{r}} \frac{\partial}{\partial \theta} \left(\hat{\phi}_0(\hat{r}, \frac{1}{2}\pi) + \dots \right) dR \quad (2.30)$$

and we write $\Lambda_j = K\Delta \tilde{\Lambda}(r_0 \hat{r})$ since it does not depend on R . Consequently

$$\tilde{\Lambda}(r) = \frac{\tilde{\lambda}_1(r)}{\sqrt{K(b-a)}} - i\tilde{\lambda}_2(r) \quad (2.31)$$

is a dimensionless parameter implying, from (2.11), (2.12), that

$$\tilde{\lambda}_2(r) = \rho g H(r) / \rho_a c_a^2 \quad (2.32)$$

where $H(r)$ measures the height the air chamber as a function of position. Additionally

$$\tilde{\lambda}_1(r) = \frac{\rho \sqrt{g(b-a)}}{\Delta} \lambda_1(r), \quad (2.33)$$

162 like $\tilde{\lambda}_2(r)$, is frequency-independent and related to the geometry and mechanics of the
163 turbine: we regard this as a free parameter, dependent on position r , which controls the
164 damping.

At leading order (2.30) is therefore

$$\left(1 - \frac{i}{\tilde{\Lambda}(r_0\hat{r})}\right) \frac{\partial \hat{\phi}_0}{\partial \theta}(\hat{r}, \frac{1}{2}\pi) = Kr_0\hat{r}\hat{\phi}_0(\hat{r}, \frac{1}{2}\pi). \quad (2.34)$$

Now $\phi(r, \theta) = \hat{\phi}(\hat{r}, \theta) \approx \hat{\phi}_0(\hat{r}, \theta)$ to leading order. So from (2.29) we have

$$\phi(r, \theta) = B(r)\theta + C(r), \quad \text{for } 0 < \theta < \frac{1}{2}\pi, a < r < b \quad (2.35)$$

where

$$\left(1 - \frac{i}{\tilde{\Lambda}(r)}\right) \frac{\partial \phi}{\partial \theta} = Kr\phi, \quad \text{on } \theta = \frac{1}{2}\pi, a < r < b. \quad (2.36)$$

It is useful to define a function $U(r)$ which represents the horizontal fluid velocity along $x = 0$, the vertical opening of the duct, so that

$$\left. \frac{1}{r} \frac{\partial \phi}{\partial \theta} \right|_{\theta=0} = U(r), \quad a < r < b. \quad (2.37)$$

It follows that $B(r) = rU(r)$ and then using (2.36) we have

$$\left(1 - \frac{i}{\tilde{\Lambda}(r)}\right) U(r) = K \left(\frac{1}{2}\pi r U(r) + C(r) \right) \quad (2.38)$$

which defines $C(r)$ and so, finally,

$$\phi(r, \theta) = rU(r)(\theta - \frac{1}{2}\pi) + K^{-1}(1 - i/\tilde{\Lambda}(r))U(r) \quad (2.39)$$

represents the general solution in $x > 0$ in terms of a single unknown function, $U(r)$.

165

2.2. Solution in $x < 0$ and matching

In $x < 0$ we can write the general solution, satisfying (2.2), (2.7) and (2.13) on $z = h$, using separation of variables (see Linton & McIver (2001)), as

$$\phi(x, z) = (e^{ikx} + Re^{-ikx})\psi_0(z) + \sum_{n=1}^{\infty} \frac{\psi_n(z)e^{k_n x}}{N_n k_n h} \int_a^b U(z')\psi_n(z') dz' \quad (2.40)$$

where, for $n \geq 1$,

$$\psi_n(z) = \cos k_n(h - z)/\cos k_n h \quad (2.41)$$

and k_n are the positive real roots of $K = -k_n \tan k_n h$, ordered in increasing size. The functions $\psi_n(z)$ are orthogonal, satisfying

$$\frac{1}{h} \int_0^h \psi_m(z)\psi_n(z) dz = N_n \delta_{mn}, \quad m, n \geq 0 \quad (2.42)$$

which extends the definition of k_n to include $n = 0$ where $k_0 = -ik$ and

$$N_n = \frac{1}{2} \left(1 + \frac{\sin 2k_n h}{2k_n h} \right) \sec^2 k_n h. \quad (2.43)$$

Note that in the case $n = 0$ this becomes

$$N_0 = \frac{1}{2} \left(1 + \frac{\sinh 2kh}{2kh} \right) \operatorname{sech}^2 kh. \quad (2.44)$$

In writing (2.40) we have also satisfied the condition

$$\left. \frac{\partial \phi}{\partial x} \right|_{x=0} = \begin{cases} U(z), & a < z < b, \\ 0, & \{0 < z < a\} \cup \{b < z < h\} \end{cases} \quad (2.45)$$

provided

$$ikhN_0(1 - R) = \int_a^b U(z)\psi_0(z) dz. \quad (2.46)$$

All that remains is to match the pressure across $x = 0$, $a < z < b$ (noting that $r = z$ on $\theta = 0$) which, by (2.4), is proportional to ϕ and so from (2.39) and (2.40) we have

$$\frac{\pi}{2}zU(z) - K^{-1}(1 - i/\tilde{\Lambda}(z))U(z) + (\mathcal{K}U)(z) = -(1 + R)\psi_0(z), \quad a < z < b \quad (2.47)$$

where

$$(\mathcal{K}U)(z) \equiv \int_a^b U(z')\kappa(z, z') dz' \quad (2.48)$$

is a real, positive, symmetric integral operator with a kernel defined by

$$\kappa(z, z') = \sum_{r=1}^{\infty} \frac{\psi_r(z)\psi_r(z')}{N_n k_r h}. \quad (2.49)$$

Letting $u(z)$ satisfy

$$\left[\frac{\pi}{2}z - K^{-1}(1 - i/\tilde{\Lambda}(z)) \right] u(z) + (\mathcal{K}u)(z) = \psi_0(z), \quad a < z < b \quad (2.50)$$

implies that $U(z) = -(1 + R)u(z)$ satisfies (2.47). Substituting this relation into (2.46) gives

$$ikhN_0(1 - R) = -(1 + R)\mathcal{A}, \quad \text{where } \mathcal{A} = \int_a^b u(z)\psi_0(z) dz. \quad (2.51)$$

In other words, the reflection coefficient may be determined by

$$R = -\frac{\mathcal{A} + ikhN_0}{\mathcal{A} - ikhN_0}. \quad (2.52)$$

167 We remark that when $\tilde{\Lambda}(z) \rightarrow \infty$, equivalent to switching off the power take-off, the integral
168 equation (2.50) becomes real and so the solution $u(z)$ and, hence \mathcal{A} , is real. Then $|R| = 1$
169 implying no energy is absorbed by the device, as must be the case. The limit $\tilde{\Lambda}(z) \rightarrow 0$ is
170 equivalent to replacing the power take off with a rigid lid with no compression, the integral
171 equation furnishes $U(z) = 0$ and $|R| = 1$. If just $\tilde{\lambda}_1 = 0$ but $\tilde{\lambda}_2 \neq 0$ then the air turbine
172 is shut off but the air compressibility allows a non-zero flow in the duct. In this case the
173 integral equation is real once again and so $|R| = 1$.

174 3. Efficiency

Under the inviscid assumption, the mean power, W , absorbed at the OWC is calculated in two different ways. In the first method we equate W to the flux of energy crossing a vertical boundary far from the device. That is

$$W = \lim_{X \rightarrow -\infty} \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \int_0^h \Phi_x(X, z, t)(P(X, z, t) - P_a) dz dt. \quad (3.1)$$

In frequency-domain variables

$$W = \lim_{X \rightarrow -\infty} \frac{1}{2} \Re \left\{ -\frac{i\rho g^2 |A|^2}{\omega} \int_0^h \phi_x(X, z) \overline{\phi(X, z)} dz \right\} = W_{inc}(1 - |R|^2) \quad (3.2)$$

after use of (2.14), where the overbar denotes complex conjugate and

$$W_{inc} = \frac{1}{2} \rho g |A|^2 c_g \quad (3.3)$$

is the incident wave energy in terms of the group velocity defined by

$$c_g = \frac{d\omega}{dk} = \frac{g}{\omega} k h N_0 \quad (3.4)$$

where N_0 is defined by (2.44). We are interested in the efficiency of power capture $E \in [0, 1]$ defined by $E = E_{ff}$ where

$$E_{ff} = \frac{W}{W_{inc}} = 1 - |R|^2 \quad (3.5)$$

(the subscript ff is used to indicate this is a calculation made in the far-field). A second method of calculating mean power comes from measuring the mean rate of working of the flux against the pressure across the turbines. According to this definition in terms of the N discrete channels

$$W = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \sum_{j=1}^N \int_{r_{j-1}}^{r_j} \zeta_t(x, t) (P(x, 0, t) - P_a) dx dt. \quad (3.6)$$

Invoking homogenisation replaces discrete variables by continuous variables so that

$$W = \frac{1}{2} \frac{\rho g^2 |A|^2}{\omega} \Im \left\{ - \int_a^b \phi_z(x, 0) \overline{\phi(x, 0)} dx \right\}. \quad (3.7)$$

Using (3.4), (3.5) gives the efficiency as $E = E_{nf}$ (nf indicates this is a near-field calculation) where

$$E_{nf} = \frac{1}{k h N_0} \Im \left\{ \int_a^b \frac{1}{r} \frac{\partial \phi}{\partial \theta}(r, \pi/2) \overline{\phi(r, \pi/2)} dr \right\}. \quad (3.8)$$

Inserting the definition (2.39) gives

$$E_{nf} = \frac{1}{k h N_0} \Im \left\{ \int_a^b \frac{i}{K \tilde{\Lambda}(r)} |U(r)|^2 dr \right\} = \frac{|1 + R|^2}{K k h N_0} \Im \left\{ i \int_a^b \frac{|u(z)|^2}{\tilde{\Lambda}(z)} dz \right\} \quad (3.9)$$

175 after using the relation $U(r) = -(1 + R)u(z)$. This simplifies in the case that $\tilde{\Lambda}$ is constant.
176 We see that $\tilde{\lambda}_1$ controls the power take off and the efficiency tends to zero when $\tilde{\lambda}_1 \rightarrow \infty$.
177 Note that if $\tilde{\lambda}_2 = 0$ then $E_{nf} \rightarrow 0$ as $\tilde{\lambda}_1 \rightarrow 0$ since $u(z) \rightarrow 0$ also in this case.

178 **4. Numerical approximation**

In order to solve the integral equation (2.50) we use a Galerkin method in which the solution is approximated by the $(2M + 1)$ -term expansion

$$u(z) \approx \sum_{m=-M}^M c_m u_m(z) \quad (4.1)$$

where c_m are coefficients to be determined and

$$u_m(z) = e^{im\pi(2z-b-a)/(b-a)} \quad (4.2)$$

are the complex Fourier series basis for the interval $z \in (a, b)$ satisfying

$$\int_a^b u_m(z) \overline{u_q(z)} dz = (b-a)\delta_{qm}. \quad (4.3)$$

Galerkin's method applied to solutions of integral equations involves substituting (4.3) into (2.50) before multiplying by $\overline{u_q(z)}$ for $q = -M, \dots, M$ and integrating over $a < z < b$. This results in the linear system of equations

$$\sum_{m=-M}^M c_m \mathcal{K}_{qm} = \overline{F_{q0}}, \quad q = -M, \dots, M \quad (4.4)$$

defining c_m where

$$\mathcal{K}_{qm} = \frac{\pi}{2} T_{qm} - K^{-1} (b-a) \delta_{qm} + i K^{-1} S_{qm} + \sum_{r=1}^{\infty} \frac{F_{mr} \overline{F_{qr}}}{N_r k_r h} \quad (4.5)$$

and we have written

$$F_{mr} = \int_a^b u_m(z) \psi_r(z) dz \quad (4.6)$$

with

$$S_{qm} = \int_a^b \frac{u_m(z) \overline{u_q(z)}}{\tilde{\Lambda}(z)} dz \quad \text{and} \quad T_{qm} = \int_a^b z u_m(z) \overline{u_q(z)} dz. \quad (4.7)$$

179 Explicit expressions for F_{mr} and T_{qm} are given in Appendix A. In the simplest case that $\tilde{\Lambda}$
180 is constant, $S_{qm} = (b-a)\delta_{qm}/\tilde{\Lambda}$.

We now use (4.1) in (2.51) to get

$$\mathcal{A} \approx \sum_{m=-M}^M c_m F_{m0} \quad (4.8)$$

181 allowing us to approximate E_{ff} from (3.5) once R is calculated using (2.52).

The alternative calculation of efficiency uses (4.1) in (3.9) to get

$$E_{nf} \approx \frac{4khN_0}{K|\mathcal{A} - ikhN_0|^2} \Im \left\{ i \sum_{n=-M}^M \sum_{m=-M}^M c_n \overline{c_m} S_{mn} \right\}. \quad (4.9)$$

In the case that $\tilde{\lambda}_1$ and $\tilde{\lambda}_2$ are both constant we have, on account of (4.3),

$$E_{nf} \approx \frac{4khN_0(b-a)^{3/2}}{K^{1/2}|\mathcal{A} - ikhN_0|^2} \cdot \frac{\tilde{\lambda}_1}{\tilde{\lambda}_1^2 + K(b-a)\tilde{\lambda}_2^2} \sum_{n=-M}^M |c_n|^2. \quad (4.10)$$

182 In the work of Parry-Barnard (2025) (not repeated here as it is too much of a diversion
183 from our main goal) it is shown that approximations, made by implementing Galerkin's
184 method, to the solution of the integral equations imply the equivalence of E_{nf} and E_{ff}
185 described previously. Numerical computations bear this out with only small differences
186 due to rounding errors between computed values of E_{nf} and E_{ff} . This is true for any
187 parameters used including the truncation parameter, M . Thus, the two methods are useful

188 for validating the numerical method, but cannot be used as a means of assessing the
 189 accuracy of the numerical results.

190 **5. Viscous losses in the duct**

Since the OWC design supposes a cascade of annular baffles separate the curved duct into narrow channels within which the fluid is subjected to resonant excitation, one might therefore be concerned about the role natural dissipative effects have on the device efficiency. Thus, we consider here a simple extension to the previous formulation of the problem which includes the damping due to viscous wall effects. In a full-scale design we reasonably envisage channels within the duct to be large enough that the plug-flow assumption holds across the bulk of each channel ($\Delta \gg \sqrt{\nu/2\omega}$ where ν is the kinematic viscosity). Then the wall stress, per unit length, due to boundary-layer shear associated with the no-slip condition on the walls of the channel is easily calculated (from the solution to the well-known Stokes problem since wall curvature is negligible under the boundary-layer scaling) to be

$$\sigma_{R\theta}|_{R=0,1} = -i\sqrt{\frac{\nu}{\omega}}e^{-i\pi/4}U(r) \quad (5.1)$$

(noting that we have applied the appropriate variable scalings stated in §2 to the stress and to U). Therefore, its integrated effect along the length of each channel, from both walls, can be written

$$-i\pi r\sqrt{\frac{\nu}{\omega}}e^{-i\pi/4}U(r) = \Delta p_{vis}(r) \quad (5.2)$$

which has been related to the jump in pressure needed to overcome viscous damping (Δ is the channel width). This pressure drop needs to be added to the solution in the duct and means that continuity of pressure across $x = 0$ is no longer equivalent to matching ϕ from both sides resulting in (2.47), but requires matching ϕ from $x < 0$ with $\phi - p_{vis}$ from $x > 0$. Thus, instead of (2.47) we have

$$\left[\frac{\pi}{2}z + \frac{\pi z \tilde{I} e^{i\pi/4}}{(K(b-a))^{1/4}} - \frac{(1-i/\tilde{I}(z))}{K} \right] U(z) + (\mathcal{K}U)(z) = -(1+R)\psi_0(z), \quad (5.3)$$

for $a < z < b$ where we have written

$$\tilde{I} = \frac{\nu^{1/2}N}{(b-a)^{3/4}g^{1/4}}, \quad (5.4)$$

191 a dimensionless constant, independent of frequency, which determines the effect of the
 192 viscosity on the OWC design. As expected, \tilde{I} increases linearly with the number of
 193 channels, N .

The impact of the modification (5.3) to (2.47) is easy to follow and eventually the first term $(\pi/2)T_{qm}$ in (4.5) needs to be replaced by

$$\frac{\pi}{2} \left(1 + \frac{2\tilde{I}e^{i\pi/4}}{(K(b-a))^{1/4}} \right) T_{qm} \quad (5.5)$$

194 in the numerical method.

195 The two calculations of efficiency made under inviscid assumptions are now no longer
 196 equal and E_{nf} is used to calculate the efficiency of power conversion by the device. The
 197 larger value of E_{ff} includes losses due to viscous damping. The work of Parry-Barnard
 198 (2025) shows how the two formally equate via the integral equation (5.3) by calculating

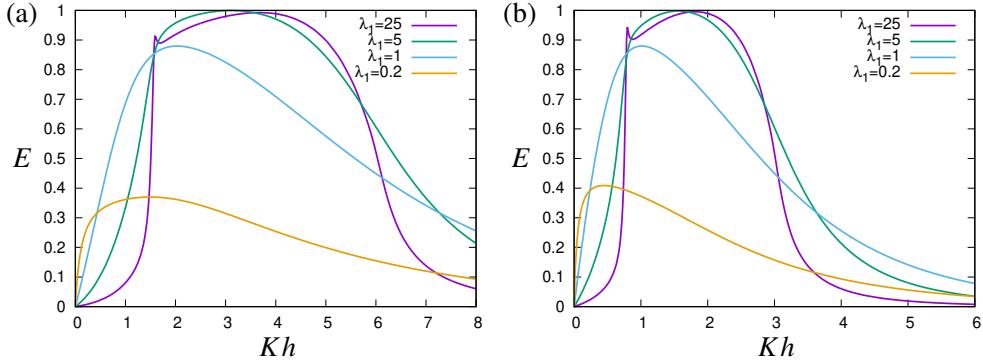


Figure 2. Variation of efficiency with Kh for two designs: (a) with $a/h = 0.1$, $b/h = 0.4$; and (b) $a/h = 0.2$, $b/h = 0.8$. In both cases $\tilde{\lambda}_2 = 0$ and $\tilde{\lambda}_1$ is varied.

199 the rate of viscous dissipation due to the boundary layers in the channels but the lengthy
200 details are omitted from this paper. The two different calculations of E are useful since
201 $E_{ff} - E_{nf}$ indicates the percentage of incident wave power lost to viscous wall effects.

202 **6. Results**

203 **6.1. Resonance**

The condition for resonance in a narrow curved channel of length l , intersecting the free surface at right angles, is easily shown to be approximated by

$$\omega^2 l/g = 1. \quad (6.1)$$

204 This is because the mass (per unit length) of fluid in the channel of width \mathcal{A} is $\rho \mathcal{A} l$ and the
205 hydrostatic restoring force due to an internal free surface elevation ζ is $-\rho g \mathcal{A} \zeta$. Balancing
206 these two terms under time-harmonic motion of angular frequency ω results in (6.1). This
207 argument ignores wave radiation and local flow conditions at the submerged opening and a
208 more refined calculation for narrow vertical ducts in two and three dimensions is presented
209 in Evans (1978).

The lengths of the channels in the configuration shown in Fig. 1 range from $a\pi/2$ to $b\pi/2$ and so the spectrum of resonance of the array of channels in the duct is given by

$$\frac{2h}{\pi b} < Kh < \frac{2h}{\pi a}. \quad (6.2)$$

210 In many of the examples below we set $a/h = 0.1$ and $b/h = 0.4$ and then (6.2) gives
211 $1.6 < Kh < 6.36$. This device is designed to be resonant for incident wavelengths between
212 roughly one and four times the water depth.

213 In Fig. 2(a) we show the computed efficiency E (either E_{ff} or E_{nf}) for this device design
214 over the extended range $0 < Kh < 8$ for a particular choice of $\tilde{\lambda}_1 = 5$ and setting $\tilde{\lambda}_2 = 0$.
215 Alongside in Fig. 2(b), we show computed efficiency for different design parameters,
216 $a/h = 0.2$ and $b/h = 0.8$, where the predicated range of resonance is $0.8 < Kh < 3.18$.
217 Since b/a are the same in both cases, Figs. 2(a) and (b) highlight the effect of fluid depth.
218 The plots indicate that high efficiency is sustained across most of the range of resonance,
219 only tailing off towards the ends.

M	$E (Kh = 1)$	$E (Kh = 2)$
1	0.3254	0.9821
2	0.3292	0.9533
4	0.3319	0.9588
8	0.3335	0.9577
16	0.3343	0.9575
32	0.3348	0.9574
64	0.3350	0.9573

Table 1. Computed values of efficiency, $E = E_{ff} = E_{nf}$, for increasing truncation parameter, M , for $Kh = 1$ and $Kh = 2$ with $a/h = 0.1$, $b/h = 0.4$, $\tilde{\lambda}_1 = 5$ and $\tilde{\lambda}_2 = 0$.

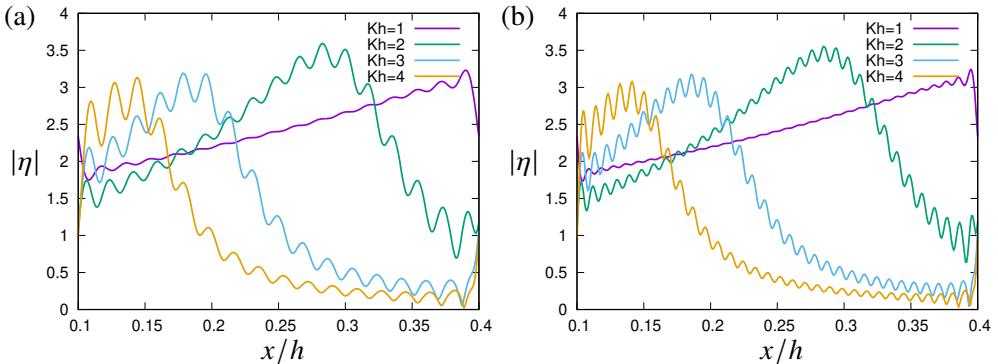


Figure 3. Plots of the modulus of $\eta(x)$ against $x/h \in (0.1, 0.4)$ for $a/h = 0.1$, $b/h = 0.4$, $\tilde{\lambda}_1 = 5$, $\tilde{\lambda}_2 = 0$ for three different values of Kh . Plots (a) and (b) are for $M = 16$ and $M = 32$.

6.2. Convergence of the numerical method

There are two parameters which control the accuracy of the numerical solutions. The first is the number of terms included in the infinite series defining \mathcal{K}_{qm} in (4.5). For this, it has been found that 100 terms is sufficient for the numerical accuracy required to compute the efficiency to three decimal places. The second is the value of M which controls the number of terms taken in the expansion of the approximate solution in (4.1). In Tab. 1 we present a convergence example for a typical set of results in the middle of the resonant range of frequencies. We are reminded that the two values of $E = E_{ff}$ and $E = E_{nf}$ are numerically identical (apart from small rounding errors) and cannot be used to indicate accuracy of the method.

In Fig. 3(a,b) we show the computed value of $|\eta|$, the modulus of the internal free surface amplitude non-dimensionalised by the incident wave height, as a function of $z \in (a, b)$. For this, we use the relation $|\eta| = |1 + R||u(z)|/K$. Results are shown for truncation sizes of $M = 16$ and $M = 32$ for a fixed geometry and constant power control. The oscillations in the curves are explained by Gibbs phenomenon, but nevertheless demonstrate the convergence of approximations with increasing M . In each figure curves represent different values of Kh to show how resonance is excited in positions along the duct dependent on frequency. For the device parameters chosen, $Kh = 1$ is outside the resonant spectrum. Fig. 3(a,b) show that, for the parameters chosen, device resonance corresponds to less than a doubling of the standing wave amplitudes that would occur if waves were reflected by a wall without the device in place.

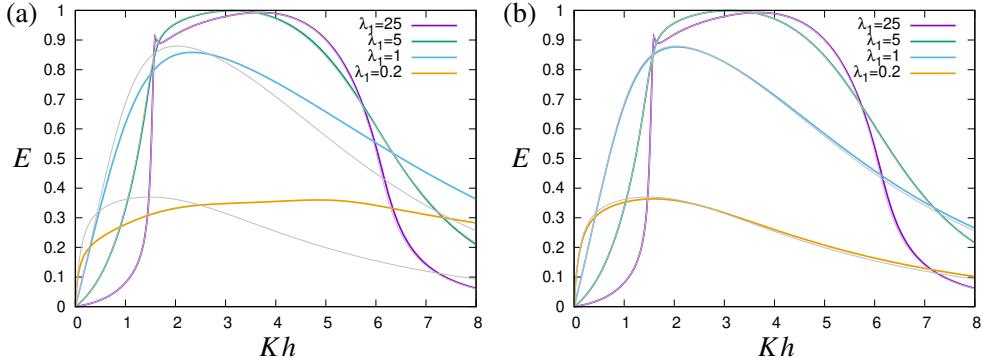


Figure 4. Variation of efficiency with Kh for $a/h = 0.1$, $b/h = 0.4$ In (a) $\tilde{\lambda}_2 = 0.333$ and in (b) $\tilde{\lambda}_2 = 0.033$; λ_1 is varied. The grey curves shadow the values computed in Fig. 2.

241

6.3. The role of compressibility of air

The effect of compressibility in (4.9) is controlled by the size of the ratio of the imaginary and real parts of $\tilde{\Lambda}$, or

$$(Kh(b/h - a/h))^{1/2}(\rho g H / \rho_a c_a^2) / \tilde{\lambda}_1 \approx 0.07H\sqrt{Kh(b/h - a/h)} / \tilde{\lambda}_1 \quad (6.3)$$

242 (in SI units). For a full-scale installation we imagine H to be roughly 4–5m and $(b/h - a/h)$
243 to be roughly 0.3 – 0.5 whilst it seems reasonable to assume that $Kh \lesssim 6$ is a range of
244 practical interest (implying wavelengths no shorter than the water is deep). Then the
245 maximum size of (6.3) is roughly $0.5/\tilde{\lambda}_1$. So compressibility can become a significant
246 factor if $\tilde{\lambda}_1$ is roughly one or less and for larger values of Kh . In terms of producing the
247 optimal power output, it has been found that we should choose $\tilde{\lambda}_1 \approx 5$, not only for results
248 shown in Fig. 2 but also for other configurations tested. Then the size of the term in (6.3)
249 never exceeds 0.1 and we expect the effect of drag on the efficiency to be proportionately
250 small. These observations are borne out in the results shown in Fig. 4(a).

251 In experiments one might imagine $H = 0.4 – 0.5$ m and then the size of the term in
252 (6.3) is an order of magnitude smaller than in the full-scale setting meaning its effect is
253 negligible as shown in Fig. 4(b).

254

6.4. The role of viscosity

255 The size of $\tilde{\Gamma}$ defined by (5.4) in a full-scale installation is estimated to be of the order
256 of 10^{-3} based, say, on 6 channels within a duct of the size $b - a = 3$ m. This is much
257 smaller than the other $O(1)$ terms in (5.4). Even with many more channels, the influence
258 of viscosity at full scale is going to be negligible. In experiments, we might imagine
259 $b - a = 0.3$ m in which case $\tilde{\Gamma}$ is more like 10^{-2} and likely to still have only a small effect
260 on results. Sample results are shown in Fig. 5(a).

261

6.5. Non-constant control parameters

262 We consider the effect of introducing spatial control of the damping by letting $\tilde{\lambda}_1(z) =$
263 $\alpha e^{-\beta z}$ where $\alpha > 0$ and $\beta \neq 0$ are constants. For $\beta > 0$ the damping is weaker for the
264 longer channels and vice versa whilst $\beta = 0$ corresponds to constant damping considered
265 previously. Setting $\tilde{\lambda}_2 = 0$ allows us to explicitly calculate the terms required in the
266 numerical scheme (see Appendix A). Fig. 5(b) shows the results of fixing $\alpha = 5$ and
267 varying $\tilde{\beta} = \beta/(b - a)$ between -2 and 2 . Other combinations of α and $\tilde{\beta}$ have been
268 considered but, as shown in Fig. 5(b), it seems that spatial control of damping does not
269 result in significant improvements in the efficiency.

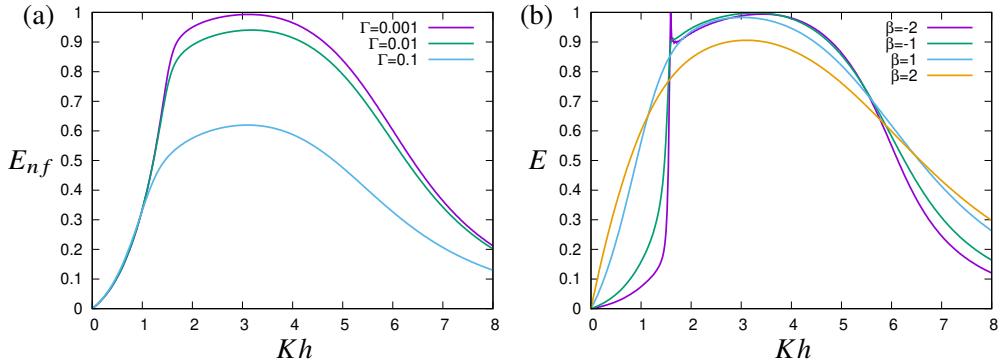


Figure 5. Variation of device efficiency with Kh for $a/h = 0.1$, $b/h = 0.4$. In (a) $\tilde{\lambda}_1 = 5$, $\tilde{\lambda}_2 = 0$ and different values of $\tilde{\Gamma}$; in (b) spatially-varying power control: $\alpha = 5$ and different values of $\tilde{\beta}$.

270

6.6. Comparison with a simple single chamber OWC

271 In Fig. 6 we have plotted a comparison of the performance, in terms of efficiency, of the
 272 current multi-channel (or multi-chamber) OWC design against the single-chamber OWC
 273 design of Evans & Porter (1995) for two cases. In the first case, the multi-chamber OWC
 274 parameters are $a = 0.25h$ and $b = 0.75h$ and this is compared to the Evans & Porter
 275 (1995) results with a barrier submergence of $0.25h$ and chamber width $0.75h$. In the
 276 second example, we have chosen $a = 0.1h$, $b = 0.99h$ and results are compared to Evans
 277 & Porter (1995) with a barrier submergence of $0.1h$ and chamber width h . In each case,
 278 air compressibility and viscous effects have been neglected and the value of the damping
 279 parameters for each curve produced have been chosen to ‘optimise’ the efficiency profile.
 280 Thus, we can see that the multi-chamber OWC design does no better than a single chamber
 281 design if immersion of the duct opening is too large. For a smaller immersion of the duct
 282 opening, the multi-chamber OWC outperforms the single chamber OWC by a significant
 283 degree.

284

7. Conclusions

285 We have considered a two-dimensional model of a novel OWC concept which has been
 286 designed to exploit resonance over a broad range of frequencies. A simple mathematical
 287 model has been formulated by approximating the complexity of the multi-channel
 288 duct using homogenisation. The general conclusion drawn from the various numerical
 289 experiments considered here is that the optimal configuration of an OWC, resulting in
 290 a high bandwidth, can be achieved by applying constant power control across the array
 291 of channels. It has been found that the effects of compressibility and viscosity may be
 292 neglected when applied to a full-scale installation, although these effects might influence
 293 test-scale experiments.

294 From an engineering perspective a multi-chamber design is more complicated than a
 295 single chamber OWC. However, the technology already exists for smaller Wells turbine
 296 (the Mutriku plant uses generators rated at 19kW) than were used for the larger installations
 297 at the LIMPET and PICO pilot plants. The nature of the ocean energy density spectrum
 298 means that loads will be distributed across multiple generators in the array. As the device
 299 is designed to be fixed, tidal variation is an issue although the broadband response of
 300 the device allows it to function across a range of conditions. Moreover, the multi-channel
 301 design allows for a system of louvres which shut different channels on and off to optimise

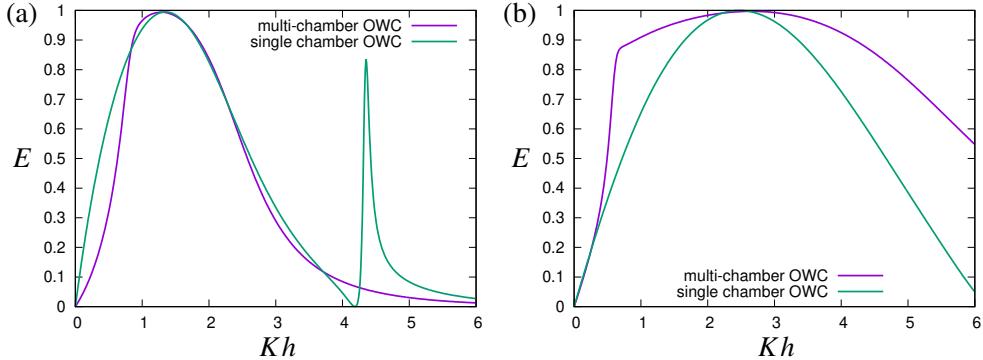


Figure 6. Comparision of efficiency with Kh for the current multi-chamber design and the single chamber OWC of Evans & Porter (1995) in the cases that the front wall immersion is: (a) 0.25h; and (b) 0.1h.

302 performance in different sea conditions as well as being used for a complete shutdown of
303 the device in storms.

304 Extensions to the current work might involve solving the problem of distinct channels
305 within the duct exactly, without homogenisation. This might require the use of boundary
306 element methods even for the two-dimensional problem because semi-analytic methods
307 are not easy to apply to such geometries. It is possible to consider a three-dimensional
308 version of this problem for a segmented OWC of finite width in an infinitely-long wall using
309 a combination of the methods described here and Fourier transforms. One would need to
310 make a convincing case for adding extra complexity.

311 **Funding** This research received no specific grant from any funding agency, commercial
312 or not-for-profit sectors.

313 **Declaration of Interests** The authors report no conflict of interest.

314 **Author ORCIDs** R. Porter, <https://orcid.org/0000-0003-2669-0188>, S. Parry-Barnard,
315 <https://orcid.org/0009-0006-5464-8293>

316 Appendix A

Below are the explicit definitions of the terms required in the numerical scheme. We define $c = \frac{1}{2}(a + b)$ and $d = \frac{1}{2}(b - a)$. In the case that $r \neq 0$ we have

$$F_{mr} = \frac{2d(-1)^m \sin k_r d}{((k_r d)^2 - (m\pi)^2) \cos k_r h} [k_r d \cos k_r (h - c) + im\pi \sin k_r (h - c)] \quad (\text{A } 1)$$

and when $r = 0$ this is

$$F_{m0} = \frac{2d(-1)^m \sinh kd}{((kd)^2 + (m\pi)^2) \cosh kh} [kd \cosh k(h - c) + im\pi \sinh k(h - c)]. \quad (\text{A } 2)$$

Next we find that

$$T_{qq} = 2cd, \quad \text{and} \quad T_{qm} = \frac{2di(-1)^{q+m}}{(q - m)\pi}, \quad (q \neq m). \quad (\text{A } 3)$$

When $\tilde{\lambda}_1(z) = \alpha e^{-\beta z}$, $\tilde{\lambda}_2 = 0$ we have

$$S_{qm} = \frac{2de^{\beta c}}{\alpha} (-1)^{m+q} \frac{\sinh \beta d}{i\pi(m - q) + \beta d}. \quad (\text{A } 4)$$

317 REFERENCES

318 BOAKE, C.B., WHITTAKER, T.J.T., FOLLEY, M., & HAMISH E. 2002 Overview And Initial Operational Experience
319 of the LIMPET Wave Energy Plant. *The 12th Int. Offshore and Polar Engng Conf.*, Kitakyushu, Japan.

320 EVANS, D.V. 1978 The Oscillating Water Column Wave Energy Device. *IMA J. Appl. Math.*, **22**(4), pp.423–433.
321 EVANS, D.V. 1981 Power from the waves. *Ann. Rev. Fluid Mech.*, **13**, pp.157–187.
322 EVANS, D.V. 1982 Wave-power absorption by systems of oscillating surface pressure distributions. *J. Fluid Mech.*, **114**, pp.481–499.
324 EVANS, D.V. AND PORTER, R. 1995 Hydrodynamic characteristics of an oscillating water column device. *Appl. Ocean Res.*, **17**(3), pp.155–164.
326 FALCÃO, A.F. DE O. AND SARMENTO, A.J.N.A. 1980 Wave generation by a periodic surface pressure and its application in wave-energy extraction. *15th Int. Congress Theor. Appl. Mech.*, Toronto.
328 FALCÃO, A.F. DE O. AND HENRIQUES, J.C.C. 2016 Oscillating-water-column wave energy converters and air turbines: A review. *Renewable Energy*, **85**, pp.1391–1424.
330 FALCÃO, A.F. DE O., SARMENTO, A.J.N.A., GATO, L.M.C. AND BRITO-MELO, A. 2020 The Pico OWC wave power plant: Its lifetime from conception to closure 1986–2018. *Appl. Ocean Res.*, **98**, 102104.
332 FALNES, J. 1993 Research and development in Ocean-wave energy in Norway. *Int. Symp. on Ocean Energy Development* Muroran, Hokkaido, Japan.
334 GAYATHRI, R., CHANG J.-Y., TSAI, C.-C. AND HSU, T.-W. 2024 Wave energy conversion through oscillating water columns: A review. *J. Marine Sci. Engng.*, **12**(2), p. 342.
336 HEATH, T.V. 2012 A review of oscillating water columns. *Phil. Trans. Roy. Soc. A.*, **370**(1959), pp.235–245.
337 HU, Y., CHENG Y., DAI, S., YUAN, Z., INECECIK, A. 2025 Broadband wave conversion by a “Pan Flute”-type multi-oscillating-water-column (M-OWC) breakwater system. *Energy Conversion and Management* **333**, 119820.
340 LIANG, H., PORTER, R. & ZHENG, S. 2024 Wave scattering by plate array metacylinders of arbitrary cross-section. *J. Fluid Mech.* **1001**:A6.
342 LINTON, C.M. AND McIVER, P. 2001 *Handbook of Mathematical Techniques for Wave/Structure Interactions*. Chapman and Hall/CRC.
344 LOPEZ-MENDIA, J., ARISTONDO, A., RICCI, P., LEKUBE, J., CEBALLOS, S., AND ROBLES, E. 2025 Improving the power production of Mutriku wave power plant throughout tuning the actual generator and damping valve limits. *Ocean Engng.*, **315**, 119917.
347 MARTIN-RIVAS, H. AND MEI, C.C. 2009 Wave power extraction from an oscillating water column along a straight coast. *Ocean Engng.*, **36**(6–7), pp.426–433.
349 MASUDA, Y. 1985 An experience of wave power generator though tests and improvement. In *Hydrodynamics of Ocean Wave Energy Utilization Symposium*. D.V. Evans, A.F. de O. Falcão (eds.), Lisbon, Portugal.
351 PARRY-BARNARD, S. 2025 *The Theoretical Efficiency of a Novel Design of Oscillating Water Column Device*. M.Sc. thesis, University of Bristol, UK.
353 PORTER, R. 2025 Hydrodynamic characteristics of an oscillating water column device – revisited. <https://people.maths.bris.ac.uk/~marp/abstracts/eandp95.pdf>.
355 SARMENTO, A.J.N.A. AND FALCÃO, A.F. DE O. 1985 Wave generation by an oscillating surface-pressure and its application in wave-energy extraction. *J. Fluid Mech.*, **150**, pp.467–485.
357 SMITH, C.M. 1983 *Some problems in linear water waves*. Ph.D. thesis, University of Bristol, UK.
358 WHITTAKER, T.J.T., LEITCH, J.G., LONG, A.E. & MURRAY, M.A. 1985 The Q.U.B. Axisymmetric and Multi-Resonant Wave Energy Convertors. *J. Energy Resour. Tech.*, **107**(1), pp.74–80.
360 WILKS B., MONTIEL F., WAKES S. 2022 Rainbow reflection and broadband energy absorption of water waves by graded arrays of vertical barriers. *J. of Fluid Mech.*, **941**:A26.
362 ZHENG, S., ANTONINI, A., ZHANG, Y., GREAVES, D., MILES, J. & IGLESIAS, G. 2019 Wave power extraction from multiple oscillating water columns along a straight coast. *J. Fluid Mech.*, **878**, pp.445–480.