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This paper considers the theoretical operation of a novel wall-mounted oscillating water8
column wave energy device designed to be resonant over a broad range of frequencies.9
A curved duct with a submerged opening in a vertical wall is partitioned into a number10
of separate narrow channels of uniform width using thin annular baffles. Each channel11
connects the submerged opening to its own internal free surface whose rise and fall drives12
the air enclosed above through a Wells-type turbine through which energy is harvested.13
The different channel lengths within the duct encourages, when subjected to forcing from14
incident waves, resonance across a range of frequencies. The two-dimensional problem15
described in this work is analysed using classical linearised water wave theory and the16
geometric complexity of the partitioned duct is simplified by homogenisation. This allows17
the solution to the water wave problem to be reduced to a scalar integral equation whose18
solution is approximated using a standard numerical method. It is shown that it is possible,19
even with the most basic choice of turbine power take-off strategies, to achieve efficiencies20
close to 100% across much of the range of frequencies defined by the resonance associated21
with the longest and shortest channels of the device. Viscous damping within the channels22
is shown to have a negligible effect for practical configurations.23
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1. Introduction25

The Oscillating Water Column (OWC) concept (see Heath (2012), Falcão & Henriques26
(2016), for example) is, to date, arguably the most commercially successful device for27
converting ocean wave energy into electricity. Originally devised by Yoshio Masuda in the28
1940s as a means of powering floating navigation buoys (see Masuda (1985)), a number of29
modestly-sized plants have been installed in a variety of settings and operated with some30
success, supplying energy to national electrical grids. For a recent review, see Gayathri et31
al. (2024).32
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OWCs operate by isolating an internal air chamber from the open ocean via a surface-33
piercing lip with an opening below the water line. The rise and fall of incoming waves34
forces the enclosed air above the internal free surface back and forth through an air turbine35
whose role is to generate electrical energy. A self-rectifying turbine, such as a Wells turbine36
(described in Falcão & Henriques (2016)), is typically used; it is designed to spin in the37
same direction regardless of the direction of the air flow. The success of the OWC lies in38
its simplicity: the only moving part is the air turbine, located above the water line. Being39
typically mounted at the shoreline mitigates the expense and difficulty of mooring, power40
transmission and maintenance operations associated with offshore wave energy devices. On41
the other hand, shore-mounted OWCs such as Kvaerner in Norway (see Falnes (1993)), the42
pilot plants of PICO in the Azores (see Falcão et al. (2020)) and LIMPET on the Scottish43
Island of Islay (see Boake et al. (2002)) are considered difficult to build with site-specific44
constraints and a significant environmental impact. Additionally, the nearshore wave energy45
resource is not as high as far offshore whilst being more vulnerable to violent wave breaking46
events. Projects in Japan, India, China, Italy and Spain have involved installing OWC units47
into sea walls to serve a dual purpose of coastal/harbour protection and energy generation.48
To date, the largest and most successful of these is the Mutriku Wave Power Plant on the49
northern coast of Spain. It comprises 16 OWCs set side-by-side in a harbour wall, rated50
at 296kW, and in operation since 2011. It has since supplied over 3GWh to the grid (see51
Lopez-Mendia et al. (2025)).52

It was the during the initial surge in interest in wave energy in the response to the oil crisis53
of 1973 that the theoretical basis for the operation of wave energy converters, including54
OWCs, was established (for an overview see Evans (1981)). Early, but instructive, work55
on the OWC concept by Evans (1978) applied rigid-body theory to a simple OWC model.56
By modelling the internal free surface as a weightless piston, it was demonstrated that57
the resonant motion of the fluid within the internal chamber can be excited at certain58
incident wave frequencies dependent on the depth of submergence of the duct. Shortly59
afterwards, Falcão & Sarmento (1980) correctly accounted for the internal free surface60
using a theory based on oscillating pressure variations within the air chamber of the61
OWC device. This led to the general theoretical framework for multiple interacting OWCs62
described by Evans (1982). Some years later Evans & Porter (1995), revisiting a problem63
initially considered by Smith (1983), showed how a simple two-dimensional model of64
a shore-mounted OWC could extract 100% of the incoming wave energy at an isolated65
resonant frequency dependent on the size and shape of the submerged rectangular chamber.66
In Evans & Porter (1995) only curves showing the maximum theoretical efficiency were67
shown whilst the effect of air compressibility was overlooked. Porter (2025) has produced a68
recent update of that paper addressing both these issues, showing that 100% efficiency can69
still be achieved at a specific frequency associated with resonance and for a carefully-tuned70
power control. Results highlight the effect that both non-optimally tuned power take-off71
and air compressibility have on efficiency showing how efficiency can fall well below the72
theoretical maximum presented in the work of Evans & Porter (1995).73

The modelling of OWCs has advanced over the last 30 years and many theoretical studies74
have been made of more complex OWC geometries in more realistic three-dimensional75
settings including arrays of devices. See, for example, Martin-Rivas & Mei (2009), Zheng76
et al. (2019) and references therein. In this paper we return to the simpler two-dimensional77
setting in order to assess how a shift in fundamental OWC design affects its performance.78
A submerged opening is connected to an internal free surface via an annular duct which is79
divided into 𝑁 (we suppose many) separate narrow annular channels with thin, rigid, curved80
baffles. The air enclosed above each narrow channel is connected to the atmosphere via its81
own Wells turbine. The idea of the design is to broaden the device response. Since there82
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are 𝑁 channels of different lengths, the proposed device possesses resonances at 𝑁 closely-83
spaced frequencies, the largest/smallest of which are associated with the shortest/longest84
channels within the array.85

The idea of engineering multiple resonant frequencies within a single device is not new.86
For example, the Belfast OWC concept of the 1970s (see Whittaker et al. (1985)) had two87
chambers tuned to two different frequencies housed within a circular device. The Kvaerner88
device described by Falnes (1993) was unique in that it was built into a natural harbour to89
couple harbour resonance with device resonance. Closely related to the current proposal,90
Wilks et al. (2022) considered a theoretical two-dimensional concept comprised of multiple91
vertical channels of gradually increasing submerged depth separated by thin vertical baffles.92
The oscillations of the fluid powered rigid pistons placed on the surface of each channel93
and it was shown that efficiency close to 100% across a broad range of frequencies could be94
achieved. The design of Wilks et al. (2022) was guided as much by the principle of graded95
arrays and so-called rainbow reflection (the slowing of effective wave speed) as it was by96
multiple resonance. Very recently, Hu et al. (2025) have considered the modification of the97
Wilks et al. (2022) where rigid pistons are replaced by OWC chambers. In their work, 598
vertical channels of increasing immersed depth are considered using computational fluid99
dynamics simulations which include turbulent effects and air compressibility, whilst the100
incoming waves propagate from a model energy density spectrum. Despite turbulent losses101
caused by flow separation around the sharp edges of the thin vertical barriers, the authors102
report a broadband efficiency of more than 50% over the range of resonant frequencies.103

The OWC device described in this paper is really a closely-packed system of 𝑁 coupled104
OWC devices, and so formally the general theory of Evans (1982) applies. However, a105
different approach is taken here, one which has proved successful in other application106
areas. The geometric complexity of the baffle-partitioned duct is replaced with an effective107
medium using asymptotic homogenisation. This process is described in Section 2 of the108
paper in the midst of the formulation of the problem and its solution. It formally applies109
for 𝑁 ≫ 1, but in other problems has been shown to provide a good approximation110
to the geometrically exact solution, provided the length to width ratio of the channels111
is sufficiently large (roughly a factor of 10). See, for example, Liang et al. (2024) who112
considered plane wave scattering parallel arrays of thin closely-spaced plates. In Section113
2 it is shown how this simplification allows the problem to be reduced to a single scalar114
integral equation solution. This is approximated numerically, in Section 4 of the paper,115
using Galerkin’s method. Two expressions for the efficiency of power capture are derived116
in Section 3, one based on power capture at the device and one based on a far-field energy117
flux calculation. These lead to independent numerical methods for computing the device118
efficiency which is useful for validating the implementation of the numerical method. In119
Section 5 we describe the simple changes needed to incorporate the damping effect of120
viscous boundary layers due the oscillating fluid flow in the multiple narrow channels121
of the duct. The results are presented in Section 6 where we consider the effects of air122
compressibility and viscous damping. A summary of the paper with an outlook on the123
prospects for the design is given in Section 7.124

2. Problem specification and solution125

Two-dimensional Cartesian coordinates, (𝑥, 𝑧), are used, 𝑧 = 0 corresponding to the rest126
position of the fluid surface and 𝑧 directed vertically downwards. In 𝑥 < 0 the fluid depth127
is taken to be a constant, ℎ. At 𝑥 = 0 a vertical wall extends upwards from 𝑧 = ℎ to 𝑧 = 𝑏128
and from 𝑧 = 𝑎 through the surface. The gap in the wall 𝑎 < 𝑧 < 𝑏 connects the fluid in129
𝑥 < 0 to an internal fluid surface in 𝑎 < 𝑥 < 𝑏 via a curved annular duct in 𝑥 > 0. Its inner130
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Figure 1. Definition sketch of the OWC device with 𝑁 curved fluid filled channels with internal free surfaces
above which air is pumped from an enclosed chamber through air turbines, indicated by bow ties.

and outer walls are described in polars coordinates, (𝑟, 𝜃) with 𝑥 = 𝑟 sin 𝜃, 𝑧 = 𝑟 cos 𝜃, by131
𝑟 = 𝑎 and 𝑟 = 𝑏 for 0 ≤ 𝜃 ≤ 𝜋/2. The duct is divided into 𝑁 curved channels of uniform132
width by 𝑁 − 1 thin internal curved baffles along 𝑟 = 𝑟 𝑗 , 1 ≤ 𝑗 ≤ 𝑁 − 1 0 ≤ 𝜃 ≤ 𝜋/2133
where 𝑟 𝑗 = 𝑎 + 𝑗 𝛥 for 0 ≤ 𝑗 ≤ 𝑁 . Thus 𝛥 = (𝑏 − 𝑎)/𝑁 is the uniform width of each fluid134
channel and we suppose that 𝑁 is large enough that 𝛥/𝑎 is suitably small. This quantity135
defines the largest aspect ratio of width to length within the array of 𝑁 fluid channels and136
its smallness is needed for the method of solution we propose.137

It is supposed that above the internal free surface of each of the 𝑁 partitioned channels138
lies an air chamber, which is isolated from the other 𝑁 channels and connected to the139
external atmosphere by a duct containing its own self-rectifying Wells air turbine. Thus,140
when the fluid is set into motion, the rise and fall of the internal fluid surface within each141
channel drives the air back and forth through the turbine.142

The water is assumed to be incompressible, inviscid (although viscous effects are
considered later in the paper) and has density 𝜌; its motion is assumed to be of small
amplitude and irrotational. This allows us describe the fluid velocity as the gradient of a
velocity potential𝛷(𝑥, 𝑧, 𝑡) which we express as

𝛷(𝑥, 𝑧, 𝑡) = ℜ{−(i𝑔𝐴/𝜔)𝜙(𝑥, 𝑧)e−i𝜔𝑡 } (2.1)

where 𝐴 ∈ C is the incident wave amplitude (encoding a modulus and phase) and 𝑔 is
acceleration due to gravity. We have anticipated the linearity of the governing equations
that follow implying that a monochromatic incident wave of angular frequency 𝜔 drives
a response of the same frequency thereby allowing us to remove a time-harmonic factor
from the motion; 𝜙(𝑥, 𝑧) is consequently a complex-valued velocity potential satisfying

∇2𝜙 = 0 (2.2)

everywhere in the fluid. The surface elevation (measured upwards from 𝑧 = 0) is
represented by 𝜁 (𝑥, 𝑡) = ℜ{𝐴𝜂(𝑥)e−i𝜔𝑡 } such that the linearised kinematic condition
can be written as

𝐾𝜂(𝑥) = −𝜙𝑧 (𝑥, 0), (𝐾 = 𝜔2/𝑔) (2.3)
on all free surfaces: both in 𝑥 < 0, and in each of the channels across 𝑎 < 𝑥 < 𝑏. The
pressure is defined as 𝑃(𝑥, 𝑧, 𝑡) = 𝑃𝑎 +ℜ{𝐴𝜌𝑔𝑝(𝑥, 𝑧)e−i𝜔𝑡 } where 𝑃𝑎 is the atmospheric
pressure. Use of the linearised Bernoulli equation

𝑃(𝑥, 𝑧, 𝑡) = 𝑃𝑎 − 𝜌𝛷𝑡 + 𝜌𝑔𝑧 (2.4)
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on the free surface 𝑧 = −𝜁 (𝑥, 𝑡), gives
𝜙(𝑥, 0) − 𝜂(𝑥) = 0, 𝑥 < 0 (2.5)

and on each internal free surface 𝑟 𝑗−1 < 𝑥 < 𝑟 𝑗 ( 𝑗 = 1, . . . , 𝑁) we have
𝑝 𝑗 = 𝜙(𝑥, 0) − 𝜂(𝑥) (2.6)

where 𝑝 = 𝑝 𝑗 represents the oscillating air pressure in the chamber above the 𝑗 th channel.
Combining (2.3) with (2.4) and (2.5) results in

𝜙𝑧 (𝑥, 0) + 𝐾𝜙(𝑥, 0) =
{

0, 𝑥 < 0
𝐾𝑝 𝑗 , 𝑟 𝑗−1 < 𝑥 < 𝑟 𝑗 .

(2.7)

The oscillating pressure drives a flow through the air turbine connected to the 𝑗 th channel
which is assumed to obey a standard semi-empirical law (see Sarmento & Falcão (1985),
Martin-Rivas & Mei (2009)) relating pressure to the volume flux (per unit length) of fluid,
𝑄(𝑡), across the mean free surface via

𝑄(𝑡) = 𝜆1(𝑃 − 𝑃𝑎) + 𝜆2
d𝑃
d𝑡
. (2.8)

When applied in channel 𝑗 (2.8) reduces to
𝑞 𝑗 = i𝛬 𝑗 𝑝 𝑗 (2.9)

where

𝑞 𝑗 = −
∫ 𝑟 𝑗

𝑟 𝑗−1

𝜙𝑧 (𝑥, 0) d𝑥 (2.10)

represents the volume flux (per unit length) of fluid crossing 𝑧 = 0. In (2.9)

𝛬 𝑗 = 𝜌𝜔𝜆1, 𝑗 − i𝜌𝜔2𝜆2, 𝑗 . (2.11)
The law (2.8), applied to channel 𝑗 , accounts for the compressibility of air (Sarmento &
Falcão (1985), Martin-Rivas & Mei (2009)) with

𝜆2, 𝑗 =
𝑉 𝑗

𝜌𝑎𝑐
2
𝑎

(2.12)

where 𝜌𝑎 is air density, 𝑉 𝑗 is the volume of air (per unit length) in the 𝑗 th chamber (with143
respect to the rest position of the fluid) and 𝑐𝑎 is the speed of sound in air. The parameter144
𝜆1, 𝑗 can be written in terms of the control and design parameters of a Wells turbine, but145
we imagine this is a free power control parameter.146

No flow conditions apply on all fixed submerged boundaries in the flow and this is
expressed as

𝜕𝜙/𝜕𝑛 = 0, (2.13)
representing the vanishing of the normal derivative of 𝜙.147

Finally, we need to impose a condition in the far field and write

𝜙(𝑥, 𝑧) = (ei𝑘𝑥 + 𝑅e−i𝑘𝑥)𝜓0(𝑧), as 𝑥 → −∞ (2.14)
where 𝑅 ∈ C is the reflection coefficient and

𝜓0(𝑧) = cosh 𝑘 (ℎ − 𝑧)/cosh 𝑘ℎ (2.15)
is the depth dependence associated with propagating waves of wavenumber 𝑘 , found from
separating variables: 𝑘 is defined to be the positive real root of

𝐾 = 𝑘 tanh 𝑘ℎ. (2.16)
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The standard method of solution for solving the problem of 𝑁 independent oscillating148
pressure distributions is to decompose the problem into 𝑁 + 1 potentials: the scattering of149
incident waves in the absence of pressure distributions plus 𝑁 radiation potentials defined150
by a prescribed isolated forcing in each of the 𝑁 channels in the absence of incoming waves.151
The individual solutions are then coupled via the turbine law connecting volume fluxes152
and pressures in each of the 𝑁 channels. The general theory can be found in Evans (1982).153
However, each problem is complicated and the complete solution is expressed in terms of154
𝑁 ×𝑁 matrices. The advantage of this approach it that it does furnish an explicit condition155
maximising efficiency, but only by supposing that there is complex-valued control coupling156
each turbine to every other one, which is not practical.157

We take a different approach, the first step of which combines the turbine law (2.9),
(2.10) with the surface condition (2.7) to eliminate 𝑝 𝑗 resulting in

𝜙𝑧 (𝑥, 0) + 𝐾𝜙(𝑥, 0) = i
𝐾

𝛬 𝑗

∫ 𝑟 𝑗

𝑟 𝑗−1

𝜙𝑧 (𝑥, 0) d𝑥, 𝑟 𝑗−1 < 𝑥 < 𝑟 𝑗 (2.17)

( 𝑗 = 1, . . . , 𝑁).158

2.1. Homogenisation in 𝑥 > 0159

Next, we aim to simplify the complexity of the duct containing the baffles by approximating
the problem using homogenisation methods. The basis of this approximation is 𝜖 = 𝛥/𝑟0 ≪
1 (where 𝑟0 = 𝑎) implying that the width of the channels is small compared to their length.
First we non-dimensionalise the governing Laplace equation (2.2) in the duct by writing
𝑟 = 𝑟0𝑟, 𝜙(𝑟, 𝜃) = 𝜙(𝑟, 𝜃) so that we have(

𝜕2

𝜕𝑟2 + 1
𝑟

𝜕

𝜕𝑟
+ 1
𝑟2

𝜕

𝜕𝜃2

)
𝜙(𝑟, 𝜃) = 0, 𝑟 𝑗−1 < 𝑟 < 𝑟 𝑗 , 0 < 𝜃 < 1

2𝜋 (2.18)

for 𝑗 = 1, . . . , 𝑁 where 𝑟 𝑗 = 𝑟 𝑗/𝑟0, noting that the condition (2.13) applied to the channel
walls is expressed as

𝜕𝜙

𝜕𝑟
= 0, 𝑟 = 𝑟 𝑗 , 0 < 𝜃 < 1

2𝜋. (2.19)

Next we make a multiple-scales approximation in which 𝑅 = 𝑟/𝜖 where 𝜖 = 𝑟 𝑗 − 𝑟 𝑗−1 ≪ 1
is the dimensionless distance between adjacent baffles is defined as the fast (channel) scale
and we write

𝜙(𝑟, 𝜃) = 𝜙0(𝑟, 𝑅, 𝜃) + 𝜖𝜙1(𝑟, 𝑅, 𝜃) + 𝜖2𝜙2(𝑟, 𝑅, 𝜃) + . . . . (2.20)
Consequently (2.18) is to be written as((

𝜕

𝜕𝑟
+ 1
𝜖

𝜕

𝜕𝑅

)2
+ 1
𝑟

(
𝜕

𝜕𝑟
+ 1
𝜖

𝜕

𝜕𝑅

)
+ 1
𝑟2

𝜕2

𝜕𝜃2

) (
𝜙0(𝑟, 𝑅, 𝜃) + 𝜖𝜙1(𝑟, 𝑅, 𝜃) + . . .

)
= 0,

0 < 𝑅 < 1, 0 < 𝜃 < 1
2𝜋 (2.21)

whilst (2.19) becomes(
𝜕

𝜕𝑟
+ 1
𝜖

𝜕

𝜕𝑅

) (
𝜙0(𝑟, 𝑅, 𝜃) + 𝜖𝜙1(𝑟, 𝑅, 𝜃) + . . .

)
= 0, 𝑅 = 0, 1, 0 < 𝜃 < 1

2𝜋. (2.22)

From (2.21), (2.22) the 𝑂 (1/𝜖2) problem for 𝜙0 is defined by

𝜕2𝜙0

𝜕𝑅2 = 0, 0 < 𝑅 < 1 (2.23)
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with 𝜕𝑅𝜙0 = 0 on 𝑅 = 0, 1. The clearly integrates to give 𝜙0 ≡ 𝜙0(𝑟, 𝜃) (i.e. independent160
of 𝑅, the channel scale).161

For the problem at 𝑂 (1/𝜖) (2.21), (2.22) give

𝜕2𝜙1

𝜕𝑅2 = 0, 0 < 𝑅 < 1, with
𝜕𝜙1
𝜕𝑅

= −𝜕𝜙0
𝜕𝑟

, on 𝑅 = 0, 1 (2.24)

and so

𝜙1(𝑟, 𝑅, 𝜃) = −𝑅𝜕𝜙0
𝜕𝑟

+ 𝜒1(𝑟, 𝜃) (2.25)

where 𝜒1 is an arbitrary function. From (2.21) the governing equation at 𝑂 (1) turns out to
be, after simplifying using (2.25),

𝜕2𝜙2

𝜕𝑅2 − 𝜕2𝜙0

𝜕𝑟2 + 1
𝑟2
𝜕2𝜙0

𝜕𝜃2 = 0, 0 < 𝑅 < 1 (2.26)

and the associated boundary conditions are

𝜕𝜙2
𝜕𝑅

= 𝑅
𝜕2𝜙0

𝜕𝑟2 − 𝜕𝜒1
𝜕𝑟

, 𝑅 = 0, 1. (2.27)

Integrating (2.26) over 0 < 𝑅 < 1 and using (2.27) results in the leading order governing
equation for 𝜙0, namely

𝜕2𝜙0

𝜕𝜃2 = 0. (2.28)

This is what we might have expected as it implies that the leading order flow is parallel to
the channel walls (plug flow); (2.28) integrates to

𝜙0(𝑟, 𝜃) = 𝐵(𝑟0𝑟)𝜃 + 𝐶 (𝑟0𝑟) (2.29)

where 𝐵, 𝐶 are arbitrary functions of the macroscale variable, 𝑟. Meanwhile on the
boundary 𝑧 = 0, equivalent to 𝜃 = 1

2𝜋, the transformation applied to (2.17) gives(
𝐾𝑟0 −

1
𝑟

𝜕

𝜕𝜃

) (
𝜙0(𝑟, 1

2𝜋) + . . .
)
= −i

𝐾𝛥

𝛬 𝑗

∫ 1

0

1
𝑟

𝜕

𝜕𝜃

(
𝜙0(𝑟, 1

2𝜋) + . . .
)

d𝑅 (2.30)

and we write 𝛬 𝑗 = 𝐾𝛥𝛬̃(𝑟0𝑟) since it does not depend on 𝑅. Consequently

𝛬̃(𝑟) = 𝜆̃1(𝑟)√︁
𝐾 (𝑏 − 𝑎)

− i𝜆̃2(𝑟) (2.31)

is a dimensionless parameter implying, from (2.11), (2.12), that

𝜆̃2(𝑟) = 𝜌𝑔𝐻 (𝑟)/𝜌𝑎𝑐2
𝑎 (2.32)

where 𝐻 (𝑟) measures the height the air chamber as a function of position. Additionally

𝜆̃1(𝑟) =
𝜌
√︁
𝑔(𝑏 − 𝑎)
𝛥

𝜆1(𝑟), (2.33)

like 𝜆̃2(𝑟), is frequency-independent and related to the geometry and mechanics of the162
turbine: we regard this as a free parameter, dependent on position 𝑟, which controls the163
damping.164
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At leading order (2.30) is therefore(
1 − i

𝛬̃(𝑟0𝑟)

)
𝜕𝜙0
𝜕𝜃

(𝑟, 1
2𝜋) = 𝐾𝑟0𝑟𝜙0(𝑟, 1

2𝜋). (2.34)

Now 𝜙(𝑟, 𝜃) = 𝜙(𝑟, 𝜃) ≈ 𝜙0(𝑟, 𝜃) to leading order. So from (2.29) we have

𝜙(𝑟, 𝜃) = 𝐵(𝑟)𝜃 + 𝐶 (𝑟), for 0 < 𝜃 < 1
2𝜋, 𝑎 < 𝑟 < 𝑏 (2.35)

where (
1 − i

𝛬̃(𝑟)

)
𝜕𝜙

𝜕𝜃
= 𝐾𝑟𝜙, on 𝜃 = 1

2𝜋, 𝑎 < 𝑟 < 𝑏. (2.36)

It is useful to define a function 𝑈 (𝑟) which represents the horizontal fluid velocity along
𝑥 = 0, the vertical opening of the duct, so that

1
𝑟

𝜕𝜙

𝜕𝜃

����
𝜃=0

= 𝑈 (𝑟), 𝑎 < 𝑟 < 𝑏. (2.37)

It follows that 𝐵(𝑟) = 𝑟𝑈 (𝑟) and then using (2.36) we have(
1 − i

𝛬̃(𝑟)

)
𝑈 (𝑟) = 𝐾

(
1
2𝜋𝑟𝑈 (𝑟) + 𝐶 (𝑟)

)
(2.38)

which defines 𝐶 (𝑟) and so, finally,

𝜙(𝑟, 𝜃) = 𝑟𝑈 (𝑟) (𝜃 − 1
2𝜋) + 𝐾

−1(1 − i/𝛬̃(𝑟))𝑈 (𝑟) (2.39)

represents the general solution in 𝑥 > 0 in terms of a single unknown function,𝑈 (𝑟).165

2.2. Solution in 𝑥 < 0 and matching166

In 𝑥 < 0 we can write the general solution, satisfying (2.2), (2.7) and (2.13) on 𝑧 = ℎ, using
separation of variables (see Linton & McIver (2001)), as

𝜙(𝑥, 𝑧) = (ei𝑘𝑥 + 𝑅e−i𝑘𝑥)𝜓0(𝑧) +
∞∑︁
𝑛=1

𝜓𝑛 (𝑧)e𝑘𝑛𝑥
𝑁𝑛𝑘𝑛ℎ

∫ 𝑏

𝑎

𝑈 (𝑧′)𝜓𝑛 (𝑧′) d𝑧′ (2.40)

where, for 𝑛 ≥ 1,
𝜓𝑛 (𝑧) = cos 𝑘𝑛 (ℎ − 𝑧)/cos 𝑘𝑛ℎ (2.41)

and 𝑘𝑛 are the positive real roots of 𝐾 = −𝑘𝑛 tan 𝑘𝑛ℎ, ordered in increasing size. The
functions 𝜓𝑛 (𝑧) are orthogonal, satisfying

1
ℎ

∫ ℎ

0
𝜓𝑚(𝑧)𝜓𝑛 (𝑧) d𝑧 = 𝑁𝑛𝛿𝑚𝑛, 𝑚, 𝑛 ≥ 0 (2.42)

which extends the definition of 𝑘𝑛 to include 𝑛 = 0 where 𝑘0 = −i𝑘 and

𝑁𝑛 =
1
2

(
1 + sin 2𝑘𝑛ℎ

2𝑘𝑛ℎ

)
sec2𝑘𝑛ℎ. (2.43)

Note that in the case 𝑛 = 0 this becomes

𝑁0 =
1
2

(
1 + sinh 2𝑘ℎ

2𝑘ℎ

)
sech2𝑘ℎ. (2.44)
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In writing (2.40) we have also satisfied the condition

𝜕𝜙

𝜕𝑥

����
𝑥=0

=

{
𝑈 (𝑧), 𝑎 < 𝑧 < 𝑏,

0, {0 < 𝑧 < 𝑎} ∪ {𝑏 < 𝑧 < ℎ} (2.45)

provided

i𝑘ℎ𝑁0(1 − 𝑅) =
∫ 𝑏

𝑎

𝑈 (𝑧)𝜓0(𝑧) d𝑧. (2.46)

All that remains is to match the pressure across 𝑥 = 0, 𝑎 < 𝑧 < 𝑏 (noting that 𝑟 = 𝑧 on
𝜃 = 0) which, by (2.4), is proportional to 𝜙 and so from (2.39) and (2.40) we have
𝜋

2
𝑧𝑈 (𝑧) − 𝐾−1(1 − i/𝛬̃(𝑧))𝑈 (𝑧) + (K𝑈) (𝑧) = −(1 + 𝑅)𝜓0(𝑧), 𝑎 < 𝑧 < 𝑏 (2.47)

where

(K𝑈) (𝑧) ≡
∫ 𝑏

𝑎

𝑈 (𝑧′)𝜅(𝑧, 𝑧′) d𝑧′ (2.48)

is a real, positive, symmetric integral operator with a kernel defined by

𝜅(𝑧, 𝑧′) =
∞∑︁
𝑟=1

𝜓𝑟 (𝑧)𝜓𝑟 (𝑧′)
𝑁𝑛𝑘𝑟 ℎ

. (2.49)

Letting 𝑢(𝑧) satisfy[𝜋
2
𝑧 − 𝐾−1(1 − i/𝛬̃(𝑧))

]
𝑢(𝑧) + (K𝑢) (𝑧) = 𝜓0(𝑧), 𝑎 < 𝑧 < 𝑏 (2.50)

implies that 𝑈 (𝑧) = −(1 + 𝑅)𝑢(𝑧) satisfies (2.47). Substituting this relation into (2.46)
gives

i𝑘ℎ𝑁0(1 − 𝑅) = −(1 + 𝑅)A, where A =

∫ 𝑏

𝑎

𝑢(𝑧)𝜓0(𝑧) d𝑧. (2.51)

In other words, the reflection coefficient may be determined by

𝑅 = −A + i𝑘ℎ𝑁0
A − i𝑘ℎ𝑁0

. (2.52)

We remark that when 𝛬̃(𝑧) → ∞, equivalent to switching off the power take-off, the integral167
equation (2.50) becomes real and so the solution 𝑢(𝑧) and, hence A, is real. Then |𝑅 | = 1168
implying no energy is absorbed by the device, as must be the case. The limit 𝛬̃(𝑧) → 0 is169
equivalent to replacing the power take off with a rigid lid with no compression, the integral170
equation furnishes 𝑈 (𝑧) = 0 and |𝑅 | = 1. If just 𝜆̃1 = 0 but 𝜆̃2 ≠ 0 then the air turbine171
is shut off but the air compressibility allows a non-zero flow in the duct. In this case the172
integral equation is real once again and so |𝑅 | = 1.173

3. Efficiency174

Under the inviscid assumption, the mean power, 𝑊 , absorbed at the OWC is calculated in
two different ways. In the first method we equate𝑊 to the flux of energy crossing a vertical
boundary far from the device. That is

𝑊 = lim
𝑋→−∞

𝜔

2𝜋

∫ 2𝜋/𝜔

0

∫ ℎ

0
𝛷𝑥 (𝑋, 𝑧, 𝑡) (𝑃(𝑋, 𝑧, 𝑡) − 𝑃𝑎) d𝑧 d𝑡. (3.1)
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In frequency-domain variables

𝑊 = lim
𝑋→−∞

1
2
ℜ

{
− i𝜌𝑔2 |𝐴|2

𝜔

∫ ℎ

0
𝜙𝑥 (𝑋, 𝑧)𝜙(𝑋, 𝑧) d𝑧

}
= 𝑊𝑖𝑛𝑐 (1 − |𝑅 |2) (3.2)

after use of (2.14), where the overbar denotes complex conjugate and

𝑊𝑖𝑛𝑐 =
1
2
𝜌𝑔 |𝐴|2𝑐𝑔 (3.3)

is the incident wave energy in terms of the group velocity defined by

𝑐𝑔 =
𝑑𝜔

𝑑𝑘
=
𝑔

𝜔
𝑘ℎ𝑁0 (3.4)

where𝑁0 is defined by (2.44). We are interested in the efficiency of power capture𝐸 ∈ [0, 1]
defined by 𝐸 = 𝐸 𝑓 𝑓 where

𝐸 𝑓 𝑓 =
𝑊

𝑊𝑖𝑛𝑐

= 1 − |𝑅 |2 (3.5)

(the subscript 𝑓 𝑓 is used to indicate this is a calculation made in the far-field). A second
method of calculating mean power comes from measuring the mean rate of working of the
flux against the pressure across the turbines. According to this definition in terms of the 𝑁
discrete channels

𝑊 =
𝜔

2𝜋

∫ 2𝜋/𝜔

0

𝑁∑︁
𝑗=1

∫ 𝑟 𝑗

𝑟 𝑗−1

𝜁𝑡 (𝑥, 𝑡) (𝑃(𝑥, 0, 𝑡) − 𝑃𝑎) d𝑥 d𝑡. (3.6)

Invoking homogenisation replaces discrete variables by continuous variables so that

𝑊 =
1
2
𝜌𝑔2 |𝐴|2
𝜔

ℑ
{
−

∫ 𝑏

𝑎

𝜙𝑧 (𝑥, 0)𝜙(𝑥, 0) d𝑥
}
. (3.7)

Using (3.4), (3.5) gives the efficiency as 𝐸 = 𝐸𝑛 𝑓 (𝑛 𝑓 indicates this is a near-field
calculation) where

𝐸𝑛 𝑓 =
1

𝑘ℎ𝑁0
ℑ

{∫ 𝑏

𝑎

1
𝑟

𝜕𝜙

𝜕𝜃
(𝑟, 𝜋/2)𝜙(𝑟, 𝜋/2) d𝑟

}
. (3.8)

Inserting the definition (2.39) gives

𝐸𝑛 𝑓 =
1

𝑘ℎ𝑁0
ℑ

{∫ 𝑏

𝑎

i
𝐾𝛬̃(𝑟)

|𝑈 (𝑟) |2 d𝑟
}
=

|1 + 𝑅 |2
𝐾𝑘ℎ𝑁0

ℑ
{
i
∫ 𝑏

𝑎

|𝑢(𝑧) |2

𝛬̃(𝑧)
d𝑧

}
(3.9)

after using the relation𝑈 (𝑟) = −(1+ 𝑅)𝑢(𝑧). This simplifies in the case that 𝛬̃ is constant.175
We see that 𝜆̃1 controls the power take off and the efficiency tends to zero when 𝜆̃1 → ∞.176
Note that if 𝜆̃2 = 0 then 𝐸𝑛 𝑓 → 0 as 𝜆̃1 → 0 since 𝑢(𝑧) → 0 also in this case.177

4. Numerical approximation178

In order to solve the integral equation (2.50) we use a Galerkin method in which the
solution is approximated by the (2𝑀 + 1)-term expansion

𝑢(𝑧) ≈
𝑀∑︁

𝑚=−𝑀
𝑐𝑚𝑢𝑚(𝑧) (4.1)
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where 𝑐𝑚 are coefficients to be determined and

𝑢𝑚(𝑧) = ei𝑚𝜋 (2𝑧−𝑏−𝑎)/(𝑏−𝑎) (4.2)

are the complex Fourier series basis for the interval 𝑧 ∈ (𝑎, 𝑏) satisfying∫ 𝑏

𝑎

𝑢𝑚(𝑧)𝑢𝑞 (𝑧) d𝑧 = (𝑏 − 𝑎)𝛿𝑞𝑚. (4.3)

Galerkin’s method applied to solutions of integral equations involves substituting (4.3) into
(2.50) before multiplying by 𝑢𝑞 (𝑧) for 𝑞 = −𝑀, . . . , 𝑀 and integrating over 𝑎 < 𝑧 < 𝑏.
This results in the linear system of equations

𝑀∑︁
𝑚=−𝑀

𝑐𝑚K𝑞𝑚 = 𝐹𝑞0, 𝑞 = −𝑀, . . . , 𝑀 (4.4)

defining 𝑐𝑚 where

K𝑞𝑚 =
𝜋

2
𝑇𝑞𝑚 − 𝐾−1(𝑏 − 𝑎)𝛿𝑞𝑚 + i𝐾−1𝑆𝑞𝑚 +

∞∑︁
𝑟=1

𝐹𝑚𝑟𝐹𝑞𝑟

𝑁𝑟 𝑘𝑟 ℎ
(4.5)

and we have written

𝐹𝑚𝑟 =

∫ 𝑏

𝑎

𝑢𝑚(𝑧)𝜓𝑟 (𝑧) d𝑧 (4.6)

with

𝑆𝑞𝑚 =

∫ 𝑏

𝑎

𝑢𝑚(𝑧)𝑢𝑞 (𝑧)
𝛬̃(𝑧)

d𝑧 and 𝑇𝑞𝑚 =

∫ 𝑏

𝑎

𝑧𝑢𝑚(𝑧)𝑢𝑞 (𝑧) d𝑧. (4.7)

Explicit expressions for 𝐹𝑚𝑟 and 𝑇𝑞𝑚 are given in Appendix A. In the simplest case that 𝛬̃179

is constant, 𝑆𝑞𝑚 = (𝑏 − 𝑎)𝛿𝑞𝑚/𝛬̃.180
We now use (4.1) in (2.51) to get

A ≈
𝑀∑︁

𝑚=−𝑀
𝑐𝑚𝐹𝑚0 (4.8)

allowing us to approximate 𝐸 𝑓 𝑓 from (3.5) once 𝑅 is calculated using (2.52).181
The alternative calculation of efficiency uses (4.1) in (3.9) to get

𝐸𝑛 𝑓 ≈
4𝑘ℎ𝑁0

𝐾 |A − i𝑘ℎ𝑁0 |2
ℑ

{
i

𝑀∑︁
𝑛=−𝑀

𝑀∑︁
𝑚=−𝑀

𝑐𝑛𝑐𝑚𝑆𝑚𝑛

}
. (4.9)

In the case that 𝜆̃1 and 𝜆̃2 are both constant we have, on account of (4.3),

𝐸𝑛 𝑓 ≈
4𝑘ℎ𝑁0(𝑏 − 𝑎)3/2

𝐾1/2 |A − i𝑘ℎ𝑁0 |2
· 𝜆̃1

𝜆̃2
1 + 𝐾 (𝑏 − 𝑎)𝜆̃2

2

𝑀∑︁
𝑛=−𝑀

|𝑐𝑛 |2. (4.10)

In the work of Parry-Barnard (2025) (not repeated here as it is too much of a diversion182
from our main goal) it is shown that approximations, made by implementing Galerkin’s183
method, to the solution of the integral equations imply the equivalence of 𝐸𝑛 𝑓 and 𝐸 𝑓 𝑓184
described previously. Numerical computations bear this out with only small differences185
due to rounding errors between computed values of 𝐸𝑛 𝑓 and 𝐸 𝑓 𝑓 . This is true for any186
parameters used including the truncation parameter, 𝑀 . Thus, the two methods are useful187
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for validating the numerical method, but cannot be used as a means of assessing the188
accuracy of the numerical results.189

5. Viscous losses in the duct190

Since the OWC design supposes a cascade of annular baffles separate the curved duct
into narrow channels within which the fluid is subjected to resonant excitation, one
might therefore be concerned about the role natural dissipative effects have on the device
efficiency. Thus, we consider here a simple extension to the previous formulation of the
problem which includes the damping due to viscous wall effects. In a full-scale design
we reasonably envisage channels within the duct to be large enough that the plug-flow
assumption holds across the bulk of each channel (𝛥 ≫

√︁
𝜈/2𝜔 where 𝜈 is the kinematic

viscosity). Then the wall stress, per unit length, due to boundary-layer shear associated with
the no-slip condition on the walls of the channel is easily calculated (from the solution to
the well-known Stokes problem since wall curvature is negligble under the boundary-layer
scaling) to be

𝜎𝑅𝜃 |𝑅=0,1 = −i
√︂
𝜈

𝜔
e−i𝜋/4𝑈 (𝑟) (5.1)

(noting that we have applied the appropriate variable scalings stated in §2 to the stress and
to 𝑈). Therefore, its integrated effect along the length of each channel, from both walls,
can be written

−i𝜋𝑟
√︂
𝜈

𝜔
e−i𝜋/4𝑈 (𝑟) = 𝛥𝑝𝑣𝑖𝑠 (𝑟) (5.2)

which has been related to the jump in pressure needed to overcome viscous damping (𝛥 is
the channel width). This pressure drop needs to be added to the solution in the duct and
means that continuity of pressure across 𝑥 = 0 is no longer equivalent to matching 𝜙 from
both sides resulting in (2.47), but requires matching 𝜙 from 𝑥 < 0 with 𝜙− 𝑝𝑣𝑖𝑠 from 𝑥 > 0.
Thus, instead of (2.47) we have[

𝜋

2
𝑧 + 𝜋𝑧𝛤̃ei𝜋/4

(𝐾 (𝑏 − 𝑎))1/4 − (1 − i/𝛬̃(𝑧))
𝐾

]
𝑈 (𝑧) + (K𝑈) (𝑧) = −(1 + 𝑅)𝜓0(𝑧), (5.3)

for 𝑎 < 𝑧 < 𝑏 where we have written

𝛤̃ =
𝜈1/2𝑁

(𝑏 − 𝑎)3/4𝑔1/4 , (5.4)

a dimensionless constant, independent of frequency, which determines the effect of the191
viscosity on the OWC design. As expected, 𝛤̃ increases linearly with the number of192
channels, 𝑁 .193

The impact of the modification (5.3) to (2.47) is easy to follow and eventually the first
term (𝜋/2)𝑇𝑞𝑚 in (4.5) needs to be replaced by

𝜋

2

(
1 + 2𝛤̃ei𝜋/4

(𝐾 (𝑏 − 𝑎))1/4

)
𝑇𝑞𝑚 (5.5)

in the numerical method.194
The two calculations of efficiency made under inviscid assumptions are now no longer195

equal and 𝐸𝑛 𝑓 is used to calculate the efficiency of power conversion by the device. The196
larger value of 𝐸 𝑓 𝑓 includes losses due to viscous damping. The work of Parry-Barnard197
(2025) shows how the two formally equate via the integral equation (5.3) by calculating198

0 X0-12



Journal of Fluid Mechanics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

λ
1
=25

λ
1
=5

λ
1
=1

λ
1
=0.2

(a)

𝐸

𝐾ℎ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6

λ
1
=25

λ
1
=5

λ
1
=1

λ
1
=0.2

(b)

𝐸

𝐾ℎ

Figure 2. Variation of efficiency with 𝐾ℎ for two designs: (a) with 𝑎/ℎ = 0.1, 𝑏/ℎ = 0.4; and (b) 𝑎/ℎ = 0.2,
𝑏/ℎ = 0.8. In both cases 𝜆̃2 = 0 and 𝜆̃1 is varied.

the rate of viscous dissipation due to the boundary layers in the channels but the lengthy199
details are omitted from this paper. The two different calculations of 𝐸 are useful since200
𝐸 𝑓 𝑓 − 𝐸𝑛 𝑓 indicates the percentage of incident wave power lost to viscous wall effects.201

6. Results202

6.1. Resonance203

The condition for resonance in a narrow curved channel of length 𝑙, intersecting the free
surface at right angles, is easily shown to be approximated by

𝜔2𝑙/𝑔 = 1. (6.1)

This is because the mass (per unit length) of fluid in the channel of width 𝛥 is 𝜌𝛥𝑙 and the204
hydrostatic restoring force due to an internal free surface elevation 𝜁 is −𝜌𝑔𝛥𝜁 . Balancing205
these two terms under time-harmonic motion of angular frequency 𝜔 results in (6.1). This206
argument ignores wave radiation and local flow conditions at the submerged opening and a207
more refined calculation for narrow vertical ducts in two and three dimensions is presented208
in Evans (1978).209

The lengths of the channels in the configuration shown in Fig. 1 range from 𝑎𝜋/2 to
𝑏𝜋/2 and so the spectrum of resonance of the array of channels in the duct is given by

2ℎ
𝜋𝑏

< 𝐾ℎ <
2ℎ
𝜋𝑎
. (6.2)

In many of the examples below we set 𝑎/ℎ = 0.1 and 𝑏/ℎ = 0.4 and then (6.2) gives210
1.6 < 𝐾ℎ < 6.36. This device is designed to be resonant for incident wavelengths between211
roughly one and four times the water depth.212

In Fig. 2(a) we show the computed efficiency 𝐸 (either 𝐸 𝑓 𝑓 or 𝐸𝑛 𝑓 ) for this device design213

over the extended range 0 < 𝐾ℎ < 8 for a particular choice of 𝜆̃1 = 5 and setting 𝜆̃2 = 0.214
Alongside in Fig. 2(b), we show computed efficiency for different design parameters,215
𝑎/ℎ = 0.2 and 𝑏/ℎ = 0.8, where the predicated range of resonance is 0.8 < 𝐾ℎ < 3.18.216
Since 𝑏/𝑎 are the same in both cases, Figs. 2(a) and (b) highlight the effect of fluid depth.217
The plots indicate that high efficiency is sustained across most of the range of resonance,218
only tailing off towards the ends.219
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𝑀 𝐸 (𝐾ℎ = 1) 𝐸 (𝐾ℎ = 2)
1 0.3254 0.9821
2 0.3292 0.9533
4 0.3319 0.9588
8 0.3335 0.9577

16 0.3343 0.9575
32 0.3348 0.9574
64 0.3350 0.9573

Table 1. Computed values of efficiency, 𝐸 = 𝐸 𝑓 𝑓 = 𝐸𝑛 𝑓 , for increasing truncation parameter, 𝑀 , for 𝐾ℎ = 1
and 𝐾ℎ = 2 with 𝑎/ℎ = 0.1, 𝑏/ℎ = 0.4, 𝜆̃1 = 5 and 𝜆̃2 = 0.
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Figure 3. Plots of the modulus of 𝜂(𝑥) against 𝑥/ℎ ∈ (0.1, 0.4) for 𝑎/ℎ = 0.1, 𝑏/ℎ = 0.4, 𝜆̃1 = 5, 𝜆̃2 = 0 for
three different values of 𝐾ℎ. Plots (a) and (b) are for 𝑀 = 16 and 𝑀 = 32.

6.2. Convergence of the numerical method220

There are two parameters which control the accuracy of the numerical solutions. The first221
is the number of terms included in the infinite series defining K𝑞𝑚 in (4.5). For this, it222
has been found that 100 terms is sufficient for the numerical accuracy required to compute223
the efficiency to three decimal places. The second is the value of 𝑀 which controls the224
number of terms taken in the expansion of the approximate solution in (4.1). In Tab. 1 we225
present a convergence example for a typical set of results in the middle of the resonant226
range of frequencies. We are reminded that the two values of 𝐸 = 𝐸 𝑓 𝑓 and 𝐸 = 𝐸𝑛 𝑓 are227
numerically identical (apart from small rounding errors) and cannot be used to indicate228
accuracy of the method.229

In Fig. 3(a,b) we show the computed value of |𝜂 |, the modulus of the internal free surface230
amplitude non-dimensionalised by the incident wave height, as a function of 𝑧 ∈ (𝑎, 𝑏).231
For this, we use the relation |𝜂 | = |1+𝑅 | |𝑢(𝑧) |/𝐾 . Results are shown for truncation sizes of232
𝑀 = 16 and𝑀 = 32 for a fixed geometry and constant power control. The oscillations in the233
curves are explained by Gibbs phenomenon, but nevertheless demonstrate the convergence234
of approximations with increasing 𝑀 . In each figure curves represent different values of235
𝐾ℎ to show how resonance is excited in positions along the duct dependent on frequency.236
For the device parameters chosen, 𝐾ℎ = 1 is outside the resonant spectrum. Fig. 3(a,b)237
show that, for the parameters chosen, device resonance corresponds to less than a doubling238
of the standing wave amplitudes that would occur if waves were reflected by a wall without239
the device in place.240
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Figure 4. Variation of efficiency with 𝐾ℎ for 𝑎/ℎ = 0.1, 𝑏/ℎ = 0.4 In (a) 𝜆̃2 = 0.333 and in (b) 𝜆̃2 = 0.033; 𝜆̃1
is varied. The grey curves shadow the values computed in Fig. 2.

6.3. The role of compressibility of air241

The effect of compressibility in (4.9) is controlled by the size of the ratio of the imaginary
and real parts of 𝛬̃, or

(𝐾ℎ(𝑏/ℎ − 𝑎/ℎ))1/2(𝜌𝑔𝐻/𝜌𝑎𝑐2
𝑎)/𝜆̃1 ≈ 0.07𝐻

√︁
𝐾ℎ(𝑏/ℎ − 𝑎/ℎ)/𝜆̃1 (6.3)

(in SI units). For a full-scale installation we imagine𝐻 to be roughly 4−5m and (𝑏/ℎ−𝑎/ℎ)242
to be roughly 0.3 − 0.5 whilst it seems reasonable to assume that 𝐾ℎ ≲ 6 is a range of243
practical interest (implying wavelengths no shorter than the water is deep). Then the244
maximum size of (6.3) is roughly 0.5/𝜆̃1. So compressibility can become a significant245
factor if 𝜆̃1 is roughly one or less and for larger values of 𝐾ℎ. In terms of producing the246
optimal power output, it has been found that we should choose 𝜆̃1 ≈ 5, not only for results247
shown in Fig. 2 but also for other configurations tested. Then the size of the term in (6.3)248
never exceeds 0.1 and we expect the effect of drag on the efficiency to be proportionately249
small. These observations are bourne out in the results shown in Fig. 4(a).250

In experiments one might imagine 𝐻 = 0.4 − 0.5m and then the size of the term in251
(6.3) is an order of magnitude smaller than in the full-scale setting meaning its effect is252
negligible as shown in Fig. 4(b).253

6.4. The role of viscosity254

The size of 𝛤̃ defined by (5.4) in a full-scale installation is estimated to be of the order255
of 10−3 based, say, on 6 channels within a duct of the size 𝑏 − 𝑎 = 3m. This is much256
smaller than the other 𝑂 (1) terms in (5.4). Even with many more channels, the influence257
of viscosity at full scale is going to be negligible. In experiments, we might imagine258
𝑏 − 𝑎 = 0.3m in which case 𝛤̃ is more like 10−2 and likely to still have only a small effect259
on results. Sample results are shown in Fig. 5(a).260

6.5. Non-constant control parameters261

We consider the effect of introducing spatial control of the damping by letting 𝜆̃1(𝑧) =262
𝛼e−𝛽𝑧 where 𝛼 > 0 and 𝛽 ≠ 0 are constants. For 𝛽 > 0 the damping is weaker for the263
longer channels and vice versa whilst 𝛽 = 0 corresponds to constant damping considered264
previously. Setting 𝜆̃2 = 0 allows us to explicitly calculate the terms required in the265
numerical scheme (see Appendix A). Fig. 5(b) shows the results of fixing 𝛼 = 5 and266
varying 𝛽 = 𝛽/(𝑏 − 𝑎) between −2 and 2. Other combinations of 𝛼 and 𝛽 have been267
considered but, as shown in Fig. 5(b), it seems that spatial control of damping does not268
result in significant improvements in the efficiency.269
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Figure 5. Variation of device efficiency with 𝐾ℎ for 𝑎/ℎ = 0.1, 𝑏/ℎ = 0.4. In (a) 𝜆̃1 = 5, 𝜆̃2 = 0 and different
values of 𝛤̃; in (b) spatially-varying power control: 𝛼 = 5 and different values of 𝛽.

6.6. Comparison with a simple single chamber OWC270

In Fig. 6 we have plotted a comparison of the performance, in terms of efficiency, of the271
current multi-channel (or multi-chamber) OWC design against the single-chamber OWC272
design of Evans & Porter (1995) for two cases. In the first case, the multi-chamber OWC273
parameters are 𝑎 = 0.25ℎ and 𝑏 = 0.75ℎ and this is compared to the Evans & Porter274
(1995) results with a barrier submergence of 0.25ℎ and chamber width 0.75ℎ. In the275
second example, we have chosen 𝑎 = 0.1ℎ, 𝑏 = 0.99ℎ and results are compared to Evans276
& Porter (1995) with a barrier submergence of 0.1ℎ and chamber width ℎ. In each case,277
air compressibility and viscous effects have been neglected and the value of the damping278
parameters for each curve produced have been chosen to ‘optimise’ the efficiency profile.279
Thus, we can see that the multi-chamber OWC design does no better than a single chamber280
design if immersion of the duct opening is too large. For a smaller immersion of the duct281
opening, the multi-chamber OWC outperforms the single chamber OWC by a significant282
degree.283

7. Conclusions284

We have considered a two-dimensional model of an novel OWC concept which has been285
designed to exploit resonance over a broad range of frequencies. A simple mathemat-286
ical model has been formulated by approximating the complexity of the multi-channel287
duct using homogenisation. The general conclusion drawn from the various numerical288
experiments considered here is that the optimal configuration of an OWC, resulting in289
a high bandwidth, can be achieved by applying constant power control across the array290
of channels. It has been found that the effects of compressibility and viscosity may be291
neglected when applied to a full-scale installation, although these effects might influence292
test-scale experiments.293

From an engineering perspective a multi-chamber design is more complicated than a294
single chamber OWC. However, the technology already exists for smaller Wells turbine295
(the Mutriku plant uses generators rated at 19kW) than were used for the larger installations296
at the LIMPET and PICO pilot plants. The nature of the ocean energy density spectrum297
means that loads will be distributed across multiple generators in the array. As the device298
is designed to be fixed, tidal variation is an issue although the broadbanded response of299
the device allows it function across a range of conditions. Moreover, the multi-channel300
design allows for a system of louvres which shut different channels on and off to optimise301
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Figure 6. Comparision of efficiency with 𝐾ℎ for the current multi-chamber design and the single chamber
OWC of Evans & Porter (1995) in the cases that the front wall immersion is: (a) 0.25ℎ; and (b) 0.1ℎ.

performance in different sea conditions as well as being used for a complete shutdown of302
the device in storms.303

Extensions to the current work might involve solving the problem of distinct channels304
within the duct exactly, without homogenisation. This might require the use of boundary305
element methods even for the two-dimensional problem because semi-analytic methods306
are not easy to apply to such geometries. It is possible to consider a three-dimensional307
version of this problem for a segmented OWC of finite width in an infintely-long wall using308
a combination of the methods described here and Fourier transforms. One would need to309
make a convincing case for adding extra complexity.310
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Appendix A316
Below are the explicit definitions of the terms required in the numerical scheme. We define 𝑐 = 1

2 (𝑎 + 𝑏) and
𝑑 = 1

2 (𝑏 − 𝑎). In the case that 𝑟 ≠ 0 we have

𝐹𝑚𝑟 =
2𝑑 (−1)𝑚 sin 𝑘𝑟 𝑑

((𝑘𝑟 𝑑)2 − (𝑚𝜋)2) cos 𝑘𝑟 ℎ
[𝑘𝑟 𝑑 cos 𝑘𝑟 (ℎ − 𝑐) + i𝑚𝜋 sin 𝑘𝑟 (ℎ − 𝑐)] (A 1)

and when 𝑟 = 0 this is

𝐹𝑚0 =
2𝑑 (−1)𝑚 sinh 𝑘𝑑

((𝑘𝑑)2 + (𝑚𝜋)2) cosh 𝑘ℎ
[𝑘𝑑 cosh 𝑘 (ℎ − 𝑐) + i𝑚𝜋 sinh 𝑘 (ℎ − 𝑐)] . (A 2)

Next we find that

𝑇𝑞𝑞 = 2𝑐𝑑, and 𝑇𝑞𝑚 =
2𝑑i(−1)𝑞+𝑚
(𝑞 − 𝑚)𝜋 , (𝑞 ≠ 𝑚). (A 3)

When 𝜆̃1 (𝑧) = 𝛼e−𝛽𝑧 , 𝜆̃2 = 0 we have

𝑆𝑞𝑚 =
2𝑑e𝛽𝑐

𝛼
(−1)𝑚+𝑞 sinh 𝛽𝑑

i𝜋(𝑚 − 𝑞) + 𝛽𝑑 . (A 4)
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