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This paper considers the theoretical operation of a novel wall-mounted oscillating water
column wave energy device designed to be resonant over a broad range of frequencies.
A curved duct with a submerged opening in a vertical wall is partitioned into a number
of separate narrow channels of uniform width using thin annular baffles. Each channel
connects the submerged opening to its own internal free surface whose rise and fall drives
the air enclosed above through a Wells-type turbine through which energy is harvested.
The different channel lengths within the duct encourages, when subjected to forcing from
incident waves, resonance across a range of frequencies. The two-dimensional problem
described in this work is analysed using classical linearised water wave theory and the
geometric complexity of the partitioned duct is simplified by homogenisation. This allows
the solution to the water wave problem to be reduced to a scalar integral equation whose
solution is approximated using a standard numerical method. It is shown that it is possible,
even with the most basic choice of turbine power take-off strategies, to achieve efficiencies
close to 100% across much of the range of frequencies defined by the resonance associated
with the longest and shortest channels of the device. Viscous damping within the channels
is shown to have a negligible effect for practical configurations.

Key words: Surface gravity waves, Wave-structure interactions, Coastal engineering

1. Introduction

The Oscillating Water Column (OWC) concept (see Heath (2012), Falcio & Henriques
(2016), for example) is, to date, arguably the most commercially successful device for
converting ocean wave energy into electricity. Originally devised by Yoshio Masuda in the
1940s as a means of powering floating navigation buoys (see Masuda (1985)), a number of
modestly-sized plants have been installed in a variety of settings and operated with some
success, supplying energy to national electrical grids. For a recent review, see Gayathri et

al. (2024).
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OWCs operate by isolating an internal air chamber from the open ocean via a surface-
piercing lip with an opening below the water line. The rise and fall of incoming waves
forces the enclosed air above the internal free surface back and forth through an air turbine
whose role is to generate electrical energy. A self-rectifying turbine, such as a Wells turbine
(described in Falcao & Henriques (2016)), is typically used; it is designed to spin in the
same direction regardless of the direction of the air flow. The success of the OWC lies in
its simplicity: the only moving part is the air turbine, located above the water line. Being
typically mounted at the shoreline mitigates the expense and difficulty of mooring, power
transmission and maintenance operations associated with offshore wave energy devices. On
the other hand, shore-mounted OWCs such as Kvaerner in Norway (see Falnes (1993)), the
pilot plants of PICO in the Azores (see Falcao et al. (2020)) and LIMPET on the Scottish
Island of Islay (see Boake et al. (2002)) are considered difficult to build with site-specific
constraints and a significant environmental impact. Additionally, the nearshore wave energy
resource is not as high as far offshore whilst being more vulnerable to violent wave breaking
events. Projects in Japan, India, China, Italy and Spain have involved installing OWC units
into sea walls to serve a dual purpose of coastal/harbour protection and energy generation.
To date, the largest and most successful of these is the Mutriku Wave Power Plant on the
northern coast of Spain. It comprises 16 OWCs set side-by-side in a harbour wall, rated
at 296kW, and in operation since 2011. It has since supplied over 3GWh to the grid (see
Lopez-Mendia et al. (2025)).

It was the during the initial surge in interest in wave energy in the response to the oil crisis
of 1973 that the theoretical basis for the operation of wave energy converters, including
OWCs, was established (for an overview see Evans (1981)). Early, but instructive, work
on the OWC concept by Evans (1978) applied rigid-body theory to a simple OWC model.
By modelling the internal free surface as a weightless piston, it was demonstrated that
the resonant motion of the fluid within the internal chamber can be excited at certain
incident wave frequencies dependent on the depth of submergence of the duct. Shortly
afterwards, Falcao & Sarmento (1980) correctly accounted for the internal free surface
using a theory based on oscillating pressure variations within the air chamber of the
OWC device. This led to the general theoretical framework for multiple interacting OWCs
described by Evans (1982). Some years later Evans & Porter (1995), revisiting a problem
initially considered by Smith (1983), showed how a simple two-dimensional model of
a shore-mounted OWC could extract 100% of the incoming wave energy at an isolated
resonant frequency dependent on the size and shape of the submerged rectangular chamber.
In Evans & Porter (1995) only curves showing the maximum theoretical efficiency were
shown whilst the effect of air compressibility was overlooked. Porter (2025) has produced a
recent update of that paper addressing both these issues, showing that 100% efficiency can
still be achieved at a specific frequency associated with resonance and for a carefully-tuned
power control. Results highlight the effect that both non-optimally tuned power take-off
and air compressibility have on efficiency showing how efficiency can fall well below the
theoretical maximum presented in the work of Evans & Porter (1995).

The modelling of OWCs has advanced over the last 30 years and many theoretical studies
have been made of more complex OWC geometries in more realistic three-dimensional
settings including arrays of devices. See, for example, Martin-Rivas & Mei (2009), Zheng
et al. (2019) and references therein. In this paper we return to the simpler two-dimensional
setting in order to assess how a shift in fundamental OWC design affects its performance.
A submerged opening is connected to an internal free surface via an annular duct which is
divided into N (we suppose many) separate narrow annular channels with thin, rigid, curved
baffles. The air enclosed above each narrow channel is connected to the atmosphere via its
own Wells turbine. The idea of the design is to broaden the device response. Since there
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are N channels of different lengths, the proposed device possesses resonances at N closely-
spaced frequencies, the largest/smallest of which are associated with the shortest/longest
channels within the array.

The idea of engineering multiple resonant frequencies within a single device is not new.
For example, the Belfast OWC concept of the 1970s (see Whittaker ez al. (1985)) had two
chambers tuned to two different frequencies housed within a circular device. The Kvaerner
device described by Falnes (1993) was unique in that it was built into a natural harbour to
couple harbour resonance with device resonance. Closely related to the current proposal,
Wilks et al. (2022) considered a theoretical two-dimensional concept comprised of multiple
vertical channels of gradually increasing submerged depth separated by thin vertical baffles.
The oscillations of the fluid powered rigid pistons placed on the surface of each channel
and it was shown that efficiency close to 100% across a broad range of frequencies could be
achieved. The design of Wilks et al. (2022) was guided as much by the principle of graded
arrays and so-called rainbow reflection (the slowing of effective wave speed) as it was by
multiple resonance. Very recently, Hu et al. (2025) have considered the modification of the
Wilks et al. (2022) where rigid pistons are replaced by OWC chambers. In their work, 5
vertical channels of increasing immersed depth are considered using computational fluid
dynamics simulations which include turbulent effects and air compressibility, whilst the
incoming waves propagate from a model energy density spectrum. Despite turbulent losses
caused by flow separation around the sharp edges of the thin vertical barriers, the authors
report a broadband efficiency of more than 50% over the range of resonant frequencies.

The OWC device described in this paper is really a closely-packed system of N coupled
OWC devices, and so formally the general theory of Evans (1982) applies. However, a
different approach is taken here, one which has proved successful in other application
areas. The geometric complexity of the baffle-partitioned duct is replaced with an effective
medium using asymptotic homogenisation. This process is described in Section 2 of the
paper in the midst of the formulation of the problem and its solution. It formally applies
for N > 1, but in other problems has been shown to provide a good approximation
to the geometrically exact solution, provided the length to width ratio of the channels
is sufficiently large (roughly a factor of 10). See, for example, Liang et al. (2024) who
considered plane wave scattering parallel arrays of thin closely-spaced plates. In Section
2 it is shown how this simplification allows the problem to be reduced to a single scalar
integral equation solution. This is approximated numerically, in Section 4 of the paper,
using Galerkin’s method. Two expressions for the efficiency of power capture are derived
in Section 3, one based on power capture at the device and one based on a far-field energy
flux calculation. These lead to independent numerical methods for computing the device
efficiency which is useful for validating the implementation of the numerical method. In
Section 5 we describe the simple changes needed to incorporate the damping effect of
viscous boundary layers due the oscillating fluid flow in the multiple narrow channels
of the duct. The results are presented in Section 6 where we consider the effects of air
compressibility and viscous damping. A summary of the paper with an outlook on the
prospects for the design is given in Section 7.

2. Problem specification and solution

Two-dimensional Cartesian coordinates, (x, z), are used, z = 0 corresponding to the rest
position of the fluid surface and z directed vertically downwards. In x < O the fluid depth
is taken to be a constant, 4. At x = 0 a vertical wall extends upwards fromz = htoz = b
and from z = a through the surface. The gap in the wall a < z < b connects the fluid in
x < 0to an internal fluid surface in a < x < b via a curved annular duct in x > 0. Its inner
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Figure 1. Definition sketch of the OWC device with N curved fluid filled channels with internal free surfaces
above which air is pumped from an enclosed chamber through air turbines, indicated by bow ties.

and outer walls are described in polars coordinates, (r, 8) with x = rsin, z = r cos 0, by
r=aandr = b for 0 < 0 < n/2. The duct is divided into N curved channels of uniform
width by N — 1 thin internal curved baffles along r = r;, 1 < j < N-10<6 < n/2
where r; = a + jdfor0 < j < N.Thus 4 = (b — a)/N is the uniform width of each fluid
channel and we suppose that N is large enough that 4/a is suitably small. This quantity
defines the largest aspect ratio of width to length within the array of N fluid channels and
its smallness is needed for the method of solution we propose.

It is supposed that above the internal free surface of each of the N partitioned channels
lies an air chamber, which is isolated from the other N channels and connected to the
external atmosphere by a duct containing its own self-rectifying Wells air turbine. Thus,
when the fluid is set into motion, the rise and fall of the internal fluid surface within each
channel drives the air back and forth through the turbine.

The water is assumed to be incompressible, inviscid (although viscous effects are
considered later in the paper) and has density p; its motion is assumed to be of small
amplitude and irrotational. This allows us describe the fluid velocity as the gradient of a
velocity potential @(x, z, t) which we express as

®(x,z,1) = R{-(igA/w)¢(x, 2)e "} (2.1)

where A € C is the incident wave amplitude (encoding a modulus and phase) and g is
acceleration due to gravity. We have anticipated the linearity of the governing equations
that follow implying that a monochromatic incident wave of angular frequency w drives
a response of the same frequency thereby allowing us to remove a time-harmonic factor
from the motion; ¢(x, z) is consequently a complex-valued velocity potential satisfying

Vi =0 (2.2)

everywhere in the fluid. The surface elevation (measured upwards from z = 0) is
represented by (x,1) = R{An(x)e '’} such that the linearised kinematic condition
can be written as

Kn(x) =-¢.(x,0), (K =0w"/g) (2.3)

on all free surfaces: both in x < 0, and in each of the channels across a < x < b. The
pressure is defined as P(x, z,1) = P, + R{Apgp(x,z)e '“’} where P, is the atmospheric
pressure. Use of the linearised Bernoulli equation

P(x,z,t) = Py — p®; + pgz (2.4)

(D (>3 Focus on Fluids articles must not exceed this page length
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on the free surface z = —{(x, 1), gives

¢(~x70) - U(x) = Oa x<0 (25)
and on each internal free surface r;_1 < x <r; (j =1,...,N) we have
pj=¢x,0)—n(x) (2.6)

where p = p; represents the oscillating air pressure in the chamber above the jth channel.
Combining (2.3) with (2.4) and (2.5) results in

0, x<0

Kp;, ri-1 <x<rj. @27

¢2(x,0) + K¢(x,0) = {
The oscillating pressure drives a flow through the air turbine connected to the jth channel
which is assumed to obey a standard semi-empirical law (see Sarmento & Falcao (1985),
Martin-Rivas & Mei (2009)) relating pressure to the volume flux (per unit length) of fluid,
QO(1), across the mean free surface via

Q) =4(P-P,) +/12(31—1;. (2.8)
When applied in channel j (2.8) reduces to
qj=1A;p; (2.9)
where
a=- [ 60000 (2.10)

rj-1

represents the volume flux (per unit length) of fluid crossing z = 0. In (2.9)
Aj = pwldyj —ipwla ;. 2.11)

The law (2.8), applied to channel j, accounts for the compressibility of air (Sarmento &
Falcdo (1985), Martin-Rivas & Mei (2009)) with

Vi
Pa C%
where p,, is air density, V; is the volume of air (per unit length) in the jth chamber (with
respect to the rest position of the fluid) and ¢, is the speed of sound in air. The parameter
A1, can be written in terms of the control and design parameters of a Wells turbine, but
we imagine this is a free power control parameter.

No flow conditions apply on all fixed submerged boundaries in the flow and this is
expressed as

Ao = (2.12)

d¢/on =0, (2.13)

representing the vanishing of the normal derivative of ¢.
Finally, we need to impose a condition in the far field and write

#(x,2) = (€ + Re * )y (2), as x — —oo (2.14)
where R € C is the reflection coefficient and
Yo(z) = coshk(h —z)/coshkh (2.15)

is the depth dependence associated with propagating waves of wavenumber k, found from
separating variables: k is defined to be the positive real root of

K = ktanh kh. (2.16)
0 X0-5
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The standard method of solution for solving the problem of N independent oscillating
pressure distributions is to decompose the problem into N + 1 potentials: the scattering of
incident waves in the absence of pressure distributions plus N radiation potentials defined
by a prescribed isolated forcing in each of the N channels in the absence of incoming waves.
The individual solutions are then coupled via the turbine law connecting volume fluxes
and pressures in each of the N channels. The general theory can be found in Evans (1982).
However, each problem is complicated and the complete solution is expressed in terms of
N x N matrices. The advantage of this approach it that it does furnish an explicit condition
maximising efficiency, but only by supposing that there is complex-valued control coupling
each turbine to every other one, which is not practical.

We take a different approach, the first step of which combines the turbine law (2.9),
(2.10) with the surface condition (2.7) to eliminate p; resulting in

¢Z(x,0)+K¢(x,0):iA£/j $-(x,0)dx, riog <x<rj (2.17)
J Jrj

2.1. Homogenisation in x > 0

Next, we aim to simplify the complexity of the duct containing the baffles by approximating
the problem using homogenisation methods. The basis of this approximationis € = 4/ry <
1 (where r¢ = a) implying that the width of the channels is small compared to their length.
First we non-dimensionalise the governing Laplace equation (2.2) in the duct by writing
r = rof, ¢(r,0) = $(#, 0) so that we have

9* Lo 19

or2  FOF 72007
for j =1,...,N where #; = rj/ro, noting that the condition (2.13) applied to the channel
walls is expressed as

(#,0) =0, Fioi <PF<Ff;,0<0<in (2.18)

¢ P

yrs =0, F=7;,0<0< %ﬂ'. (2.19)
Next we make a multiple-scales approximation in which R = #/e where e = 7; —7;_1 < 1
is the dimensionless distance between adjacent baffles is defined as the fast (channel) scale

and we write
(7, 0) = ¢o(F, R,0) + €b1 (7, R, 0) + €22 (A, R,0) + .. .. (2.20)
Consequently (2.18) is to be written as
2
((% + é%) + % (% + é%) + flzaa_;z) (¢o(F, R, 0) + €d1 (AR, 0) +...) =0,
0<R<1,0<6<im (221)
whilst (2.19) becomes

0 10 a o N 1
(E + EG_R) (po(F, R,0) + €d1 (7, R, 0) +...) =0, R=0,1,0<06< 371 (222)
From (2.21), (2.22) the O(1/€?) problem for ¢y is defined by
8*do
o 0, 0<R<1 (2.23)

0 X0-6
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of R, the channel scale).
For the problem at O(1/¢€) (2.21), (2.22) give

d%¢ A ¢
99 o 0<R<1, with 2r__%0  RrR-o0.1 (2.24)
OR? OR or
and so
. 06
$17,R.0) = ~R°2 4+ 31 (7,0) (2.25)
r

where y is an arbitrary function. From (2.21) the governing equation at O (1) turns out to
be, after simplifying using (2.25),

¢y 0*¢y 1 0%y _

— + = =0, O<R<1 2.26
ORZ 972 72 962 (2.26)
and the associated boundary conditions are
R 98
092 _ g0 _Oxi R=0,1. (2.27)

R o/ oF’

Integrating (2.26) over 0 < R < 1 and using (2.27) results in the leading order governing
equation for ¢, namely

et

9% _y

062
This is what we might have expected as it implies that the leading order flow is parallel to
the channel walls (plug flow); (2.28) integrates to

bo(#,0) = B(rof)8 + C(rof) (2.29)

(2.28)

where B, C are arbitrary functions of the macroscale variable, . Meanwhile on the
boundary z = 0, equivalent to 8 = %ﬂ', the transformation applied to (2.17) gives

1)/~ KA ['16
k7012 (4] = -i%2

~— (go(F, im) +...) dR 2.30
7 00 A Jo f80(¢0(r’2ﬂ)+ ) (2.30)

and we write A; = K AA(ro?) since it does not depend on R. Consequently
i (r)
VK(b —a)
is a dimensionless parameter implying, from (2.11), (2.12), that
Aa(r) = pgH(r)[pac (2.32)
where H(r) measures the height the air chamber as a function of position. Additionally

pVg(b —a)

A

A(r) = — il (r) 2.31)

A(r) = A1(r), (2.33)

like A,(r), is frequency-independent and related to the geometry and mechanics of the
turbine: we regard this as a free parameter, dependent on position », which controls the
damping.

0 X0-7
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At leading order (2.30) is therefore

(1 - /i(;of)) %o, L) = Kropdo(7, Ln). (2.34)
Now ¢(r,0) = ¢(7,0) ~ ¢o(7, 6) to leading order. So from (2.29) we have
#(r,0) = B(r)6 + C(r), for0<@<jma<r<b (2.35)
where
(1-/@))%’ =Kr$, on@=ima<r<b. (2.36)

It is useful to define a function U(r) which represents the horizontal fluid velocity along
x = 0, the vertical opening of the duct, so that

1 6¢ =U(r), a<r<b. (2.37)
r 06 0=0

It follows that B(r) = rU(r) and then using (2.36) we have

(1 - ﬁ) U(r) = K (%ﬂrU(r) + C(r)) (2.38)
which defines C(r) and so, finally,
o(r,0) =rU(r)(0 - %71’) + K_l(l —i/A(r)U(r) (2.39)

represents the general solution in x > 0 in terms of a single unknown function, U(r).

2.2. Solution in x < 0 and matching

In x < 0 we can write the general solution, satisfying (2.2), (2.7) and (2.13) on z = h, using
separation of variables (see Linton & Mclver (2001)), as

. kpx b
¢(X,Z) — (elkx 1kx)w (Z) + Z lﬁl;v(zl){eh /u U(Z,)wn(zl) dz’ (2.40)

where, forn > 1,

WUn(z) = cosky,(h—z)/cosk,h (2.41)
and k, are the positive real roots of K = —k, tan k, h, ordered in increasing size. The
functions ¥, (z) are orthogonal, satisfying

1 h
Z / Ym(2D)W¥n(2) dz = NpSmn, m,n>0 (2.42)
0
which extends the definition of k,, to include n = 0 where ko = —ik and
1 sin 2k, h
N,==|[1+ z 2kph. 2.43
2 ( 2k ) e 243)
Note that in the case n = 0 this becomes
1 sinh2kh 2
No = 3 ( T )sech kh. (2.44)

0 X0-8
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In writing (2.40) we have also satisfied the condition

9|  _ | Uz, a<z<b,
ax:O—{O’ {0<z<alU{b<z<h} (2.45)
provided
b
ikhNo(1 - R) = / (2o (2) d. o6

All that remains is to match the pressure across x = 0, a < z < b (noting that r = z on
6 = 0) which, by (2.4), is proportional to ¢ and so from (2.39) and (2.40) we have

%ZU(Z) K (1-i/A(2)U(2) + (KU)(2) = =(1 + R)o(2),  a<z<b (247)

where
xu)@ = [ T U 2y (2.48)
is a real, positive, symmetric integral operaator with a kernel defined by
k(z.7) = Z w’x)‘]f’}(f ) (2.49)
Letting u(z) satisfy
%Z -K'(1- i/ﬂ(z))] u(z) + (Ku)(z) = ¥o(2), a<z<b (2.50)

implies that U(z) = —(1 + R)u(z) satisfies (2.47). Substituting this relation into (2.46)
gives

b
ikhNo(1 = R) = —(1 + R)A, where A = / u(z2)yo(z) dz. (2.51)
a
In other words, the reflection coefficient may be determined by
A +ikhNy
R=——1—. 2.52
A —ikhNy (2.52)

We remark that when A(z) — oo, equivalent to switching off the power take-off, the integral
equation (2.50) becomes real and so the solution u(z) and, hence A, is real. Then |R| = 1
implying no energy is absorbed by the device, as must be the case. The limit A(z) — 0 is
equivalent to replacing the power take off with a rigid lid with no compression, the integral
equation furnishes U(z) = 0 and |R| = 1. If just A; = 0 but 1, # O then the air turbine
is shut off but the air compressibility allows a non-zero flow in the duct. In this case the
integral equation is real once again and so |R| = 1.

3. Efficiency

Under the inviscid assumption, the mean power, W, absorbed at the OWC is calculated in
two different ways. In the first method we equate W to the flux of energy crossing a vertical
boundary far from the device. That is

w 2n/w
W= lim 7 / D, (X,z,1)(P(X,z,t) — Py)dzdr. (3.1)
0 0

0 X0-9
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In frequency-domain variables

. 2 2 h I
W= lim %%{-% / ¢x(X,z)¢(X,z)dz}=Winc(1—|R|2) (3.2)
0

X——00

after use of (2.14), where the overbar denotes complex conjugate and

|
Wine = 5pg|Al"c (33)
is the incident wave energy in terms of the group velocity defined by
do g
= — = 2khN 34
Cg dk w 0 ( )

where Ny is defined by (2.44). We are interested in the efficiency of power capture E € [0, 1]
defined by E = Ey where

W
Epp=p—=1-IR! (3.5)

(the subscript f f is used to indicate this is a calculation made in the far-field). A second
method of calculating mean power comes from measuring the mean rate of working of the
flux against the pressure across the turbines. According to this definition in terms of the N
discrete channels

2n/w N

Z/rj i(x, D) (P(x,0,1) = Pg) dx . (3.6)
j=177i-1

_w
Y

Invoking homogenisation replaces discrete variables by continuous variables so that

2
W-;pg 4] {/qﬁz(x 0, 0)dx} 3.7)

Using (3.4), (3.5) gives the efficiency as E = E,s (nf indicates this is a near-field
calculation) where

1 1(9
Eny = khNOS {/a ¢(r n/2)¢(r,m/2) dr} (3.8)

Inserting the definition (2.39) gives

1 b 11+ R|? { b lu(z)?
nf = gl —jumpPd)= / . d} 3,
Ens = 2hng { « KA(r )|U( nitd } KkhNoSj "), A © (3-9)

after using the relation U(r) = —(1 + R)u(z). This simplifies in the case that Ais constant.
We see that /~11 controls the power takg: off and the efficiency tends to zero when 4} — co.
Note that if A, = 0 then E,,y — 0 as 41 — 0 since u(z) — 0 also in this case.

4. Numerical approximation

In order to solve the integral equation (2.50) we use a Galerkin method in which the
solution is approximated by the (2M + 1)-term expansion

M

W@~ ) Cmttm(2) (4.1)

m=-M

0 X0-10 Rapids articles must not exceed this page length
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where c,, are coefficients to be determined and
um(Z) — eim71'(22—b—a)/(b—a) (42)

are the complex Fourier series basis for the interval z € (a, b) satisfying

b
/ Um(2ug(z)dz = (b —a)dgm. 4.3)

Galerkin’s method applied to solutions of integral equations involves substituting (4.3) into
(2.50) before multiplying by u,(z) for ¢ = =M, ..., M and integrating over a < z < b.
This results in the linear system of equations

M
Z Cmq(qng, q=-M,....M “4.4)

m=—M
defining c,, where

7 -1 sp—1 N FmrF_qr
7(61m = ETqm_K (b—a)(sqm+1K Sqm+Z Nrkrh

r=1

4.5)

and we have written

b
For = [ tn(@0, (2 46)
with
Um(2)ug(z b —
Sqm = / M dz  and Ty = / 2Um(2)ug(z) dz. 4.7
a A(Z) a
Explicit expressions for F,,- and T, are given in Appendix A. In the simplest case that A

is constant, Sg,, = (b — a)6qm//§.
We now use (4.1) in (2.51) to get

M
A~ Z emFmo (4.8)

m=—M

allowing us to approximate E ¢ ¢ from (3.5) once R is calculated using (2.52).
The alternative calculation of efficiency uses (4.1) in (3.9) to get

4khNy
Enf~m { Z Z CnCm mn}- 4.9

-M m=-M

In the case that A; and A, are both constant we have, on account of (4.3),

(4.10)

4khNo(b — a)3/?
i - Z lenl?.

T K2\ A — ikhNo |2 /12+K(b a)l

2 n=—M

In the work of Parry-Barnard (2025) (not repeated here as it is too much of a diversion
from our main goal) it is shown that approximations, made by implementing Galerkin’s
method, to the solution of the integral equations imply the equivalence of E, y and E sy
described previously. Numerical computations bear this out with only small differences
due to rounding errors between computed values of E, r and E¢r. This is true for any
parameters used including the truncation parameter, M. Thus, the two methods are useful
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for validating the numerical method, but cannot be used as a means of assessing the
accuracy of the numerical results.

5. Viscous losses in the duct

Since the OWC design supposes a cascade of annular baffles separate the curved duct
into narrow channels within which the fluid is subjected to resonant excitation, one
might therefore be concerned about the role natural dissipative effects have on the device
efficiency. Thus, we consider here a simple extension to the previous formulation of the
problem which includes the damping due to viscous wall effects. In a full-scale design
we reasonably envisage channels within the duct to be large enough that the plug-flow

assumption holds across the bulk of each channel (4 > +/v/2w where v is the kinematic
viscosity). Then the wall stress, per unit length, due to boundary-layer shear associated with
the no-slip condition on the walls of the channel is easily calculated (from the solution to
the well-known Stokes problem since wall curvature is negligble under the boundary-layer

scaling) to be
orolroo,1 = —iy| —e *HU(r) (5.1)
’ w

(noting that we have applied the appropriate variable scalings stated in §2 to the stress and
to U). Therefore, its integrated effect along the length of each channel, from both walls,
can be written

—iﬂr\/ge_i”/4U(r) = Apyis(r) 5.2)

which has been related to the jump in pressure needed to overcome viscous damping (4 is
the channel width). This pressure drop needs to be added to the solution in the duct and
means that continuity of pressure across x = 0 is no longer equivalent to matching ¢ from
both sides resulting in (2.47), but requires matching ¢ from x < 0 with ¢ — p,;s from x > 0.
Thus, instead of (2.47) we have

n nzlel 74 (1-i/A(2)) _
R K ] UG +(KU)() = ~(1+ R)o(2).  (5.3)
for a < z < b where we have written
1/2
Fo_ VN (5.4)

(b — a)3/4g1/4’

a dimensionless constant, independent of frequency, which determines the effect of the
viscosity on the OWC design. As expected, I increases linearly with the number of
channels, N.

The impact of the modification (5.3) to (2.47) is easy to follow and eventually the first
term (71/2)T,, in (4.5) needs to be replaced by

T 2[eln/4

2" &G —ap) 53)

in the numerical method.

The two calculations of efficiency made under inviscid assumptions are now no longer
equal and E, ¢ is used to calculate the efficiency of power conversion by the device. The
larger value of E ¢ includes losses due to viscous damping. The work of Parry-Barnard
(2025) shows how the two formally equate via the integral equation (5.3) by calculating
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Figure 2. Variation of efficiency with Kh for two designs: (a) with a/h = 0.1, b/h = 0.4; and (b) a/h = 0.2,
b/h = 0.8. In both cases Ay = 0and A, is varied.

the rate of viscous dissipation due to the boundary layers in the channels but the lengthy
details are omitted from this paper. The two different calculations of E are useful since
E ¢ — E,r indicates the percentage of incident wave power lost to viscous wall effects.

6. Results
6.1. Resonance

The condition for resonance in a narrow curved channel of length /, intersecting the free
surface at right angles, is easily shown to be approximated by

W?l)g =1. (6.1)

This is because the mass (per unit length) of fluid in the channel of width 4 is p A4l and the
hydrostatic restoring force due to an internal free surface elevation ¢ is —pg4{. Balancing
these two terms under time-harmonic motion of angular frequency w results in (6.1). This
argument ignores wave radiation and local flow conditions at the submerged opening and a
more refined calculation for narrow vertical ducts in two and three dimensions is presented
in Evans (1978).

The lengths of the channels in the configuration shown in Fig. | range from an/2 to
br/2 and so the spectrum of resonance of the array of channels in the duct is given by

— < Kh< —. (6.2)

In many of the examples below we set a/h = 0.1 and b/h = 0.4 and then (6.2) gives
1.6 < Kh < 6.36. This device is designed to be resonant for incident wavelengths between
roughly one and four times the water depth.

In Fig. 2(a) we show the computed efficiency E (either E ¢ or E,, ) for this device design
over the extended range 0 < Kh < 8 for a particular choice of A; = 5 and setting A, = 0.
Alongside in Fig. 2(b), we show computed efficiency for different design parameters,
a/h = 0.2 and b/h = 0.8, where the predicated range of resonance is 0.8 < Kh < 3.18.
Since b/a are the same in both cases, Figs. 2(a) and (b) highlight the effect of fluid depth.
The plots indicate that high efficiency is sustained across most of the range of resonance,
only tailing off towards the ends.
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M E®h=1) E(Kh=2)

1 0.3254 0.9821

2 0.3292 0.9533

4 0.3319 0.9588

8 0.3335 0.9577
16 0.3343 0.9575
32 0.3348 0.9574
64 0.3350 0.9573

Table 1. Computed values of efficiency, E = Eys = E,r, for increasing truncation parameter, M, for Kh = 1
and Kh =2 witha/h=0.1,b/h =0.4,1; =5and 1, = 0.

(@) ¢ Kh=1 —— (b) ¢ Kh=1 ——
35

3

25

In| 2

0 L L L L L 0 L L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x/h x/h

Figure 3. Plots of the modulus of 7(x) against x/h € (0.1,0.4) fora/h = 0.1, b/h = 0.4, 1; = 5, 1, = 0 for
three different values of Kh. Plots (a) and (b) are for M = 16 and M = 32.

6.2. Convergence of the numerical method

There are two parameters which control the accuracy of the numerical solutions. The first
is the number of terms included in the infinite series defining K, in (4.5). For this, it
has been found that 100 terms is sufficient for the numerical accuracy required to compute
the efficiency to three decimal places. The second is the value of M which controls the
number of terms taken in the expansion of the approximate solution in (4.1). In Tab. 1 we
present a convergence example for a typical set of results in the middle of the resonant
range of frequencies. We are reminded that the two values of E = E¢¢ and E = E,,f are
numerically identical (apart from small rounding errors) and cannot be used to indicate
accuracy of the method.

In Fig. 3(a,b) we show the computed value of ||, the modulus of the internal free surface
amplitude non-dimensionalised by the incident wave height, as a function of z € (a, b).
For this, we use the relation |5| = |1+ R||u(z)|/K. Results are shown for truncation sizes of
M = 16 and M = 32 for a fixed geometry and constant power control. The oscillations in the
curves are explained by Gibbs phenomenon, but nevertheless demonstrate the convergence
of approximations with increasing M. In each figure curves represent different values of
Kh to show how resonance is excited in positions along the duct dependent on frequency.
For the device parameters chosen, Kh = 1 is outside the resonant spectrum. Fig. 3(a,b)
show that, for the parameters chosen, device resonance corresponds to less than a doubling
of the standing wave amplitudes that would occur if waves were reflected by a wall without
the device in place.
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Figure 4. Variation of efficiency with Kh fora/h = 0.1, b/h = 0.4 In (a) A» =0.333 and in (b) 1> = 0.033; 1,
is varied. The grey curves shadow the values computed in Fig. 2.

6.3. The role of compressibility of air

The effect of compressibility in (4.9) is controlled by the size of the ratio of the imaginary
and real parts of A, or

(Kh(b/h —a/h)*(pgH pac?) /i = 0.0TH\Kh(b/h —a/h)/1, (6.3)

(in ST units). For a full-scale installation we imagine H to be roughly 4—5mand (b/h—a/h)
to be roughly 0.3 — 0.5 whilst it seems reasonable to assume that K& < 6 is a range of
practical interest (implying wavelengths no shorter than the water is deep). Then the
maximum size of (6.3) is roughly 0.5/1;. So compressibility can become a significant
factor if Ay is roughly one or less and for larger values of Kh. In terms of producing the
optimal power output, it has been found that we should choose A; ~ 5, not only for results
shown in Fig. 2 but also for other configurations tested. Then the size of the term in (6.3)
never exceeds 0.1 and we expect the effect of drag on the efficiency to be proportionately
small. These observations are bourne out in the results shown in Fig. 4(a).

In experiments one might imagine H = 0.4 — 0.5m and then the size of the term in
(6.3) is an order of magnitude smaller than in the full-scale setting meaning its effect is
negligible as shown in Fig. 4(b).

6.4. The role of viscosity

The size of I defined by (5.4) in a full-scale installation is estimated to be of the order
of 1073 based, say, on 6 channels within a duct of the size b — a = 3m. This is much
smaller than the other O(1) terms in (5.4). Even with many more channels, the influence
of viscosity at full scale is going to be negligible. In experiments, we might imagine
b — a = 0.3m in which case I is more like 10~2 and likely to still have only a small effect
on results. Sample results are shown in Fig. 5(a).

6.5. Non-constant control parameters

We consider the effect of introducing spatial control of the damping by letting 1;(z) =
e B where @ > 0 and 8 # 0 are constants. For 8 > 0 the damping is weaker for the
longer channels and vice versa whilst 8 = 0 corresponds to constant damping considered
previously. Setting A, = 0 allows us to explicitly calculate the terms required in the
numerical scheme (see Appendix A). Fig. 5(b) shows the results of fixing @ = 5 and
varying 8 = /(b — a) between —2 and 2. Other combinations of a and 3 have been
considered but, as shown in Fig. 5(b), it seems that spatial control of damping does not
result in significant improvements in the efficiency.
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Figure 5. Yariation of device efficiency with Kh for a/h = 0.1, b/h = 0.4. In (a)ﬂ | =5, 1, = 0 and different
values of I'; in (b) spatially-varying power control: & = 5 and different values of (.

6.6. Comparison with a simple single chamber OWC

In Fig. 6 we have plotted a comparison of the performance, in terms of efficiency, of the
current multi-channel (or multi-chamber) OWC design against the single-chamber OWC
design of Evans & Porter (1995) for two cases. In the first case, the multi-chamber OWC
parameters are a = 0.25h and b = 0.75h and this is compared to the Evans & Porter
(1995) results with a barrier submergence of 0.25/ and chamber width 0.75A. In the
second example, we have chosen a = 0.14, b = 0.99/ and results are compared to Evans
& Porter (1995) with a barrier submergence of 0.14 and chamber width 4. In each case,
air compressibility and viscous effects have been neglected and the value of the damping
parameters for each curve produced have been chosen to ‘optimise’ the efficiency profile.
Thus, we can see that the multi-chamber OWC design does no better than a single chamber
design if immersion of the duct opening is too large. For a smaller immersion of the duct
opening, the multi-chamber OWC outperforms the single chamber OWC by a significant
degree.

7. Conclusions

We have considered a two-dimensional model of an novel OWC concept which has been
designed to exploit resonance over a broad range of frequencies. A simple mathemat-
ical model has been formulated by approximating the complexity of the multi-channel
duct using homogenisation. The general conclusion drawn from the various numerical
experiments considered here is that the optimal configuration of an OWC, resulting in
a high bandwidth, can be achieved by applying constant power control across the array
of channels. It has been found that the effects of compressibility and viscosity may be
neglected when applied to a full-scale installation, although these effects might influence
test-scale experiments.

From an engineering perspective a multi-chamber design is more complicated than a
single chamber OWC. However, the technology already exists for smaller Wells turbine
(the Mutriku plant uses generators rated at 19kW) than were used for the larger installations
at the LIMPET and PICO pilot plants. The nature of the ocean energy density spectrum
means that loads will be distributed across multiple generators in the array. As the device
is designed to be fixed, tidal variation is an issue although the broadbanded response of
the device allows it function across a range of conditions. Moreover, the multi-channel
design allows for a system of louvres which shut different channels on and off to optimise
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Figure 6. Comparision of efficiency with K/ for the current multi-chamber design and the single chamber
OWC of Evans & Porter (1995) in the cases that the front wall immersion is: (a) 0.25/4; and (b) 0.14.

performance in different sea conditions as well as being used for a complete shutdown of
the device in storms.

Extensions to the current work might involve solving the problem of distinct channels
within the duct exactly, without homogenisation. This might require the use of boundary
element methods even for the two-dimensional problem because semi-analytic methods
are not easy to apply to such geometries. It is possible to consider a three-dimensional
version of this problem for a segmented OWC of finite width in an infintely-long wall using
a combination of the methods described here and Fourier transforms. One would need to
make a convincing case for adding extra complexity.
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Appendix A
Below are the explicit definitions of the terms required in the numerical scheme. We define ¢ = %(a + b) and
d= %(b — a). In the case that r # 0 we have

2d(~1)" sin k,d

Fy = ((krd)? = (mm)?) cos K, [krdcosk,(h—c)+imnsink,(h—c)] (A1)
and when r = 0 this is
2d(—1)" sinh kd ) .
Fmo = kd cosh k(h — c) + hk(h—c)]. A2
"0 ((kd)? + (mm)?) cosh kh [kd coshk(h = ) +imnsinh k(h - c)] (A2)
Next we find that
2di(~1)a+m
Tyq = 2cd, d T,="—"—"l ' A3
aq c an qm G=mn (g #m) (A3)
When 1 (z) = ae™#%, 1, = 0 we have
2def¢ sinh Bd
Sqm = _pymra > P% Ad
" @ -1 in(m - q) + Bd (A4)
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