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An investigation is carried out into the effect on wave propagation of an ice sheet of
varying thickness floating on water of varying depth, in three dimensions. By deriving a
variational principle equivalent to the governing equations of linear theory and invoking
the mild-slope approximation in respect of the ice thickness and water depth variations,
a simplified form of the problem is obtained from which the vertical coordinate is absent.
Two situations are considered: the scattering of flexural-gravity waves by variations in the
thickness of an infinite ice sheet and by depth variations; and the scattering of free surface
gravity waves by an ice sheet of finite extent and varying thickness, again incorporating
arbitrary topography. Numerical methods are devised for the two-dimensional versions
of these problems and a selection of results is presented. The variational approach that is
developed can be used to implement more sophisticated approximations and is capable
of producing the solution of full linear problems by taking a large enough basis in the
Rayleigh-Ritz method. It is also applicable to other situations that involve wave scattering
by a floating elastic sheet.

1. Introduction

The effect on surface water waves of a floating elastic plate is of considerable current
interest in two particular application areas.

The first of these, and the one on which our approach is focused, is concerned with
the way in which the waves interact with thin sheets of sea ice. This issue is particularly
important in the Marginal Ice Zone (MIZ) in the Antarctic, a region consisting of loose
or packed ice floes that is situated between the ocean and the shore-fast sea ice. As the
ice sheets support flexural-gravity waves, the energy carried by ocean waves is capable
of propagating far into the MIZ, where it contributes to ice break-up (see Squire et al.

(1995) for an extensive review). Thin plate, or Kirchhoff, theory has been widely used to
model this situation.

Another application area results from a proposal in Japan to build a floating offshore
runway, an example of a structure often referred to in the literature as a VLFP (very large
floating platform). Again, Kirchhoff theory is used to model the motion of the elastic plate
under external loading. Much of the work directed specifically towards this application
is either numerical (see, for example, Kashiwagi (1998)) or uses approximation methods,
such as the parabolic approximation (Takagi (2002)) or geometric optics (as in Hermans
(2003b)).

One of the most significant early attempts at solving problems involving thin elastic
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plates on water can be found in Evans & Davies (1968), where the two-dimensional
problem of water waves incident upon a semi-infinite thin elastic plate floating on water
was solved using the Weiner-Hopf technique. At that time, the solution was only studied
in any detail using shallow water theory, although later attempts at this problem, most
notably those by Balmforth & Craster (1999), Tkacheva (2001a,b,c) and Linton & Chung
(2003), have succeeded in deriving simple expressions for the reflection coefficient in water
of both finite and infinite depth.

The problem of two-dimensional water wave scattering by thin elastic plates of finite
length has been considered by a number of authors using a variety of different techniques.
Thus, for example, a Green’s function approach was used by Meylan & Squire (1994) to
formulate an integral equation over the plate. In contrast, Newman (1994) developed a
general theory for the interaction of water waves with elastic structures. This involved
expressing the motion of the structure, considered in isolation, in terms of eigenmodes
and identifying a radiation potential to describe the wave response induced by each
eigenmode when the structure and fluid motions are coupled. Thus, the full potential
for the scattering problem can be written in terms of a superposition of the incident
wave potential and an infinity of radiation potentials, in much the same way as the
motion of floating rigid bodies can be described by six independent modes. Later, Wu
et al. (1995) applied the theory of Newman (1994) to a finite length elastic plate and
compared their results with experimental data of Utsunomiya et al. (1995). Tkacheva
(2002) has recently used the Weiner-Hopf technique to formulate a solution for the finite
plate in terms of an infinite system of equations, whilst Hermans (2003a) has proposed a
method of solution based upon making a particular type of approximation to a function
representing the plate deflection, which subsequently appears as the unknown function
in an integro-differential equation. Andrianov & Hermans (2003) have also examined
scattering by a finite elastic plate for infinite, finite and shallow water depths by deriving
an integro-differential equation.

For the more difficult three-dimensional problem, less has been done and attention has
generally been focussed on simplified geometries. In particular, wave interaction with a
circular elastic plate has been considered by Meylan & Squire (1996), who used Green’s
identity to formulate an integral equation over the plate and the theory of Newman
(1994) to expand the vertical deflection of the plate in term of its in vacuo modes. In the
case of shallow water, Zilman & Miloh (2000) were able to derive a closed form expression
for the solution of this problem. Sturova (2001) has considered more general plate shapes
using the shallow water approximation whilst, for the full linearised equations, Meylan
(2001) used a variational principle in conjunction with the Rayleigh-Ritz approximation
to investigate wave interaction with rectangular plates numerically.

Most of the work described thus far has assumed a plate with non-zero (but small)
constant thickness and with zero draught. The latter assumption is often made in order
to facilitate analytical progress, although it was relaxed in the work of Wu et al. (1995).
Very little attention appears to have been paid to the determination of wave scattering by
plates of varying thickness. Squire & Dixon (2001) have considered the two-dimensional
problem where the entire fluid surface is covered by ice of one constant thickness, with
an inclusion of a different constant thickness, although the submergence of each portion
of ice is taken to be the same. Hermans (2003b) has used a ray method for a plate of
variable thickness, but unfortunately omitted terms from the equation that describes
the motion of the plate. The same is true of a later paper by Hermans (2003c) which
adopts the solution technique developed in Hermans (2003a), although the method of
determining wave scattering by variable thickness in this paper is to replace the variable
plate properties by a piecewise constant approximation. In the VLFP context, Takagi et
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al (2000) used eigenfunction matching to examine the damping effect on flexural waves
of a thick block at the edge of an infinite thin sheet and a wide spacing approximation
to infer corresponding results for a finite sheet.

The primary aim of the present paper is to develop a model to investigate the effect
on wave propagation of an ice sheet of variable thickness. The further generalisation of
existing work is made that variations in the topography are also allowed, without intro-
ducing an extra level of difficulty. This situation arises because a “vertically integrated”
approximation is made to the full linear problem, to reduce the computations to a feasi-
ble level. The approximation also gives an overall consistency to the model in the sense
that thin plate theory, which is used to model the ice sheet, arises by averaging across
the plate and the same process is applied here through the fluid depth.

A starting point is required to implement the approximation and we therefore develop
a variational principle that is equivalent to solving the field equation and boundary con-
ditions in the three-dimensional setting. By ensuring that the integrand is the Lagrangian
density we are, in effect, using Hamilton’s principle which therefore also produces the
edge conditions for a plate of varying thickness as natural conditions, without these
having to be built explicitly into the derivation.

It is pertinent to mention here that Meylan (2001), in contrast, combined a standard
variational principle for the ice sheet (but different from that used in the present work)
with a second principle that describes the fluid motion in terms of an inverse operator
involving a Green’s function. Meylan includes results for plates whose thickness increases
linearly but have zero draught, and he evidently does not use the appropriate edge
conditions.

Having established a suitable variational principle, the Rayleigh-Ritz approximation
can be invoked, that a finite-dimensional approximation to the stationary point of the
functional is also an approximation to the solution of its natural conditions. We adopt
the simplest approach to approximating wave propagation at this point by using a one-
dimensional trial space based on the propagating modes for an ice sheet of constant
thickness on water of constant mean depth. The approximation is therefore the coun-
terpart in the present problem of the “mild-slope approximation” for free surface flows
over undulating beds devised originally by Berkhoff (1972,1976) and independently by
Smith & Sprinks (1975). However, the equations that we derive are extensions of the
more recent modified mild-slope equation, derived by Chamberlain & Porter (1995) and
re-evaluated in Porter (2003), in which previously neglected curvature terms are shown
to be significant.

The effect of using the one-term trial function described is to remove the vertical coor-
dinate from the proceedings, reducing the problem to a pair of coupled partial differential
equations in two independent variables that determine the approximations to the fluid
motion and the sheet elevation. The variations in the bedform and in the lower surface
of the ice sheet appear in the coefficients of the differential equations and it turns out,
not surprisingly, that only the difference between these two levels is significant in the
approximation to the fluid flow. As indicated earlier, this outcome is consistent with the
appearance of the variable ice thickness in the thin plate model.

Approximating the vertical structure of the fluid motion and the consequent elimi-
nation of the vertical coordinate is reminiscent of shallow water theory. The mild-slope
approximation for free surface motions and its equivalent in the present problem are,
in fact, simply generalisations of the shallow water approximation having the advantage
that they apply to all wavelengths and not merely to “long waves”. Indeed, the shallow
water equations are the long wave limits of those based on the mild-slope approximation.

Using our model we develop a solution method for the two-dimensional problem in
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which there is complete ice coverage. Here we envisage a flexural-gravity wave incident
from infinity upon a region of variable ice thickness and/or undulating topography and
determine the main characteristics of the scattered wave field.

To consider the different problem in which an ice floe of variable thickness occupies
a finite portion of the water surface, we have to reformulate the variational principle in
order to incorporate the free surface regions and the interfaces between these and the
region with ice coverage. An illustration of this extension of the theory is again provided
in a two dimensional setting, in which a free surface wave is scattered by the ice sheet.

The plan of the paper is as follows. The first main aim is to address the problem in
which the surface is completely covered by an ice sheet of variable thickness and the bed
has arbitrary undulations. In Section 2 we formulate the problem and in Section 3 derive
a variational principle that can be used to generate approximations to it. The approxi-
mation described above is developed in Section 4 and it is implemented in Section 5 for
a scattering problem in two dimensions. A selection of numerical results is given.

In Section 6 we turn to our second objective by considering the extension of the problem
to one in which there is only partial ice cover. Here the various stages in the development
and resolution of the original problem are revisited and revised to apply to the extended
version, leading again to a sample of computational results.

2. Notation and Formulation

We use cartesian coordinates x, y, z with z directed vertically upwards, z = 0 coinciding
with the equilibrium position of the free surface of the fluid in the absence of ice. The
ice sheet is represented by an elastic plate of constant density ρi and varying thickness
D(x, y), where D is continuous, which floats in the surface. In equilibrium, the fluid is
bounded below by an impermeable fixed bed located at z = −h(x, y), where h is a positive
valued, continuous function, and above by the continuous lower surface z = −d(x, y) of
the elastic plate.

In motion, the ice sheet undergoes small amplitude flexural oscillations and its lower
surface at the horizontal location x, y and time t is given by

z = −d(x, y) + ζ(x, y, t),

say, where ζ is an unknown of the problem.
Supposing the fluid to be inviscid, incompressible and homogeneous, its assumed irro-

tational motion can be described by the velocity potential Φ(x, y, z, t) satisfying

∇2Φ = 0 (−h < z < −d+ ζ) (2.1)

and the bed condition

Φz + ∇hh.∇hΦ = 0 (z = −h). (2.2)

Here ∇ = (∂/∂x, ∂/∂y, ∂/∂z), as usual, and ∇h = (∂/∂x, ∂/∂y, 0) is its projection onto
z = 0.

Within the fluid, the linearised version of Bernoulli’s equation gives the pressure
p(x, y, z, t) in the form

p = p0 − ρwΦt − ρwgz (−h ≤ z ≤ −d), (2.3)

in which ρw is the density of the water and p0 denotes the constant atmospheric pressure
above the ice sheet.

The motion of the sheet is due to the differential pressure across it and the govern-
ing equation may be determined using thin plate theory. Referring to Timoshenko &
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Woinowsky-Krieger (1959) we deduce that

[p]−d+ζ = p0 + ρwgd+ ρwgLζ + ρiDζtt, (2.4)

where [ ]z0 denotes the value of the included quantity on z = z0 and

Lζ ≡ ∇2
h(β∇2

hζ) − (1 − ν){βxxζyy + βyyζxx − 2βxyζxy}.

Here ν is Poisson’s ratio for ice and

β(x, y) = F (x, y)/ρwg, F (x, y) = ED3(x, y)/12(1 − ν2),

F being the flexural rigidity of the sheet and E Young’s modulus for ice.

The first two terms on the right hand side of (2.4) ensure the equilibrium state of the
sheet, as is evident when the equation is combined with (2.3) to couple the ice and fluid
motions. Linearising about z = −d on the basis that Φ and ζ are small we find that

ρw(Φt + gζ) + ρwgLζ + ρiDζtt = 0 (z = −d). (2.5)

The further coupling

∇hd.∇hΦ + Φz = ζt (z = −d) (2.6)

arises from linearising the kinematic condition ∇Φ.∇S + St = 0 applied on the surface
S ≡ z + d − ζ = 0. By eliminating ζ between (2.5) and (2.6) we obtain the linearised
boundary condition for Φ on the upper fluid surface in the form

ρw{Φtt + g(∇hd.∇hΦ + Φz)} + ρwgL(∇hd.∇hΦ + Φz)

+ρiD(∇hd.∇hΦ + Φz)tt = 0 (z = −d).
(2.7)

At this point it is convenient to remove a harmonic time dependence by introducing
the given angular frequency ω and setting

Φ(x, y, z, t) =
g

iω
φ(x, y, z)e−iωt, ζ(x, y, t) = η(x, y)e−iωt,

the real parts of which represent the required functions. These substitutions and lineari-
sation transform (2.1) and (2.2) into

∇2φ = 0 (−h < z < −d), φz + ∇hh.∇hφ = 0 (z = −h), (2.8)

whilst (2.5) and (2.6) become

(1 − α)η + Lη − φ = 0, ∇hd.∇hφ+ φz = κη (z = −d), (2.9)

in which we have introduced the quantities

κ = ω2/g, α(x, y) = κρiD(x, y)/ρw. (2.10)

The time independent counterpart of (2.7) follows most directly by eliminating η from
(2.9) to give

(1 − α)(∇hd.∇hφ+ φz) + L(∇hd.∇hφ+ φz) = κφ (z = −d). (2.11)

The reduced potential φ is therefore determined by (2.8) and (2.11), together with
conditions specifying its far-field behaviour as x2 + y2 → ∞. This is a formidable propo-
sition except in the case of an ice sheet of constant thickness and a horizontal bed and
we therefore seek to approximate the boundary value problem.
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3. The variational principle

The approximation is generated by means of a variational principle that is equivalent
to the governing equations. The derivation of the principle is most easily carried out by
considering the fluid and ice motions separately before coupling them through (2.9).

Let D denote a simply connected, bounded domain in the plane z = 0 with boundary C
on which n is the outward normal unit vector and let the functions ψ(x, y, z) and χ(x, y)
be sufficiently differentiable for what follows.

We deal first with the equations (2.8) governing the fluid motion and note that the
functional

L1(ψ) =
1

2

∫ ∫

D

∫ −d

−h

(∇ψ)2 dz dx dy

has first variation

δL1 =

∫ ∫

D

∫ −d

−h

(∇.(δψ∇ψ) − δψ∇2ψ) dz dx dy.

After some manipulation to extricate δψ from the gradient operator, we find that

δL1 =

∫ ∫

D

{
[(∇hd.∇hψ + ψz)δψ]−d − [(∇hh.∇hψ + ψz)δψ]−h

−

∫ −d

−h

δψ∇2ψ dz
}

dx dy +

∫

C

n.

∫ −d

−h

δψ∇hψ dz ds, (3.1)

where s measures arc length on C.
For the ice sheet the appropriate functional with the coupling term included is

L2(ψ, χ) =
1

2

∫ ∫

D

{β{(∇2
hχ)2 − 2(1 − ν)(χxxχyy − χ2

xy)}

+(1− α)χ2 − 2χ[ψ]−d} dx dy.

The terms involving β represent the strain energy of the sheet, in the form given by
Timoshenko & Woinowsky-Krieger (1959). The remaining terms combine the effects of
the dynamic pressure on the plate and its acceleration.

The first variation of L2 is

δL2 =

∫ ∫

D

{β(∇2
hχ)(∇2

hδχ) − β(1 − ν){χxxδχyy + χyyδχxx − 2χxyδχxy}

+{(1− α)χ− [ψ]−d} δχ− χ[δψ]−d} dx dy.

To simplify the first term in the integral we use a version of Green’s identity, namely,
∫ ∫

D

{
β(∇2

hχ)(∇2
hδχ) − δχ∇2

h(β∇2
hχ)} dx dy =

∫

C

{
β∇2

hχ
∂

∂n
(δχ) − δχ

∂

∂n
(β∇2

hχ)
}

ds,

where ∂/∂n = n.∇h. Domain and boundary contributions can similarly be distinguished
for the other term in δL2 involving β, since

β{χxxδχyy + χyyδχxx − 2χxyδχxy} = δχ(βxxζyy + βyyζxx − 2βxyζxy) + ∇h.c,

in which

c = {β(χyyδχx − χxyδχy) − (βxχyy − βyχxy)δχ}i

+{β(χxxδχy − χxyδχx) − (βyχxx − βxχxy)δχ}j,

the unit vectors having their usual meanings. These identities allow δL2 to be rearranged
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as

δL2 =

∫ ∫

D

{
{(1 − α)χ+ Lχ− [ψ]−d}δχ− χ[δψ]−d

}
dx dy

+

∫

C

{
β∇2

hχ
∂

∂n
(δχ) − δχ

∂

∂n
(β∇2

hχ) − (1 − ν)n.c
}

ds. (3.2)

We now form the functional LD ≡ L1 + κL2, that is,

LD(ψ, χ) =
1

2

∫ ∫

D

{∫ −d

−h

(∇ψ)2 dz − 2κβ(1 − ν)(χxxχyy − χ2
xy)

+κ{(1− α)χ2 + β(∇2
hχ)2 − 2χ[ψ]−d}

}
dx dy (3.3)

and we also assume the variations to be such that

δψ = 0 on C × [−h,−d], δχ = δχx = δχy = 0 on C. (3.4)

This simplification is possible as our first aim is to approximate the vertical structure of
the motion and not to deal with conditions on lateral boundaries.

It therefore follows from (3.1) and (3.2) that

δLD =

∫ ∫

D

{
[(∇hd.∇hψ + ψz − κχ)δψ]−d − [(∇hh.∇hψ + ψz)δψ]−h

+κ{(1− α)χ+ Lχ− [ψ]−d} δχ−

∫ −d

−h

δψ ∇2ψ dz
}

dx dy,

(3.5)

from which we can immediately deduce that δLD = 0 at ψ = φ, χ = η for arbitrary
variations δψ and δχ satisfying (3.4) if and only if φ and η satisfy (2.8) and (2.9). This
outcome is not surprising as we have in effect applied Hamilton’s principle to the problem.

Finding the stationary point (φ, η) of LD(ψ, χ) is therefore equivalent to solving (2.8)
and (2.9) and approximate solutions of those equations are obtained by approximating
the stationary point of LD.

Imposing the second of the natural conditions (2.9) as a constraint, by substituting

χ = κ−1(∇hd.∇hψ+ψz) into LD(ψ, χ), defines the functional L̃D(ψ), say, and the natural

conditions of δL̃D = 0 will of course be (2.8) and (2.11). It is much more straightforward,
however, to use LD(ψ, χ) as it stands.

3.1. Jump conditions

We can exploit the variational principle further by deriving the natural conditions that
apply at an internal boundary of D. This aspect is significant in relation to the approx-
imation developed in the next section and to the case of partial ice cover considered
later.

Suppose then that the smooth, simple curve Γ divides D into two domains D+ and D−,
say. The principle δ(LD+ +LD−

) = 0 subject to (3.4) gives (2.8) and (2.9) for (x, y) ∈ D±

and, in addition, natural conditions at the interface. Let 〈χ〉 = χ+ −χ− denote the jump
in χ across Γ and 〈〈ψ〉〉 = ψ+ − ψ− the jump in ψ across the surface Γ × [−h,−d], the
subscripts denoting the limiting values of the functions from D±.

We deduce from (3.1) and (3.2) that the contribution to δ(LD+ + LD−
) on Γ is

CΓ =

∫

Γ

n.
〈∫ −d

−h

δψ∇hψ dz + (β∇2
hχ)∇h(δχ) − δχ∇h(β∇2

hχ) − (1 − ν)c
〉

ds. (3.6)

We have carried over the notation adopted for the external boundary of D to its internal
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boundary, by using s to denote arc length on Γ and n the unit normal vector on the
curve, chosen here so that it is directed from D+ to D−.

To identify the natural conditions implied by CΓ = 0 it is necessary to transform to
boundary coordinates. Let n have direction cosines (cos θ, sin θ, 0) with respect to the
fixed cartesian frame, where θ = θ(s), and introduce the unit vector s tangential to Γ,
orientated so that

n = i cos θ + j sin θ, s = −i sin θ + j cos θ.

A straightforward transformation then gives

n.c = (χss + θ′χn)(βδχn − βnδχ) − (χns − θ′χs)(βδχs − βsδχ),

where ∂/∂s = s.∇h. Therefore

CΓ =

∫

Γ

〈∫ −d

−h

δψ n.∇hψ dz + (β∇2
hχ)δχn − δχ(β∇2

hχ)n

−(1 − ν){(χss + θ′χn)(βδχn − βnδχ) − (χns − θ′χs)(βδχs − βsδχ)}
〉

ds.

The net term in δχ is obtained after an integration by parts to remove δχs.
Thus, if we impose the essential conditions that ψ, χ and χn are continuous across Γ

we infer that

〈〈n.∇hφ〉〉 = 〈Mη〉 = 〈Sη〉 = 0 (3.7)

are the natural jump conditions satisfied by the solutions ψ = φ and χ = η of δ(LD+ +
LD−

) = 0, where

Mη ≡ ∇2
hη − (1 − ν)(ηss + θ′ηn),

Sη ≡ (β∇2
hη)n − (1 − ν){(ηss + θ′ηn)βn

−2(ηns − θ′ηs)βs − (ηns − θ′ηs)sβ}.





In addition, the integration by parts referred to above gives the natural condition

ηns − θ′ηs ≡ ηsn = 0

at every end of Γ, assuming that D 6= 0 there, the identity being a property of the
boundary coordinates that is easily established.

The conditions (3.7) respectively represent continuity of the horizontal fluid velocity
and continuity of bending moment and shear stress in the ice sheet. Continuity of fluid
pressure and of ice sheet displacement and velocity are guaranteed by the essential con-
ditions, which imply that 〈〈φ〉〉 = 〈η〉 = 〈ηn〉 = 0. The continuity conditions for the ice
sheet that we have derived are closely related to edge conditions prevailing at a vertical
crack in the ice sheet along Γ, for example, which have been given by Sturova (2001) in
the case of constant ice thickness. Although we have so far assumed that D is contin-
uous, the formulation given effectively incorporates the case where Γ is the location of
a thin crack. It is, of course, inevitable that a variational principle which embodies the
dynamics of the problem appropriately will give all of the relevant conditions.

We remark at this point that, as the governing equations have real-valued coefficients,
we have used real-valued functionals to form the variational principle. The inclusion of
radiation conditions for complex harmonic waves in the set of natural conditions, say,
requires different functionals. Thus the integrand of L1(ψ) would have to be modified to
∇ψ.∇ψ to include radiation conditions, with corresponding changes in L2. This aspect
does not concern us in the present work.
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4. An approximation

Our objective is to reduce the dimension of the boundary value problem by approxi-
mating the dependence of φ on z. This is achieved by basing the vertical fluid motion on
that for a horizontal bed and an ice sheet of uniform thickness.

To establish the approximation we therefore consider a horizontal bed at z = −h0

and let the ice sheet have constant thickness D0 with its horizontal lower face at the
equilibrium level z = −d0. Correspondingly, α and β take the constant values α0 and β0,
respectively. In this reduced problem, (2.8) becomes

∇2φ = 0 (−h0 < z < −d0), φz = 0 (z = −h0), (4.1)

and (2.9) takes the form

(1 − α0 + β0∇
4
h)η − φ = 0, φz = κη (z = −d0).

These equations imply the simplified version

(1 − α0 + β0∇
4
h)φz = κφ (z = −d0) (4.2)

of (2.11). It is easy to show that propagating plane wave solutions of (4.1) and (4.2) with
crests parallel to the y axis are

φ±p (x, z) = e±ik0x cosh k0(z + h0), (4.3)

where k = ±k0 are the only real roots of the dispersion relation

(1 − α0 + β0k
4)k tanh k(h0 − d0) = κ. (4.4)

This equation also has roots corresponding to evanescent modes, namely, four complex
roots symmetrically placed with respect to both the real and imaginary axes and infinitely
many purely imaginary roots.

We can use this information to approximate φ and η in the case of varying h, d and
D in a number of ways. The simplest is to set

φ(x, y, z) ≈ ψ(x, y, z) = ϕ(x, y)w(x, y, z),

w(x, y, z) = sech k(h− d) cosh k(z + h),

}
(4.5)

where k = k(x, y) denotes the positive real root of

(1 − α+ βk4)k tanh k(h− d) = κ (4.6)

with h = h(x, y), d = d(x, y) and D = D(x, y). Because the dependence of ψ on z is
locally that in (4.3) we expect to approximate waves that propagate beneath the ice
sheet and are modulated by its varying thickness and the undulating bedform. We note
that the scaling w(x, y,−d) = 1 has been chosen for convenience and that η is only
approximated indirectly.

The assumption underlying the approximation is that the perturbations about h = h0,
d = d0 and D = D0 are slowly-varying functions, that is,

|∇hh| � kh, |∇hd| � kd, |∇hD| � kD,

for all relevant values of x, y.
To implement the approximation (4.5) we substitute it into L(ψ, χ) and enforce δL = 0,

noting that δψ = wδϕ. It follows from (3.5) that L is stationary with respect to arbitrary
variations δϕ and δχ satisfying (3.4) (so that δϕ = 0 on C), provided that

[w{∇hd.∇h(wϕ) + wzϕ− κχ}]−d − [w∇hh.∇h(wϕ)]−h −

∫ −d

−h

w∇2(wϕ) dz = 0
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and

(1 − α)χ+ Lχ− [w]−dϕ = 0,

in which [wz ]−h = 0 has been used. Rearranging the first of these equations by means of
the identity

∫ −d

−h

w∇2
h(wϕ) dz = [w∇hd.∇h(wϕ)]−d − [w∇hh.∇h(wϕ)]−h

+∇h.

∫ −d

−h

w2∇hϕ dz +
{
∇h.

∫ −d

−h

w∇hw dz −

∫ −d

−h

(∇hw)2 dz
}
ϕ,

and applying the normalisation [w]−d = 1, we deduce the pair of formally self-adjoint
coupled equations

∇h.a∇hϕ+ bϕ+ κχ = 0,

(1 − α)χ+ Lχ− ϕ = 0,

}
(4.7)

in which

a =

∫ −d

−h

w2 dz = (4k)−1sech2k(h− d){2k(h− d) + sinh 2k(h− d)},

b = k2a− k tanh k(h− d) + ∇h.

∫ −d

−h

w∇hw dz −

∫ −d

−h

(∇hw)2 dz.





(4.8)

Thus the approximations φ ≈ wϕ and η ≈ χ are determined by solving (4.7).
Alternatively, the equation

(1 − α+ L)(∇h.a∇h + b)ϕ+ κϕ = 0, (4.9)

which follows by eliminating χ from (4.7), can be solved and χ recovered from (4.7). It
is inevitable that the approximation (4.5) will lead to a sixth order differential equation
for ϕ, as the effect of integrating out the variable z in the application of the variational
principle is to convert Laplace’s equation into a second order equation for ϕ and merge
this with the boundary conditions on z = −h and z = −d and, in particular, with the
fourth order condition on z = −d.

We note here that the shallow water approximation kh � 1 corresponds to making
the different choice w = 1 in (4.5), which ensures that the horizontal velocity field
∇hφ ≈ ∇hψ is independent of z, as the approximation requires. Thus, putting φ ≈ ψ = ϕ
in the variational principle δLD = 0 we arrive at

∇h.(h− d)∇hϕ+ κχ = 0, (1 − α)χ+ Lχ− ϕ = 0. (4.10)

The equations (4.7) may be regarded as the extension of the shallow water approximation
to general values of kh and, as we would expect, they reduce to (4.10) in the shallow
water limit.

For practical purposes the coefficients in the first equation of (4.7) must be converted
into a more explicit form. This can be achieved by first introducing the variables

Z = z + d, H = h− d, (4.11)

so that, by (4.6), k = k(H,D) and from (4.5)

w(x, y, z) ≡W (H,D,Z) = sech (kH) cosh k(Z +H) (−H ≤ Z ≤ 0). (4.12)

Thus ∇hw = ∇hW = WH∇hH +WD∇hD, where WH = ∂W/∂H and similarly for WD.
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Using this expansion, the second element of (4.8) can be written as

b = k2a− k tanh(kH) + (W,WH )∇2
hH + (W,WD)∇2

hD

+C(1)(∇hH)2 + C(2)(∇hD)2 + C(3)∇hH.∇hD,

}
(4.13)

in which

C(1) = (W,WH )H − ||WH ||2, C(2) = (W,WD)D − ||WD ||2,

C(3) = (W,WH)D + (W,WD)H − 2(WH ,WD),

}
(4.14)

and the inner product notation

(u, v) =

∫ 0

−H

uv, ||u||2 = (u, u)

has been introduced for brevity.
The equations (4.7) hold only in domains where h, d and D are differentiable and they

have to be replaced by equivalent jump conditions where this is not the case. We suppose
that ϕ, χ and ∇hχ are continuous everywhere, in accordance with the essential conditions
applied in the derivation of (3.7), and that ∇hh, ∇hd and ∇hD are discontinuous along
a smooth, simple curve Γ in the x, y plane. It follows by using ψ = ϕw in (3.6) and
applying (4.11) to simplify the result that the most general jump conditions on Γ are

a〈n.∇hϕ〉 + 〈n.{(W,WH)∇hH + (W,WD)∇hD}〉ϕ = 0,

〈Mχ〉 = 〈Sχ〉 = 0,

}
(4.15)

where we have adopted the notation used in (3.7).
By enforcing 〈ϕ〉 = 〈χ〉 = 〈n.∇hχ〉 = 0 we have imposed continuity of pressure across

Γ× [−h,−d] and of ice sheet displacement and velocity across Γ, and the natural condi-
tions (4.15) resulting from the variational principle are the counterparts of (3.7) for the
approximate solution. The first represents conservation of energy flux across Γ×[−h,−d],
aggregated over the depth, and the other two show that the bending moment and shear
stress of the ice sheet are conserved across Γ, as they are in the exact solution.

5. Two-dimensional scattering

We illustrate the approximation by applying it in a two-dimensional context where
h = h(x), d = d(x), D = D(x) and the motion is independent of y. In this case (4.7)
reduces to

(a(x)ϕ′)′ + b(x)ϕ+ κχ = 0, (β(x)χ′′)′′ + (1 − α(x))χ − ϕ = 0,

which can be written as the second order system

(a(x)φ′0)
′ + b(x)φ0 + κφ1 = 0,

β(x)φ′′1 − φ2 = 0,

φ′′2 + (1 − α(x))φ1 − φ0 = 0,





(5.1)

where φ0 = ϕ, φ1 = χ and φ2 = βχ′′ is the bending moment. In this framework, the
jump conditions (4.15) and the associated continuity hypotheses imply that

a〈φ′0〉 + 〈(W,WH )H ′ + (W,WD)D′〉φ0 = 0,

〈φ0〉 = 〈φ1〉 = 〈φ2〉 = 〈φ′1〉 = 〈φ′2〉 = 0,

}
(5.2)
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hold where at least one of H = h− d and D has a slope discontinuity.
The first step is to determine the solutions of (5.1) for constant values of h, d and D.

Suppose that h = h0, d = d0 and D = D0 with the values of other quantities denoted in
the same way. For this purpose we can return to (4.9) in the reduced form

{β0(d/dx)
4 + 1 − α0}{a0(d/dx)

2 + k2
0a0 − k0 tanh(k0H0)}ϕ+ κϕ = 0

(where H0 = h0−d0). If we seek solutions ϕ(x) = exp(iµx), we find that µ is determined
by

(β0µ
4 + 1 − α0){a0(µ

2 − k2
0) + k0 tanh(k0H0)} = κ, (5.3)

from which κ can be eliminated using (4.4) to give

(µ2 − k2
0){a0(β0µ

4 + 1 − α0) + β0(µ
2 + k2

0)k0 tanh(k0H0)} = 0. (5.4)

Thus two roots are µ = ±k0, as expected, and we recover the propagating waves referred
to earlier.

It is easily shown using (4.8) that the other four roots of (5.4) can be written in the
forms µ = ±µ0 and µ = ±µ0, where µ0 = p0 + iq0. Here, p0 and q0 are positive for all
parameter values and are given by setting h = h0 and so on in the expressions

p = (λ2
1 + λ2

2)
1/4 sin(θ/2), q = (λ2

1 + λ2
2)

1/4 cos(θ/2),

λ1 = k tanh(K)/2a, λ2
2 = (1 − α)/β + k4{1− 4K2/(2K + sinh(2K))2},

θ = tan−1(λ2/λ1), K = kH.





These roots are not the complex roots of (4.4) as they are not associated with the correct
depth dependence, but they may be regarded as approximations to those roots in the
sense that they have the same form but have compensated for the fixed depth function
w. To include the exact evanescent modes corresponding to the complex roots of (4.4)
requires the use of a three term approximation at the outset in place of (4.5), and this
leads to three coupled sixth order equations.

We also remark that in the shallow water case, where a0 is approximated by H0, (5.3)
reduces to

(β0µ
4 + 1− α0)µ

2H0 = κ,

which is the shallow water limit of the dispersion relation (4.4). The four complex roots
are therefore exact in this case, but this is to be expected as the vertical fluid motion is
approximated by taking w = 1 and, unlike (4.5), does not select a particular mode.

5.1. A particular problem

We now assume that the continuous functions h(x), d(x) and D(x) are such that

h(x) = h0, d(x) = d0, D(x) = D0 (x < 0)

h(x) = h1, d(x) = d1, D(x) = D1 (x > `)

}
,

where hi, di and Di are constants for i = 0, 1. For simplicity, we suppose that h′(x), d′(x)
and D′(x) are continuous for 0 < x < ` but allow for discontinuities in these functions
at x = 0 and x = `.

We have established that the propagating waves with h = h0, d = d0 and D =
D0 are exp(±ik0x), k0 being the real, positive root of (5.4). We denote by exp(±ik1x)
the propagating waves in x > ` and we shall similarly attach the subscript 1 to other
quantities to indicate that they are to be evaluated for h = h1, d = d1 and D = D1. We
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therefore seek solutions for φ0 = ϕ that satisfy

φ0 ∼

{
A0e

ik0x +B0e
−ik0x (x → −∞),

A1e
ik1(`−x) +B1e

−ik1(`−x) (x → ∞),

}
(5.5)

in which A0 and A1exp(ik1`) are respectively the amplitudes of incident waves from the
left and right and B0 and B1exp(−ik1`) are the amplitudes of the waves scattered to the
left and right, respectively. The scattering process may be summarised in the equation

(
B0

B1

)
= S

(
A0

A1

)
S =

(
R0 T1

T0 R1

)
, (5.6)

where Ri and Ti are (to within known phase factors) the complex amplitudes of the
reflected and transmitted waves resulting from an incident wave of unit amplitude from
x < 0 (i = 0) and x > ` (i = 1). We remark that the far-field for the approximation to
full velocity potential φ(x, z) corresponding to (5.5), that is,

φ ∼

{
{A0e

ik0x +B0e
−ik0x}w0(x, z) (x → −∞),

{A1e
ik1(`−x) +B1e

−ik1(`−x)}w1(x, z) (x → ∞),
(5.7)

has the form of the exact solution.
Expressing (5.1) in matrix form, we have to determine the solution of

(UΦ′)′ = VΦ, Φ = (φ0, φ1, φ2)
T , (5.8)

which is continuous everywhere, with

U =




a 0 0
0 1 0
0 0 1


 , V =




−b −κ 0
0 0 β−1

1 α− 1 0


 . (5.9)

The differential equations may in turn be written as the first order system
(

Φ

UΦ′

)′

=

(
0 U−1

V 0

)(
Φ

UΦ′

)
, (5.10)

in which UΦ′ is now regarded as a dependent variable.
To obtain a boundary value problem for (5.10) with 0 < x < ` we make use of the

solutions in the two regions with h, d and D constant. Now φ0 in this case is a linear
combination of exp(±ikix), exp(±iµix) and exp(±iµix) (where i = 0 for x < 0, i = 1 for
x > `). It follows from (5.1) that a complete set of linearly independent solutions of (5.8)
in the domains where h, d and D are constant is

ci(ki)e
±ikix, ci(µi)e

±iµix, ci(µi)e
±iµ

i
x, (5.11)

with

ci(u) = (1, κ−1(aiu
2 − bi),−κ

−1βiu
2(aiu

2 − bi))
T .

The appropriate solution for x < 0 can therefore be written as

Φ(x) = C0(A0e
ik0x, 0, 0)T + C0(B0e

−ik0x, B
(1)
0 e−iµ0x, B

(2)
0 eiµ0x)T , (5.12)

which incorporates (5.5) and in which B
(1)
0 and B

(2)
0 are the unknown complex amplitudes

of evanescent modes. C0 denotes the 3 × 3 matrix given by setting i = 0 in

Ci = (ci(ki), ci(µi), ci(µi)).
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We deduce from (5.12) that

Φ(0−) = C0A0 + C0B0, A0 = (A0, 0, 0)T , B0 = (B0, B
(1)
0 , B

(2)
0 )T ,

and that

Φ′(0−) = iC0K0A0 − iC0K0B0,

in which Ki is the 3 × 3 matrix given by Ki = diag(ki, µi,−µi). Therefore

C−1
0 Φ′(0−) + iK0C

−1
0 Φ(0−) = 2iK0A0,

C−1
0 Φ′(0−) − iK0C

−1
0 Φ(0−) = −2iK0B0.

}
(5.13)

We infer from (5.2) that

a0{φ
′

0(0−) − φ′0(0+)} = j0φ0(0), φ′1(0−) = φ′1(0+), φ′2(0−) = φ′2(0+),

where

j0 = (W,WH )H ′(0+) + (W,WD)D′(0+), (5.14)

(with H = h− d) which implies that

U0{Φ
′(0−) −Φ′(0+)} = J0Φ(0−) = J0Φ(0+), Ji = diag(ji, 0, 0).

Combining this jump condition with (5.13) we obtain

P0

(
Φ(0+)

U0Φ
′(0+)

)
= 2iK0A0, Q0

(
Φ(0+)

U0Φ
′(0+)

)
= −2iK0B0, (5.15)

in which the 3 × 6 matrices Pi and Qi are given by

Pi =
(
C−1

i U−1
i Ji + iKiC

−1
i , C−1

i U−1
i

)
, Qi =

(
C−1

i U−1
i Ji − iKiC

−1
i , C−1

i U−1
i

)
.

For x > ` we take

Φ(x) = C1(A1e
ik1(`−x), 0, 0)T + C1(B1e

−ik1(`−x), B
(1)
1 e−iµ1(`−x), B

(2)
1 eiµ1(`−x))T , (5.16)

in accordance with (5.5), B
(i)
1 (i = 1, 2) being unknown evanescent wave amplitudes, and

this leads to

Q1

(
Φ(`−)

U1Φ
′(`−)

)
= −2iK1A1, P1

(
Φ(`−)

U1Φ
′(`−)

)
= 2iK1B1, (5.17)

where

A1 = (A1, 0, 0)T , B1 = (B1, B
(1)
1 , B

(2)
1 )

and we have introduced

j1 = (W,WH)H ′(`−) + (W,WD)D′(`−)

to parallel (5.14).
Recalling that the vectors Ai contain only the notionally assigned amplitudes Ai, we

see that the first element of each of (5.15) and (5.17) is a boundary condition for (5.10);
the second elements determine the scattered wave amplitudes contained in the vectors
Bi once the solution of (5.10) is known for 0 ≤ x ≤ `.

Suppose that Ψ(i) (i = 1, . . . , 6) denote six linearly independent solutions of (5.10)
in this interval, obtained by solving initial value problems. Then the general solution of
(5.10) for 0 ≤ x ≤ ` may be written as

(
Φ(x)

U(x)Φ′(x)

)
= Ψ(x)E, Ψ = (Ψ(1), . . . ,Ψ(6)), (5.18)
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Ψ being a 6× 6 matrix and E a constant 6× 1 vector. From (5.15) and (5.17) we readily
obtain (

P0Ψ(0)
Q1Ψ(`)

)
E = 2i

(
K0 0
0 −K1

)(
A0

A1

)
,

(
Q0Ψ(0)
P1Ψ(`)

)
E = −2i

(
K0 0
0 −K1

)(
B0

B1

)
.





Eliminating E we find that (
B0

B1

)
= Ŝ

(
A0

A1

)
, (5.19)

where Ŝ is the extended 6 × 6 scattering matrix given by

Ŝ = −

(
K0 0
0 −K1

)−1(
Q0Ψ(0)
P1Ψ(`)

)(
P0Ψ(0)
Q1Ψ(`)

)−1(
K0 0
0 −K1

)
,

which expresses the amplitudes of the scattered waves in terms of the incident wave
amplitudes and Ψ(`), Ψ(0) being assigned. The most obvious way of choosing initial
values for Ψ(i) is to take Ψ(0) = I , the 6 × 6 identity matrix.

Denoting the elements of Ŝ by Ŝij (i, j = 1, . . . , 6) and referring to the definition of
the usual scattering matrix S in (5.6), we deduce from (5.19) that

S =

(
Ŝ11 Ŝ14

Ŝ41 Ŝ44

)
.

An intrinsic property of S may be noted at this point. Referring to (5.7) we see that,
because the governing equations are real-valued, φ satisfies the same boundary value
problem as φ except for the notational changes that (B0, A0)

T replaces (A0, B0)
T and

(B1, A1)
T replaces (A1, B1)

T . It follows from (5.6) that solving the problem for φ will
lead to (

A0

A1

)
= S

(
B0

B1

)

and therefore, eliminating (A0, A1)
T and (B0, B1)

T ,

SS = I.

This equation implies a set of relationships between the components of S identical to
those derived by Kreisel (1949) for free surface motions. It applies to the exact solution
of the boundary value problem posed in Section 2 and to the approximate solution,
since (5.7) is common to both. As it is identically satisfied whatever Ψ(x) may be, it is
obviously not a check on a numerical solution method.

A computational check can be obtained, however, by deriving an energy equation for
the approximate solution. It follows easily from (5.1) that

[
a(φ0φ

′

0 − φ0φ
′

0) − κ(φ1φ
′

2 − φ1φ
′

2 + φ2φ
′

1 − φ2φ
′

1)
]x1

x0

= 0. (5.20)

The jump conditions show that quantity in brackets is continuous even where D′ and H ′

are not (it is also continuous across cracks where D is discontinuous) and the equation
therefore holds for any pair of points x0 and x1. In particular, letting x0 → −∞ and
x1 → ∞ and using (5.12) and (5.16), (5.20) gives

E0(|A0|
2 − |B0|

2) +E1(|A1|
2 − |B1|

2) = 0,

Ei = kiai + 2κ−1βik
5
i tanh2(kiHi).

}
(5.21)
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This is also the wave energy balance for the unapproximated problem, which is not
surprising as the approximate solution has the form of the exact solution for |x| → ∞,
as we noted after (5.7).

5.2. Numerical results

Numerical results have been obtained for the two-dimensional scattering problem de-
scribed in section 5.1 for a variety of different geometrical configurations. The NAG
routine, D02CJF which implements a variable-order, variable-step Adam’s method, is
used for the computation of Ψ(x) over the varying part of the ice/bed.

There are no results in the literature against which the numerical results can be checked
for accuracy. The energy balance relation given by (5.21), satisfied by both the full linear
problem and the approximation, can be used as a check on the numerical scheme and
consequently on the numerical solver described above. In all figures presented here, (5.21)
was satisfied to at least four significant figures. The accuracy of the numerical solver
breaks down when the wavelength in the ice (λ) is small compared with the length of
the varying part of the bed. This is due to the growth of exponential solutions associated
with the complex roots of the dispersion relation. A more sophisticated numerical method
should therefore be implemented when results for smaller values of λ/l are considered.

In all of the results presented in this section we use the physical parameters for ice
given by Squire et al. (1995). Thus, we take E = 5GPa, ν = 0.3, ρw = 1025kgm−3,
ρi = 922.5kgm−3, g = 9.81ms−2. It is also known that ice sheets in the MIZ are usually
between 0.5m and 2m thick, and we use this to guide our selection of D(x). Finally,
we choose the varying ice thickness so that each segment of the ice would be neutrally
buoyant in the absence of surrounding ice, implying that d(x) = (ρi/ρw)D(x) be satisfied.
Of course, when there is total coverage of the fluid such a condition is unnecessary
although it does ensure that there are no internal stresses within the ice when it is at
rest.

In order to isolate the effects of wave reflection by ice of variable thickness and by the
undulating topography, we consider the two cases separately. Thus, in the first examples,
we take a flat bed and vary the thickness of the ice and, in particular, we consider the
ice thickness given by the functions

D(x) = D0 + 1
2AD(1 − cos(2πx/l)), (5.22)

D(x) = D0 + 4ADx(l − x)/l2, (5.23)

D(x) = D0 + ADx/l, (5.24)

for 0 < x < l. The first two represent local bulges in the ice of size D0 + AD , with
D0 = D1, whilst the last represents a linear increase in ice thickness over the interval
(0, l) with D1 = D0 + AD. In figures 1 and 2 the variation of reflection coefficient with
dimensionless wavelength λ/D0 = 2π/(k0D0). In these four figures, the transmission
coefficient is obtained from |T0|

2 = 1 − |R0|
2 whilst |R1| = |R0| and |T1| = |T0|. All

figures confirm that total transmission occurs in the two limits as the wavelength tends
to zero and infinity. In the first figure, 1(a), the four curves show the effect of the length
of the varying part of the ice thickness on the reflection coefficient. For a longer section of
varying ice thickness, the peak in the reflection coefficient decreases and occurs at longer
wavelengths. In figure 1(b) we illustrate the effect that the size of the bulge in the ice,
AD , has on the reflection coefficient. As expected, the larger the bulge, the larger the
value of |R0| over all wavelengths although increasing the value of AD still further does
not result in any occurrences of total reflection.

Figures 2(a) and (b) demonstrate the effects of varying the depth of the fluid and the
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Figure 1. The function D(x) given by (5.22), with D0 = 1m and H0 = 20m. In (a), AD = 1m
with l = 80m (solid), 60m (long dash), 40m (short dash) and 20m (dotted). In (b), l = 40m and
AD = 0.25m (solid), 0.5m (long dash), 1m (short dash), 2m (dotted).
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Figure 2. The function D(x) given by (5.22), with AD/D0 = 1, l/D0 = 40. In (a), D0 = 1m
with H0 = 40m (solid), 20m (long dash), 10m (short dash). In (b), H0 = 20m with D0 = 0.5m
(solid), 1m (long dash), 2m (short dash).
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Figure 3. The function D(x) given by (5.23), with D0 = 1m and H0 = 20m. In (a), AD = 1m
with l = 80m (solid), 60m (long dash), 40m (short dash) and 20m (dotted). In (b), l = 40m and
AD = 0.25m (solid), 0.5m (long dash), 1m (short dash), 2m (dotted).

thickness of the ice. In the former figure, depths of H0 = 10m, 20m and 40m are used,
whilst numerical experimentation shows that for depths greater than 40m, the reflection
coefficient varies by less than 1% from those computed for H0 = 40m over the range of
wavelengths presented.

Figures 3(a), (b) are the counterparts of figures 1(a), (b) in the case of a parabolic
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Figure 4. The function D(x) given by (5.24), with D0 = 1m, H0 = 20m, l = 40m. In (a),
|R0| = |R1| and in (b), |T0| with AD = 0.5m (solid), 1m (long dash), 2m (short dash).

ice profile given by (5.23). The principal difference is the presence of discontinuities in
the D′(x) at x = 0 and x = l, which appear to have a fairly significant effect on the
reflection coefficient for smaller values of λ/D0. For larger wavelengths, the behaviour
of |R| in figures 3(a), (b) is comparable with that shown in figures 1(a), (b). A similar
phenomenon arises in free surface motions, where discontinuities in the bed slope can
have a pronounced effect on wave reflection (see, for example, Porter (2003)).

Figure 4(a), (b) shows the variation of |R0| and |T0| with non-dimensional wavenumber
k0D0 for the ice thickness profile given by (5.24). In this case, in which D0 6= D1 and
H0 6= H1, |R1| = |R0| whilst |T1| 6= |T0| although a good approximation to |T1| is given
by 1/|T0|. The periodic structure of R0 is typical of problems in which there are two
principal sources of wave reflection (in this case, the points x = 0 and x = l). Note that
as k0D0 → 0, the reflection coefficient tends to the shallow water limit given by Lamb
(1932, §176), namely |R0| = (1 −

√
H1/H0)/(1 +

√
H1/H0), where in the three cases in

figures 4(a) and (b), H1 = 19.55m, 19.1m and 18.2m.

We now turn to the other aspect of this particular problem, which is to determine the
effect of undulations in the bottom topography upon wave reflection, where the ice sheet
has constant thickness. The two bed profiles that we focus on are given by the functions

H(x) = H0 −
1
2AH(1 − cos(2πx/l)), (5.25)

H(x) = H0 −AHx/l, (5.26)

for 0 < x < l. The first represents a smoothly-varying local elevation in the topography
of height AH whilst the second represents a linear slope from the depth H0 at x = 0 to
H1 = H0 −AH at x = l. In the former case, we present in figures 5(a), (b) the variation
of reflection coefficient with wavenumber for a selection of values of AH and lengths l.
As may be expected, the effect of increasing the size of the bed elevation is an increase
in reflection and larger values of |R0| also result when the varying part of the bed is
extended.

For the final example in this part of the paper, we consider the depth profile given by
(5.26) and present the variation of |R0| and |T0| with k0D0 for a linear shoaling from
H0 = 20m to H1 = 10m over the lengths, l = 80m to l = 20m. The corresponding results
are shown in figure 6.
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Figure 5. The function H(x) given by (5.25), with D0 = 1m, H0 = 20m. In (a), l = 80m with
AH = 5m (solid), 10m (long dash), 15m (short dash) and in (b), AH = 10m with l = 40m
(solid), 80m (long dash), 160m (short dash).
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Figure 6. The function H(x) given by (5.26), with D0 = 1m, H0 = 20m, AH = 10m. In (a),
|R0| = |R1| and in (b) |T0| with l = 40m (solid), 20m (long dash), 10m (short dash).

6. Partial ice cover

We now address the more demanding problem in which the ice sheet occupies only a
part of the whole surface. Our aim is to use the approximation developed in the previ-
ous sections in conjunction with the corresponding approximation for an unloaded free
surface.

6.1. The free surface case

First we have to consider how the variational principle and its implementation are
amended for D = d = 0. This is a straightforward matter of simplifying the exist-
ing expressions and it inevitably leads to the modified mild-slope equation derived by
Chamberlain & Porter (1995). However, we need to give enough detail to establish the
notation and to allow us to derive a unified approximation that encompasses both an ice
sheet and a free surface.

Since α = β = 0 in the reduced problem, the natural condition χ = [ψ]0 on z = 0
of the variational principle δLD = 0 is implied by (3.5) and this can be imposed as a
constraint in LD to give the functional

LD(ψ, [ψ]0) ≡ L
(0)
D

(ψ) =
1

2

∫ ∫

D

{∫ 0

−h

(∇ψ)2 dz − κ[ψ]20

}
dx dy, (6.1)

appropriate to free surface motions. We will use the superscript (0) to indicate that the

quantities involved refer to the free surface case. The natural conditions of δL
(0)
D

= 0
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with δψ = 0 on C × [−h, 0] may be deduced from (2.8) and (2.11) and they are

∇2φ = 0 (−h < z < 0), φz + ∇hh.∇hφ = 0 (z = −h), φz = κφ (z = 0), (6.2)

the familiar free surface condition replacing (2.11). Only the element 〈〈φ〉〉 = 0 of the
jump conditions (3.7) is relevant in this case.

The reduced version of the approximation defined by (4.5) and (4.6) is

φ(x, y, z) ≈ ψ(x, y, z) = ϕ(0)(x, y)w(0)(x, y, z),

w(0)(x, y, z) = sech (k(0)h) cosh k(0)(z + h),

k(0) tanh(k(0)h) = κ,





(6.3)

in which k(0)(h) denotes the positive real root of the truncated dispersion relation. We
note that k(0)(h) = k(h, 0), where k(H,D) is the positive real root of (4.6). An exami-
nation of the behaviour the roots ±k0, ±µ0 and ±µ0 of (5.3) as D0 → 0 and H0 → h0

shows that |µ0| → ∞ and k0 → k
(0)
0 , the solution of the reduced dispersion relation in

(6.3) corresponding to h = h0.

The result of setting ψ = ϕ(0)w(0) in δL
(0)
D

= 0 can be deduced from (4.7), the second
equation of which condenses to just χ = ϕ. We may therefore eliminate χ and the system
reduces to the single equation

∇h.a
(0)∇hϕ

(0) + b(0)ϕ(0) = 0, (6.4)

which is the modified mild-slope equation referred to earlier. The coefficients can be
deduced from (4.12) and (4.13) and are

a(0) = (4k(0))−1sech2(k(0)h){2k(0)h+ sinh(2k(0)h)},

b(0) = k(0) 2a(0) − (W (0),W
(0)
h )∇2

hh+ C(0)(∇hh)
2,

C(0) = (W (0),W
(0)
h )h − ||W

(0)
h ||2,





where W (0)(x, y, z) = W (h, 0, z) in the notation of (4.12) and H = h is implied in the
definition of the inner product.

The jump condition satisfied by the solution of (6.4) where ∇hh is discontinuous follows
from (4.15) in the form

a(0)〈nΓ.∇hϕ
(0)〉 + (W (0),W

(0)
h )〈nΓ.∇hh〉ϕ

(0) = 0.

6.2. The approximation

We are now in a position to consider the problem of partial ice cover, in which (2.8) and
(2.9) apply for a given domain Di in the x, y plane and (6.2) applies for Df . As we have
already derived approximations for the two components of this problem independently,
the only outstanding issue is how the solutions of (4.7) and (6.4) have to be linked in the
overall approximation.

To resolve this issue we require the secure framework of a composite variational prin-
ciple that represents the hybrid case. This will obviously be based on the functionals

LD(ψ, χ) defined in (3.3) and L
(0)
D

(ψ) defined in (6.1). It is convenient to adapt notation
that we used earlier and consider the domain D = D+ ∪ D− in the x, y plane. We again
denote by Γ the smooth curve where the two subdomains meet and use the subscripts ±
to indicate the limiting values taken by functions on Γ or Γ× [−h,−d] from D±. Further,
the unit vectors normal and tangential to Γ and the boundary coordinates introduced in
Section 3.1 will be applied in the present context.
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Suppose then that we remove the hypotheses that d and D be continuous and let an ice
sheet with thickness D > 0 correspond to D+ and a free surface with D = 0 correspond
to D−.

With the relevant elements of (3.4) in force, δ(LD+ + L
(0)
D−

) = 0 obviously implies the

appropriate natural conditions (2.8) and (2.9) for (x, y) ∈ D+ and (6.2) for (x, y) ∈ D−.
The contribution from the interface can be deduced from (3.6) as

∫

Γ

n.
{(∫ −d

−h

δψ∇hψ dz
)

+
−
(∫ 0

−h

δψ∇hψ dz
)
−

+{(β∇2
hχ)∇h(δχ) − δχ∇h(β∇2

hχ) − (1 − ν)c}+

}
ds.

We assume that χ+ and (∇hχ)+ are bounded and that ψ+ = ψ− on Γ×[−h,−d], implying
the coupling δψ+ = δψ− there between the two functionals. The calculation leading to
(3.7) applies with only the minor adjustment that one-sided edge conditions replace jump
conditions and the natural conditions satisfied by the stationary point ψ = φ, χ = η at
the interface follow at once as

n.∇hφ = 0 ((x, y) ∈ Γ,−d ≤ z ≤ 0), (6.5)

and

〈〈n.∇hφ〉〉 = (Mη)+ = (Sη)+ = 0. (6.6)

Thus, finding the stationary point of LD+ +L
(0)
D−

is equivalent to satisfying the relevant
equations, including the appropriate conditions at the interface that the bending moment
and shear stress of the sheet must vanish at its edge and the normal fluid velocity must
be zero on the edge of the sheet and continuous elsewhere. The continuity of pressure
is imposed by the essential condition 〈〈ψ〉〉 = 0 which implies that φ is continuous on
Γ × [−h,−d].

At this point we make the simplifying assumption that d → 0 at the edge of the
sheet, that is, d+ = 0, but we retain the condition D+ > 0. It is not significant that
the approximation we are using cannot be made to satisfy (6.5) as that is a natural
condition of the variational principle and not an essential condition. There is an issue at
the interface, however, which we do have to address. Our existing trial functions defined
by (4.5) and (6.3), namely,

ψ(x, y, z) = ϕ(x, y)w(x, y, z) ((x, y) ∈ D+,−h ≤ z ≤ −d),

ψ(x, y, z) = ϕ(0)(x, y)w(0)(x, y, z) ((x, y) ∈ D−,−h ≤ z ≤ 0)),

}
(6.7)

violate the essential condition ψ+ = ψ− because D+ > 0 implies that w 6= w(0). An
apparently simple resolution of this difficulty is to abandon the hypothesis D+ > 0 but
we reject it on two grounds. First, it limits the generality of the model and second because
the moduli of the four complex roots of the dispersion relation (4.6) tend to infinity as
D → 0, as we noted earlier, and this would give rise to computational difficulties in
implementing the model. Therefore, in order to use the existing approximations and
retain (4.7) and (6.4) we instead remove the essential condition that leads to the conflict
and modify the variational principle so that 〈〈φ〉〉 = 0 is a natural condition.

This is achieved by introducing the auxiliary variable u(x, y, z) ((x, y) ∈ Γ,−h ≤ z ≤ 0)
as a Lagrange multiplier and the functional

I(ψ+, ψ−, u) =

∫

Γ

∫ 0

−h

(ψ+ − ψ−)u dz ds,
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which takes account of the simplification that d = 0 at the interface. Then the contribu-

tion to δ(LD+ + L
(0)
D−

− I) on Γ involving ψ± is

C̃Γ ≡

∫

Γ

∫ 0

−h

{
δψ+{n.(∇hψ)+ − u}−δψ−{n.(∇hψ)−−u}− (ψ+−ψ−)δu

}
dz ds. (6.8)

As C̃Γ must vanish for arbitrary variations δψ± and δu it follows that the stationary
point ψ = φ of the extended functional does indeed satisfy the natural jump condition
〈〈φ〉〉 = 0, in addition to those given in (6.6), and that u = n.(∇hφ)+ = n.(∇hφ)− at the
stationary point. The coupling between the functionals defined on D± is provided by I
in the revised principle, which does not require ψ to be continuous across Γ × [−h, 0].
Therefore the natural conditions, including 〈〈φ〉〉 = 0, can be satisfied arbitrarily closely
by choosing the basis for the approximation ψ ≈ φ to be large enough. One possibility
is to extend (6.7) to include the eigenfunctions corresponding to evanescent modes, as
has been implemented in the case of the mild-slope equation by Porter & Staziker (1995)
and Athanassoulis & Belibassakis (1999).

The present purpose is to use (6.7) as it stands, expressed for convenience in the
form ψ(x, y, z) = ϕ(x, y)w(x, y, z) for (x, y) ∈ D\Γ, with the superscripts temporarily
suppressed for (x, y) ∈ D−. A approximation that is of the same order as (6.7) and
consistent with it, in the sense of allowing the variable z to be integrated out, is also
required for u and we therefore take u(x, y, z) = ũ(x, y)v(x, y, z), in which v is assumed

to be known. It follows by substituting the approximations into (6.8) that C̃Γ vanishes
for arbitrary variations δϕ± and δũ provided that

∫ 0

−h

w±{n.(∇h(ϕw))± − ũ v} dz = 0,

∫ 0

−h

{ϕ+w+ − ϕ−w−} v dz = 0. (6.9)

The final equation may be recognised as a weak form of 〈〈ψ〉〉 = 0 and all three may be
combined to give

〈∫ 0

−h

(ϕw)n.∇h(ϕw) dz
〉

= 0,

which represents conservation of depth-averaged energy flux across Γ.
The basis function v approximates the vertical structure of the normal velocity across

the interface between the two fluid regions. We therefore represent it in terms of w+ and
w− by taking v = c+w+ + c−w− and ensure that it has the same average with respect
to both. Thus we choose c± so that (w+, v) = (w−, v), in which the inner product used
earlier applies with H = h. With this choice and elimination of ũ, (6.9) implies the jump
conditions

〈∫ 0

−h

w n.∇h(ϕw) dz
〉

= 0, 〈ϕ〉 = 0. (6.10)

(It can be shown that constants c± exist so that v has the required properties, but their
values are not required.)

We are now in a position to give the full set of natural conditions that results from

using (6.7) with the variational principle δ{LD+ + L
(0)
D−

− I} = 0. It consists of (4.7),

holding for (x, y) ∈ D+, (6.4), holding for (x, y) ∈ D−, and the jump conditions

ϕ− ϕ(0) = (Mχ)+ = (Sχ)+ = 0,

an.∇hϕ+ ϕn.{(W,WH )∇hH + (W,WD)∇hD}+ =

a(0)n.∇hϕ
(0) + ϕ(0)n.{(W (0),W

(0)
h )∇hh}−,





(6.11)
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holding on Γ. These incorporate (6.10) with the notation of (6.7) restored and the trans-
formation (4.12) from w to W carried out.

6.3. A two-dimensional problem

We return to the two-dimensional setting to illustrate how the solution of the equations
governing partial ice cover may be implemented.

There is considerable scope for combining a variable bedform and an ice sheet of
finite or semi-infinite extent. We consider here the simple example in which the ice sheet
occupies the interval 0 ≤ x ≤ ` and take the mean water depth to be constant for x < 0
and x > `. It is convenient to adopt the notation of section 4.1 as far as possible and we
set

h(x) = h0, (x < 0),

h(x) = h1, (x > `).

}

It is assumed that the sheet elevation and thickness satisfy d(0+) = d(`−) = 0, D(0+) >
0 and D(`−) > 0, consistent with the theory developed above. We also suppose that
h′(x), d′(x) and D′(x) are continuous for 0 < x < `.

Within the semi-infinite regions, the solutions of (6.4) may be taken in the forms

ϕ(0) =





A0e
ik

(0)
0 x +B0e

−ik
(0)
0 x (x < 0),

A1e
ik

(0)
1 (`−x) +B1e

−ik
(0)
1 (`−x) (x > `),



 (6.12)

in which the wavenumber k
(0)
i is that corresponding to the dispersion relation in (6.3) with

h = hi. As in the earlier example, the amplitudes of the scattered waves are determined
through (5.6).

For 0 < x < `, we use the form (5.1) of the equations and in terms of the variables
occurring there, the jump conditions (6.11) to be applied at x = 0 are

φ0(0+) = ϕ(0)(0−), φ2(0+) = φ′2(0+) = 0,

a0φ
′
0(0+) + j(0+)φ0(0+) = a

(0)
0 ϕ(0) ′

(0−),

}
(6.13)

since h′(0−) = 0. Here we have introduced the jump coefficient

j(0+) = (W,WH)0H
′(0+) + (W,WD)0D

′(0+)

and used the subscripts 0 and 1 to indicate that a term is to be evaluated at H = h = h0

and H = h = h1, respectively.
The corresponding conditions prevailing at x = ` are

φ0(`−) = ϕ(0)(`+), φ2(`−) = φ′2(`−) = 0,

a1φ
′
0(`−) + j(`−)φ0(`−) = a

(0)
1 ϕ(0) ′

(`+),

}
(6.14)

where

j(`−) = (W,WH )1H
′(`−) + (W,WD)1D

′(`−).

The system (5.8) has to be solved again, subject to appropriate boundary conditions.
By combining (6.12), (6.13) and (6.14) we find that

F0

(
Φ(0+)

U0Φ
′(0+)

)
= 2ik

(0)
0 a

(0)
0 A0, F 0

(
Φ(0+)

U0Φ
′(0+)

)
= −2ik

(0)
0 a

(0)
0 B0,

F 1

(
Φ(`−)

U1Φ
′(`−)

)
= −2ik

(0)
1 a

(0)
1 A1, F1

(
Φ(`−)

U1Φ
′(`−)

)
= 2ik

(0)
1 a

(0)
1 B1,

(6.15)
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where U is defined by (5.9), Ai = (Ai, 0, 0)T , Bi = (Bi, 0, 0)T , and Fi is the 3× 6 matrix
given by

Fi =




fi 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1




with

f0 = j(0+) + ik
(0)
0 a

(0)
0 , f1 = j(`−) + ik

(0)
1 a

(0)
1 .

Applying (6.15) to the solution for 0 < x < ` in the form (5.18) easily leads to the
scattering matrix in the form

S = −

(
k

(0)
0 a

(0)
0 0

0 −k
(0)
1 a

(0)
1

)−1(
G11 G14

G41 G44

)(
k

(0)
0 a

(0)
0 0

0 −k
(0)
1 a

(0)
1

)
,

where

G =

(
F 0Ψ(0)
F1Ψ(`)

)(
F0Ψ(0)
F 1Ψ(`)

)−1

.

The identity SS = I holds as in Section 5, and so does (5.20) with x0 = 0+ and
x1 = `−. The scalar counterpart of (5.20) applying in the free surface regions is

[
a(0)(ϕ(0)ϕ(0)′ − ϕ(0)ϕ(0)′)

]x1

x0

= 0,

where x0 < x1 < 0− or `+ < x0 < x1. We can combine two versions of this equation
with (5.20) so as to encompass the whole interval −∞ < x < ∞. By using (6.13) and
(6.14) at the junctions and (6.12) to evaluate the contributions as |x| → ∞, we readily
find that

k
(0)
0 a

(0)
0 (|A0|

2 − |B0|
2) + k

(0)
1 a

(0)
1 (|A1|

2 − |B1|
2) = 0. (6.16)

This equation is also satisfied by the far-field wave amplitudes in the exact solution. It
can be deduced directly from (5.21) by setting β0 = β1 = 0 there.

6.4. Numerical results

The first task is to establish the accuracy of the model that we have presented in this
new setting. We remark that we do not expect the results in the case of partial ice cover
to be as accurate as those in the case where there is total ice cover. This is because there
is now an extra source of scattering not present previously, namely at the ends of the ice
sheet. Although the variational principle has been adapted in order to satisfy continuity
of pressure and mass flux, it is recognised that the one term approximations used may
struggle to resolve the scattering process at the interface between the ice-covered and
free surface regions.

As in Section 5.2, where the case of total ice cover is considered, the energy balance
equations, given for the present case by (6.16), can be used as a check on the accuracy of
the numerical solver, and comments similar to those described in Section 5.2 also apply
here.

Further evidence of the accuracy of the method can be obtained by referring to estab-
lished results.

Many authors who have considered the effect on waves of a thin, finite elastic sheet
floating on water have chosen to focus on the elevation of the sheet rather than the re-
flection and transmission coefficients. Those that have produced results for the scattering
coefficients (Andrianov & Hermans (2003) and Tkacheva (2002)) provide insufficient de-
tails of the parameters that they used to allow comparison with our results. In contrast,
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Figure 7. Curves showing (a) non-dimensional plate elevation and (b) non-dimensional bending
moment against length of plate for an incident wave period of τ = 0.7s. The dots show the
experimental results of Utsunomiya et al. (1995).

Wu et al. (1995) list a detailed set of parameters in their analysis of wave interaction
with a finite length floating platform of constant thickness, in which they compared the-
oretical results for sheet elevation and bending moments with the experimental results
of Utsunomiya et al. (1995).

In Wu et al. (1995), E = 103MPa, ν = 0.3, ρi = 220.5kgm3, l = 10m, D(x) = D0 =
38mm, and H0 = 1.1m. The draught of their sheet is 8.4mm, but we have set this to
zero for our calculations as we have restricted ourselves to the case where d(x) → 0 as
x → 0, l. A similar assumption was made by Tkacheva (2002) who also compared results
for bending moments along the sheet to those given in Wu et al. (1995). The incident
wave has a period of τ = 0.7s in figure 7 and τ = 1.429s in figure 8. Each figure shows
the variation along the plate of non-dimensional sheet elevation, |χ̃| = |χ(x)/A0|, and
bending moment, |M̃ | = (ρwD0/lρi)φ2(x). The functions χ(x) = φ1(x) and φ2(x) are
easily obtained from Ψ(x), whilst other quantities such as the dynamic pressure under
the sheet and the shearing stress are proportional to φ0(x) and φ′2(x) and are therefore
also readily obtained.

Despite the cautionary remark about accuracy made above, the results we have ob-
tained are in good agreement with those of Wu et al. (1995), Tkacheva (2002) and
Khabakhpasheva & Korobkin (2002), having the correct behaviour, although there are
slight discrepancies in the size of the elevation at the ends of the plate. The experimental
results of Utsunomiya et al. (1995) are overlaid onto the figures for comparison.

It is worth noting that in this numerical experiment, where the sheet is of constant
thickness, there is, of course, an analytic solution for Ψ(x) composed of the set (5.11),
namely,

Ψ(x) =

(
C0g(x) C0g(x)

iU0C0K0g(x) −iU0C0K0g(x)

)
, g(x) = diag(eik0x, eiµ0x, e−iµ0x).

This analytic form for the solution over the ice has been used as a check on the numerical
solver.

In the example considered above we made the assumption that d(x) = 0 for 0 < x < l
in order to compare with existing work. We now consider examples in which we require
only that d(x) → 0 as x → 0, l whilst Archimede’s principle is imposed to ensure that the
ice sheet is neutrally buoyant. That is, we require that the integral of ρiD(x) − ρwd(x)
over 0 < x < l to be zero. Let us consider an ice sheet having a horizontal upper surface
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Figure 8. Curves showing (a) non-dimensional plate elevation and (b) non-dimensional bending
moment against length of plate for an incident wave period of τ = 1.429s. The dots show the
experimental results of Utsunomiya et al. (1995).
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Figure 9. Reflection coefficient against wavelength for an elastic plate of constant thickness
D0 = 38mm (solid) and one with the parabolic profile given by (6.20) with D0 = 30mm (dashed).

and a parabolic lower surface such that

D(x) = D0 + 4AD(1 − x/l)(x/l), (6.17)

where D0 +AD is the maximum thickness of the sheet. Then d(x) = −4AD(1−x/l)(x/l)
and Archimedes principle implies that AD = 3

2ρiD0/(ρw − ρi). In the particular case
considered previously, ρi ≈ 1

5ρw and hence AD ≈ 3
8D0. Then, the ‘average’ thickness

of the sheet described by (6.17) is 5
4D0. Hence, choosing a thickness profile in (6.17)

with D0 = 30mm will allow comparison with a sheet of constant thickness D0 = 38mm
considered previously.

The reflection coefficients for these two cases are plotted in figure 9 against the dimen-

sionless wavelength λ/l (where now λ = 2π/k
(0)
0 ), and they show similar behaviour with

slightly reduced reflection for the sheet with a parabolic profile compared with that of
constant thickness. In figure 9 the wave period varies from τ = 0.98s when λ/l = 0.15 to
τ = 2.3s when λ/l = 0.65.

For the remaining results, we revert to our original set of parameters for ice described
in Section 5.2. As in the previous example, we use (6.17) to define the variation of ice
thickess but now AD = 13.5D0, implying that the thickest part of the ice is 14.5 times
the thickness at the edge of the ice. In figure 10 we have considered the effect of the
length of the ice sheet on the reflection coefficient where H0 = 20m and D0 = 0.1m over

a range of wavenumbers k
(0)
0 .

Thus it can be seen that increasing the length of an ice sheet with the same maximum
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Figure 10. Reflection coefficient against wavenumber k
(0)
0 for an ice sheet with the parabolic

profile given by (6.20) with D0 = 0.1m, H0 = 20m and l = 40m (solid), 80m (long dash) and
160m (short dash).

thickness reduces the amount of reflection as might be expected as the gradient of the
thickness is reduced.

7. Conclusions

One of the main features of the work described here is the derivation of a variational
principle that is equivalent to the linearised equations governing the motion of an elastic
sheet of varying thickness and infinite or finite extent, floating on water of varying depth.
The natural conditions of the principle include the edge conditions for a sheet of non-
constant thickness, in addition to the field equation and the boundary conditions. The
variational formulation can be used in conjunction with the Rayleigh-Ritz method to
produce solutions for a range of full linear problems incorporated in the general setting,
to any desired accuracy, and it is applicable to other situations which involve wave
propagation in and by floating elastic sheets.

Here we have exploited the formulation in a particular way, using it to simplify the
model and thereby obtain approximations at a significantly reduced computational cost.
This has been achieved by replacing the vertical component of the fluid motion locally by
the eigenfunction that supports propagating waves for an ice sheet of constant thickness
on water of constant depth. The approach therefore extends to the problem under consid-
eration the “mild-slope approximation” used previously for purely free surface motions.
This procedure is itself an extension of shallow water theory to the general wavelength
régime.

The accuracy of the approximation can only be ascertained by comparing numerical
results for the model with the “exact” solutions of test problems. As suggested above,
the latter could be obtained by returning to the variational principle and taking an
N -dimensional basis for the approximation by including the vertical eigenfunctions cor-
responding to N − 1 evanescent modes. Numerical experiments will determine the value
of N required to achieve a given convergence criterion. This process has been carried out
for the mild-slope approximation to free surface flows by Porter & Staziker (1995) and
Athanassoulis & Belibassakis (1999), the latter authors obtaining superior convergence
by extending the basis in a particular way. This and other evidence in the form of com-
parisons with experimental data and with full linear solutions obtained by other means,
including that for periodic beds given recently by Porter & Porter (2003), indicates that
the mild-slope approach provides a good approximation for free surface motions, as long
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as the bedform gradient is not too large. On this basis, we suppose that the one-term
trial function used in the present problem is also likely to lead to a reasonable first
approximation, at least for moderate bedform and ice thickness slopes.

In addition to the multi-mode exploitation of the variational principle, the general-
ity of the formulation allows a wide range of problems to be considered using just the
single mode approximation. Here we have restricted attention to particular examples
of two-dimensional scattering, to show how numerical solutions can be constructed and
demonstrate the overall viability of the approach. The model equations derived can be
applied directly to three dimensional problems, such as wave scattering by a circular ice
sheet, wave trapping and crack problems (similar to those consider by Khabakhpasheva
& Korobkin (2002) for example), and the interplay between and individual effects of
ice sheet thickness and depth variations can be explored more thoroughly than we have
attempted here.

Appendix

We require the values of the various inner products involving W (H,D,Z) and its
derivatives that occur in (4.13), where W is given in (4.12). The wavenumber k(H,D)
occurring in W is defined implicitly by (4.6), which can be expressed in the form

f(k,D) tanh(kH) = κ, f(k,D) = {1 − α(D) + β(D)k4}k. (A1)

Now

WH = kH sech(kH)Z sinh k(Z +H) + (kH)H sech2(kH) sinh(kZ),

WD = kD{sech(kH)Z sinh k(Z +H) +Hsech2(kH) sinh(kZ)},

and it follows by direct integration that

2(W,WH ) = (kH/4k
2) sech2K{2K − sinh(2K) − 4K2 tanhK}

−Ksech2K tanhK,

2(W,WD) = (kD/4k
2) sech2K{2K − sinh(2K) − 4K2 tanhK},

in which the abbreviation K = kH has been used.

We note that the identity (W,WH)H − ||WH ||2 = (W,WHH ) + (WWH )Z=−H gives an
alternative way of calculating the value of this term and similarly for the other coefficients
of the same form. Referring to the notation (4.14) we find that

C(1) = sech2K{(kHH/8k
2)A+ (k2

H/8k
3)B + (kH/2k)C

+k tanhK(K tanhK − 1)},

C(2) = sech2K{(kDD/8k
2)A+ (k2

D/8k
3)B},

C(3) = sech2K{(kHD/4k
2)A+ (kHkD/4k

3)B + (kD/2k)C},

in which

A = 2K − sinh(2K) − 4K2 tanhK,

B = 8K3 tanh2K − 4K2 tanhK + sinh(2K) − (8/3)K3 − 2K,

C = 4K2 tanh2K −K2 − 5K tanhK.
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The required derivatives of k are readily found from (A1) and are given by

EkH = −2fk, EkD = −fD sinh(2K),

EkHH = −Fk2
H − 4kH{f + kfk cosh2K},

EkDD = −Fk2
D − 2kD{fkD sinh(2K) + 2HfD cosh2K} − fDD sinh(2K),

EkHD = −FkHkD − kH{fkD sinh(2K) + 2HfD} − 2kD{f + kfk} − 2kfD,

in which

E = fk sinh(2K) + 2Hf, F = fkk sinh(2K) + 4Hfk cosh2K.

The derivatives of f are

fk = 1 − α+ 5βk4, fD = −D−1k(α− 3βk4),

fkk = 20βk3, fkD = −D−1(α− 15βk4), fDD = 6D−2βk5,

in which the expressions for α and β given in (2.10) have been used.
In the case d = D = 0, (A1) reduces to the dispersion relation for an unloaded free

surface with f = k. We then have

EkH = −2k2, E = 2K + sinh(2K),

EkHH = −4Hk2
H cosh2K − 4kkH(1 + cosh2K).

Using these equations and noting that H = h, it can be confirmed that the above
expressions for the coefficients (W,WH) and C(1) reduce to the corresponding terms
given by Chamberlain & Porter (1995) for the modified mild-slope equation.
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