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Abstract

We consider an approximate solution based on matched asymptotic expansions to the

problem of wave scattering by any number of narrow channels extending perpendicularly

to one of the two straight parallel walls defining a uniform waveguide. The matching

process results in a system of equations whose size equates to the number of side channels.

Particular emphasis is placed on understanding the effect that channel resonance plays in

the reflection of incident waves.

1 Introduction

The geometry is illustrated in Fig. 1. A wave is incident along a uniform waveguide from
minus infinity and is partially reflected and transmitted by a series of narrow side channels
extending in a direction perpendicular to the waveguide. We will consider N such channels
each of the same width 2ǫ (presumed to be smaller than other lengthscales in the problem) but
having different lengths and placed at arbitrary positions along the waveguide. All walls have
a sound-hard (Neumann) condition placed upon them. The waves are supported by a inviscid
compressible medium with phase speed c.
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Figure 1: Definition sketch

We approach the solution to this problem using the method of matched asymptotic expan-
sions. The solution in the waveguide is represented away from the side-channel openings as
the superposition of an incident wave and wave sources on the waveguide wall, located at the
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mid-point of each side-channel opening. The solution in each narrow side-channel away from
the opening is represented by waves propagating along the channel with no variation across
the channel. Solutions, constructed in the vicinity of each opening are used to connect the two
outer solutions.

2 Derivation of a wave source on a channel wall

Consider a parallel waveguide with walls along y = 0 and y = a for −∞ < x < ∞. A wave
source is placed on the upper wall at (x, y) = (0, a). The solution, represented by the function
g(x, y), satisfies

(∇2 + 1)g = 0, −∞ < x < ∞, 0 < y < a.

Note that a time-harmonic dependence propotional to e−iωt has been assumed and that length-
scales have non-dimensionalised by the wavenumber k = ω/c, where c is the wave speed. In
addition

gy(x, 0) = 0, gy(x, a) = δ(x), −∞ < x < ∞
where the delta function represents a point wave source on the wall. Partly for simplicity and
partly because of the underlying assumptions of the method used, we restrict ourselves to the
case 0 < a < π so only one wave mode is able to radiate from the wave source along the
waveguide.

The solution can be found using Fourier transforms and expressed in the form

g(x, y) =
1

2π

∫ ∞

−∞

cosh γy

γ sinh γd
eilx dl

where γ =
√
l2 − 1 = −i

√
1− l2. There are poles at real values of l = ±1 where γ = 0, and the

contour of integration is defined to pass above the pole at l = −1 and below the pole at l = 1
in order to to satisfy the radiation condition (waves generated by the source are outgoing).
Thus deforming the inverse contour of integration to infinity in upper and lower half planes,
depending on the sign of x, results in the series representation

g(x, y) =
i

2d
ei|x| +

∞
∑

n=1

cos pn(a− y)

γna
e−γn|x|

where γn =
√

p2n − 1 and pn = nπ/a. This expression can be derived independently using
separation solutions as a starting point. Thus, we see that

g(x, y) ∼ i

2a
ei|x|

as |x| → ∞. We also need to determine the behaviour of g(x, y) as the source point (x, y) =
(0, a) is approached. With this purpose in mind we write

g(x, y) =
i

2a
ei|x| +

∞
∑

n=1

{

e−γn|x|

γna
− e−pn|x|

nπ

}

cos pn(a− y) +
S(x, y)

π

where

S(x, y) =
∞
∑

n=1

cos pn(a− y))

n
e−pn|x|.
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We let z = |x|+ i(a− y) = reiθ where r =
√

x2 + (a− y)2 and θ = tan−1((a− y)/|x|) and then

S(x, y) = ℜ
{

∞
∑

n=1

e−nπz/a

n

}

= −ℜ{ln(1− e−πz/a)} = −ℜ
{

−πz

2a
+ ln(2 sinh(πz/2a))

}

.

This gives us

S(x, y) =
π|x|
2a

− ln
(πr

a

)

− ℜ
{

ln

(

sinh(πz/2a)

πz/2a

)}

.

Therefore as r → 0

g(x, y) ∼ −1

π
ln
(πr

a

)

+ C

retaining constant terms defined by

C =
i

2a
+

∞
∑

n=1

(

1

γna
− 1

nπ

)

.

3 Multiple sources and incident waves

Consider the case where multiple sources are placed along the wall y = a at x = xj , j =
1, 2, . . . , N in the presence of an incident wave. The full solution in the waveguide guide is
given by

φ(x, y) = eix +

N
∑

j=1

mjg(x− xj , y)

where mj , j = 1, 2, . . . , N are as yet undetermined source strengths. Far along the waveguide
we have supposed that

φ(x, y) ∼
{

eix +Re−ix, x → −∞
T eix, x → ∞

so that the reflection and transmission coefficients R and T are given by

R =
i

2a

N
∑

j=1

mje
ixj , T = 1 +

i

2a

N
∑

j=1

mje
−ixj .

The solution in the vicinity of the kth source point (xk, a) is approximated by

φ(x, y) ∼ eixk +mk

{

−1

π
ln
(πrk

a

)

+ C

}

+
N
∑

j=1, j 6=k

mjg(xk − xj , 0)

where rk =
√

(x− xk)2 + (a− y)2. Here g(xk − xj , 0) can be computed most efficiently, using
expressions derived in the previous section, by

g(xk−xj , 0) = −1

π
ln

(

πXkj

a

)

+
ieiXkj

2a
+

∞
∑

n=1

(

e−γnXkj

γna
− e−pnXkj

nπ

)

+
Xkj

2a
−1

π
ln

(

sinh(πXkj/2a)

πXkj/2a

)

.

where Xkj = |xk−xj |. This expression also separates the logarithmically-dominant terms from
constants and those terms which tend to zero as |xk − xj | → 0.
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4 Coupling to narrow side channels

Narrow channels of width 2ǫ and length bk−a extend from (xk, a) to (xk, bk) for k = 1, 2, . . . , N .
Since the channels are narrow, the governing Helmholtz equation in the region between the
channel walls is approximated by a one-dimensional wave equation after rescaling in x by 2ǫ.
The solution, satisfying a Neumann condition on y = bk, is given

φk(x, y) = Dk cos(bk − y).

In particular we note that, as y → a,

φk(x, y) ∼ Dk{cos(bk − a) + (y − a) sin(bk − a)}+O((y − a)2).

In order to connect the solution from the waveguide those in the channels we assume each
narrow channel has a rectangular opening into the waveguide (as in Fig. 1). After developing a
solution in the vicinity of the rectangular opening we will use matched asymptotic expansions
to complete the solution.

Referring to Evans, Porter & Chaplin (2018) for a channel of width 2ǫ with motion sym-
metric about its centreline we make the transformation

a− y = ǫX, (x− xk) = ǫY,

and let Z = X + iY . Accordingly φ(x, y) = Φ(X, Y ) which, under the assumption that ǫ ≪ 1
satisfies ∇2Φ = 0. The Schwarz-Christoffel transformation

Z =
2

π
(1− ζ)1/2 +

1

π
ln

{

(1− ζ)1/2 − 1

(1− ζ)1/2 + 1

}

maps the domain in the vicinity of the opening into the upper-half ζ-plane. A flow through the
opening in the physical plane is represented in the ζ-plane by the complex potential

W (ζ) =
Mk

2π
ln |ζ |+ Γk

where Mk and Γk are constants to be determined.
As |ζ | → ∞, Z → (2/π)(1− ζ)1/2 and so |Z| ∼ (2/π)|ζ |1/2 implying that

Φ(X, Y ) → Mk

π
ln(π|Z|/2) + Γk

as |Z| → ∞ or, in other words, that

φ(x, y) ∼ Mk

π
ln
(πrk
2ǫ

)

+ Γk

as the outer limit into the waveguide of the inner solution.
Matching with the inner limit of the outer solution in the waveguide gives

Mk = −mk

and

Γk = eikxk +mk

{

−1

π
ln

(

2ǫ

a

)

+ C

}

−
N
∑

j=1, j 6=k

mjg(xk − xj, 0).
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Also, as ζ → 0,

Z ∼ 1

π
(2(1− ln 2) + ln(−ζ)) → −∞

which implies that
1

π
ln |ζ | = ℜ

{

1

π
ln(−ζ)

}

∼ ℜ{Z} − 2

π
(1− ln 2).

In other words, as X → −∞,

Φ(X, Y ) ∼ Mk

2

(

X − 2

π
(1− ln 2)

)

+ Γk

or, returning to the physical plane,

φ(x, y) ∼ Mk

(

a− y

2ǫ
− 1

π
(1− ln 2)

)

+ Γk

as the outer expansion along the narrow side channel of the inner solution. Matching with the
inner expansion of the outer solution along the side channel gives

Mk = −2ǫDk sin(bk − a)

and

−Mk

π
(1− ln 2) + Γk = Dk cos(bk − a).

Eliminating Dk we have

−Mk

(

cot(bk − a)

2ǫ
− 1

π
(1− ln 2)

)

= Γk.

Finally we substitute in for Mk and Γk in terms of the coefficients mj to get

mk

{

cot(bk − a)

2ǫ
+

1

π

(

ln

(

4ǫ

a

)

− 1

)

− C

}

−
N
∑

j=1, j 6=k

mjg(xk − xj) = eixk

for k = 1, 2, . . . , N . This is the system of equations we solve for mj from which R and T are
determined.

It is instructive to write
mk = 2ǫuk

so that uk = Dk sin(bk − a) represents ∂φk/∂y evaluated at the opening, xk. Substituting in
the system of equations for Uk gives

uk

{

cot(bk − a) +
2ǫ

π

(

ln

(

4ǫ

a

)

− 1− Cπ

)}

− 2ǫ
N
∑

j=1, j 6=k

ujg(xk − xj , 0) = eixk

for k = 1, 2, . . . , N . This system is closely aligned to a numerical discretisation of the integral
equation used by Jan & Porter (2018) for a continuous function u(x) and based on a continuum
description of a contiguous array of channels of vanishing width.
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5 Results

5.1 One channel

If there is just one side channel at x1 = 0 then

R =
i/(2a)

Λ− i/(2a)
, T =

Λ

Λ− i/(2a)

where

Λ =
cot(b1 − a)

2ǫ
+

1

π

(

ln

(

4ǫ

a

)

− 1

)

−
∞
∑

n=1

(

1

γna
− 1

nπ

)

and energy conservation |R|2 + |T |2 = 1 is evident.
In isolation, the side channels have natural resonances. There are two types: the first is

where there is a node at the opening of the channel and the second is where there is an anti-
node. The side channel is node/anti-node resonant when (b1 − a) = 1

2
π. Consider a small

shift away from resonance by writing b1 − a = 1

2
π − 2ǫσ, where it is assumed that ǫ ≪ a and

σ = O(1). Then Λ = 0 when σ satisfies

σ ≈ −1

π

(

ln

(

4ǫ

a

)

− 1

)

+

∞
∑

n=1

(

1

γna
− 1

nπ

)

(noting that γn depends on σ also, so the equation above is not explicit). However, σ > 0 and
so we can infer that total reflection of waves occurs at a frequency close to and just below that
for resonance in the side channel.

If there is an anti-node/anti-node resonance in the channel, b1 − a → π such that Λ → ∞
and so R = 0 and T = 1; the solution in the side channel is decoupled but synchronised to the
incident wave. Hereafter we use the term resonance to describe the non-passive node/anti-node
resonance.

See Fig. 2(a) for an illustration for ǫ = 0.2a. That is, the side-channel is 40% the width of
the waveguide. It confirms both features described above, although there is a second zero of
transmission appearing just below a = π, not present if ǫ/a takes smaller values.

5.2 Equally-spaced channels of tapered length

Suppose that xj = 2ǫj, j = 1, 2, . . . , N and that the length of the channels are tapered linearly
with position along the waveguide (as illustrated in Fig. 1). Specifically we choose xj = −c +
2(j − 1

2
)ǫ and bj = b+mxj . This choice is made in order to compare with results presented in

Jan & Porter (2018).
We remark that the spacing and channel width being equal means that each opening is

neighboured immediately by another opening and the formal basis for the asymptotic approx-
imation is compromised.

In Figs. 2(b-f) we plot results for an increasing number of channels occupying the same
interval, 0.4a, of the channel side-wall. Thus each channel width is set to 2ǫ = 0.4a/N . The
lengths of the N channels are tapered linearly with distance along the waveguide, so that
the smallest channel length is 0.8a and the longest is 1.2a. Fig. 2 demonstrates that there
are as many zeros of transmission as there are channels over the range of frequencies shown.
The frequencies at which these zeros appear are approximately within the range of discrete
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resonant frequencies for the side-channels. That is, we infer that each zero of transmission can
be attributed to a side-channel resonance.

In Fig. 3 we set the taper to zero, replicating one of the results of Jan & Porter (2018). We
have chosen N = 16 channels each of width 2ǫ = 0.025a which extend to bj = 2a. We plot the
solution over a narrow range of 1.3 < a < 1.6 to focus on the complicated oscillatory nature
of |R| as channel resonance at a = 1

2
π is approached. The results share the same underlying

qualitative behaviour as in the work of Jan & Porter (2018).
In Fig. 4 we plot |uj| against j for an array of N = 25, 50, 100 contiguous channels defined

by lengths bj = 2a+xj for xj = −0.2a+2ǫ(j− 1

2
), 2ǫ = 0.4a/N for the particular dimensionless

frequency a = 1

2
π corresponding to resonance at the central channel of the array. These are

successively refined discretisations of channels of linearly tapered length between x = −0.2a
and 0.2a. The solution can be seen to oscillate (slowly) before a rapid increase at the resonant
channel followed by a rapid decay to almost nothing beyond this.
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Figure 2: Modulus of the reflection coefficient against dimensionless frequency, a, for N =
1, 2, 4, 8, 16, 32 channels with xj = −0.2a + 2ǫ(j − 1

2
) with 2ǫ = 0.4a/N and bj = 2a + xj ,

j = 1, 2, . . . , N .
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Figure 3: Modulus of the reflection coefficient against dimensionless frequency, a, for bk = 2a
for −0.2a < x < 0.2a and N = 16.

 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25

|uj|

j
 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30  35  40  45  50

|uj|

j
 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90  100

|uj|

j

Figure 4: Modulus of the scaled source strength |uj| against channel number, j, for bj = 2a+xj

for xj = −0.2a+ 2ǫ(j − 1

2
), 2ǫ = 0.4a/N . In the three plots, N = 25, 50, 100.
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