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Abstract

In recent work by the authors [9] the problem of absorption of ocean wave energy by a floating
articulated raft was studied. Numerical computations were shown to be rapid under a wide range
of configurations but became increasingly expensive in certain limits. These included rafts either
wide or narrow with respect to the incident wave direction and rafts with many articulations. The
current paper proposes approximations to each of these cases resulting in a significant reduction
in the numerical effort required. Typical computations are more than 40× faster in the case of
the wide or narrow raft approximations and it is shown that a simplified continuum model for
an articulated raft predicts power absorption with less than a 1% error for rafts with 3 or more
articulations.

1. Introduction

In the recent work of [9] a semi-analytic approach is developed for an articulated floating raft
wave energy converter similar to that proposed by Cockerell in [3]. This consists of N buoyant
pontoons connected in series via hinges so that the differential rotation of neighbouring pontoons
allows energy to be extracted. The solution method developed in [9] is fully three-dimensional,5

the geometry of the raft being exploited to apply Fourier transforms in the plane of the free
surface, where the device is situated. This approach leads to a set of N + 2 integral equations
associated with decomposition into a set of generalised modes of motion and formulated in terms
of two-dimensional unknown functions describing the hydrodynamic pressure on the underside
of the raft. Approximate solutions are sought by expanding the unknowns in finite separation10

series of prescribed functions across both width and length of the raft. The resulting numerical
calculations are very efficient for many physical parameters. However, they become increasingly
expensive in the regimes shown in figure 1 and the purpose of the present paper is to develop
accurate approximations to improve efficiency in these regimes.

When the raft becomes either wide or narrow relative to the incident wave direction then15

increasingly many terms are required in the finite separation series of the unknowns to accurately
describe the rapidly varying pressure field on the underside of the raft. This, amongst other factors,
leads to greater numerical expense. For the purpose of wide and narrow raft approximations
it is assumed that the principal wave direction is well understood and so we consider normal
incidence. For wide rafts the end effects are shown to be small so that approximate solutions20

may be gained by considering the two-dimensional problem. The unknown pressure force is thus
dependent on the lengthways direction alone to a leading order approximation. Meanwhile for
long, narrow rafts the leading order solution will be constant across the width of the raft and
so the widthways dependence may be integrated out explicitly. The advantage of this is two-
fold. First, by reducing the dependence of unknown functions to a single dimension the numerical25

complexity of the problem is reduced. Second, the convergence of infinite integrals defining inverse
Fourier transforms in the widthways direction has an inverse dependence on raft width. Thus,
by removing the widthways dependence of the integral equations we remove this issue of slow
convergence for narrow rafts. Elongated wave energy converters are also considered by Newman
in [7] using a classical slender-body theory. Whilst there must be some relation to the use of30
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Figure 1: The full model along with the three approximations for which solutions are developed in this paper.

slender-body theory, the approach used here is quite different, being obtained directly from the
full integral equations.

Another factor in the complexity of the problem is the number of pontoons (N) of which the raft
is comprised. Each additional component introduces an additional degree of freedom in the raft’s
motion and correspondingly an additional hydrodynamic problem must be solved, the problem35

scaling like O(N). Whilst this isn’t a major concern numerically, the addition of pontoons is
often associated with an increased length leading to greater numerical expense as discussed above.
Here, we model an articulated raft made up of a large number of hinged pontoons using a simpler
continuously-damped plate model. Thus the discrete articulation and power take-off in the hinges
is replaced by a flexible raft with continuous power take-off along its length. In this way the40

N + 2 problems describing the discrete modes of motion of the articulated raft reduce to a single
problem describing the motion of a continuously-damped plate. Integral equations are derived
in terms of the unknown vertical displacement of the raft which is intrinsically dependent on the
lengthways direction alone. Thus, the complexity of the problem is further reduced, the unknown
displacement being approximated by a separation series in a single variable. The theory developed45

here has links to models proposed for flexible ice sheets by Balmforth and Craster in [1] and the
solution of the Euler-Bernoulli beam equation [5].

In §2 the parameterisation of the problem and model assumptions are introduced, the governing
equations having been previously discussed in [9]. The leading order solutions for wide and narrow
rafts are then developed in §3. In both cases the approximations are derived from the full integral50

equations of [9]. Results are then presented, both demonstrating convergence to the full model
and offering a comparison of computation times. In §4 we then look at a continuously-damped
plate model for the raft, a simpler configuration which is shown to accurately model a floating raft
made up of an increasing number of pontoons. A set of discrete equations of motion associated
with the vertical and rotational motions of the individual pontoons is used to derive a continuous55

kinematic surface condition which incorporates the complete dynamics of the flexible raft. The
solution for the associated hydrodynamic problem is then developed along with expressions for
the power associated with a continuous power take-off mechanism. Finally, results are presented
with the intention of both demonstrating convergence of the full model to the approximation and
inspecting the motions of the raft. In §5 overall conclusions are drawn.60

2. Formulation

In this paper we will develop approximate solutions to hydrodynamic problems describing
an articulated raft wave energy converter. In the previous work of the authors [9] a solution
of the full three-dimensional problem was developed. Here we are concerned with developing
approximations in the three regimes shown in figure 1. We begin by outlining the problem.
Cartesian coordinates are chosen with the origin in the mean free surface level and z pointing
vertically upwards. The fluid has density ρ and is of infinite depth, inviscid and incompressible.
Fluid motions are irrotational and of small amplitude. A hinged raft of thickness h and density
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Figure 2: Some key parameters imposed on a side view (and close-up) of the articulated raft converter used in
the hydrodynamic model.

ρs < ρ floats on the surface of the water with shallow draft d = ρsh/ρ. It is comprised of
N rectangular sections as shown in figure 2, each of width 2b and hinged along x = Xn for
n = 1, ..., N − 1, −b < y < b. This definition is extended to the fore and aft ends of the raft which
are located at x = X0 and XN respectively. The entire raft is centred at the origin and occupies
a region

D =
N⋃
n=1

Dn with Dn = {(x, y)|Xn−1 < x < Xn,−b < y < b} (2.1)

being the planform of the nth pontoon and an = Xn − Xn−1 its length. Finally, we denote the
total length of the raft by 2a = (XN −X0) so that X0 = −a and XN = a.

Monochromatic plane waves of radian frequency ω are incident from x < 0, making an anti-
clockwise angle θ0 ∈ (−π/2, π/2) with the positive x-direction. We shall assume waves of small65

steepness KA � 1 where A is the wave amplitude and 2π/K is the wavelength with K = ω2/g
being the wave number and g the gravitational acceleration. Damping devices placed along each
hinge enable power take-off, exerting a force opposing and in proportion to the rate of change
of angle made between adjacent plates. The vertical displacements of the hinges are denoted by
ζn(t).70

Under the assumptions made the fluid velocity is described as the gradient of a scalar velocity
potential Φ(x, y, z, t) satisfying the hydrodynamic problem stated in [9, (2.3-2.6)].

3. Articulated raft approximations

In the case of the wide and narrow articulated raft approximations it is convenient use the
principle of linear superposition to decompose the velocity potential and factor out harmonic time
dependence, writing

Φ(x, y, z, t) = <

{(
(−iAg/ω)φS(x, y, z) +

N∑
n=0

Unφn(x, y, z)

)
e−iωt

}
(3.1)

where φS describes the waves scattered by a fixed horizontal raft, satisfying

∂φS
∂z

(x, y, 0) = 0 for (x, y) ∈ D (3.2)

along with [9, (2.8-2.10)], whilst the second term in (3.1) describes a decomposition into a set
of generalised modes of motion outlined in [9, §3]. Thus, the coefficients Un describe generalised
velocities whilst the functions φn(x, y, z) describe radiation potentials associated with forced os-
cillatory motion in each of the generalised modes, satisfying

∂φn
∂z

(x, y, 0) = fn(x) for (x, y) ∈ D (3.3)
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along with [9, (2.8-2.10)], for n = 0, ..., N . Here fn(x) are prescribed functions forming a basis
for the plate motion and are defined in [9, §3]. They provide the forcing in the hydrodynamic75

problems associated with the radiation of waves. Meanwhile, the forcing in the scattering problem
is provided by the incident wave

φI (x, y, z) = eiα0xeiβ0yeKz, (3.4)

where α0 = K cos θ0 and β0 = K sin θ0. Finally, the potentials φS − φI and φn describe outgoing
waves at large distances from the raft.

In [9, §5] integral equations are derived for the unknown functions φS,n(x, y, 0). The unknown
functions are evaluated at z = 0 and represemt the pressure force on the underside of the raft.
Thus, we have

φS,n(x, y, 0) + (KφS,n) (x, y, 0) = DS,n(x, y) for (x, y) ∈ D and n = 0, ..., N (3.5)

where

(Kφ) (x, y, 0) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

K

k −K

∫∫
D
φ(x′, y′, 0)e−iαx

′
e−iβy

′
dx′ dy′ eiαxeiβy dα dβ (3.6)

with k =
√
α2 + β2. Here the forcing associated with the scattering problem is given by

DS(x, y) = eiα0xeiβ0y (3.7)

whilst the forcing associated with the radiation problems is given by

Dn(x, y) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

1

k −K

∫∫
D
fn(x′)e−iαx

′
e−iβy

′
dx′ dy′ eiαxeiβy dα dβ (3.8)

for n = 0, ..., N .80

3.1. Approximation for a wide raft

With the prominent incident wave direction aligned close to the positive x-axis so that θ0 is
assumed small we set out to approximate the solution of the integral equations (3.5) for a wide
raft, that is Kb � 1, Ka = O(1) and b/a � 1. We begin by considering the scattering problem.
If the raft is wide we expect the solution to be dominated by a component which represents the
scattering by a raft of infinite width. Thus, we write

φS(x, y, 0) ' ψS(x)eiβ0y +RS(x, y) (3.9)

in which the first term encodes the decomposition one would have used in a two-dimensional
scattering problem whilst RS(x, y) is envisaged as a ‘correction’ due to end effects. Substituting
for (3.9) in (3.5) then gives

ψS(x)eiβ0y +
K

2πi

∫ ∞
−∞

[
eiβ0bI(α, y − b;β0)− e−iβ0bI(α, y + b;β0)

] ∫ a

−a
ψS(x′)e−iαx

′
dx′eiαx dα

+RS(x, y) + (KRS) (x, y) = DS(x, y)
(3.10)

where

I(α, y;β0) =
1

2π

∫ ∞
−∞

eiβy(√
α2 + β2 −K

)
(β0 − β)

dβ. (3.11)

We evaluate the integral defined in (3.11) by assigning a small positive imaginary part to the
frequency ω which is eventually set to zero. This manifests itself by moving the poles at β =
±
√
K2 − α2 above and below the real β-axis respectively. The contour is then deformed into the

upper and lower-half β-plane for y > 0 and y < 0 respectively, with deformations around the
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branch cuts on the imaginary axis for |= {β} | > |α| and above the pole on the real-axis at β = β0.
This results in

I(α, y;β0) = − i
2

sgn(y)
eiβ0y√

α2 + β2
0 −K

+
Ke−λ(α,K)|y|

λ(α,K) (β0 − isgn(y)λ(α,K))

+
1

π

∫ ∞
|α|

√
s2 − α2e−s|y|

(s2 − α2 +K2) (β0 − isgn(y)s)
ds (3.12)

where

λ(α,K) =
√
α2 −K2 = −i

√
K2 − α2 when |α| < K (3.13)

with the choice of branch being chosen to ensure the radiation condition is satisfied. Substituting
for (3.12) in (3.10) we then gain[

ψS(x) +
K

2π

∫ ∞
−∞

eiαx√
α2 + β2

0 −K

∫ a

−a
ψS(x′)e−iαx

′
dx′ dα

]
eiβ0y +RS(x, y) + (KRS) (x, y)

= DS(x, y) + e−iβ0b ([G +H]ψS) (x, y + b;β0)− eiβ0b ([G +H]ψS) (x, y − b;β0)
(3.14)

where the integral operators G and H are defined by

(Gψ) (x, y;β0) =
K

2πi

∫ ∞
−∞

Keiαxe−λ(α,K)|y|

λ(α,K) (β0 − isgn(y)λ(α,K))

∫ a

−a
ψ(x′)e−iαx

′
dx′ dα (3.15)

and

(Hψ) (x, y;β0) =
K

2π2i

∫ ∞
−∞

eiαx
∫ ∞
|α|

√
s2 − α2e−s|y|

(s2 − α2 +K2) (β0 − isgn(y)s)
ds

∫ a

−a
ψ(x′)e−iαx

′
dx′ dα.

(3.16)

Since ψS(x) is the solution to the two-dimensional problem, satisfying the same integral equation
as the two-dimensional plate considered in [10],

ψS(x) +
K

2π

∫ ∞
−∞

eiαx√
α2 + β2

0 −K

∫ a

−a
ψS(x′)e−iαx

′
dx′ dα = eiα0x, (3.17)

then the corresponding terms may be cancelled in (3.14) to leave an integral equation for the
unknown correction

RS(x, y) + (KRS) (x, y) = e−iβ0b ([G +H]ψS) (x, y + b;β0)− eiβ0b ([G +H]ψS) (x, y − b;β0)
(3.18)

for (x, y) ∈ D. Here the forcing terms are located at the widthways end-points of the raft, y = ±b,
the correction RS(x, y) describing the end effects. Using Watson’s Lemma it may be shown that

([G +H]ψ) (x, y;β0) ∼ −e
iK|y|√
|y|

√
K3/8π

β0 − sgn(y)K

∫ a

−a
ψ(x′)dx′ (3.19)

as |y| → ∞, the forcing due to end effects decaying away from the end-points. We decompose
RS(x, y) so that

RS(x, y) = e−iβ0bCS(x, y + b)− eiβ0bCS(x, y − b) (3.20)

where

CS(x, y) + (KCS) (x, y) = ([G +H]ψS) (x, y;β0), (3.21)
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and CS(x, y±b) describes the response to forcing located at each of the end-points. If we substitute
for

CS(x, y) = Csgn(y)
eiK|y|√
|y|

(3.22)

for a complex constant C then it may be shown for β0 = 0 that

CS(x, y) + (KCS) (x, y) ∼ sgn(y)
eiK|y|√
|y|

C
(
iKa

(
2
√

2/π + 1
)

+ 1
)

(3.23)

as |y| → ∞ and b→∞. So, for a wide raft the leading order behaviour of CS(x, y) is localised at
the end-points. No further analytic progress has been made beyond (3.21) to, for example, find
bounds on the effect of CS(x, y) on properties of the solution such as the forces that contribute to
raft motion. One could solve (3.21) numerically using techniques in [9] but this would not provide85

any improvement to numerical efficiency.
In the case of the N modes associated with the radiation of waves then we expect the solution

to be dominated by a component which represents the radiation of waves by a raft of infinite
width. Thus, we write

φn(x, y, 0) ' ψn(x) +Rn(x, y) for n = 0, ..., N (3.24)

where ψn(x) satisfies the two-dimensional problem

ψn(x) +
K

2π

∫ ∞
−∞

eiαx

|α| −K

∫ a

−a
ψn(x′)e−iαx

′
dx′ dα =

1

2π

∫ ∞
−∞

eiαx

|α| −K

∫ a

−a
fn(x′)e−iαx

′
dx′ dα,

(3.25)

for x ∈ (−a, a) and Rn(x, y) is a correction due to the end effects. In the case of the radiation
problem then Dn(x, y) may also be expressed in terms of the integral I(α, y;β0), giving

Dn(x, y) =
i

2π

∫ ∞
−∞

[I(α, y + b; 0)− I(α, y − b; 0)]

∫ a

−a
fn(x′)e−iαx

′
dx′ eiαx dα (3.26)

=
1

2π

∫ ∞
−∞

1

|α| −K

∫ a

−a
fn(x′)e−iαx

′
dx′ eiαx dα

+ ([G +H] fn) (x, y + b; 0)− ([G +H] fn) (x, y − b; 0) (3.27)

where the integral operators G and H were defined earlier in (3.15) and (3.16). Substituting for
the decomposition (3.24) in the integral equation (3.5), using (3.27) and (3.12) and cancelling
terms associated with the two-dimensional problem we ultimately gain an integral equation for
the unknown corrections

Rn(x, y) + (KRn) (x, y) = ([G +H] (ψn + fn)) (x, y + b; 0)− ([G +H] (ψn + fn)) (x, y − b; 0)
(3.28)

for n = 0, ..., N . As with the scattering problem the forcing due to end effects decays away from the
end-points and so Rn(x, y) will be localised for n = 0, ..., N . Making an analogous decomposition
to (3.20)

Rn(x, y) = e−iβ0bCn(x, y + b)− eiβ0bCn(x, y − b) (3.29)

where

Cn(x, y) + (KCn) (x, y) = ([G +H] (ψn + fn)) (x, y; 0) (3.30)

for n = 0, ..., N then the leading order behaviour for a wide raft is localised at the end-points
Cn(x, y).
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Combining the solutions to the scattering and radiation problems we may now determine the
force per unit width exerted on the raft in the nth mode. This is given by

Fn
2b

=
iωρ

2b

∫∫
D

(
−iAg
ω

φS(x, y, 0) +

N∑
m=0

Umφm(x, y, 0)

)
fn(x) dS (3.31)

=
iωρ

2b

∫∫
D

(
−iAg
ω

ψS(x) +

N∑
m=0

Umψm(x)

)
fn(x) dS

+

∫ a

−a

[
ρgA

b

∫ 2b

0

CS(x, y) dy +
iωρ

b

N∑
m=0

∫ 2b

0

Cm(x, y) dy

]
fn(x) dx

−−−→
b→∞

iωρ

∫ a

−a

(
−iAg
ω

ψS(x) +

N∑
m=0

Umψm(x)

)
fn(x) dx (3.32)

for n = 0, ..., N where the last line results since∫ 2b

0

CS,n(x, y) dy −−−→
b→∞

∫ ∞
0

CS,n(x, y) dy, (3.33)

leading to a convergent integral which is independent of b. Thus, for wide rafts the force per unit
width is well approximated by the force per unit width exerted on a raft of infinite extent and so90

the power take-off from a wide raft may be approximated by the two-dimensional problem. This
decomposition of the problem for a wide raft into a two-dimensional problem along with corrections
which encode the end-effects from a semi-infinite geometry is similar to the decomposition pursued
in [11] for long finite arrays.

Next, we solve (3.17) and (3.25) for ψS and ψn for n = 0, ..., N . The radiation condition
dictates that

ψS(x) ∼

{
eiKx +Re−iKx x→ −∞
TeiKx x→∞

(3.34)

where R and T are the complex radiation and transmission coefficients, given by

R = −iK
∫ a

−a
ψS(x)eiKx dx and T = 1− iK

∫ a

−a
ψS(x)e−iKx dx. (3.35)

This describes the amplitudes of the outgoing waves in the farfield in terms of the unknown
potential ψS . Meanwhile

ψn(x) ∼ aA±n e±iKx x→ ±∞. (3.36)

where the radiated wave amplitudes are given by

aA±n = i

∫ a

−a
(fn(x′)−Kψn(x′)) e∓iKx

′
dx′. (3.37)

To solve (3.17) and (3.25) we employ a Galerkin expansion method, expanding the unknown
functions in terms of a complete set of orthogonal functions

ψS(x) =

∞∑
p=0

cSp vp

(x
a

)
and ψn(x) = 2a

∞∑
p=0

c(n)p vp

(x
a

)
, (3.38)

where vr(t) = 1
2e
irπ/2Pr(t) and Pr(t) are orthogonal Legendre polynomials satisfying∫ 1

−1
Pr(t)Ps(t) dt =

2δrs
2r + 1

and

∫ 1

−1
Pr(t)e

−iσt dt = 2e−irπ/2jr(σ), (3.39)
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as in [10] where jr(σ) denote spherical Bessel functions. Multiplying (3.17) through by v∗q (x/a)/a
and (3.25) by v∗q (x/a)/2a2 then integrating over x ∈ (−a, a) we gain the following systems of
equations for the unknown coefficients

cSq
2(2q + 1)

+

∞∑
p=0

cSpKpq(β0) = jq(Ka) for q = 0, 1, 2, ... (3.40)

and

c
(n)
q

2(2q + 1)
+

∞∑
p=0

c(n)p Kpq(0) =
Ka

2π

∫ ∞
−∞

jq(αa)

|α| −K
1

2Ka2

∫ a

−a
fn(x′)e−iαx

′
dx′ dα (3.41)

for q = 0, 1, 2, .... and n = 0, ..., N where

Kpq(β0) =
Ka

2π

∫ ∞
−∞

jp(αa)jq(αa)√
α2 + β2

0 −K
dα for p, q = 0, 1, 2, .... (3.42)

Indenting around the poles at α = ±
√
K2 − β2

0 and noting that the integral vanishes unless p+ q
is even we may write

K2p+ν,2q+ν(β0) = iKa
j2p+ν(Ka)j2q+ν(Ka)

cos θ0
+
Ka

π
−
∫ ∞
0

j2p+ν(αa)j2q+ν(αa)√
α2 + β2

0 −K
dα (3.43)

for p, q = 0, 1, 2, ... and ν = 0, 1 resulting in a decoupling of (3.40) and (3.41) into symmetric
and antisymmetric parts. If we expand the generalised modes in terms of the same set of basis
functions as used in (3.38),

fn(x) =

∞∑
k=0

α
(n)
k vk

(x
a

)
for n = 0, ..., N, (3.44)

then we may also express the right hand side of (3.41) in terms of the integrals Kpq(0). Ultimately,
we write

c
(n)
2q+ν

2(4q + 2ν + 1)
+

∞∑
p=0

c
(n)
2p+νK2p+ν,2q+ν(0) =

1

2Ka

∞∑
k=0

α
(n)
2k+νK2k+ν,2q+ν(0) (3.45)

for q = 0, 1, 2, ... where

α
(n)
k = 2(2k + 1)

∫ 1

−1
fn(at)v∗k(t) dt for n = 0, ..., N . (3.46)

The efficiency may then be calculated using either the expression for power given in [9] or
conservation of energy, which results in

E = 1− |Rtotal|2 − |Ttotal|2 (3.47)

where

Rtotal = R+

N∑
n=0

UnA
−
n = −iKa

∞∑
p=0

jp(−Ka)

[
cSp + 2

N∑
n=0

Un

(
c(n)p − α(n)

p /2Ka
)]

(3.48)

and

Ttotal = T +

N∑
n=0

UnA
+
n = 1− iKa

∞∑
p=0

jp(Ka)

[
cSp + 2

N∑
n=0

Un

(
c(n)p − α(n)

p /2Ka
)]

. (3.49)
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3.2. Approximation for a narrow raft95

In this secion we consider a narrow raft aligned parallel to the positive x-axis and subject to
a prominent incident wave direction θ0 which is assumed to be small so that the incident wave
field is aligned along the length of the raft. It is assumed that Kb� 1, Ka = O(1) and b/a� 1.
Since the raft is narrow we expect the pressure to be approximately constant across the width of
the raft, that is φ(x, y, 0) ' φ(x, 0, 0) for (x, y) ∈ D. This allows the y−dependence of the integral
equations (3.5) to be evaluated explicitly, an approach which differs from that used in [7] in which
elongated bodies are considered using a classical slender-body theory. We begin by evaluating the
integral w.r.t y′ using ∫ b

−b
e−iβy

′
dy′ ' 2b. (3.50)

Then, we evaluate the inverse Fourier transform w.r.t β. This follows similarly to the evaluation
of I(α, y;β0) (defined in (3.11)) only without the pole at β = β0. We assign a small positive
imaginary part to the frequency ω, moving the poles at β = ±

√
K2 − α2 above and below the real

β-axis respectively and allowing the contour of integration to run along the real β-axis. We deform
the contour into the upper and lower-half β-plane for y > 0 and y < 0 respectively accounting for
contributions due to the branch cuts on the imaginary axis for |= {β}| > |α|. Finally, the small
imaginary part of the frequency is set to zero and we find

1

2π

∫ ∞
−∞

eiβy

k −K

∫ b

−b
e−iβy

′
dy′ dβ = 2b

[
Ke−λ(α,K)|y|

λ(α,K)
+

sgn(y)

π

∫ ∞
|α|

e−|y|s
√
s2 − α2

s2 − α2 +K2
ds

]
(3.51)

where λ(α,K) was defined earlier in (3.13). Substituting (3.51) and the expansion

φS(x, y, 0) '
∞∑
p=0

dSp vp

(x
a

)
(3.52)

into (3.5), multiplying by v∗q (x/a)/2ab and integrating over (x, y) ∈ D we then gain the sets of
equations

dSq
2(2q + 1)

+ 2Kb

∞∑
p=0

dSpSpq = jq(α0a) for p, q = 0, 1, 2, ... (3.53)

where

Spq =
Ka

2π

∫ ∞
−∞

jp(αa)jq(αa)

λ(α,K)
dα. (3.54)

We note that the integrals vanish unless p+ q is even in which case

S2p+ν,2q+ν =
Ka

π

∫ ∞
0

j2p+ν(αa)j2q+ν(αa)

λ(α,K)
dα for p, q = 0, 1, 2, ... and ν = 0, 1 (3.55)

and (3.53) thus decouples into symmetric and antisymmetric parts. Expanding about Kb = 0
then results in approximations for our unknown coefficients

dS2q+ν ' 2(4q + 2ν + 1)j2q+ν(α0a)− 8Kb

∞∑
p=0

j2p+ν(α0a)(4p+ 2ν + 1)(4q + 2ν + 1)Ssl2p+ν,2q+ν

(3.56)

for q = 0, 1, 2... and ν = 0, 1.
The solution for the N + 1 modes associated with the radiation problem follows similarly.

Expanding the unknown functions as

φn(x, 0, 0) ' 2a

∞∑
p=0

d(n)p vp

(x
a

)
for n = 0, ..., N (3.57)
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we ultimately find

d
(n)
2q+ν ' 2(4q + 2ν + 1)

2Kb

2Ka

∞∑
k=0

α
(n)
2k+νS2k+ν,2q+ν for q = 0, 1, 2, ... and ν = 0, 1 (3.58)

when Kb� 1 where α
(n)
k are the expansion coefficients of fn(x) defined earlier in (3.46).

3.3. Numerical Calculations and Results

The numerical integration of Spq requires the integral to be rearranged since in the form shown
in (3.54) the integrand is unbounded near |α| = K. One way to overcome this issue is to make
the substitution α = K cosu for α < K and α = K coshu for α > K. However, this leads to a
rapidly oscillating integral and we instead choose to make use of the integral identities∫ 1

0

Jm(aζ)√
1− ζ2

dζ =
π

2

[
Jm

2

(a
2

)]2
and

∫ ∞
1

Jm(aζ)√
ζ2 − 1

dζ = −π
2
Jm

2

(a
2

)
Ym

2

(a
2

)
(3.59)

for a > 0 (Gradshteyn and Ryzhik [4], §6.552(4, 6)) along with the relation

jn(x) =

√
π

2x
Jn+ 1

2
(x). (3.60)

These allow us to write

S2p+ν,2q+ν =
Ka

π

∫ ∞
0

(
j2p+ν(αa)−

√
α/Kj2p+ν(Ka)

)
λ(α,K)

j2q+ν(αa) dα

+
iπ

4
J2p+ν+ 1

2
(Ka) J 2q+ν

2 + 1
4

(
Ka

2

)
H

(1)
2q+ν

2 + 1
4

(
Ka

2

)
(3.61)

for p, q = 0, 1, 2, ... and ν = 0, 1 in which the integrand now vanishes as α → K, resolving the
numerical issue. In this process we have also slowed the decay so it aids convergence to further
employ another integral result (Gradshteyn and Ryzhik [4], §6.552(1)) to explicitly calculate the
leading order contribution∫ ∞

0

√
α/Kj2q+ν(αa)√
α2 +K2

dα =

√
π

2Ka
I 2q+ν

2 + 1
4

(
Ka

2

)
K 2q+ν

2 + 1
4

(
Ka

2

)
(3.62)

where In(t) and Kn(t) are modified Bessel functions. Thus, for the purpose of numericl integration
we use

S2p+ν,2q+ν =
Ka

π

∫ ∞
0


(
j2p+ν(αa)−

√
α/Kj2p+ν(Ka)

)
λ(α,K)

+

√
α/Kj2p+ν(Ka)√

α2 +K2

 j2q+ν(αa) dα

− 1

2
J2p+ν+ 1

2
(Ka)I 2q+ν

2 + 1
4

(
Ka

2

)
K 2q+ν

2 + 1
4

(
Ka

2

)
+
iπ

4
J2p+ν+ 1

2
(Ka) J 2q+ν

2 + 1
4

(
Ka

2

)
H

(1)
2q+ν

2 + 1
4

(
Ka

2

)
(3.63)

for q, p = 0, 1, 2, ... and ν = 0, 1 where the integrand now has cubic decay and vanishes near
|α| = K.100

Infinite summations associated with the unknown functions and bending modes are truncated
at p = q = k = P in numerical computations and spherical Bessel functions are calculated using
a Fortran routine [2].

Results will be presented in terms of the efficiency and its three-dimensional analogue, the
capture factor, a dimensionless measure of power absorption defined to be the ratio of power
absorbed to power available in the equivalent crest length of incident wave to the width of the
device

l̂ =
W

2bWinc
. (3.64)
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Figure 3: Figures show l̂ as a function of Ka. In both cases two-dimensional results are shown by a solid line
whilst b/a = 1, 2, 4 are shown by the dashed, dotted and chained lines respectively. Figures (a) and (b) show results

for systems made up of 2 and 4 equally-sized pontoons respectively. In both cases λ̂n = 0.01 for all n, s = 0.6 and
a/h = 10.
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Figure 4: Figures show l̂ as a function of Ka for two equally-sized pontoons with d/2b = 0.5 and λ̂1 = 0.001 fixed.
Results of the full model are shown by the solid line whilst slender-body approximations are shown by the dashed
lines. Figures (a) − (c) show results for Kb = 0.4, 0.2 and 0.1 respectively, agreement improving as Kb decreases.

We also use a dimensionless form for the power take-off parameters, writing λ̂n = λn/16ρωa4b.
In Figure 3 the convergence of results computed using the full model of [9] to the two-105

dimensional approximation is demonstrated in two different instances, (a) and (b) corresponding
to systems of two and four equally-sized pontoons respectively. Results are shown for normally
incident waves with a/h = 10, s = 0.6 and λn = 0.01 for all n. We can see the two-dimensional
model makes a good approximation for aspect ratios b/a = O(10) with agreement improving for
large values of Kb since this corresponds to a small incident wavelength relative to device width.110

Numerical efficiency was improved dramatically for wide rafts with computations performed for
a raft made up of two equally-sized pontoons using the two-dimensional approximation being on
average O(103) faster than computations performed using the full model with b/a = 8.

Meanwhile, figure 4 shows the convergence of results computed using the full model of [9] to
the slender-body approximation developed here. Results are shown for a system of two equally115

sized pontoons subject to normally incident waves with b/h = 0.5, λ̂1 = 0.001 and s = 0.9 fixed.
Figures 4 (a), (b) and (c) correspond to Kb = 0.4, 0.2 and 0.1 respectively. Agreement between
the full model and the slender body approximation is very good for Kb = O(10−1), especially so
for large Ka, corresponding to a large aspect ratio a/b.

For a narrow raft, Kb small, then the computational expense is marked since the decay of the120

infinite integrals defining inverse Fourier transforms in the y-direction is O((Kb)−1). This results
in increasingly large truncation sizes being required to evaluate the integrals numerically to an
appropriate degree of accuracy. Since this narrow raft regime is of interest, applying to devices
such as the Pelamis in real sea states, then more efficient computations are highly desirable. The
speed of computations performed using the narrow raft approximation was on average O(102)125

faster than those performed using the full model, a considerable improvement.
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4. Continuously-damped plate model

In this section we are concerned with developing a simpler configuration which accurately
models a floating raft made up of multiple pontoons. Thus, we consider an approximation in which
the discrete raft sections are replaced by a continuously-damped plate model and the discrete power130

take-off applied in the hinges is replaced by continuous damping of the energy along the length
of the device. The N + 1 equations of motion for the raft are thus reduced to a single kinematic
boundary condition on the underside of the plate which incorporates its full dynamics. The velocity
potential Φ(x, y, z, t) satisfies the hydrodynamic problem stated in [9, (2.3-2.6)]. Replacing the
vertical displacements of the hinges and end-points, denoted by ζn(t), with the continuously135

varying vertical displacement of the raft, which will be denoted by ζ(x, t), the kinematic condition
then becomes

Φz(x, y, 0, t) = ζ̇(x, t) for (x, y) ∈ D. (4.1)

Further, factoring out harmonic time-dependence by writing

ζ̇(x, t) = <
{(
−iAg
ω

)
η(x)e−iωt

}
and Φ(x, y, z, t) = <

{(
−iAg
ω

)
φ(x, y, z)e−iωt

}
, (4.2)

we find that φ(x, y, z) satisfies

∂φ

∂z
(x, y, 0) =

{
η(x) for (x, y) ∈ D
Kφ(x, y, 0) for (x, y) /∈ D

(4.3)

along with [9, (2.8 and 2.9)], the remaining boundary conditions and governing equation defining
the hydrodynamic problem remaining unchanged from the discrete model. The solution to this
hydrodynamic problem will be considered in §4.2, but first we turn our attention to a continuous140

description of the raft’s motion.

4.1. Kinematic boundary condition

In order to a kinematic boundary condition describing the raft’s continuous motion we must
first consider a discrete system of equations of motion for the raft expressed in terms of the vertical
and rotational motions of the individual pontoons. This description of the raft’s motion is largely145

guided by ideas used in [6] for a two-dimensional articulated raft. The equations describing the
motion of the flexible raft may then be derived by taking the limit an = δx→ 0 whilst N →∞ so
that a, and thus the dimension of the raft, remains constant. This derivation for the continuous
equation is very similar to that of the Euler-Bernoulli beam equation in elasticity, see for example
[5].150

We begin by considering the vertical motions of the articulated raft. The interaction between
adjacent pontoons is captured through Rn which denotes the vertical force exerted by pontoon n
on pontoon n+ 1. Applying Newton’s second law for vertical motion we find

−iωMn

(
ηn + ηn−1

2

)
= Rn−1 −Rn + Fw,n −

i

ω
Cvn

(
ηn + ηn−1

2

)
for n = 1, ..., N (4.4)

where the vertical wave force on the nth pontoon is given by

Fw,n = iωρ

∫∫
Dn

φ(x, y, 0) dx dy, (4.5)

whilst the coefficients of the vertical accelerations and displacements in the inertial and buoyancy
forces respectively are the mass and the weight of water displaced per unit depth of submergence,

Mn = 2ρsanbh and Cvn = 2ρganb. (4.6)

When considering the continuous limit an = δx→ 0 the discrete parameters describing articulated
motion instead gain a continuous functional dependence on x and so we write

Rn → R(x) and ηn → η(x) as an → 0 (4.7)
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where R(x) now represents the continuous shear force and η(x) is the continuous vertical velocity
of the mat. Dividing (4.4) by an and taking limits results in

−2iωρshbη(x) = −R′(x) + iωρ

∫ b

−b
φ(x, y, 0) dy − 2iρbg

ω
η(x) as an → 0 (4.8)

for (x, y) ∈ D.
Next, we consider rotational motions. Applying Newton’s second law to the rotational motion

of the nth pontoon about its mid-point gives

−iωInΩn = −1

2
(Xn −Xn−1) (Rn +Rn−1) +Xw,n +Xe,n −

i

ω
CrnΩn for n = 1, ..., N (4.9)

where Ωn = (ηn − ηn−1) /an is the angular velocity of the nth pontoon. The wave torque on the
pontoon is given by

Xw,n = iωρ

∫∫
Dn

φ(x, y, 0)

(
x− Xn +Xn−1

2

)
dx dy (4.10)

whilst the rotary inertia and buoyancy coefficients are

In =
Mna

2
n

12
and Crn =

Cvna
2
n

12
(4.11)

respectively and the external mechanical torque due to the damping in the hinges is given by

Xe,n = λn (Ωn+1 − Ωn)− λn−1 (Ωn − Ωn−1) . (4.12)

Here λn describes the damping in the hinges due to power take-off for n = 1, ..., N − 1. In
the continuous limit the angular velocities describing the rotational motion of the pontoons are
expressed in terms of the continuous vertical velocity of the raft as

Ωn =
ηn − ηn−1

an
→ η′(x) as an → 0. (4.13)

We also define an analogue of the power take-off parameter, describing continous damping of the
bending motion along the length of the mat,

λn → λ̂/an as an → 0. (4.14)

Thus, the external mechanical torques become

Xe,n = λn (Ωn+1 − Ωn)− λn−1 (Ωn − Ωn−1)

→ λ̂η′′′(x)an as an → 0. (4.15)

Combining these equations, differentiating with respect to x, dividing through by an and taking
limits we find

−2iωρsbh
3

12
η′′(x) = −R′(x) + λ̂η′′′′(x) as an → 0 (4.16)

for (x, y) ∈ D, the contributions due to wave and buoyancy torques having vanished in the limit.
Eliminating R′(x) between these equations and dividing by 2iρbg/ω we then gain the single

equation

−ia4Bη′′′′(x) + Iη′′(x) + (1− γ) η(x)− K

2b

∫ b

−b
φ(x, y, 0) dy = 0 for (x, y) ∈ D (4.17)

where

B =
ωλ̂

2a4ρbg
, γ =

ω2ρsh

ρg
and I =

ω2ρsh
3

12ρg
=
h2γ

12
. (4.18)
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In addition to (4.18) there are also free edge conditions which must apply on x = ±a. Firstly, the
shear force vanishes at the end points,

R(±a) = 0 (4.19)

this is inherited from the fact that R0 = RN = 0 in the discrete system of equations and specifies
that there is no external force. Substituting from (4.16) then (4.19) becomes

−ia4Bη′′′(x) + Iη′(x) = 0 on x = ±a. (4.20)

Secondly, the bending moment vanishes at x = ±a,

λ̂η′′(x) = 0 on x = ±a, (4.21)

since there is no damping force due to power take-off at the end-points. To make progress later
we assume we can replace the average pressure across the width of the plate in (4.17) by the point
wise pressure,

1

2b

∫ b

−b
φ(x, y, 0) dy = φ(x, y, 0). (4.22)

This is an acceptable assumption where the plate is slender and the pressure is approximately
constant across its width, but it also turns out to work well for wide rafts where the solution is
approximately two-dimensional. The resulting set of equations (4.17, 4.20 and 4.21) are equivalent155

to the conditions on a flexing ice sheet adopted by Balmforth and Craster in [1] without shear
deformation, frictional damping or flexing in the widthways direction. Here, the damping is
provided by the power take-off and is related to the bending stiffness B of an ice sheet through
B ≡ |B|eiψ = −ia4ρgB. Here ψ is the phase of the bending stiffness with ψ < 0 corresponding to
dissipation. Thus, |B| = a4ρgB and ψ = −π/2, describing dissipative rather than elastic effects.160

Due to our small draft assumption we may neglect I. Thus, combining (4.17) with (4.3) with
these simplifications, we write the complete surface condition as(

∂

∂z
−K

)
φ(x, y, 0) =

{
γη(x) + ia4Bη′′′′(x) for (x, y) ∈ D
0 for (x, y) /∈ D

(4.23)

along with the edge conditions

η′′′(x) = η′′(x) = 0 on x = ±a. (4.24)

With the dynamics of the plate now fully described by the surface boundary condition we turn
our attention to a solution of the hydrodynamic problem.

4.2. Hydrodynamic Problem

We define the Fourier transform to be

φ(α, β, z) =

∫ ∞
−∞

∫ ∞
−∞

(φ(x, y, z)− φI(x, y, z)) e−iαxe−iβy dx dy. (4.25)

Then, taking Fourier transforms of the governing equations [9, (2.8 and 2.9)], it follows that(
d2

dz2
− k2

)
φ = 0 for z < 0 (4.26)

where k =
√
α2 + β2 and φ→ 0 as z → −∞. Using (4.23) we also find that(

d

dz
−K

)
φ(α, β, 0) = I(α, β) (4.27)
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where

I(α, β) =

∫∫
D

(
∂

∂z
−K

)
φ(x, y, 0)e−iαxe−iβy dx dy (4.28)

=

∫∫
D

(
γη(x) + ia4Bη′′′′(x)

)
e−iαxe−iβy dx dy. (4.29)

Thus, the Fourier transform solution is given by

φ(α, β, z) =
I(α, β)

k −K
ekz. (4.30)

Invoking the inverse Fourier transform of (4.30) we gain an integral representation for φ(x, y, z)

φ(x, y, z) = φI(x, y, z) +
1

4π2

∫ ∞
−∞

∫ ∞
−∞

I(α, β)

k −K
eiαxeiβyekz dα dβ (4.31)

and after differentiating with respect to z and setting z = 0 this results in an integral equation
for η(x)

η(x) + (Kη) (x) = Keiα0xeiβ0y (4.32)

where

(Kη) (x) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

k

K − k

∫∫
D

(
γη(x′) + ia4Bη′′′′(x′)

)
e−iαx

′
e−iβy

′
dx′ dy′ eiαxeiβy dα dβ.

(4.33)

To solve (4.32) we expand the unknown vertical velocity η(x), writing

η(x) '
∞∑
n=0

anwn
(
x
a

)
a(γ + iBk4n)

. (4.34)

Here it is essential we choose wn(t) to be the eigenmodes of the Euler-Bernoulli beam equation

w′′′′n (t) = k4nwn(t) for −1 < t < 1 (4.35)

satisying free edge conditions

w′′′n (t) = w′′n(t) = 0 for t = ±1 (4.36)

as required by (4.24). Substituting for this approximation in (4.32) the combination of η with η′′′′

reduces to a dependence on the function wn alone since, using (4.35),

γη(x) + ia4Bη′′′′(x) =

∞∑
n=0

anwn (x/a) /a. (4.37)

The eigenvalue problem for wn(x) has the solutions

wn(t) =


1/2 if n = 0

it/2 if n = 1
1
4

(
cosh(k2mt)
cosh(k2m) + cos(k2mt)

cos(k2m)

)
if n = 2m

i
4

(
sinh(k2m+1t)
sinh(k2m+1)

+ sin(k2m+1t)
sin(k2m+1)

)
if n = 2m+ 1

(4.38)

resulting in a set of modes identical to that used by Newman in [8] for a similar problem. Mean-
while, the eigenvalues satisfy k0 = k1 = 0 along with

tanh(k2n) + tan(k2n) = 0 and tanh(k2n+1)− tan(k2n+1) = 0 for n > 1. (4.39)
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and the complete set of orthogonal eigenfunctions have the properties∫ 1

−1
wn(t)w∗m(t) dt = δmncm and

∫ 1

−1
wn(t)e−iσt dt = Wn(σ) (4.40)

where the first two cases (n = 0, 1) are given by

Wn(σ) = jn(σ) with cn =

{
1/2 if n = 0

1/6 if n = 1

whilst for m > 0

W2m+ν(σ) =

{
σ2 (σ sinσ + k2m cosσ tanh(k2m)) /

(
σ4 − k42m

)
if ν = 0

σ2 (k2m+1 sinσ coth(k2m+1)− σ cosσ) /
(
σ4 − k42m+1

)
if ν = 1.

(4.41)

with c2m+ν = 1/8 for ν = 0, 1.
Substituting for the expansion of η(x) given in (4.34) in the integral equation (4.32), multiplying

through by w∗m(x/a) and integrating over (x, y) ∈ D results in the following system of linear
equations for the unknown coefficients am,

amcm
(γ + iBk4m)

+
∞∑
n=0

anFmn = KaWm(α0a)j0(β0b) for m = 0, 1, 2, ... (4.42)

where

Fmn = − ab

2π2

∫ ∞
−∞

∫ ∞
−∞

k

k −K
j20(βb)Wn(αa)Wm(αa) dα dβ for m,n = 0, 1, 2, .... (4.43)

Due to the symmetry properties of the Wn the integrals which determine Fmn vanish if n+m is
odd, a redundancy which allows us to decouple (4.42) into symmetric and antisymmetric parts,

a2m+νc2m+ν

(γ + iBk42m+ν)
+

∞∑
n=0

a2n+νF2m+ν,2n+ν = KaW2m+ν(α0a)j0(β0b) (4.44)

for m = 0, 1, 2, ... and ν = 0, 1. Having developed a continuously-damped model of the raft we165

now consider an expression for the power.

4.3. Power

The power absorbed by a flexible raft is given by the time-averaged rate of working of the
pressure force against the motion of the raft

W =
ω

2π

∫ 2π/ω

0

[∫ a

−a
P (x, t)ζ̇(x, t) dx

]
dt (4.45)

where the pressure force on the underside of the raft is given by

P (x, t) = −ρ
∫ b

−b
Φt(x, y, 0, t) dy = <

{(
−iAg
ω

)(
iωρ

∫ b

−b
φ(x, y, 0) dy

)
e−iωt

}
. (4.46)

Thus, using a theorem on the averages of products, we find

W =
1

2
|Ag/ω|2<

{∫ a

−a

(
iωρ

∫ b

−b
φ(x, y, 0) dy

)∗
η(x) dx

}
. (4.47)

Substituting for the pressure force using the kinematic condition (4.23) results in

W =
1

2
|Ag/ω|2<

{
2bρg

ω

∫ a

−a

(
a4Bη′′′′(x) + i(1− γ)η(x)

)
η∗(x) dx

}
. (4.48)

16



Then, using the definition of B from (4.18) along with the fact that the second term is purely
imaginary, this becomes

W =
λ̂

2
|Ag/ω|2<

{∫ a

−a
η′′′′(x)η∗(x) dx

}
. (4.49)

Further analytic simplification results after integrating by parts twice and using the edge conditions
(4.24),

W =
λ̂

2
|Ag/ω|2

∫ a

−a
|η′′(x)|2 dx (4.50)

the power is thus given by the bending energy in the plate, η′′(x) being the curvature. It is worth
noting that it is more convenient to use (4.49) since it involves fourth derivatives of the complex
vertical velocity η(x) allowing us to use (4.35) when substituting for the Galerkin expansion. In
this way we ultimately gain

W = −ρbgB
8aω

|Ag/ω|2
∞∑
n=2

∣∣∣∣ ank
2
n

γ + iBk4n

∣∣∣∣2 (4.51)

where the sum starts at n = 2 since k0 = k1 = 0. This reflects the fact that the first two
eigenmodes, being rigid plate modes, do not contribute to power.

4.4. Numerical Calculations and Results170

For the purpose of numerical computation the infinite summation associated with the unknown
vertical displacement of the plate is truncated at n = 2N + 1. All results in this section are shown
for a/d = 10 and s = 0.9 along with the continuous damping parameter B = 0.01 and the

corresponding articulated power take-off parameters λ̂n = NB/8Ka for n = 1, ..., N − 1. In
the continuously-damped model developed in this section we have made two approximations: (i)
that the constituent pontoons are sufficiently short to approximate a continuously damped plate
and (ii) that φ(x, y, 0) is constant across the width of the raft. In order to test the range of
applicability of these two assumptions we consider the convergence of results computed using [9]
to the continuously-damped model with increasing N and fixed length in the case of both wide
and narrow rafts (a/b = 4 and 0.25 respectively). Results are presented in terms of the capture
factor which, using an incident wave power Winc = ρg|A|2ω/4K, is given by

l̂ =
W

2bWinc
= − 1

4Ka

2N+1∑
n=2

|an|2
Bk4n

|γ + iBk4n|
2 . (4.52)

Figure 5 shows convergence of results computed using the full articulated model of [9] to the
continuously-damped model with increasing N for a/b = 4 and 0.25. In both cases convergence is
rapid, indeed articulated rafts results may barely be distinguished from the continuously-damped
model with as few as 4 pontoons (just 3 hinges). Best agreement is seen for small values of Ka
since this corresponds to long wavelengths relative to the device length, resulting in fewer bends175

in the continuous model and describing an articulated raft of relatively few sections. It is worth
highlighting that we have made a narrow raft approximation in which the pointwise pressure across
the width of the raft is assumed to be equal to the widthways average of the pressure. It is thus
surprising that such good agreement is seen in the case of a modestly wide raft a/b = 0.25. The
reasons for this are not fully understood. The case in which the raft is square (that is a = b) has180

also been tested and whilst the results are close to the continuous model, they converge to values
that are not in such good agreement with the continuous model as those produced for modestly
wide or narrow rafts. We conjecture that subject to normally incident waves the pointwise pressure
across the majority of a wide raft is approximately equal to the average, the end effects being small
and localised so that the dominant behaviour is well described by the model set out in §4.1.185

We also consider variation in the vertical displacement of the raft along its length. Our
interest in this is two-fold, firstly the formulation is based on a linearised theory of water waves
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Figure 5: The figure shows a comparison of articulated raft results with the continuously-damped plate approx-
imation with (a) and (b) plotting l̂ as a function of Ka for a/b = 4 and a/b = 0.25 respectively. Dotted, dashed
and chained curves represent systems of 2,3 and 4 pontoons whilst the solid lines show results corresponding to
the continuously-damped plate model. In both cases a/d = 10 and s = 0.9 are fixed whilst power take-off is

parameterised by B = 0.01 and λ̂n = NB/8Ka for all n.

and there has been an a priori assumption that vertical excursions of the raft from its equilibrium
position are small in order that results retain validity. We must therefore be careful to ensure
that this assumption is justified in the results presented. Secondly, it allows us to inspect the190

maximum deformations of the raft and assess the importance of the number of pontoons at different
dimensionless wave numbers.

The response amplitude operator (RAO) is used to characterise the motions of floating struc-
tures. In the case of the articulated raft the RAO is defined as the maximum vertical displacement
of the nth node per unit height of incident wave (H = 2A) and is given in terms of the generalised
modes of motion as ∣∣∣∣ζn(t)

H

∣∣∣∣ =
|ηn|
Hω

=

∣∣∣∣∣
N∑
m=0

Umfm(Xn)

∣∣∣∣∣ /Hω. (4.53)

Meanwhile, for the continuously-damped plate model the RAO is given by the maximum vertical
displacement per unit height of incident wave and is now a continuous function∣∣∣∣ζ(x, t)

H

∣∣∣∣ =
|η(x)|
2K

' 1

2Ka

∣∣∣∣∣
2N+1∑
n=0

anwn
(
x
a

)
γ + iBk4n

∣∣∣∣∣ . (4.54)

In Figure 6 we see the RAO for an articulated raft made up of 8 pontoons and results computed
using the continuously-damped plate model plotted as a function of position for Ka = 1, 3.1 and
7 and a/b = 4 fixed. For small Ka there is little variation in the maximum vertical displacements195

since the wavelength is long compared to the device length and the entire raft oscillates with little
articulation. Comparing with the results in 5(a) we see that this corresponds to strong agreement
between the continuously damped model and articulated raft along with minimal power absorption
since bending has a minimal effect and the power take-off mechanism is not strongly engaged.
There is much larger variation in the RAO along the length of the device for Ka = 3.1 since this200

is near to the peak in capture factor and the bending motions are thus greater. Finally, for large
Ka then the incident wavelength is short relative to the device length and has little effect beyond
the front section of the raft. This corresponds to a deterioration in agreement as the positioning
of the points of articulation has a greater significance when the wave field is rapidly varying along
the length of the raft.205

5. Conclusions

In this paper we have developed approximations to an articulated raft-type device appropriate
to three particular parameter regimes in which direct numerical methods of [9] struggle. The
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Figure 6: The figure shows a comparison of the articulated and continuously-damped raft motions, the RAO of the
raft being plotted as a function of position for parameters correrponding to figure 5(a). Dotted, dashed and chained
curves correspond to the continuously-damped plate model with Ka = 1, 3.1 and 7 whilst crosses correspond to the
discrete node displacements of an articulated raft made up of 8 pontoons.

include rafts with large aspect ratios (wide and narrow with respect to a reference angle of wave
incidence) as well as a simplified continuum model for a raft with many articulations. In all cases,210

results have demonstrated good agreement in the key quantities determining the operation of the
raft as a wave energy converter for parameters of physical interest. For example, 99% accuracy is
obtained in capture width when either Kb ≥ O(10) (wide raft relative to the incident wavelength)
or Kb ≤ O(1/10) (narrow raft relative to incident wavelength) whilst it has been shown that a
continuum model of wave damping replicates the operation of rafts with 3 or more hinges within215

small margins of error. In each approximation the numerical effort required is reduced by orders of
magnitude from full numerical simulations. This can be very important for design optimisation. It
is possible these ideas could be applied to the operation of similar marine devices such as elongated
anaconda, wave star or Kamei ship oscillating water column devices.
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