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Abstract

We consider the effect of finite length strings branched from an infinite string on the

waves propagating along that string. Alternative physical settings of the problem could

involve transmission-line problems in electromagnetism, narrow-channel propagation in

acoustics or water waves or quantum graphs. It is shown that waves are totally reflected

at frequencies which coincide with resonance on any branched string. As a consequence,

a multiple branches of tapered length can be used to manufacture a broadbanded stop

filter. This has close connections to a phenomenon referred to as ‘rainbow trapping’ in

Physics.

1 Introduction

This problem arose as a possible means of developing an understanding to the solution of
a more complicated problem in acoustics (Jan & Porter (2018, in preparation)), specifically
the reflection of waves propagating in a finite-width waveguide from multiple narrow channels
extending perpendicular to one of the two parallel waveguide walls. The current problem
is applicable to the situation where long waves propagate in narrow waveguides with equally
narrow side channels and wave propagation in both the waveguide and side channels is assumed,
to leading order, one dimensional.

It’s not yet clear that the solution contained within this report helps directly with the
specific issues being addressed in Jan & Porter (2018). Nevertheless, the solution does contain
some interesting mathematical features and results which do not, by themselves, merit journal
publication but may be useful to researchers interested in topics related to what has become
known as ‘rainbow trapping’.

2 Wave reflection from a single branch

Consider an infinitely long uniform string under tension aligned with the x-axis. At x = xn,
the string is connected to an equal string of finite length 2cn under equal load which runs
perpendicular to the x-axis from (xn,−cn) to (xn, cn). We assume time harmonic motions of
angular frequency ω. Then the equation governing the string displacement ℜ{η(x)e−iωt} for
x < xn and x > xn is

η′′(x) + k2η(x) = 0 (1)

where k2 = ω2/c2 and c2 = T/ρ in terms of the tension, T , and the mass per unit length of the
string, ρ.
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The displacement for 0 < y < cn along the positive half of the branch is given by ℜ{ζn(y)e−iωt},
symmetry dictating that ζn(−y) = ζn(y), where

ζ ′′n(y) + k2ζn(y) = 0, 0 < y < cn (2)

and we impose ζ ′n(cn) = 0 on account of the physical problem which motivated this study; a
Dirichlet condition is more applicable for real strings. At the junction, displacements must
match, implying that

η(x−

n ) = η(x+

n ) = ζn(0
+) (3)

and the vertical forces must balance so that

η′(x+

n ) + 2ζ ′n(0
+) = η′(x−

n ). (4)

In x < xn, the solution is
η(x) = A−

n e
ikx +B−

n e
−ikx (5)

and in x > xn,
η(x) = A+

n e
ikx +B+

n e
−ikx (6)

whilst along the branch
ζn(y) = Dn cos k(cn − y). (7)

Imposing the conditions at x = xn gives

A−

n e
ikxn +B−

n e
−ikxn = A+

n e
ikxn +B+

n e
−ikxn = Dn cos kcn (8)

and
A+

n e
ikxn −B+

n e
−ikxn − 2iDn sin kcn = A−

n e
ikxn − B−

n e
−ikxn. (9)

Eliminating Dn gives

A+

n e
2ikxn − B+

n − 2i tan kcn{A+

n e
2ikxn +B+

n } = A−

n e
2ikxn − B−

n (10)

which forms a pair of equations, together with

A−

n e
2ikxn +B−

n = A+

n e
2ikxn +B+

n , (11)

for the four amplitudes present on the infinite string.
We can either assume that the incoming wave amplitudes A−

n , B
+
n are given and determine

the outgoing wave amplitudes B−

n , A+
n (the scattering matrix approach); or that the wave

amplitudes to the left of the junction A−

n , B
−

n are prescribed and determine wave amplitudes
A+

n , B
+
n to the right (the transfer matrix approach.)

Consider the first of these. Then we find from (10), (11)

(

A+
n

B−

n

)

= S(xn)

(

A−

n

B+
n

)

, (12)

where

S(xn) = eikcn
(

cos kcn i sin kcne
−2ikxn

i sin kcne
2ikxn cos kcn

)

. (13)

We note, in passing, that det{S(xn)} = 1 and S−1(xn) = S∗(−xn) which encodes directional
invariance.
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For example, if A−

n = 1 and B+
n = 0 and we let B−

n = R and A+
n = T be reflection and

transmission coefficients then

T = eikcn cos kcn, R = ie2ikxneikcn sin kcn (14)

and we see that |R|2 + |T |2 = 1. Of special note is kcn → 1

2
π, which corresponds to resonance

in the branch with a node at y = 0 and an anti-node at y = cn. Here, T = 0, R = −e2ikxn and
all wave energy is reflected. Note also that kcn = π is also a resonance with anti-nodes at both
ends of the finite string. This gives rise to R = 0, T = 1 and the branch is transparent to (and
a slave to) the waves on the infinite string. Hereafter we use the term “resonant” to refer to
the former case where the displacement is zero at the junction and there is an anti-node at the
ends of the branch.

The transfer matrix approach involves us arranging the original pair of equations (10), (11)
for the four wave amplitudes as

(

A+
n

B+
n

)

= P(xn)

(

A−

n

B−

n

)

, (15)

where we find that

P(xn) =

(

e−ikxn 0
0 eikxn

)(

1 + itn itn
−itn 1− itn

)(

eikxn 0
0 e−ikxn

)

. (16)

where tn ≡ tan kcn.
Again we see that det{P(xn)} = 1 and P−1(xn) = P∗(−xn) and can recover the previous

evaluation of R and T by inserting the appropriate substitutions for the wave amplitudes.
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Figure 1: Modulus of transmission coefficient against k for a branch of length c1 = 1 (solid)
and c1 = 2 (dashed).

In Fig. 1 we show the effect of a single branch. There is only one dimensionless number here,
kc1, and so the two curves of c1 = 1 and c1 = 2 are identical, but for a rescaling of k. Indeed, all
we are plotting is the curve | cos kc1| and we obviously confirm that total transmission occurs
at kc1 = π and zero transmission at kc1 = π/2.

3



3 Multiple branches

Consider now N branches placed along the string at x = xn for 1 ≤ n ≤ N . We note that

(

A−

n+1

B−

n+1

)

=

(

A+
n

B+
n

)

= P(xn)P(xn−1) . . .P(x1)

(

A−

1

B−

1

)

. (17)

We define an auxiliary node x0 = 0 and can write (17) as

(

A+
n e

ikxn

B+
n e

−ikxn

)

= Qn

(

A−

1

B−

1

)

where Qn = QnQn−1 . . .Q1 (18)

where

Qn =

(

1 + tn itn
−itn 1− itn

)(

eikδn 0
0 e−ikδn

)

(19)

and δn = xn−xn−1. Thus Qn are also transfer matrices which only rely on the relative distance
between neighbouring junctions on the string. On account of the particular structure of the
matrices Qn we can write

Qn =

(

βn γn
γ∗

n β∗

n

)

(20)

where the asterisk denotes complex conjugate. The entries of Qn are determined from the
coupled recurrence relation

βn = (1 + itn)e
ikδnβn−1 + itne

−ikδnγ∗

n−1

γn = (1 + itn)e
ikδnγn−1 + itne

−ikδnβ∗

n−1

}

n = 2, 3, . . . (21)

with β1 = (1 + it1)e
ikδ1, γ1 = it1e

−ikδ1.
To determine the overall scattering by N branches we use (18) with n = N and let A−

1 = 1,
B+

N = 0 such that T = A+

N and R = B−

1 are reflection and transmission coefficients. Then the
above can be written

(

T eikxN

0

)

= QN

(

1
R

)

(22)

from which we deduce
R = γ∗

N/β
∗

N , T = e−ikxN (βN +RγN). (23)

Since QN is a product of transfer matrices, its determinant is equal to one and it follows that
T = e−ikxN/β∗

N .
Under the current variables, amplitudes along each branch may be expressed, using (8),

(18), (20) as
Dn = sec kcn(βn + γ∗

n +R(β∗

n + γn)). (24)

We consider the case where cos kcn = 0 in the next subsection.
In Fig. 2 the we show the effect of two branches on the transmission coefficient and note

that T = 0 when there is node/anti-node resonance on either of the two strings (e.g. at k = 1

4
π,

1

2
π, 3

4
π and total transmission when there is the coincidence of anti-node/anti-node resonance

(e.g. at k = π). The four different curves show the effect of spacing between the branches
which varies from δ2 ≡ δ = 0.8 to δ = 0.1.
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Figure 2: Modulus of transmission coefficient against k for two branches of lengths c1 = 1 and
c2 = 2. The separation varies from δ = 0.8 (solid), δ = 0.4 (dashed), δ = 0.2, (dotted), δ = 0.1
(chained).

3.1 Branch resonance implies total reflection

Previously we showed that total reflection occurs when a single branch is made from the string
such that the branch is resonant (kcn = 1

2
π). Furthermore, Fig. 2 indicates that total reflection

occurs when the frequency coincides with either of two branch resonances. So we turn our
attention to investigating the effect of branch resonance on reflection.

Consider now an array of N branches of length cn, n = 1, 2, . . . , N in a situation in which
there exists an m such that kcm = 1

2
π and that m is the smallest value of n for which this

holds. It follows from (3), (7) that η(x−

m) = 0 = η(x+
m) and this implies from (8)

A+

m = −e−2ikxmB+

m. (25)

Implementing the transfer matrix approach over branches n = 1, . . . , m and using (25) in (18)

B+

m

(

eikxm 0
0 e−ikxm

)(

−e−2ikxm

1

)

= Qm

(

A−

1

B−

1

)

≡
(

βm γm
γ∗

m β∗

m

)(

1
R

)

, (26)

assuming an incident wave from the left with reflection coefficient R as before. Since determi-
nants of transfer matrices are unity

(

1
R

)

= B+

me
−ikxm

(

β∗

m −γm
−γ∗

m βm

)(

−1
1

)

(27)

and this implies

R = −γ∗

m + βm

γm + β∗
m

(28)

revealing that |R| = 1. Thus we have shown that branch resonance, wherever it occurs in the
array, implies total reflection.

We see that the earlier formula for Dm with kcm = 1

2
π should be interpreted as a ‘zero-over-

zero’ limit (it ought to be possible to derive the value of this limit explicitly.)
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Figure 3: Modulus of transmission coefficient against k for N = 16 branches of lengths cn =
1 + 0.01(n− 1), n = 1, 2, . . . , N with an equal separation δ = 0.01 between branches.

Note finally that the proof above does not say anything about the solution beyond the mth
branch. From the transfer matrix approach, we have, for m+ 1 ≤ n ≤ N

(

eikxNA+

N

e−ikxNB+

N

)

= QN . . .Qn

(

e−ikxnA−

n

eikxnB−

n

)

(29)

and since |R| = 1, we have 0 = T = A+

N , B
+

N = 0 and so we infer that A−

n = B−

n = 0 for all
n > m+ 1. This feature of the solution beyond the resonant branch is evident in Figs. 10–12.

In Fig. 3 we show |T | for 16 branches which have a fixed separation δ = 0.01 and whose
length is tapered linearly with distance along the main string. That is, we define the length
of the nth branch to be cn = 1 + 0.01(n − 1). Thus c1 = 1, c16 = 1.15 and the individual
string resonances lie at discrete wavenumbers defined by k = 1

2
π/cn. In Fig. 4 we magnify the

region between the first branch resonance k = 1

2
π/1.15 ≈ 1.366 and the last k = 1

2
π. From the

analysis above we know that |T | = 0 at each of the 16 branch resonances and for frequencies
in between there is some oscillatory behaviour in |T |; closer inspection reveals the peaks are
smooth and do not extend to |T | = 1. Smaller scale peaks closer to 1

2
π, not visible on the scale

of the plot in Fig. 4, are also present.
Figs. 5 and the magnified Fig. 6 show the same as before but for a separation of δ = 0.1

instead of δ = 0.01. There are more complicated multiple-scattering effects (in which N and δ
control the frequency of oscillations to |T |) as well as branch resonance effects.

In Fig. 7 we have N = 101 branches defined as cn = 1 + 0.01(n − 1), δ = 0.01 between
c1 = 1 and c101 = 2. The branch resonances now occur over the range 1

4
π < k < 1

2
π. Without

magnifying detail (the plot resolution is already 200000 points) the distribution of zeros of
transmission over the range of branch-resonant frequencies form a broadbanded stop filter on
the string. This exemplifies what physicists have called ‘Rainbow Trapping’.
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Figure 4: Magnification of Fig. 3 around branch resonances.
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Figure 5: Modulus of transmission coefficient against k for N = 16 branches of lengths cn =
1 + 0.01(n− 1), n = 1, 2, . . . , N with a separation δ = 0.1 between branches.
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Figure 6: Magnification of Fig. 5 around branch resonances.
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Figure 7: |T | against k for N = 101 branches at cn = 1 + 0.01(n− 1) and δ = 0.01.
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3.2 Transfer matrix eigenvalues

In the previous subsection we illustrated how branch resonance results in total reflection and
a motionless string beyond the resonant junction. We continue by attempting to add further
insight into the character of solutions along the string through the consideration of transfer
matrix eigenvalues.

The scattering across an array of N branches is determined by the product of the N transfer
matrices Qn. The eigenvalues of the transfer matrix encode characteristics of how the solution
communicates from one junction to the next.

Since the determinant of the transfer matrix Qn is unity, eigenvalues are found in reciprocal
pairs and are found as

λn = σn ±
√

σ2
n − 1 (≡ σn ± i

√

1− σ2
n) (30)

where σn = cos k(cn + δn)/ cos kcn and dσn/dk < 0 for kδn < π.
As k → 0, σn → 1−, a value from which σn decreases as k increases towards 1

2
π/cn. The

rate of decrease of σn is rapid over 1

2
π/(δn + cn) < k < 1

2
π/cn. Thus when k = 1

2
π/(δn + cn),

σn = 0 and σn → −∞ as k → 1

2
π/cn from below, passing through −1 in the narrow range of

values of k between 1

2
π/(δn + cn) and

1

2
π/cn. For values of k just above 1

2
π/cn, σn is large and

positive and as k increases further towards π/cn σn decreases towards 1 from above.
The eigenvalue trajectory as a function of increasing k follows from the relationship between

λn and σn in (30). Thus, as k increases from zero eigenvalues move around the unit circle from
1 in complex conjugate pairs, slowly at first and then rapidly to −1 on the real axis and, even
more rapidly, along the real axis in reciprocal pairs, one towards −∞ and reappearing at +∞
across k = 1

2
π/cn, the other towards and through zero on the real axis.

Complex conjugate eigenvalues on the unit circle are characteristic of wave-like behaviour
whilst eigenvalues on the real axis are characteristic of exponential behaviour. For example, in
Fig. 8, kcn < 1

2
π for all n in the array and the plot of |Dn| shows oscillatory behaviour across

the array. In Fig. 9 kcn > 1

2
π for all n in the array and the plot of |Dn| shows exponential decay.

In the most complicated case, in Fig. 10, the central 51st string in an array of 101 branches of
tapered length is tuned to resonance. Thus, kc51 =

1

2
π, kcn < 1

2
π for n < 51 and kcn > 1

2
π for

n > 51. We have already established (analytically) that Dn = 0 for n > 51 which is confirmed
numerically in Fig. 10. We also note oscillations prior to n = 51 and a sharp increase in |Dn|
for n very close to 51. Thus, the eigenvalues of the transfer matrix provide some information
on the behaviour of the solution.

3.3 A continuum limit ?

Instead of the variables βn and γn, consider the transformation

Γn = βn + γ∗

n, Υn = i(βn − γ∗

n) (31)

and then the pair of recurrence relations defined in terms of βn and γn are transformed into

Γn = cos kδnΓn−1 + sin kδnΥn−1 (32)

Υn = (cos kδn − 2tn sin kδn)Υn−1 − (2tn cos kδn + sin kδn)Γn−1 (33)

with Γ1 = eikδ1 and Υ1 = (i− 2t1)e
ikδ1.
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The amplitudes along each branch are characteristed by the coefficient Dn which, under the
current variables, may be expressed as

Dn = sec kcn(Γn +RΓ∗

n) (34)

assuming R has been found from

R = −(ΓN + iΥN)/(Γ
∗

N + iΥ∗

N ). (35)

Let the branch separation δn = δ be identical and assume kδ ≪ 1. Then the pair of discrete
equations are, to first order in kδ, approximately

Γn ≈ Γn−1 + kδΥn−1 (36)

Υn ≈ Υn−1 − 2tnΓn−1. (37)

Since xn = nδ we suppose that Γn = Γ(xn), Υn = Υ(xn) and cn = c(xn), n = 1, 2, . . .N are
discrete evaluations of continuous functions. The equations above may be intepreted as discrete
approximations to the coupled first order system of ODEs

Γ′(x) = kΥ(x), Υ′(x) = (−2/δ) tan(kc(x))Γ(x) (38)

or
Γ′′(x) = −2(k/δ) tan(kc(x))Γ(x), 0 < x < L (39)

with Γ(0) = 1, Γ′(0) = k(i − 2 tan(kc(0))). Evidently, letting δ → 0 does not result in a
continuum limit being reached.

However, (39) with kδ ≪ 1 is a classical problem to which the WKB approximation can be
applied (see, for example, Bender & Orszag (1978)) to give

Γ(x) ≈ [2k tan(kc(x))]−1/4

{

C+exp

(

i

√

2k

δ

∫ x

0

tan1/2(kc(s)) ds

)

+ C−exp

(

−i

√

2k

δ

∫ x

0

tan1/2(kc(s)) ds

)}

(40)

where C± = 1

2
(A±B) and A = [2k tan(kc(0))]1/4, B = −i

√
δ[2k tan(kc(0))]−1/4(i−2 tan(kc(0))).

For certain choices of c(x) such as c(x) = a+ bx, the integral under the exponential can be
performed analytically, although the result is algebraically complicated.

We note that D(x), the continuous variable approximation to Dn, is given by D(x) =
sec(kc(x))(Γ(x) + RΓ∗(x)). If kc(x) < 1

2
π for all 0 < x < L then the exponentials in (39) are

oscillatory and hence we predict D(x) to be oscillatory (e.g. Fig. 8). If kc(x) > 1

2
π for all

0 < x < L then the arguments of the exponentials in (39) are real and we expect exponential
behaviour in D(x) (as in Fig. 9). If kc(x) < 1

2
π for 0 < x < x∗ with kc(x∗) = 1

2
π (x∗ can be less

than or greater than L) the oscillatory nature of the exponentials in (40) allows us to predict
that

|D(x)| ∼ C sec3/4(kc(x)), as x → x∗ from below (41)

for some constant C. In other words

|D(x)| ∼ C

[kc′(x∗)(x∗ − x)]3/4
, as x → x∗ from below (42)
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Figure 8: Modulus of amplitude on branch n against n for N = 101 branches at cn = 1+ δ(n−
51), δ = 0.005 and k = 1.
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Figure 9: Modulus of amplitude on branch n against n for N = 101 branches at cn = 1+ δ(n−
51), δ = 0.005 and k = 2.5.
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Figure 10: Modulus of amplitude on branch n against n for N = 101 branches at cn =
1+δ(n−51), δ = 0.005 and k = π/2. The dotted envelope is defined by the line ±4.5/(51−n)3/4.

For example, in Figs. 10–12 we have taken c(x) = 1 + (x−L/2) and k = 1

2
π so that x∗ = L/2.

In terms of discrete variables, (42) is written Dn ∼ (2C/π)/(1
2
N−n)3/4 as n → 1

2
N from below.

There is excellent agreement between the computations and this predicted behaviour as shown
by the dotted curves added to Figs. 10–12.

Figs. 11 and 12 plot a snapshot in time of displacement along N = 201 side branches against
branch number, n, for two values of δ ≪ 1 which differ by a factor of ten. The plots are very
similar and suggestive of convergence as δ → 0, despite earlier remarks made on the absense of
a continuum limit. In fact this is an isolated example of convergence as δ → 0 which holds for
the particular definition of c(x) = 1+ (x− δN/2), L = δN and for the specific value of k = 1

2
π

chosen. Application of a rescaling x = δX (integer values of X coincide with branch number),
Γ̂(X) ≡ Γ(x) to (39) gives, after making a leading order approximation to the function tan(x)
near x = 1

2
π,

Γ̂′′(X) ≈ 2Γ̂(X)

X − 1

2
N
, 0 < X < N (43)

with Γ̂(0) = 1, Γ̂′(0) = O(δ) ≈ 0 assuming δ ≪ 1. In fact (43) with the initial conditions stated
has the explicit solution

Γ̂(X) = π
√
N − 2X

{

Y0(2
√
N)J1(2

√
N − 2X)− J0(2

√
N)Y1(2

√
N − 2X)

}

(44)

for 0 < X < N , expressed in terms of Bessel functions. The function Γ̂ is only indirectly related
to R and the amplitudes along the branches. In Fig. 13 we plot a comparison between Γn for
a discrete system and Γ̂(X) from (44) with N = 200 from the analogous continuous solution
for the first half of the junctions where the solutions are oscillatory in the case described in
Fig. 12.
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Figure 11: Modulus of amplitude on branch n against n for N = 201 branches at cn =
1+δ(n−101), δ = 0.01 and k = π/2. The dotted envelope is given by the lines ±8.5/(101−n)3/4.
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Figure 12: Modulus of amplitude on branch n against n for N = 201 branches at cn = 1+δ(n−
101), δ = 0.001 and k = π/2. The dotted envelope is given by the lines ±8.5/(101− n)3/4.
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Figure 13: Comparison of Γn, n = 1, 2, . . . , 101 (crosses, plotted against n − 1) to Γ̂(X),
0 < X < 100 for the arrangement in Fig. 12.

4 Conclusions

We have consider the effect of a finite number (N) of finite length strings which are tied
perpendicularly across an infinitely-long string on the propagation of waves along that string.
The solution has been described simply in terms of 2×2 scattering and transfer matrices which
propagate information along the string from one branch to the next.

We have shown that for frequencies when any of the branched strings is resonant there is
total wave reflection and that the string beyond the resonant branch is rendered motionless.
This has been used to demonstrate how an array of branched strings of tapered length can be
used to construct a broadbanded stop filter on the main string.

We have also considered the limit where N is large and an equal separation (δ) between
neighbouring strings is small. It has been shown that discrete equations describing the scatter-
ing process can be approximated by an ODE and the solution to that ODE can be approximated
by the WKB method. This allows use to determine the behaviour of the amplitudes on, for ex-
ample, the nth string on a linearly-tapered array prior to the resonant string (n∗, say). Hence
amplitudes grow like O((n∗ − n)−3/4) as n → n∗ from below (and are exactly zero beyond
n = n∗).

It is possible this behaviour is characteristic of other situations where ‘rainbow trapping’
by linearly-tapered arrays occurs (Jan & Porter (2018)) and that the behaviour can be used to
help develop numerical solutions to those problems.
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