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Abstract

The problem of a circular cylinder submerged, and moving at constant forward
speed, in a fluid with a free surface is considered under linearised theory. The method
of solution essentially repeats, using modern notation, the method devised by Havelock
(1936). In doing so, we highlight the fact that T.H. Havelock pioneered the method
of multipole potentials over ten years before Ursell’s (1948) work to which the method
has since been attributed.

1 Introduction

The problem of determining the steady two-dimensional surface wave pattern formed when
an infinitely long uniform cylinder of circular cross-section moves through a fluid below a
free surface has a long history. Provided the cylinder is of sufficiently small radius, a, and
sufficiently deeply submerged below the free surface of the fluid and that the speed of the
cylinder is small enough that the flow can be assumed to be irrotational, a linearisation
procedure can be adopted in order to express the solution of the problem in terms of a
perturbation series for a velocity potential based on powers of the small parameter a/d
where d is the depth of the centre of the cylinder from the undisturbed free surface.

Approaches at attempting to solve the problem to first order in the linearisation was
first presented by Lamb (1932) and built upon in papers by Havelock in 1928 and 1936.
Lamb (1932) used a submerged dipole to represent the presence of a small circular cylinder.
However, as demonstrated by Tuck (1965), the presence of the free surface destroys the
closed streamline around the singularity that would exist if the ideal fluid was unbounded
and therefore the solution of Lamb (1932) only represents a first-order approximation to
a circular cylinder. Havelock (1928) sought to improve upon the solution found in Lamb
(1932) by including successive images in the free surface which had the effect of satisfying
the cylinder boundary condition up to the next order in the small parameter a/d. Later, in
1936, Havelock revisited the same problem and presented a systematic method for solving
the problem for an exactly-circular cylinder. Inspection of the method devised by Havelock
(1936) shows it to be identical to what is usually referred to as the multipole method.
This method of representing a solution involving circular (or, in three-dimensional problems,
spherical) geometries and a plane free surface on which a mixed boundary condition is
to be satisfied has historically been attributed to Ursell (1948) who had originally used the
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method to show that there is zero reflection of surface waves by a submerged circular cylinder.
The fact that the contribution of Havelock (1936) has been, as far as the author is aware,
overlooked is perhaps even more remarkable given the comments made some years later by
Tuck (1965) in a paper which sought to build upon the solution of Havelock (1936). Tuck
(a Ph.D. student of Ursell’s) states in his paper of 1965 “... Havelock ... in a remarkably
ingenious later paper (1936), was able to construct a complete formal solution to the wholly
linear problem”.

The contribution of Tuck (1965) was to show that exact satisfaction of the cylinder
condition, as performed by Havelock (1936), was, at least in some cases, less important
than including the effect of non-linearities in the free surface condition. Tuck demonstrated
this by considering the linearised problem up to and including second order for the circular
cylinder.

The primary focus of the present paper serves to give a modern account of the method of
Havelock (1936). It is presented in an style that is arguably easier to follow than Havelock’s
paper and, despite the fact that essence of the two approaches is the same, there are some
differences. We also include more detailed numerical computations that were not possible
for Havelock to perform without the aid of a computer. This account also includes a formal
expansion of the potential, akin to the form adopted by Tuck (1965) and in doing so con-
firms Tuck’s hypothesis that non-linearities are just as important as satisfying the cylinder
condition exactly. There are also new ways of representing various quantities, including the
wave resistance and the free surface elevation.

2 Governing equations

The problem is two-dimensional and Cartesian coordinates are chosen with the origin in
the undisturbed free surface and y directed vertically upwards. The cylinder is centred at
y = −d and is assumed to have radius a � d. The fluid is inviscid and incompressible
and the flow is irrotational and steady. Then there exists a velocity potential Φ(x, y) which
satisfies

∇2Φ = 0, in the fluid domain (2.1)

There is a uniform stream of velocity U in the positive x direction imposed on the fluid,
which translates to the condition

Φ(x, y) ∼ Ux, as |x| → ∞, y < 0 (2.2)

which is to be satisfied to leading order.
The elevation of the free surface is defined as y = η(x), −∞ < x <∞ and the kinematic

boundary condition is then expressed as

∂Φ

∂x

∂η

∂x
=
∂Φ

∂y
on y = η(x), −∞ < x <∞ (2.3)

whilst the dynamic boundary condition on y = η(x) is

−Pa

ρ
= gη +

1

2
|∇Φ|2 + C, −∞ < x <∞ (2.4)
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where Pa is the atmospheric pressure at the free surface, ρ is the density of the fluid, g is grav-
itational acceleration and C is an arbitrary constant which will be fixed by the requirement
that η = 0 describes the undisturbed free surface.

In order to satisfy a no-flow condition on the cylinder, we also require

∂Φ

∂r
= 0, on r = a (2.5)

where r2 = x2 + (y + d)2.
Since the submerged cylinder is symmetric about the vertical line x = 0, we note that

reversing the stream velocity to −U and the direction of the x-axis simultaneously must
result in the same boundary-value problem for Φ(x, y). Thus, in an obvious notation, we
must impose the condition

Φ(x, y;U) = Φ(−x, y;−U) (2.6)

on the solution. Without loss of generality, we will assume that U > 0 herein.
An approximate solution is sought by a linearisation procedure. Hence, we express Φ

and η in terms of a perturbation expansion in powers of ε = a/d� 1 writing

Φ(x, y) = U(x+ ε2φ1(x, y) + ε4φ2(x, y) + . . .) (2.7)

which ensures that (2.2) holds and

η(x, y) = U(ε2η1(x) + ε4η2(x) + . . .) (2.8)

Then φ1, φ2, . . . also must satisfy (2.1). On physical grounds, there can be no waves at
x→ −∞; that is upstream of the cylinder. Thus, we also require that

φj(x, y) → 0, as x→ −∞, j = 1, 2, . . . (2.9)

Linearising the boundary conditions (2.3) and (2.4) about y = 0 gives, to O(ε2),

U
∂η1

∂x
=
∂φ1

∂y
on y = 0, −∞ < x <∞ (2.10)

and

η1 = −U
g

∂φ1

∂x
, on y = 0, −∞ < x <∞ (2.11)

whilst the constant C in (2.4) is fixed by C = −Pa/ρ− 1
2
U2 to ensure that η(x) = 0 represents

the undisturbed free surface.
Combining the two linearised surface equations (2.10), (2.11) to eliminate η1 gives

κ
∂φ1

∂y
= −∂

2φ1

∂x2
=
∂2φ1

∂y2
, on y = 0, −∞ < x <∞. (2.12)

where
κ = g/U2 (2.13)

and κ plays the role of a wavenumber.
Instead of writing the perturbation potential φ1 as a single dipole plus a correction term

for the free surface as in Lamb (1932), we shall expand φ1 in terms of sets of multipoles each
satisfying (2.12) and (2.9) before imposing (2.5) on Φ as the final condition of the problem.
This is essentially the method employed by Havelock (1936).
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3 Derivation of multipole potentials

First consider the integral, for n ≥ 1

In(z) =
1

(n− 1)!

∫ ∞

0

kn−1e−kzdk (3.1)

where it is assumed that <{z} > 0. It is straightforward to verify that I1(z) = 1/z. For
n ≥ 2, it follows using integration by parts that In(z) = In−1(z)/z and hence

In(z) =
1

zn
. (3.2)

Sets of symmetric ({ψs
n(x, y)}) and antisymmetric ({ψa

n(x, y)}) multipole potentials will now
be constructed, each singular at (x, y) = (0,−d) whilst satisfying (2.1) away from this point,
(2.9) and (2.12). Here, the descriptions antisymmetric and symmetric refer to the properties
of fundamental singular potentials obtained from taking real and imaginery parts of (3.2)
and on which the multipoles are based.

We shall first describe the construction of the antisymmetric multipoles ψa
n(x, y), n =

1, 2, . . . and then state the corresponding result for ψs
n(x, y), which follows using an identical

method. Thus with

z = (y + d) + ix = reiθ, such that r2 = x2 + (y + d)2, tan θ =
x

y + d
(3.3)

we write

ψa
n(x, y) =

sinnθ

rn
+ χa

n(x, y) (3.4)

where χa
n(x, y) is a bounded harmonic function in y < 0 which will be determined to ensure

that ψa
n satisfies the free surface condition (2.12) and the radiation condition (2.9).

It is noted that

sinnθ

rn
= <

{
i

zn

}
=

1

(n− 1)!

∫ ∞

0

kn−1e−k(y+d) sin kxdk, for y > −d. (3.5)

Bearing this relation in mind and anticipating later developments we choose to express
χa

n(x, y) in terms of the sum of a Fourier sine integral and a symmetric standing wave term,
each satisfying (2.1) by writing

χa
n(x, y) =

∫ ∞

0

Bn(k)eky sin kxdk + Cn(κ)eκy cosκx (3.6)

for y < 0 where the function Bn(k) and the amplitude Cn(κ) are to be determined. So now,

ψa
n(x, y) =

1

(n− 1)!

∫ ∞

0

kn−1e−k(y+d) sin kxdk +

∫ ∞

0

Bn(k)eky sin kxdk + Cn(κ)eκy cosκx.

(3.7)
Applying the free surface condition (2.12), automatically satisfied by the final term in (3.7)
furnishes the relation

− kne−kd

(n− 1)!
+ kBn(k) = −U

2

g

(
−k

n+1e−kd

(n− 1)!
− k2Bn(k)

)
(3.8)
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which is rearranged to give

Bn(k) = −k
n−1e−kd

(n− 1)!

(
k + κ

k − κ

)
(3.9)

and κ is given by (2.13). So the multipole potentials satisfying (2.1), (2.9) and (2.12) may
be written

ψa
n(x, y) =

sinnθ

rn
− 1

(n− 1)!

∫ ∞

0

−
(
k + κ

k − κ

)
kn−1ek(y−d) sin kxdk + Cn(κ)eκy cosκx (3.10)

where the integral is principal-valued. There is a contribution to the behaviour of ψa
n(x, y)

for large |x| not only from the final term in (3.10) but also from the pole at k = κ in the
integral. By deforming above, for x > 0, and below, for x < 0, the pole at k = κ we find
that

ψa
n(x, y) ∼

(
Cn(κ)∓ 2πκne−κd

(n− 1)!

)
eκy cosκx, x→ ±∞. (3.11)

In order that (2.9) be satisfied we require that

Cn(κ) = −2πκne−κd

(n− 1)!
(3.12)

and so as x→∞
ψa

n(x, y) ∼ −4πκne−κd

(n− 1)!
eκy cosκx. (3.13)

The terms in the integrand are now to be expanded into polar coordinates by considering
the result of taking the real and imaginary parts of

ek(y+d)eikx = ekz =
∞∑

m=0

(kr)m

m!
eimθ (3.14)

so that we may now write

ψa
n(x, y) =

sinnθ

rn
−

∞∑
m=1

Bmnr
m sinmθ −

∞∑
m=1

Cmnr
m cosmθ (3.15)

(the m = 0 term in (3.14) can be omitted as it only contributes a constant to the potential)
where

Bmn =
1

m!(n− 1)!

∫ ∞

0

−
(
k + κ

k − κ

)
km+n−1e−2kddk (3.16)

and

Cmn =
2πe−2κd

m!(n− 1)!
κn+m (3.17)

Note that the expansion in (3.15) is valid provided that r < 2d (see Thorne (1953) for
example).

Applying a similar procedure to derive the symmetric multipoles yields

ψs
n(x, y) =

cosnθ

rn
−

∞∑
m=1

Bmnr
m cosmθ −

∞∑
m=1

Cmnr
m sinmθ (3.18)
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for n = 1, 2, . . . where Bmn and Cmn are just those factors already defined in (3.16) and
(3.17). Each multipole, ψs

n(x, y), defined by (3.18) for r < 2d satisfies (2.1) away from r = 0,
(2.9) and (2.12). Also, as x→∞

ψs
n(x, y) ∼ −4πκne−κd

(n− 1)!
eκy sinκx. (3.19)

4 Solution

The potential φ1(x, y) may now be written as a linear combination of both sets of multipoles,
so that

φ1(x, y) =
∞∑

n=1

an−1d2

n

(
banψ

a
n(x, y) + bsnψ

s
n(x, y)

)
(4.1)

and where ban, bsn, n = 1, 2, . . . are dimensionless coefficients to be determined from application
of (2.5), the cylinder boundary condition.

Now from (2.4) up to O(ε2) we have

Φ = Ur sin θ + U
∞∑

n=1

an+1

n

(
banψ

a
n(x, y) + bsnψ

s
n(x, y)

)
(4.2)

whence application of (2.5) gives

0 =
∂Φ

∂r

∣∣∣∣
x=a

= U sin θ + U
∞∑

n=1

ban

[
− sinnθ −

∞∑
m=1

m

n
am+n

(
Bmn sinmθ + Cmn cosmθ

)]

+U
∞∑

n=1

bsn

[
− cosnθ −

∞∑
m=1

m

n
am+n

(
Bmn cosmθ + Cmn sinmθ

)]
(4.3)

We choose to introduce a new notation here, being

B̃mn =
m

n
Bmna

m+n =
µm+n

n!(m− 1)!

∫ ∞

0

−
(
t+ 1

t− 1

)
tm+n−1e−2λtdt (4.4)

and

C̃mn =
m

n
Cmna

m+n =
2πµm+ne−2λ

n!(m− 1)!
(4.5)

where
µ = κa = ga/U2 and λ = κd = gd/U2 (4.6)

and λ = 1/Fr2 where Fr = U/
√
gd is the Froude number whilst µ = ελ. Thus the problem

may be characterised either by µ and λ or Fr and ε.
Using the orthogonality of the functions sinnθ and cosnθ over the interval [0, 2π] gives

the following coupled system of equations for the coefficients bam, bsm

bam +
∞∑

n=1

(
B̃mnb

a
n + C̃mnb

s
n

)
= δm1, m = 1, 2, . . . (4.7)
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and

bsm +
∞∑

n=1

(
B̃mnb

s
n + C̃mnb

a
n

)
= 0 m = 1, 2, . . . (4.8)

where δmn is the Kronecker delta.
Following the method used in Linton & Evans (1990), we may re-insert (4.7) and (4.8)

back into (4.2) with (3.15) and (3.18) to provide a simplified expression for the potential in
the vicinity of the cylinder. It is found that

Φ(x, y) = Ua
∞∑

m=1

1

m

(
bam sinmθ + bsm cosmθ

) [(a
r

)m

+
(r
a

)m]
(4.9)

provided r < 2d.
We now make the connection with Lamb’s (1932) solution. First, we note that we may

write
B̃mn = εm+nB̂mn, C̃mn = εm+nĈmn (4.10)

where B̂mn, Ĉmn are independent of ε. Then it is clear to see from (4.7) and (4.8) that

bam = δm1 +O(ε2), bsm = O(ε2) (4.11)

Ignoring all contributions of O(ε2) gives

Φ(x, y) ≈ Ur sin θ + Ua2ψa
1(x, y) = U sin θ

(
r +

a2

r

)
+ Ua2χa

1(x, y). (4.12)

which is the expression used by Lamb (1932). Inspection of the coefficients in (4.11) reaf-
firms the observation made by Tuck (1965) that apart from the multipole ψa

1(x, y) – the
antisymmetric dipole term – all other terms contribute to the total potential at O(ε4); that
is, to the same order as φ2, the second-order potential.

5 Free surface elevation

The free surface elevation is given by (2.8) with (2.11) and requires calculation of, partial
derivatives of ψa

n, ψs
n in x. So, for example,

∂ψa
n

∂x

∣∣∣∣
y=0

= − 2κ

(n− 1)!

∫ ∞

0

− kne−kd cos kx

k − κ
dk − Cn(κ)κ sinκx (5.1)

where the right-hand side has come from substitution of (3.9) into (3.7). Then we note the
expansion

kn

k − κ
= kn−1 + κkn−2 + . . .+ κn−2k + κn−1 +

κn

k − κ
(5.2)

which can be used to write

∂ψa
n

∂x

∣∣∣∣
y=0

= − 2κ

(n− 1)!

[
n−1∑
m=0

κm

∫ ∞

0

kn−m−1e−kd cos kxdk + κn

∫ ∞

0

− e−kd cos kx

k − κ
dk

]
−Cn(κ)κ sinκx (5.3)
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It is straightforward to calculate the final term directly (or see, for example, Lamb (1932))
and so ∫ ∞

0

− e−kd cos kx

k − κ
dk = −πe−λ sinκ|x| − Ea(κx, λ) (5.4)

where

Ea(κx, λ) =

∫ ∞

0

(sinλu− u cosλu)

1 + u2
e−u|κx|du (5.5)

Also, from (3.1) and (3.2) we have the result

1

(n−m− 1)!

∫ ∞

0

kn−m−1e−kd cos kxdk = <
{

1

zn−m

}
y=0

=

[
cos(n−m)θ

rn−m

]
y=0

(5.6)

which combines with (5.4) to give

∂ψa
n

∂x

∣∣∣∣
y=0

= −2κ
n−1∑
m=0

κm (n−m− 1)!

(n− 1)!

[
cos(n−m)θ

rn−m

]
y=0

+
2κn+1E(κx, λ)

(n− 1)!

+
2πκn+1e−λ

(n− 1)!

(
sinκ|x|+ sinκx

)
(5.7)

for n = 1, 2, . . .. As |x| → ∞, the first and second terms in the above equation tend to zero.
A similar result is obtained for the symmetric multipoles. Thus, it is found that

∂ψs
n

∂x

∣∣∣∣
y=0

= 2κ
n−1∑
m=0

κm (n−m− 1)!

(n− 1)!

[
sin(n−m)θ

rn−m

]
y=0

− 2sgn(x)κn+1Es(κx, λ)

(n− 1)!

−2πκn+1e−λ

(n− 1)!

(
sgn(x) cosκx+ cosκx

)
(5.8)

for n = 1, 2, . . . where

Es(κx, λ) =

∫ ∞

0

(u sinλu+ cosλu)

1 + u2
e−u|κx|du (5.9)

Finally using (4.1) in (2.11) with (2.8) up to O(ε2) shows that

η(x) = −U
2

g
ε2

∞∑
n=1

an−1d2

n

(
ban
∂ψa

n

∂x

∣∣∣∣
y=0

+ bsn
∂ψs

n

∂x

∣∣∣∣
y=0

)
(5.10)

and (5.7) and (5.8) can be used directly in this equation to establish η(x) for −∞ < x <∞.
Of particular significance is the free surface elevation for large |x|, which is given by

taking the limit of |x| → ∞ in (5.7) and (5.8) and inserting into (5.10), whence

η(x) ∼

 −4πae−λ

∞∑
n=1

µn

n!

(
ban sinκx− bsn cosκx

)
, x→∞

0, x→ −∞
(5.11)

after some algebra.
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For the approximately circular cylinder considered by Lamb (1932) we may use (4.11) in
(5.10) to show that to O(ε4)

η(x) ≈ −U
2a2

g

∂ψa
1

∂x

∣∣∣∣
y=0

= 2a2

[
cos θ

r

]
y=0

− 2πκa2e−λ
(

sinκ|x|+ sinκx
)
− 2κa2Ea(κx, λ) (5.12)

from (5.7). This expression agrees with Lamb (1932, §247 eqn. 15).

6 Wave resistance and wave lift

The wave resistance on the cylinder is defined to be

fx = −ρa
2

∫ 2π

0

|∇Φ|2r=a sin θdθ

whilst the wave lift on the body is

fy =
ρa

2

∫ 2π

0

|∇Φ|2r=a cos θdθ

Using the form of the potential given in (4.11) we can easily evaluate these forces since, using
cylindrical polar coordinate definition of ∇ = (∂/∂r, (1/r)∂/∂θ)

(∇Φ)r=a =

(
0, 2U

∞∑
m=1

(bam cosmθ − bsm sinmθ)

)

on account of the cylinder condition on r = a. Some straightforward algebra leads to the
definitions

fx = 2πU2ρa
∞∑

n=1

(bsn+1b
a
n − bsnb

a
n+1)

which is the analogue of the real part of equation (28) in Havelock (1936).
The wave resistance should also be given by fx = 1

4
gρh2 where h is the amplitude of the

wave train at x→∞.

Appendix A: Evaluation of B̃mn

This appendix gives an efficient method for calculating the elements B̃mn. First, we write

B̃mn =
µm+n

n!(m− 1)!

[
Jm+n(λ) + Jm+n−1(λ)

]
, m, n = 1, 2, . . . (A.1)

where

Jp(λ) =

∫ ∞

0

− tpe−2λt

t− 1
dt =

∫ ∞

0

tp−1e−2λtdt+ Jp−1(λ) (A.2)

9



for p ≥ 1. Applying the recurrence relation (A.2) repeatedly we have

Jp(λ) =

p−1∑
s=0

Lp−1−s(λ) +

∫ ∞

0

− e−2λt

t− 1
dt (A.3)

where we have defined

Lp(λ) =

∫ ∞

0

tpe−2λtdt (A.4)

It is now straightforward to evaluate Lp(λ) using integration by parts to show that, for p ≥ 1,
Lp(λ) = (p/(2λ))Lp−1(λ), whilst L0(λ) = 1/(2λ) and hence

Lp(λ) =
p!

(2λ)p+1
(A.5)

Also, from Yu & Ursell (1961), it can be shown that

Q(λ) =

∫ ∞

0

− e−2λt

t− 1
dt = −e−2λ(γ + ln(2λ)) +

∞∑
s=1

(−2λ)s

s!

(
1 +

1

2
+ . . .+

1

s

)
(A.6)

where γ = 0.5772 . . . is Euler’s constant.
Combining all these results into (A.1) we find that

B̃mn =
µm+n

n!(m− 1)!

[
(m+ n− 1)!

(2λ)m+n
+ 2

m+n−1∑
s=1

(m+ n− s− 1)!

(2λ)m+n−s
+ 2Q(λ)

]
, (A.7)

for m,n = 1, 2, . . ..
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