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1 Introduction

This review article is written with two goals in mind. The first is to provide
researchers working in the area of water waves an insight into ideas emerging
from the physics community on the use of metamaterials in controlling waves
in unusual ways. The second is to give physicists already familiar with these
ideas an overview of the theory of water waves, the common approximations
that are used in developing solutions, and how metamaterial concepts may
be implemented within this framework.

In particular, whilst there has been an expansive crossover of ideas de-
veloped primarily from optics and electromagnetics into the acoustics and
elasticity research communities, much less has been realised in terms of es-
tablishing such a connection in the water wave community.

There is a good reason why this might be. Water waves are quite different
to waves in electromagnetics, acoustics or elasticity in that there is a special
direction (the vertical) which makes simple connections between theories
less easy to establish: the limitations imposed by a free surface and a fluid
depth are a recurring theme throughout this article. The applications of
metamaterials in water waves are also perhaps a little harder to imagine. On
the other hand wave phenomena are easily visualised on the surface of water
and this makes it an attractive medium in which to develop ideas from other
areas of physics.

My own interest in this subject was stimulated after becoming aware of
the publication of the work of Farhat et al. (2008). Immediately evident was
the widespread influence of the work of Pendry et al. (2006) and Leonhardt
(2006) on invisibility cloaking in optics and other extensions to areas of sci-
ence including acoustics and elasticity. Although I’ve not fully engaged with
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metamaterial science I’ve slowly picked up many of the intruiging develop-
ments that have been made over the last 15–20 years, especially those with
applications in water waves. Broadly speaking, a metamaterial is a medium
in which properties of a field can be propagated in a manner not normally
found in natural materials. They are most often comprised of microstruc-
tures much smaller than the natural lengthscales intrinsic to the underlying
field variables in such a way that their macroscopic effect on the field allows
complex phenomena to be exhibited. These include negative refraction in
which oblique waves bend backwards as they enter the metamaterial and
perfect lensing, e.g. Pendry (2000) and Shelby et al. (2001). In the context
of water waves, see Farhat et al. (2010).

One of the most fascinating areas to emerge from the science of metama-
terials is invisibility cloaking in which obstacles are rendered undetectable
to the observer and it is principally on this topic which the current article
will focus. It turns out that the capacity to cloak in water waves leads to
a reduction (to zero for a perfect cloak) of the so-called mean drift force.
This is a second-order effect in water waves and hence generally smaller in
magnitude than the primary oscillatory forces due to water waves but, unlike
those wave forces, it is steady and has important consequences in the design
of marine structures such as the foundations of offshore wind turbines.

The layout of the article is as follows. In the remainder of this sec-
tion, we shall introduce the underlying equations of motion which govern
small-amplitude water waves and apply it to our canonical problem of the
scattering by a vertical cylinder. In §2, a series of approximations to the full
governing equation in which the depth dependence is removed will be intro-
duced and discussed in the context of cloaking cylinders. §3 describes the
transformation media approach and how it applies to depth-averaged mod-
els. This includes a discussion of how to design the metamaterials needed to
practically implement the wave control needed to cloak. In §4 we consider
examples of cloaking in the unapproximated full linear theory and the work
is summarised in §5.

1.1 Linearised theory of water waves

There are many textbooks which carefully outline the derivation of the lin-
earised theory of water waves which we summarise below. It is hard to beat
the account in the book of Mei et al. (2005) and we refer to this extensively
throughout.
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Throughout this article we take z to be the vertical axis with z = 0 set
to the level of the undisturbed free surface. A fluid of density ρ under the
influence of gravity g lies below z = 0 in equilibrium and is bounded below
by an impermeable bed at z = −h(x, y) where (x, y) are the horizontal
coordinates. It is assumed in deriving conditions at the free surface that
a fluid (such as the air) having density much less than ρ and in which the
pressure is constant lies above z = 0 in equilibrium. The effect of this fluid
on the motion of the water is then negligible.

There are many other assumptions used in the derivation of classical
water wave theory. The first is that the fluid is inviscid. This is a good
assumption in the bulk but fails close to boundaries, including on the free
surface – see Mei et al. (2005, §9). However, it is a good approximation
overall provided any experimental realisation of the theory is performed on
a large enough scale. Another assumption is that the flow is irrotational
(implying there is no vorticity in the fluid). In order that theory can be
realised in experiments this often implies avoiding geometrical structures
with sharp corners or edges which induce vortex shedding. Irrotationality
implies velocity of the fluid u(x, y, z, t) satisfies the condition ∇ × u = 0
which allows us to write u = ∇Φ(x, y, z, t) where Φ is a scalar potential
(called the velocity potential) and ∇ = (∂x, ∂y, ∂z). Further, it is routine to
assume that the water is incompressible and this is expressed mathematically
as ∇ · u = 0. Consequently, Φ satisfies

∇2Φ = 0, in V (1)

where V represents the domain occupied by the fluid and ∇2 = ∇ · ∇ is the
three-dimensional Laplacian.

Euler’s equation expressing conservation of momentum for an inviscid
fluid allows the pressure to be determined in the fluid. Setting this constant
on the free surface and linearising on the assumption of small steepness of
the surface elevation defined by z = ζ(x, y, t) about the mean level furnishes
the dynamic boundary condition

Φt + gζ = 0, on z = 0. (2)

Similarly, a linearised version of the kinematic condition on the surface, which
states that the surface moves with the fluid, gives

ζt = Φz, on z = 0. (3)
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The two equations (2) and (3) can be combined to eliminate ζ so that

Φtt + gΦ = 0, on z = 0 (4)

expresses a combined kinematic and dynamic boundary condition. The con-
dition that there is no flow through all fixed wetted boundaries S with given
unit normal n out of the fluid implies that

Φn ≡ n · ∇Φ = 0, on (x, y, z) ∈ S. (5)

One section of S is the sea bed where n = (hx, hy,−1) and (5) reduces to

Φz +∇hh · ∇hΦ = 0, on z = −h(x, y) (6)

where ∇h ≡ (∂x, ∂y) is the gradient projected onto the two-dimensional hor-
izontal plane. The bed is often assumed to be flat outside some bounded
region of the (x, y)-plane, and given by h = h0, a constant, and there (6)
reduces to

Φz = 0, on z = −h0. (7)

In order to fully specify a problem which can be solved (numerically or
analytically) one must also impose initial conditions. These most often imply
stating the initial surface elevation and velocity at a reference time t = 0.
However advantage can be (and most often is) taken of the fact that the
governing equation for Φ and the boundary condition it satisfies are linear and
so any time domain solution can be inferred via inverse Fourier transforms of
frequency domain solutions. Thus, we write Φ(x, y, z, t) = ℜ{φ(x, y, z)e−iωt}
and ζ(x, y, t) = ℜ{η(x, y)e−iωt} where ω is the assumed radian frequency and
now φ and η are frequency-dependent complex-valued functions incorporating
information about the amplitude and the phase of the fluid motion.

It follows from (1), (4) and (5) that φ now satisfies

∇2φ = 0, in V (8)

with
φz −Kφ = 0, on z = 0 (9)

where K = ω2/g and
φn = 0, on S (10)

which includes (6) in the form

φz +∇hh · ∇hφ = 0, on z = −h(x, y) (11)
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simplifying (7) to φz = 0 on z = −h0 where the bed is flat. Also (2) translates
to

η(x, y) = (iω/g)φ(x, y, 0) (12)

representing the time-independent free-surface elevation.

1.2 The character of waves

Waves propagate on the surface of the water (they are akin to guided, inter-
face or surface waves in other physical disciplines) with exponential decay in
the direction of increasing depth away from the surface. Waves of amplitude
A over a flat bed of depth h0 from infinity in a direction θ0 w.r.t. the positive
x-axis are given by the potential

φinc =
−igA

ω

cosh k0(z + h0)

cosh k0h0
eik0(x cos θ0+y sin θ0). (13)

This satisfies (8) and (11) on z = −h0 and (9) provided that the unique
positive real root k of

K ≡ ω2

g
= k tanh kh (14)

corresponding to h = h0 is assigned to k0. The equation (14) is called the
water wave dispersion relation and encodes information on how waves of
different frequencies travel at different speeds and how both relate to the
fluid depth. As usual, the phase speed is given by c = ω/k and the group
velocity has magnitude cg = dω/dk.

We shall refer to the shallow water regime as being when kh≪ 1 or λ≫ h
where λ = 2π/k is the wavelength. In this case (14) shows that k ≈ ω/

√
gh

and c ≈
√
gh whilst cg ≈ c. Water waves are therefore non-dispersive in the

shallow water approximation. On the other hand in the deep water regime,
kh≫ 1 or λ≪ h, (14) shows that k ≈ ω2/g and c ≈ g/ω with cg ≈ 1

2
c.

In many applications of linear wave theory one is interested in how an
incident plane wave as described by (13) interacts with fixed or moving ma-
rine structures such as the legs of an oil rig, an offshore breakwater, varying
bathymetry, the coast, ships or wave energy absorbing devices.

1.3 Scattering by a vertical circular cylinder

Even with the simplifying assumptions that comprise the linearised theory of
water waves, the three-dimensional boundary-value problem is complicated
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and substantial analytic progress is often restricted to a small class of prob-
lems with a simple geometric configuration. Many of these are posed in a
two-dimensional reduction of the water wave problem in which plane parallel-
crested waves are incident on a geometry which has constant cross-section in
one horizontal direction. In such problems wave propagation is essentially
one-dimensional and confined to the other perpendicular horizontal direction.
Thus, wave scattering problems are reduced to determining a reflection and
a transmission coefficient.

Undoubtably the simplest non-trivial problem to consider analytically in
three dimensions involves the scattering by a circular cylinder of constant
cross section protruding vertically from a bed of constant depth h0 through
the surface of the fluid. This problem forms the basis of much of what is to
come in the rest of this article and it is instructive to use it as an example
of the theory introduced so far.

It is natural to use cylindrical coordinates x = r cos θ, y = r sin θ. Then
it can be shown that

φinc = eik0r cos(θ−θ0) cosh k0(z + h0) = cosh k0(z + h0)

∞∑

n=−∞

inJn(k0r)e
in(θ−θ0).

(15)
where Jn are Bessel functions. Note that here and henceforth we dismiss the
constant prefactor in (13) for clarity as the problem is linear and solutions
can be scaled a posteriori as necessary.

The fact that cylinder surface (radius a, say) is aligned with the vertical
and extends throughout the depth means that the scattered wave response
to the incident wave has the same depth dependence as the incident wave
(we elaborate on this in a moment). The total diffracted field is φ = φinc+φs

where

φs = cosh k0(z + h0)

∞∑

n=−∞

anH
(1)
n (k0r)e

in(θ−θ0) (16)

and an are as yet unknown Fourier-Bessel coefficients. The potential in
(16), derived by separation of variables, satisfies (8), (9) and (11) where

H
(1)
n (z) = Jn(z)+ iYn(z) is the Hankel function of the first kind. This choice,

rather than any other combination of Bessel functions, ensures that the scat-
tered potential represents outgoing waves at infinity. This so-called radiation
condition is a previously unstated requirement in the specification of the wa-
ter wave boundary-value problem posed in the frequency domain.
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Upon satisfaction of the cylinder boundary condition (10), which here is
φr = 0 on r = a, for all −h0 < z < 0, −π < θ ≤ π determines

an = −in
J ′

n(k0a)

H
(1)
n

′

(k0a)
(17)

and the solution is complete. The solution φ = φinc + φs formed from (15),
(16) and (17) is attributed to McCamy & Fuchs (1954) amongst researchers
in the water waves although it is familiar in other areas of physics.

As already indicated the geometry in this problem, which is comprised of
a flat bed and vertically-walled scatterers, means that cosh k0(z+h0) can be
factorised from the potential as

φ(x, y, z) = ψ(x, y) cosh k0(z + h0) (18)

and (8) reduces to the two-dimensional wave equation

(∇2
h + k20)ψ = 0 (19)

which shares solutions common to scalar TE- and TM-polarised waves in
electromagnetics and two-dimensional inviscid low-Mach number acoustics.
Unlike those physical disciplines, in water waves where Neumann boundary
conditions represent fixed impermable boundaries, there is no physical re-
alisation of a boundary which has a Dirichlet condition imposed upon it.
Boundary conditions of the form φn + αφ = 0, α ∈ C are used in fluids to
represent dissipative surfaces such as rough walls or porous membranes.

As a brief aside, if the cylinder were truncated and did not extend through-
out the entire fluid depth, the reduction made in (19) would not be possible.
Instead, one would have to expand the scattering potential outside the cylin-
der r > a in a complete set of depth modes (see Miles & Gilbert (1968),
for example) which are defined by the infinite sequence of imaginary roots
of (14). The additional depth modes in the series correspond to spatially
evanescent or localised waves which decay exponentially away from the scat-
terer. As shown in Miles & Gilbert (1968) this solution would have to be
matched to a series representation of the potential in the fluid region in r < a
no longer occupied by the vertical cylinder.

Although we shall make some small diversions along the way, the main
thrust of this article will concern how to cloak a circular cylinder extending
through the depth. By cloak, we shall mean that an observer suitably far
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away from the cylinder cannot detect the presence of the cylinder by mon-
itoring the wave field. In other words, we require that there is no energy
scattered in any direction away from the cylinder.

Returning to (16), (17) and letting k0r → ∞ we have

φs ∼
√

2

πk0r
eik0r−iπ/4A(θ; θ0) cosh k0(z + h0) (20)

representing an outgoing circular wave field with amplitude in the θ direction
due to an incident wave propagating in the direction θ0 given by

A(θ; θ0) = −
∞∑

n=−∞

J ′

n(k0a)

H
(1)
n

′

(k0a)
ein(θ−θ0). (21)

after using the large argument asymptotics of the Hankel function. The total
scattered energy – or scattering cross-section – is defined here as

σ =
1

2π

∫ π

−π

|A(θ; θ0)|2 dθ = −ℜ{A(θ0; θ0)}. (22)

The final equality, originally derived by Maruo (1960) in the water wave
context, is familiar in physics and known as the optical theorem. Either of
the two definitions of σ in (22) can by used with (20) to show that

σcyl =

∞∑

n=−∞

∣∣∣∣∣
J ′

n(k0a)

H
(1)
n

′

(k0a)

∣∣∣∣∣

2

(23)

and this is never zero for any k0a, i.e. a cylinder will always scatter energy
(e.g. see Fig. 3(a)).

We now consider a range of possibilities for cloaking a cylinder. Following
the pioneering papers of Pendry et al. (2006) and Leonhardt (2006) the
principle idea in cloaking is to alter the material parameters of a property
within a domain exterior to the object being cloaked in such a way to bend
waves around that object. There are a number of possibilities that will be
considered in this regard. A natural starting point is to exploit the fact
that waves refract under a change in depth; one can observe oblique waves
straighten up as the approach the shoreline of a shallow beach.

Much of the complication we encounter lies in the fact that the water
wave problem is inherently three-dimensional with one special direction (the
vertical) and has boundaries defined by the free surface and the sea bed.

Thus, initially we shall consider a number of reduced models – approxi-
mations to the governing equations – which remove this complication.
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2 Two-dimensional approximations to the full

theory

2.1 Ray theory

We can consider an approximation to the three-dimensional water wave scat-
tering problem based on ray theory (or geometric optics). In this approach,
the effects of refraction due to changes in the depth are captured but diffrac-
tion is not. The basis of the approximation is that the wavelength is assumed
to be much smaller than the length scale of horizontal bottom variations. In
other words, |∇hh|/kh ≪ 1. Then (following Mei et al. (2005, §3.1 & §3.2)
for example), a multiple scales approach can be used to derive the Eikonal
equation familiar in optics and acoustics:

S2
x + S2

y = k2 (24)

where k is the wavenumber satisfying (14). Here, S(x, y) = constant repre-
sent lines of constant phase and wave rays follow paths that are perpendicular
to these lines. Normally one might prescribe a depth variation h(x, y) which,
through (14) would define a wavenumber variation k = k(h) and then solve
(24) for S and hence determine the ray paths – see Mei et al. (2005, §3.3 &
§3.4) for examples of how this done.
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Figure 1: Ray paths according to (26) around the cylinder radius a = 1.

However we can also consider an inverse approach whereby the function
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S(x, y) is prescribed and we infer a depth variation from (14). To cloak a
cylinder of radius a, rays will need to be bent around the cylinder by changes
in depth and so we will require S → k0x at large distances and Sr = 0 on
r = a. That is, the rays are to be parallel and aligned with the x direction
at large distances where the depth is assumed to tend to h0 whilst lines of
constant phase are perpendicular to the cylinder on its surface. The simplest
(but not the only) choice of function satisfying these requirements is, in polar
coordinates,

S(r, θ) = k0r cos θ + k0a
2 cos θ/r (25)

which is equivalent to the potential for the streaming flow of an inviscid
irrotational fluid past a circle. Since S is a harmonic function the conjugate
function provides us with the ray paths. Thus these are given by

k0r sin θ − k0a
2 sin θ/r = constant. (26)

It follows from using (25) in (24) that

k2 = k20

(
1 +

a4

r4
− 2a2

r2
cos 2θ

)
≡ k20F

2. (27)

Although there is no restriction on the range of values of kh in this theory,
if we make the assumption kh ≪ 1 everywhere in the domain then we can
use the shallow water dispersion relation to give

h

h0
=

1

F 2
. (28)

This formula predicts infinite depth at the ‘singular points’ (±a, 0) fore and
aft of the cylinder. On physical reasoning this is to be expected and these
are also points singularities in other solutions to cloaking problems including
those proposed by Pendry et al. (2006). The main difficulty here is that
|∇hh| 6≪ kh nor kh 6≪ 1 in large areas fore and aft of the cylinder and the
basis of the approximation is violated. See Fig. 2(a) where the red coloured
lobes represent depths greater than six times the depth in the far-field.

Using the full dispersion relation (14) instead of the shallow water version
allows us to extend the range of values kh can take and then

h =
1

k0F
tanh−1

(
tanh k0h0

F

)
. (29)
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Figure 2: The depth profiles around the cylinder radius a = 1, h0 =
1
2
under

ray theory assuming: (a) shallow water defined by (28); (b) unrestricted
depth defined by (29) with k0 = 1.

Now h is undefined for values of (r, θ) such that F < tanh k0h0. These emerge
fore and aft of the cylinder – in Fig. 2(b) they are represented by the two
white lobes.

Other more exotic versions of the phase function can be used (S is cer-
tainly not required to be harmonic) provided they satisfy the two require-
ments stated earlier. Numerical experiments suggest that issues of large gra-
dients and regions of undefined depth that invalidate these solutions cannot
be overcome.

2.2 Shallow water equations

There are two common ways of deriving the linearised shallow water equa-
tions (or linearised long wave equations). One is to return to principles of
fluid dynamics and make a shallow depth approximation from the outset.
We shall adopt this approach later. The other is to apply the approxima-
tion directly to the full three-dimensional governing equations presented in
§1.1. For a formal derivation based on this latter approach one can follow
Mei et al. (2005, §4.1) who rescales coordinates on physical lengthscales and
then performs an asymptotic expansion of the potential in a small parameter
|∇hh|/kh. This is all performed under the assumption kh≪ 1 so that (14) is
replaced locally by k2 ≈ ω2/(gh). and gives rise to the linear Shallow Water
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Equation

∇h · (h∇hη) +
ω2

g
η = 0 (30)

for the surface wave elevation, η(x, y) defined by (12). If the depth is constant
and h = h0 then (30) reduces to the two-dimensional wave equation

∇2
hη + k20η = 0 (31)

which we have seen in (18) can be applied at any depth, not just when
k0h0 ≪ 1 and waves propagating in the positive x direction are given by
η = eik0x.

By writing η = h−1/2η we can transform (30) into its canonical form

∇2
hη + k20n

2η = 0 (32)

where

n2 =
h0
h

(
1 +

|∇hh|2
4k2h2

− ∇2
hh

2k2h

)
(33)

acts as a refractive index dependent upon the depth.

2.3 Conformal mapping

Following Leonhardt (2006) we can introduce a conformal mapping from the
physical (x, y) plane into a new (u, v) plane via β = f(ξ) where β = u + iv
and ξ = x+ iy. Under the transformation,

∇2
h ≡ ∂ξ∂ξ∗ = |f ′(ξ)|2∂β∂β∗ ≡ |f ′(ξ)|2∇̃2

h (34)

where ∇̃2
h = ∂uu + ∂vv Thus (34) is mapped to

∇̃2
hη̃ + k20ñ

2η̃ = 0 (35)

where η̃(u, v) ≡ η(x, y) and

ñ2(u, v) = n2(x, y)/|f ′(ξ)|2 (36)

and so the transformation preserves the structure of the shallow water equa-
tion whilst the refractive index is transformed by the mapping.
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In terms of cloaking a cylinder, we can introduce a conformal transfor-
mation

f(ξ) = ξ + a2/ξ (37)

which maps the cylinder |ξ| = a onto the line −2a < u < 2a, v = 0 in the β-
plane. Thus, if h = h0 in the mapped system so that ñ = 1 with the solution
η̃(u, v) = eik0u representing waves propagating without distortion past the
line −2a < u < 2a, v = 0, then the mapping (37) gives us the Shallow Water
Equation (35) for waves deflected past a cylinder of radius a with a depth
profile h defined by

|1− a2/ξ2|2 = h0
h

(
1 +

|∇hh|2
4k2h2

− ∇2
hh

2k2h

)
. (38)

This nonlinear PDE would have to be solved for h outside r = a. It is not
clear (at least to the author) how this would be done, and it may not be
possible to define a function h which satisfies (38) everywhere.

We note in passing that if one chooses to return to (33) and make it more
tractable by neglecting derivatives of h (justified, perhaps, because it shallow
water approximation demands small gradients) then the right-hand side term
in (38) becomes h0/h and so with ξ = reiθ, (38) is the same as (28) which
we arrived at by taking a shallow water approximation to ray theory. This
is an unsurprising outcome.

As was observed in §2.1 the difficulty here is that the map (37) which
transforms a line in Cartesian coordinates to the exterior of the circle creates
variations in the depth which violate the assumptions of the model.

We remark however that this method can be useful in other applications
where one wishes to control waves. Recently, for example, Wang et al. (2015)
have used this method to bend, focus and directionally radiate waves. Also
recently, Bobinski (2016) has used conformal mappings of parallel waveguides
into meandering waveguides. Here the distortion to the bed created by the
mapping is small and the argument that higher order terms in (38) can be
approximately neglected is valid. Thus h = h0/|f ′(ξ)|2 is exactly the mapping
of Bobinski (2016) to show that waves can be perfectly transmitted with no
reflection along a meandering waveguide.

We return to the Shallow Water Equations later.
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2.4 The Mild-Slope Equations

This is a good point at which to briefly mention an alternative reduced
model which is more sophisticated than the shallow water approximation but
retains its structure. Crucially, it is valid for all kh although still restricted
by |∇hh|/kh ≪ 1. Thus the limitation kh ≪ 1 of shallow water theory is
removed. As in shallow water theory, the basis of the approximation is that
bed gradients are small enough to suppose the bed is locally flat. Thus, whilst
h varies globally, locally we assume the separable representation, inspired by
the fact that (18) is exact for a flat bed,

φ(x, y, z) ≈ ψ(x, y) cosh k(z + h) (39)

where k = k(h(x, y)) is now determined locally by the dispersion relation
(14). There are many derivations, variants and extensions of the Mild-Slope
Equations (MSEs), originally attributed to Berkhoff (1972) and Smith &
Sprinks (1975). This partly reflects the rather ad hoc nature of the ap-
proximation. See Mei et al. (2005, §3.5) for a derivation which shows the
depth averaging process in action. For a more formal approach which is
underpinned by a variational principle, see Chamberlain & Porter (1995).
That work resulted in the so-called Modified Mild-Slope Equations (MMSE)
which retained terms proportional to the gradient and curvature of the bed
neglected in previous derivations. Thus, the MMSE is given by

∇h · (u0∇hψ) + (k2 + u1|∇hh|2 + u2∇2
hh)ψ = 0 (40)

where u0 = ccg (the product of phase speed and group velocity), u1 and u2
are defined in Chamberlain & Porter (1995) and restated in Mei et al. (2005,
§3.5) in terms of the local depth h; the surface elevation η is a scaled function
of ψ. As in §2.2 a transformation into canonical form can be achieved by
writing ψ = u

−1/2
0 ψ so that (40) becomes

∇2
hψ + k20n

2ψ = 0 (41)

in which the refractive index n now given by

n2 =
k2

k20

(
1 + A|∇hh|2 +B∇2

hh
)

(42)

and A and B are known but complicated functions of h (see Griffiths & Porter
(2012) for example). Comparison of (32), (33) with (41), (42) shows that the
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structure of the Shallow Water Equation and the MMSE are identical and
the equations differ only in the complexity of the coefficients multiplying the
higher order terms. In principle, this means that any problem that is con-
sidered under the Shallow Water Equations should also be considered under
a mild-slope approximation where the range of values of kh is unrestricted.

We shall also introduce another form the the MMSE later on.

3 Transformation media approach

The approach taken by Pendry et al. (2006) to cloaking has since seen
widespread use. As in the case of Leonhardt (2006) it is also based on a
mapping between a space where waves propagate uninterrupted to a distorted
space surrounding an object. It had previously been shown in Ward & Pendry
(1996) how Maxwell’s equations of electromagnetics were invariant under a
coordinate transformation, provided material parameters (permittivity and
permeability in this case) could be interpreted as tensors encoding a spatially-
varying anisotropic medium. We shall shortly see how the same approach
can be applied in the water wave problem and the difficulties it introduces.

Soon after the paper of Ward & Pendry (1996), Pendry et al. (1999)
showed how such material parameters could be achieved using sub-wavelength
split ring resonators; this was experimentally demonstrated a year later in
Smith et al. (2000). Thus the modern science of metamaterials was born
and it has developed rapidly since. We shall discuss such structures in the
water wave context shortly – the point is that it is no good devising a cloak
if it cannot be realised.

We shall work with the Shallow Water Equations initially but will com-
ment on the MMSE towards the end, having already made the point in §2.4
that what you can do for kh≪ 1 should extend to all kh under an equivalent
MSE model.

3.1 The Shallow Water Equations revisited

It helps to return to the derivation of the Shallow Water Equations from
first principles (see Mei et al. (2005, §3.5)). Thus, if the wavelength is
long compared to the depth and the bed gradients are small compared to
the wavelength it is resonable to assume that the fluid velocity vector is
approximately two-dimensional, or u(x, y, z, t) ≈ (v(x, y, t), 0) where v =
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(u(x, y, t), v(x, y, t)). That is, there is negligible dependence on the depth and
negligible vertical velocity. If the depth is h(x, y) and the surface elevation
is ζ(x, y, t) and |ζ | ≪ h then conservation of mass is expressed as

ρζt +∇h · (ρhv) = 0 (43)

where ρ is the fluid density, ρhv is the flux and the momentum equation is

ρvt = −∇h(ρgζ). (44)

and the pressure is approximately hydrostatic. Combining (43) and (44)
gives

ρζtt = ∇h · (h∇h(ρgζ)) (45)

and after assuming time harmonic motion with angular frequency ω with
ρgζ = ℜ{ηe−iωt} we return to

∇h · (h∇hη) +
ω2

g
η = 0 (46)

as in (30). Now imagine waves travelling in different directions are able to
experience different material properties. For example, imagine the fluid depth
h to be multi-valued so that waves travelling in the x-direction experience a
depth h1(x, y) whilst waves travelling in the y-direction experience a depth
h2(x, y). The same arguments could apply to either gravity or the density
ρ. To illustrate the ideas let us assume that ρ and g are constant and h is
allowed to be anisotropic in the manner suggested. Now mass conservation
(43) needs to be modified to reflect the fluxes in x and y directions are
different. Thus we can write

ζt +∇h · (hv) = 0 (47)

where h is a rank-2 tensor given by

h =

(
h1 0
0 h2

)
(48)

and following through the derivation as before results in the Shallow Water
Equation modified for anisotropic depth:

∇h · (h∇hη) +
ω2

g
η = 0. (49)

We remark that full anisotropy can also be considered in which h has off-
diagonal entries. This would require development of a medium in which
fluid flow in one direction will induce mass flux in a perpendicular direction.
Realisations of fluid metamaterials are considered in §3.4.
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3.2 Mapping

We shall work in plane polar coordinates from now on. This means that
anisotropy will apply in radial and angular directions rather than in Cartesian
directions as considered in 3.1.

We start with waves propagating in the direction θ = 0 over a flat bed
h = h0 without scattering obstacles. The governing equation (31), with the
shallow water assumption k0 = ω2/(gh0), written in polars is

1

r

∂

∂r

(
r
∂η

∂r

)
+

1

r2
∂2η

∂θ2
+ k20η = 0 (50)

and the solution is η(r, θ) = eik0x = eik0r cos θ.
Now consider a mapping (r, θ) → (̺, θ) where r = f(̺) for 0 < r < b and

r = ̺ otherwise, such that r = b is mapped to ̺ = b and r = 0 is mapped
to ̺ = a. Then (50) remains unchanged for r > b and for 0 < r < b it is
mapped to

1

f ′f

∂

∂̺

(
h0
f

f ′

∂η̃

∂̺

)
+

1

f 2

∂

∂θ

(
h0
∂η̃

∂θ

)
+Kη̃ = 0 (51)

for a < ̺ < b where η̃(̺, θ) = η(r, θ).

3.3 A linear map

The map suggested by Pendry et al. (2006) is defined by

f(̺) =
b(̺− a)

b− a
. (52)

Using this in (51) gives

1

̺

∂

∂̺

(
̺h1

∂η̃

∂̺

)
+

1

̺

∂

∂θ

(
h2

1

̺

∂η̃

∂θ

)
+ K̃η̃ = 0 (53)

where
h1 = h0(1− a/̺), h2 = h0/(1− a/̺) (54)

and
K̃ = K(1− a/̺)/(1− a/b)2. (55)
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Figure 3: (a) Snapshot of surface wave elevation for scattering by an un-
cloaked vertical cylinder (a = 1, k0 = 4); and (b) perfect cloaking under
a linear transformation with depths (54) and gravity implied by (55) with
cloak size b = 4.

We see that (53) is a Shallow Water Equation in the form given by (49) in
polar coordinates where h1 and h2 are spatially-varying anisotropic depths
experienced by waves moving in radial and angular directions respectively.

On the edge of the cloak, the conditions in the unmapped system are that
η and h0ηr are continuous across r = b. Under the general mapping r = f(̺)
this implies η̃ is continuous and

h0
f ′
η̺̃|̺=b− = h0η̺̃|̺=b+ . (56)

For the map (53) this reduces to

h1η̺̃|̺=b− = h0η̺̃|̺=b+ (57)

which is the exactly the physical shallow water flux condition required of η̃
at the edge of the cloak. On the cylinder, ̺ = a, h1η̺̃ = 0 which confirms
no flux into the cylinder in the mapped problem. A snapshot in time of the
surface elevation for the linear transformation is shown in Fig. 3.

In the context of water waves Farhat et al. (2008) performed a trans-
formation of the Laplacian ∇2

h using homogenisation theory in which the
cloaking region a < ̺ < b is filled with a fluid metamaterial consisting of an
annular array of narrow vertical posts embedded in the fluid. They were able
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to show how the distribution of posts could be varied to mimic a diagonal
tensor h with a given radial variation. It is not clear if Farhat et al. (2008)
were using their metamaterial annular array of posts to mimic an effective
anisotropic depth, or appealing to a different underlying physical mechanism
to vary the phase speed within the cloak. In any case, Farhat et al. (2008)
proposed a different prescription of the diagonal tensor entries to (54) and

held their value of K̃ fixed. Nevertheless, they produced experiments to show
that a degree of cloaking could be achieved.

The mapped variables (54) and (55) are identical to those given in Cum-
mer & Schurig (2007) who considered cloaking in two-dimensional acous-
tics. In this case the governing equations are analagous to the Shallow Wa-
ter Equations with density replacing depth and the bulk modulus replacing
gravity. They are also the same as TE-polarized waves in electromagnetics
specified by Pendry et al. (2006) with permeability and permittivity taking
the place of depth and the reciprocal of gravity.

3.4 Metamaterial depth and gravity

Under the linear mapping of the previous section (55) shows that a cloak
requires an effective gravity given by

g̃ = g(1− a/b)2/(1− a/̺). (58)

Such an effect can be realised in water waves since gravity enters the equa-
tions of motion through one of the two conditions on the free surface. Thus,
one can load the free surface to mimic the effect of changing gravity. This has
been done in early papers modelling the effect of floating broken ice on the
ocean surface. For example, Keller & Goldstein (1953) show that if the sur-
face is loaded with a floating mass m, the term in ω2/g occupied by gravity
is replaced by

g(1−mω2/ρg). (59)

By allowingm(̺) ≥ 0 to vary, (59) implies a reduction in the effective gravity.
Unfortunately the specification in (58) requires gravity to vary above and
below the reference value of g as a < ̺ < b.

It is also worth mentioning the work of Hu et al. (2011) who demonstrated
that doubly periodic sub-wavelength arrays of split ring resonators acting as
Helmholtz resonators could be used to change the effective gravity felt by
waves.
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With regard to realising an anisotropic metamaterial depth, we have al-
ready referred to the method used by Farhat et al. (2008) in which homogeni-
sation theory applied a sub-wavelength array of vertical posts can mimic the
effects of anisotropic depth variations. The same methodology was applied
by Dupont et al. (2015) in creating an invisiblity carpet for water waves in a
channel: a device for hiding an obstacle placed in front of a plane wall from
the far-field observer.

An alternative sub-wavelength realisation of a metamaterial water depth,
again developed using homogenisation theory, was presented by Berraquero
et al. (2013). They considered how to redirect a propagating water wave
through an angled junction in a parallel-walled waveguide without reflection.
Crucially their transformation was volume-preserving with the implication
that gravity is unaffected by the mapping. The physical realisation of their
metamaterial depth was comprised of a microstructured corrugated rectan-
gular bed profile. A similar technique was used by Chen et al. (2009) who
demonstrated how a metamaterial depth could be used to rotate an incident
wave field.

A further possible realisation of the anisotropic depth, such as the one
demanded by (54), can be performed using two interlocking arrays of thin
closely-spaced vertical fins. One set of fins are arranged radially so that their
height follows the prescription given by the function h2 and the second set are
arranged in a circular pattern with heights following the function h1. Then
waves travelling radially are not influenced by the radial fins but experience
the depth profile of the circular fins and vice versa.

3.5 A nonlinear map

More recently, Zareei & Alam (2015) suggested an alternative mapping func-
tion for the cloak in order to cope with the difficulty of having to alter gravity
this arising from the linear map. Instead of (52) they used

f(̺) = b

√
̺2 − a2

b2 − a2
(60)

in (51) and this results in (53) with

h1 = h0(1− a2/b2)(1− a2/̺2), h2 = h0(1− a2/b2)/(1− a2/̺2) (61)

and now K̃ = K. That is, there appears to be no requirement that gravity
is altered under this nonlinear mapping.
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However, on the boundary of the cloak the flux matching condition (56)
gives

h0
1− a2/b2

η̺̃|̺=b− = h0η̺̃|̺=b+ (62)

and the prefactor on the left-hand side is not h1(b) as is required for a physical
flux condition, i.e. there is a mismatch in the flux at the boundary of the
cloak of (1− a2/b2).

One way to overcome this difficulty is to rescale h1 and h2 in (61) by a
factor of (1− a2/b2). In doing so, one must also rescale K and so we return
to (53) with a transformed value of

K̃ = K/(1− a2/b2). (63)

This implies gravity should be rescaled in the cloak by a constant factor of
(1−a2/b2). This reduction in effective gravity can be implemented using the
mass loading solution proposed in §3.4.

In Zareei & Alam (2015) they argue instead that the flux mismatch factor
of (1 − a2/b2) is small when b ≫ a and computations show that cloaking
improves significantly as the b/a, the size of the cloaking increases. This will
be confirmed by the calculations below.

As Zareei & Alam (2015) show, the effect of the flux mismatch on scat-
tering of waves can be analysed directly by solving the problem analytically.
A plane incident wave from infinity is scattered by a cloak defined by the
functions in (61) when the physical flux condition (57) is enforced. Solutions
outside the cloak where the depth is h0 are written

η̃(̺, θ) =
∞∑

n=−∞

(inJn(k0̺) + anH
(1)
n (k0̺))e

inθ, ̺ > b (64)

as in §1.3 for the problem of scattering by a cylinder and an are scattering
coefficients to be determined. If the cloak were perfect, all an would be zero.

In a < ̺ < b the most general solution to (53), which is bounded on the
cylinder ̺ = a can be written

η̃(̺, θ) =

∞∑

n=−∞

bnJn

(
k0b

√
̺2 − a2

b2 − a2

)
einθ. (65)

The flux into the cylinder is lim̺→a(h1η̺̃) = 0 as required. It is also interest-
ing to note that η̃(a, θ), the complex wave amplitude around the cylinder, is
constant.
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Figure 4: Normalised cloaking factor σ/σcyl for the nonlinear mapping against
cloak size b/a with k0a = 1 (solid), 2 (dashed) and 4 (dotted).

Matching η̃(b, θ) for −π < θ < π from (64) and (65) gives

inJn(k0b) + anH
(1)
n (k0b) = bnJn(k0b). (66)

Then we apply (57) to (64) and (65) to get

inJ ′

n(k0b) + anH
(1)
n

′

(k0b) = bn(1− a2/b2)J ′

n(k0b). (67)

Eliminating bn gives

an =
in(a2/b2)J ′

n(k0b)Jn(k0b)

−2i/(πk0b)− (a2/b2)J ′

n(k0b)H
(1)
n (k0b)

(68)

after using a Wronskian relation for Bessel functions. If the flux mismatch
were not present the factor (1− a2/b2), on the right-hand side of (67) would
be replaced by 1 and this would result in an = 0 for all n whilst bn = in –
equivalent to a perfect cloak.

We remark that the cloaking solution above is not restricted to plane
waves. For example, the problem of a wave source placed at r = c, θ = 0
outside the cloak can be considered by replacing the Jacobi-Anger represen-
tation of a plane wave train in (15) by

∞∑

n=−∞

H(1)
n (k0r>)Jn(k0r<)e

inθ (69)
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using Graf’s addition theorem where r< = min{r, c}, r> = max{r, c}. The
result is that the factor in carried throughout the previous calculation is
replaced by H

(1)
n (k0c).

From (64), (22) the scattering cross-section is

σ =
1

2π

∞∑

n=−∞

|an|2 (70)

and hence σ = O((b/a)−4). Calculations confirm this decay rate and Fig. 4
shows the variation of σ normalised against the scattering cross section of
an uncloaked cylinder, σcyl, given by (23) for different incident wavelengths.
Snapshots of the surface elevation for two cloaks of sizes b = 2a and b = 4a
with are shown in Fig. 5.
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Figure 5: Near-perfect cloaking under a nonlinear transformation with depths
given by (61) and gravity unchanged, a = 1, k0 = 4 and cloak sizes of (a)
b = 2 and (b) b = 4.

3.6 A note on the Mild-Slope Equations

In §3 we introduced the Modified Mild-Slope Equation (MMSE), given in
its original form by (40) and in its canonical form by (41), (42). However,
a different mapping of the variable ψ(x, y), proportional to the free surface,
was introduced by Porter (2003) using ψ = s(h)χ where s(h) is defined in
Porter (2003, §2) and results in the transformed MMSE

∇h · (k−2∇h χ) + (1− ν(h)|∇hh|2)χ = 0 (71)
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where v(h) is a relatively complicated, but explicit, function of the local
depth. There are some advantages of this form of the MMSE. First, terms in
the second derivative of h are eliminated and this means that jump conditions
– required in the earlier versions of the MMSE – across discontinuities in the
bed slope are redundant. Secondly, Porter (2003) calculates that v(h) <
0.030 for all h > 0 and so the final term in (71) is small. Moreover, as
v(h) ∼ O((kh)2) as kh → 0 and it is easy to see that (71) tends to the
Shallow Water Equations in this limit. When kh is large v(h) ∼ e−kh and,
since k ∼ K, (71) tends to a wave equation with no depth effects, as expected.
As a result solutions of

∇h · (k−2∇hχ) + χ = 0 (72)

are expected to be good approximations to solutions of (71). The advantage
of using (72) is that its structure is aligned with the Shallow Water Equation
(49), with k determined locally as a function of h via (14).

In particular the transformation media methods outlined in §3.2 can be
applied to the MMSE in the form (72) and solutions will be valid not just in
the limit of kh≪ 1 but for all kh.

For example, following Zareei & Alam (2015) we could apply the trans-
formation media method with the mapping (60) to the define a cloak with
radial and angular wavenumbers

k1 =
k0√

(1− a2/b2)(1− a2/̺2)
, k2 = k0

√
1− a2/̺2

1− a2/b2
. (73)

The depths h1 and h2 would then be defined by inverting the dispersion
relation: hi = tanh−1(K/ki)/ki, i = 1, 2. It is anticipated that such a so-
lution would apply beyond the limitations of shallow water theory although
it would still suffer the flux mismatch problem discussed in §3.5 and would
still be subject to the small-gradient constraint underpinning the mild-slope
approximation.

3.7 Other cloaking devices

As demonstrated in the derivation of (46) the fluid density, whether or not
it is anisotropic, is not a material parameter in the Shallow Water Equations
(nor the full linear theory of §1). Thus spatial variations of density in the
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horizontal coordinates will not influence wave motion. Iida & Kashiwagi
(2016) suggest otherwise, although their governing equations do not appear to
relate directly to the Shallow Water Equations. Vertical density stratification
fundamentally alters the governing equations where it is normal to adopt the
Boussinesq approximation – see Philips (1977), for example.

As previously suggested, instead of (or in addition to) varying the bathymetry,
the free surface condition can be altered to control waves and a simple mass-
loading model was proposed in §3.4. Another possibility is to place a thin
flexible plate on the surface of the water to act as a cloak. The floating thin
flexible plate model is widely used by researchers interested in the interac-
tion between ice sheets and ocean waves; for a comprehensive review of work
in this area, see Squire (2007). Problems involving waves in thin flexible
plates surrounding vertical cylinders have previously been considered in the
work of Brockenhurst et al (2011) and Malenica & Korobkin (2003). Also
see Bennetts, Biggs & Porter (2009) for scattering problems involving flexible
circular plates of varying thickness.

It is common to use Kirchhoff thin plate theory to model a flexible sheet.
Even in the simpler problem of a flexible plate in vacuo, the fourth-order
governing equations are not invariant under a coordinate transformation.
The addition of a shallow water layer below the floating elastic plate compli-
cates the underlying equations which increase in derivative order from four
to six. For an elastic plate with variable thickness D(x, y) over a variable
bed z = −h(x, y), Porter & Porter (2005) derive mild-slope equations for
the reduced two-dimensional potential ψ(x, y) in the fluid. Under the addi-
tional simplifying assumption of shallow water the governing equation for ψ
is (Porter & Porter (2005, eqn (4.9)))

(1− α + L)(∇h · ((h− d)∇hψ) +Kψ = 0 (74)

where α = K(ρs/ρ)D(x, y) and ρs is the plate density and thickness and
z = −d(x, y) represents the underside of the floating plate. In the above

Lψ = ∇2
h(β∇2

hψ)− (1− ν)(βxxψxx + βyyψyy − 2βxyψxy) (75)

where β = ED3(x, y)/(12ρg(1−ν2)) represents the bending stiffness in terms
of Young’s modulus, E, and Poisson’s ratio, ν. Of course, one could keep
D fixed and vary Young’s modulus or Poisson’s ratio or vary all three. We
note that if the floating plate is removed so that α = 0, d = 0 and L = 0 in
(74) then we simply return to the usual free surface Shallow Water Equation
(46).
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Zareei & Alam (2016) have suggested an alternative model for the floating
plate equation which can be media transformed, following the earlier work
of Farhat et al (2009) on in vacuo thin flexible plates.

We remark that (74) and (75) are derived under the usual assumptions
of isotropic elasticity. A derivation that incorporates anisotropic material
properties should be performed to assess the feasibility of using a floating
flexible plate as a cloak. This is currently the subject of an investigation by
Zareei & Alam (personal communication).

4 Full linear theory

Thus far we have only considered approximations to full linear theory in
which the complication of the depth dependence and lateral boundary con-
ditions have been removed. Cloaking is the science of rendering objects
invisible and there is no guarantee that a cloak developed under a reduced
model will be effective in an unapproximated environment. One must be
especially cautious when the limits on the assumptions forming the basis of
an underlying model have been exceeded.

4.1 Conformal mapping

In this section the implementation of a mapping from (x, y, z) to (u, v, w)
space in the full linearised water wave boundary-value problem is described.
As in §2.3 a conformal mapping in the horizontal plane is introduced by
writing β = f(ξ) where β = u + iv and ξ = x + iy. Laplace’s equation
in three-dimensions is preserved by a simultaneous rescaling of the vertical
coordinate using w = |f ′|z. That is ∇2φ is mapped into ∇̃2φ̃ = 0 where

φ(x, y, z) ≡ φ̃(u, v, w) and ∇̃2 ≡ ∂uu + ∂vv + ∂ww. The mapped free surface
boundary condition (9) is

φ̃w − K̃φ̃ = 0, on w = 0 (76)

where K̃ = K/|f ′|. The bed z = −h(x, y) is mapped to the boundary

w = −h̃(u, v) ≡ |f ′|h and the transformation of the general bed condition
(11) results in

φ̃w + {∇̃hh̃+ |f ′|h̃∇̃h(|f ′|−1)} · ∇̃hφ̃ = 0, on w = −h̃. (77)
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In (x, y, z) space defined by a flat bed of depth h0 in the presence of a thin
impermeable vertical barrier −2a < x < 2a, y = 0, −h0 < z < 0, plane
waves propagating in the direction θ = 0 are described by the potential φinc

in (15). The mapping of the barrier to a cylinder in (u, v, w) space is given
by

ξ = β +
a2

β
(78)

or β = f(ξ) = 1
2
(ξ +

√
ξ2 − 4a2). Then f ′(ξ) = β2/(β2 − a2) and

|f ′| = 1√
1 + a4/̺4 − 2a2 cos 2ϕ/̺2

(79)

when β = ̺eiϕ. Apart from the singular points at β = ±a, h̃ = h0|f ′|
defines a physically-realisable variable depth. Here K̃ = K/|f ′| represents
a variation of effective gravity on the free surface which both falls and rises
above the far-field value, g. Thus the mass-loading model described in §3.4
cannot be used to realise the surface condition (76).

When h = h0 is a constant, the transformed bed condition (77) simplifies
to

φ̃w = 0, on w = −h̃(u, v) = −h0|f ′|. (80)

This is not the usual condition (c.f. (11)) φ̃w + ∇̃hh̃ · ∇̃hφ̃ = 0 required on a
natural bed. Thus, in addition to the variable surface condition, one would
also need to design a metamaterial bed to realise (80) in order to cloak
a cylinder under full linear theory using the mapping proposed here. For
example, such a bed could be formed by a vertical cascade of narrowly-spaced
thin horizontal plates immersed within the fluid whose edges are designed to
follow the profile h̃ = h0|f ′| where f ′ is given by (79). Surface waves would
feel the macroscopic effect of the variable bathymetry but locally the fluid
would satisfy a vertically-directed no-flow condition.

The solution described above was initially formulated in Porter (2011)
although the details and the description of the metamaterial bed in the para-
graph above are new.

4.2 A direct approach

In this section the approach reported in Porter & Newman (2014) used to
cloak a circular cylinder without relying on metamaterials is presented. In-
stead of designing a cloak which bends waves around the cylinder it relies on
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combining wave diffraction effects from the cylinder and an annular region
of variable bathymetry to destroy outgoing waves in all directions. This ap-
proach shares similarities with the one used by Alù & Engheta (2005) in an
electromagnetic context in which they coated a dielectric cylinder with an
annular dielectric with constant properties and showed how the scattering
cross-section could be reduced significantly.
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The work published in Griffiths & Porter (2012), developed to investigate
the focusing of water waves over a bathymetric lens using the MMSE, was
adapted by Porter (2011) to include a vertical cylinder. The shape of the bed
in the annular cloak a < r < b was expanded in a weighted set of prescribed
modal functions:

h(r, θ) =
P∑

p=1

Q∑

q=1

αpqfp(r) cos 2(q − 1)θ (81)

in which

fp(r) = T2p

(
b− r

b− a

)
− (−1)p (82)

where Tp are Chebychev polynomials. This choice implies that hr = 0 at
r = b so that there is no discontinuity in bed slope at the edge of the cloak, a
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feature which was chosen for convenience as it avoided the need to implement
jump conditions in the MMSE solution. Chebychev polynomials were chosen
because it was anticipated that greater resolution of the bed may be required
close to the cylinder boundary r = a. The incident wave was assumed to be
aligned with θ = 0 and only even angular modes were used in the expansion
(81) by appealing to ideas of time-reversal symmetry.

In (81) the P × Q coefficients αpq were treated as free parameters in a
numerical multi-parameter optimisation whose objective function to be min-
imised was the normalised “cloaking factor” C defined to be the scattering
cross-section σ of the cloaked bed divided by σcyl, say, for uncloaked bed,
given by (23).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

(a)

C

k0h0

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

(b)

F

k0h0
Figure 7: In (a) the cloaking factor C = σ/σcyl and in (b) the normalised
mean drift force on the cylinder, F , both plotted against against wavenumber
for an axisymmetric bed, Q = 1, P = 8 optimised to cloak at k0h0 = 1 with
a/h0 =

1
2
and b/h0 = 2 (solid), 3 (dashed), 4 (dotted), 5 (chained).

In the studies of Porter & Newman (2014) results were presented for cloak-
ing targeted at a particular frequency and geometry (k0h0 = 1, a/h0 = 1

2
)

although other parameters were considered in numerical experiments leading
to that publication.

The initial work using the MMSE was presented in Porter (2011) sug-
gested that cloaking factors could be progressively reduced towards zero
as the number of degrees of freedom defining the bed were increased. A
year later, Newman (2012) published work adopting the same principles and
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methodology of Porter (2011) but a using modified version of the fully three-
dimensional boundary element code, WAMIT. The work was combined in
the paper of Porter & Newman (2014) where numerical results supported
the hypothesis that the cloaking factor could be reduced to zero as the num-
ber of degrees of freedom in the bed were increased under full linear theory –
see Fig. 6 for example. That work also alluded to the fact that cloaking was
sensitive to small changes in the bathymetry and the comparison between
MMSE and full linear theory was shown to be generally quite poor due to
the large gradients predicted in cloaking beds. This comment serves to act as
a cautionary note regarding the predictions made in §3 under depth-reduced
models.

Fig. 7(a) shows the effect of the size of the cloak on the cloaking factor
for cloaking-optimised axisymmetric beds. Porter & Newman (2014) demon-
strated that cloaking is best for b ≈ 5a whilst the cloaking effect can also
seen to be broadbanded. Fig. 7(b) illustrates the significant reduction in
the mean second-order drift force on the cylinder (normalised against an
uncloaked cylinder), especially around the cloaking wavenumber k0h0 = 1.

C=0.00003
(4,8)

C=0.1123
(2,2)

C=0.0153
(2,4)

C=0.00008
(2,8)

Figure 8: Beds optimised to cloak at k0h0 = 1 for different values of (Q,P )
with a/h0 = 1

2
, b/h0 = 5. Values of cloaking factor C = σ/σcyl achieved in

each case are shown. The yellow boundary depicts the edge of cloak.

Porter & Newman (2014) also showed that convergence towards perfect
cloaking was improved by breaking axisymmetry and letting Q > 1. See
Figs. 8.
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4.3 Extensions to the direct approach

Newman (2014) later developed a double-precision version of the original
single-precision code WAMIT to numerically investigate alternative ways of
cloaking a cylinder under full linear theory. This included, amongst many
other examples, surrounding the vertical cylinder to be cloaked with a con-
centric circular ring of N fixed truncated surface-piercing circular cylinders.
Again, a numerical optimisation procedure was used to tune a number of free
parameters used to encode the geometric configuration of the cloak. Newman
(2014) was able to show that whilist an axisymmetric ring quickly reduced
the cloaking factor as N increased, significant improvements to cloaking fac-
tors could be achieved by breaking the axisymmetry of the cloak, with values
of C = 1.1× 10−9 being reported.

The numerical evidence seemed to suggest that perfect cloaking is pos-
sible. However, McIver (2014) provides a formal proof that, under certain
conditions, perfect cloaking is not possible. The proof applies to a specific
class of cloaks comprised of elements individually satisfying the so-called
“John condition” (e.g. see Kuznetsov et al. (2002)). Geometrically, the
John condition is satisfied if lines projected vertically downwards from all
points on the free surface meet the flat bed without intersecting a body in
the fluid. This is a powerful result. Unfortunately, Newman’s (2014) config-
uration of N surface-piercing truncated cylinders discussed in the previous
paragraph does satisfy the John condition and so it transpires that perfect
cloaking is not possible in this example despite the extremely low cloaking
factors calculated. This also puts in doubt the suggestion that perfect cloak-
ing is achievable in the earlier example of Porter & Newman (2014) involving
variable bathymetry.

5 Summary

In this article, I have tried to present a range of different approaches that
can be used to investigate the cloaking in water waves. This includes the
simplified models of ray theory, shallow water theory and the mild-slope ap-
proximation in addition to the consideration of full linear wave theory. It has
been shown how mapping methods may be applied within the framework of
each of these models. It has also been shown how metamaterials can be de-
signed in water wave problem to realise unnatural boundary conditions that
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emerge from these mappings such as anisotropic water depth and variable
effective gravity.

The most successful attempts at creating a cloak for a circular cylinder
seem to be: (i) using the nonlinear transformation of Zareei & Alam (2015)
shown in §3.5 within the framework of the shallow water approximation and
(ii) numerical optimisation of bathymetry or other structures embedded in
the fluid that form a cloak under full linear theory. The latter has the
advantage of being exact and realisable without metamaterial parameters.
The former has the advantage that they bend waves around the cylinder
rather than relying on the cylinder for multiple interference effects that are
integral to the cloak.

The transformation media approach and, more generally, the adoption of
metamaterials in water waves can provide an interesting range of new possi-
bilities to water wave problems. For example, one might consider mapping
the well-known explicit Stokes edge wave solution (or its shallow water ap-
proximation) along a plane sloping beach under a coordinate transformation
into circular coordinates to provide a solution in which waves are trapped to
a circular island by a “metamaterial beach”.
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