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Course information

• Lecturer: Dr. Richard Porter, Room 1A.17, email richard.porter@bristol.ac.uk

• Course timetable: Weeks 1-11: Online lectures recorded on a live-streaming platform twitch.tv
on Monday 4-5, Tuesday 10-11 (odd weeks), Tue 1-2, Thu 4-5 (even weeks). Total of 30
recorded lectures.

• Prerequistes: Mechanics 1, APDE2, Multivariable Calculus, Methods of Complex Functions.

• Homework: weekly from set worksheets.

• Problems Classes: Face to face problems classes to go through HW questions (and other
queries) in LT2.41 in Fry on Tuesday 10-11 (even weeks), Thu 4-5 (odd weeks). These
sessions will be live-streamed on twitch to the other half of the class.

• Assessment: 10% from 3 assessed homeworks on problem sheets 3,6,9 (exam questions from
last year’s paper) and 90% exam in January.

• Office hours: TBA.

• Teaching materials will be made available from course web page

http://people.maths.bris.ac.uk/~marp/fluids3/

to include anonymous feedback, solutions, and past papers. Online videos may have to be
put on Blackboard.

Recommended texts

1. A.R. Paterson, A First Course in Fluid Dynamics, Cambridge University Press. (The rec-
ommended text to complement this course - costs ≈ £75 from Amazon; there are 6 copies
in Queen’s building Library and 3 copies in the Physics Library)

2. L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Butterworth Heine- mann.
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3. D.J. Acheson, Elementary Fluid Dynamics. Oxford University Press

4. G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press. (The
definitive book, written by the expert, but not for the faint-hearted)
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1 Introduction & Kinematics

1.1 Opening remarks

Fluid dynamics is an extremely important and practical area of applied mathematics which is
used, for example, in studying the weather, waves (e.g. on water, in air), aerodynamics of air-
craft/hydrodynamics of ships, blood flow, oil extraction, chemical reactions, sport...

It is an extraordinarily broad subject area which ranges from the study of very large scales (e.g.
formation of galaxies/stars/planets or the motion of magma inside planets) to very small scales
(cells in biology or swimming organisms). You only need to observe some everyday examples of
fluid motion to realise that fluids normally possess very complex behaviour (e.g. smoke rising from
a fire, breaking waves on a beach, the splash of a drop in a puddle).

It is quite remarkable then that all fluid motion is governed by the same physical laws (conservation
of mass and momentum – or Newton’s law) and that all these different complex behaviours are
solutions of the same fundamental equation (the Navier-Stokes equation).

What can we acheive in this course ? The reality is that the relatively basic tools of undergraduate
mathematics are insufficient to allow us to consider the complete range of fluid dynamics topics
nor to explain these complex fluid phenomena; in practice one often resorts to computational
methods (so-called CFD) to do this.
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What we hope to show in this course is that by making some good assumptions and approximations
about real flows, the mathematical tools that you’ve learnt in Mechanics, PDEs, ODEs, MVC,
MCF can be applied to gain some insight and understanding of some fundamental properties of
fluid dynamics.

This includes, for example, how lift is generated by wings of an aircraft, how ground effect works
in racing cars, how a fluid flows over a wier or how a wind turbine can extract power from a
background flow.

You can find many fascinating short videos explaining in current research topics in fluid mechanics
here:
https://gfm.aps.org/meetings in the American Physical Society’s Gallery of Fluid Motion.
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1.2 What is a fluid ?

A fluid is a material whose loose packing of molecules which have no structure. This includes both
liquid, gases (as well as plasma) but not solids. A gas is easy to compress, a liquid much less so.

Within this definition there is are important sub divisions or classifications of fluids. For e.g.
honey, water & saliva would appear to all be fluids, yet they appear to react to forces in different
ways.

In this course we shall consider only ideal fluids. These are fluids which have negligible1 viscosity
(a frictional resistence to sliding forces). This includes water, but not honey (which is viscous)
and saliva (which is visco-elastic).

1.3 What are we interested in ?

Things that we observe or measure easily: e.g. velocity, pressure, density, forces ...

... But what exactly do we mean by measure and observe ?

1.4 The continuum hypothesis

Consider measuring (for e.g.) the density ρ at a particular point in a fluid:

ρ

10
Size of

Sample
−9 10−1

molecular
fluctuations

local density

global variations
in density

Our sample has volume δV and so

ρ =
δm

δV
, δm is mass of fluid in δV

If the sample is too small (e.g. typical molecule size is ∼ 10−9m or typical mean free path in a gas
is ∼ 10−7m) we will record microscopic fluctuations of the fluid.

1This statement is typical in Applied Mathematics but is inherently ambiguous. E.g. I have negligible mass
when compared to the mass of the earth, but not compared to the mass of an ant. So in this statement, I’ve already
made some assumptions about the fluid problem I intend to consider: in fact I’m assuming the Reynolds number
is not small
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If the sample is too large we average out detail we want to capture.

Between these two limits we can assign the local average to a point at the centre, say, of δV in
space.

This sampling approach is the basis of the continuum hypothesis and leads to a broad area
of applied mathematics called continuum mechanics (e.g. traffic flow models in APDE2 are
formulated on this principle.)

I.e. we can define continuous functions of position r = (x, y, z) and time, t, to describe locally-
averaged quantities.

E.g.: density, ρ(r, t); velocity, u(r, t).

Note: Differentiation requires, for example, taking the limit as δV → 0, an infinitesimal volume,
tends to zero. In reality, makes no sense, but does according to the continuum model.

Note: The continuum hypothesis breaks down if one tries to use it to describe features at molecular
lengthscales. E.g. later on, singularities where the fluid speed is predicted to be infinite at a point
in space is simply a manifestation of continuum assumption.

1.5 Lagrangian and Eulerian descriptions of the flow

We now consider what it means to observe a fluid flow. There are two (sensible) ways of doing
this.

1. Eulerian: What the stationary observer sees.

Choose fixed points, r, to measure, for e.g. the ‘Eulerian velocity’ u(r, t).

This provides a spatial distribution of the flow at each instant in time. If the flow is steady
then u does not depend on time, t: u = u(r).

E.g. Weather stations.

2. Lagrangian: The observer moves with the fluid.

Choose fluid particles and follow them through the fluid. Measuring their velocity at a given
time, t gives its ‘Lagrangian velocity’.

So if at time t0, the fluid particle is at position a, then at time t > t0, it is at r(t)
2 so that

r(t0) = a. The Lagrangian velocity is v(t) =
dr

dt

E.g. Ballons, buoys in the ocean.

2The vector r should be interpreted according to the context of its use. In the Eulerian framework, r is a
position vector of a fixed point in space and does not depend upon time; in the Lagrangian framework, we have
assumed that r is a particular path in space which depends upon time t.
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The two are related (they have to be, right ?)

v(t) = u(r(t), t)

(Read as: “The velocity of a fluid particle following the path r(t) is the same as velocity observed

by a stationary observer positioned instantaneously at the point r(t)”)

Q: Can a steady flow be accelerating ?

A: Yes !

E.g. consider logs flowing along the centre of a narrowing section of river – take u = (kx, 0, 0) for
some constant k > 0.

Fixed observers at, say x = x1, x2, . . . , xN see logs passing the same points at the same speed.
Observers sitting on the logs pass the points x = x1, x2, . . . , xN at speeds kx1, kx2, . . . , kxN and
the see the logs accelerating.

Note: Since in this example ut = (0, 0, 0), we have illustrated that acceleration under the Eulerian
description isn’t just ∂u/∂t as you might expect.

Stationary observer sees logs passing at constant speed. 

Observer moving with the flow sees the logs
accelerate

Using a fixed coordinate system (Eulerian) rather than one which moves with the flow (often the
thing you are trying to find !) is far far easier in most practical problems, so most of the time we
stick to Eulerian. And we will sort out the acceleration issue later...

1.6 2D vs 3D

Defn: A flow is two-dimensional if it is independent of one of its components (in some fixed
frame of reference).

E.g. u = (u(x, y, t), v(x, y, t), 0).

This means there is no dependence of the flow on z and that there is no component of flow in the
ẑ direction.

Note: Whenever we write u = (u, v), 2D is to be assumed.

1.7 Visualising flows: Particle paths, streamlines and streaklines

Assume the Eulerian velocity field u(r, t) is given.
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1.7.1 Particle Paths

Defn: Particle paths (pathlines) are curves r(t) in space followed by individual particles. In an
experiment, pathlines found by following tracer particles in the flow.

Release particle from r = a at t = t0 and then its path, denoted by r(t), is determined from earlier
considerations as the solution to:

dr

dt
= u(r, t), with initial condition r(t0) = a = (a1, a2, a3) (1)

Explicitly, writing r(t) = (x(t), y(t), z(t)) and u(r, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)), then
(1) is

dx

dt
= u(x, y, z, t)

dy

dt
= v(x, y, z, t)

dz

dt
= w(x, y, z, t)



























with x(t0) = a1, y(t0) = a2, z(t0) = a3.

Note: For some (simple) u these can be integrated using elementary methods, but in general not.

E.g. 1.1: Logs on a river: u = (kx, 0, 0) with r(0) = (1, 0, 0), say. So

dx

dt
= kx ⇒ x(t) = ekt

(and acceleration is manifest.)

E.g. 1.2: 2D flow, u = (t, 1/t, 0) (so u = t, v = 1/t, w = 0) with r(t0) = (0, 0, 0). Then






























dx

dt
= t, ⇒ x =

1

2
t2 + c1

dy

dt
= 1/t ⇒ y = log t + c2

dw

dt
= 0 ⇒ z = c3

for constants of integration c1, c2, and c3 determined by the initial condition. So c1 = −1
2
t20,

c2 = − log t0, c3 = 0. It follows that t = t0e
y so that x = 1

2
t20(e

2y − 1) with z = 0.

y

x

x= (t 
2

1 2

0
e

2y
−1)
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E.g. 1.3: 2D flow, u = (y,−x, 0) cos t with r(t0) = (1, 0, 0). Then

dx

dt
= y cos t, (∗) dy

dt
= −x cos t,

Soln ?

Method 1:

Divide one by the other to get
dy

dx
=
dy/dt

dx/dt
=

−x
y

separate and integrate

∫

y dy = −
∫

x dx ⇒ 1
2
y2 + 1

2
x2 = C

for some constant C. Since at t = t0, x = 1 and y = 0, we end up with x2 + y2 = 1.

Method 2:

Similar, but a bit slicker. Combine two ODEs as

0 = x
dx

dt
+ y

dy

dt
=

d

dt
(1
2
x2 + 1

2
y2)

so that the solution satisfying the initial conditions is x2 + y2 = 1.

Problem: Don’t know x(t) and y(t)...

Soln: We can parametrise the curve formed by the pathline using by x(t) = cos θ(t), y(t) = sin θ(t)
where θ(t) is a new unknown.

Then dx/dt = − sin θθ̇ = −yθ̇ and from (∗) must have θ̇ = − cos t which integrates to θ =
− sin t + const. The constant is sin t0, since θ = 0 at t = t0.

So full solution is x(t) = cos(sin t0 − sin t) and y(t) = sin(sin t0 − sin t)

θ=−1,

θ=1, t=3π/2

t=π/2

0,π,2πt=

x

y

0
e.g. t =0

1.7.2 Streamlines

Defn: A streamline of a flow u(r, t) at a given instant in time, t0 say, is a curve which is
everywhere parallel to u(r, t0).
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d x

s measures length along curve

Let r = r(s) describe a curve in space3 (the streamline) defined by its arclength, s, along the
curve.

Then dr/ds is a vector parallel to that curve. and it follows that

dr

ds
∝ u(r, t0) or

dr

ds
= λ(s)u(r, t0)

for some (real) λ(s). Writing r(s) = (x(s), y(s), z(s)) and matching component-by-component
gives dx = λuds, dy = λvds, dz = λwds, or

dx

u
=
dy

v
=
dz

w
(= λds), t = t0. (2)

Streamlines are found by solving these equations. For example, dy/dx = v/u and dx/dz = u/w
(and a third relation is implied by the solution to the other two).

Note: In general, streamlines vary with time. If the flow is steady streamlines of the flow are
fixed (the opposite is not always true.)

Streamlines can be visualised in an experiment by taking a short-time exposure of illuminated
particles in a flow.

E.g. 1.4: u = (t, 1/t, 0). At t = t0,
dx

t0
= t0dy, so that, integrating up, x = t20y + const.

x x

y y

t
00

 =1

ARROWS IMPORTANT

t =2

E.g. 1.5: u = (y,−x, 0) cos t. At t = t0,
dx

y cos t0
= − dy

x cos t0
so that

dx

dy
= −y

x
and then

integrating, x2 + y2 = const.

3Now r is used differently to the Eulerian and Lagrangian uses and measures the position of a point on a line
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t <0

y y

x x

π/2 3π/2<0t<π/2

Note: Streamlines should indicate the direction of the flow.

Note: When solving for streamlines, one does not specify a single point through which a parti-
cle passes (as for pathlines) and the effect of integrating the equations defining the streamlines
produces a constant whose variation provides a family of streamlines.

1.7.3 Streaklines

Defn: A streakline is the locus, at a time t, of particles which have been released continuously
from a fixed point a during a time interval [τ, t].

In an experiment it corresponds to the line formed by the continuous release of a dye from a fixed
point over a particular period of time. It depends on the history of the fluid back in time to t = τ .

To find the streaklines, find the paths of fluid particles released from a position a at time t0 for
all τ < t0 < t. This gives the streakline in parametric form.

E.g. 1.6: u = (t, 1/t, 0) passing through (0, 0, 0) at t = t0. Then from earlier, we found

x(t) = 1
2
(t2 − t20), y(t) = log(t/t0).

E.g. At t = 1, the streakline (xs(t0), ys(t0)) is defined by xs(t0) = 1
2
(1 − t20), ys(t0) = log(1/t0)

and here it is possible to eliminate t0 so that xs = 1
2
(1 − e−2ys) is the explicit equation of the

streakline. It runs from (0, 0, 0) (when t0 = 1) to (1
2
(1 − τ 2), log(1/τ), 0) (when t0 = τ) for some

τ in 0 < τ < 1.

x

y

1/2

t = τ

=1t
0

0

e.g. t=1

E.g. 1.7: u = (y,−x, 0) cos t passing through (1, 0, 0) at t = t0. From earlier particle paths are
given by x(t) = cos θ, y(t) = sin θ with θ = sin t0 − sin t.

E.g. Choose τ = 0, t = 1
2
π. Now θ = sin t0 − 1. The streakline is arc of a circle, r = 1, which runs

11



from −1 < θ < 0.

t
0
=π/2Particle released from here at 

t
0
=0Particle released at 

π/2t=

θ=−1

Note: For steady flows, streamlines, streaklines and particle paths all coincide.

1.8 The Lagrangian derivative

(a.k.a. the convective derivative, the material derivative).

We know how to measure the time derivative of a physical quantity associated with the fluid –
temperature T (r, t) say – at a fixed point in space (the “Eulerian derivative”). It’s just

∂T

∂t

∣

∣

∣

∣

r fixed

This definition misses useful information. For example, parcels of air over Bristol might pass at a
constant 15 degrees, but have warmed to 20 degrees by the time they reach Oxford. According to
the Eulerian derivative which observes changes at fixed locations the temperature everywhere is
constant. Useful, but it doesn’t tell you that parcels of air moving with the fluid have increased
in temperature.

Defn: Thus an important idea needed to describe the flow is the rate of change following a fluid

particle. This is called the Lagrangian derivative.

The key is to no longer regard r as fixed, but r(t) will describe the path of a particle of fluid (its
initial position is not needed as we shall see).

So, for example, T = T (r(t), t) and

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
+
∂T

∂z

dz

dt
+
∂T

∂t

by the chain rule.

Note: The partial derivatives on the RHS assume all other variables are fixed (this is the conven-
tional definition of partial derivatives) and are hence refer to the Eulerian description.

Notation: We use D/Dt to describe the Lagrangian derivative and so the above can be written
compactly as

DT

Dt
=
∂T

∂t
+ u ·∇T (3)
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Defn: Since D/Dt can be applied to the scalar components u, v, w of a velocity field u and thus
to u itself, the acceleration of a fluid particle is

Du

Dt
=
∂u

∂t
+ (u ·∇)u (4)

Defn: The term u ·∇ is called the advective term. It is the scalar operator u∂/∂x + v∂/∂y +
w∂/∂z (in Cartesians).

Note: The brackets in (u ·∇)u are important and u · (∇u) makes no sense. It is the parallel of
the vector operation (a · b)c which is nonsense if rewritten as a · (bc).
E.g. 1.8: Consider log problem from §1.5 where u = (kx, 0, 0). Then: (i)

∂u

∂t
= 0

so the flow is steady; and (ii) the advective term is

(u.∇)u =

(

kx
∂

∂x

)

(kx, 0, 0).

Hence the acceleration of the log is
Du

Dt
= (k2x, 0, 0).

Note: Recall from E.g. 1.1 that we computed a particle path to be x(t) = ekt. Thus, the
acceleration in the x-direction is d2x/dt2 = k2ekt = k2x, which matches Du/Dt above.

Key points: The continuum hypothesis allows us to consider a flow, not by tracking individual
molecules but by describing its properties in terms of local averages.

There are two ways of observing the flow, in fixed and moving frames of reference. These are
connected. It is most usual to work in a fixed frame (Eulerian) of reference but an important
notion is that of rate of change moving with the fluid which gives rise to the Lagrangian derivative,
D/Dt = ∂/∂t + (u ·∇).

There are three ways of visualing a fluid: particle paths (the unique curve followed by single release
of a tracer into the flow), streamlines (families of curves which capture the instantaneous direction
of the flow everywhere) and streaklines (finite length curves formed by the continuous release of
tracer particles over an interval of time). These are identical for steady flows.
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2 Continuity and some basic incompressible flows

2.1 Mass conservation

Consider an arbitrary finite volume, V , which is fixed in a fixed frame of reference. V is bounded
by the surface S and n̂ represents a unit normal on S outward from V .

A fluid occupies the space of which V is a subset. The fluid has velocity u(r, t) and density ρ(r, t).
Fluid can flow in and out of V .

n

SV

dS

u n

dS

d x

The mass of fluid contained in V is
∫

V

ρ(r, t)dV

In a short time δt the mass leaving a section, area δS, of the surface of V is δm = ρδxδS where
δx = u · n̂δt. So the rate at which mass is leaving V (the mass flux) through δS is ρu · n̂δS
Therefore the total flux of mass into V is

−
∫

S

ρu · n̂dS

By the principle of the conservation of mass (fluid is neither created or destroyed in a closed
system):

“the rate of change of mass in V must equal the rate of change of mass into of V through S”

In other words
d

dt

∫

V

ρ(r, t)dV = −
∫

S

ρu · n̂dS (5)

Since V does not change with t and using the divergence theorem for the RHS we get
∫

V

∂ρ

∂t
dV = −

∫

V

∇ · (ρu)dV

or
∫

V

(

∂ρ

∂t
+∇ · (ρu)

)

dV = 0.

This is true for any fixed V , so it must be

∂ρ

∂t
+∇ · (ρu) = 0 (6)
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at every point in the fluid.

(6) is called the mass conservation equation or the continuity equation.

2.2 Incompressibility

Defn: A fluid is said to be incompressible if the density of each fluid ‘particle’ is constant, (i.e.
Dρ

Dt
= 0).

From (6) we have

0 =
∂ρ

∂t
+∇ · (ρu) = ∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u =

Dρ

Dt
+ ρ∇ · u

Thus an incompressible fluid satisfies

∇ · u = 0 (7)

That is, the condition (7) implies and hence replaces (6) for an incompressible fluid.

Remark: No fluid is completely incompressible. Gases can compress easily, liquid much less so.

Because of the simplicity of (7) and the way it helps later calculations be made it is often useful
to make the approximation of incompressibility, even when considering gases4.

Note: If ρ is constant the LHS of (5) is zero and conservation of mass can be invoked using

∫

S

u · n̂dS = 0 (8)

(I.e. the net flux through the surface of a volume is zero.)

E.g. 2.1: Consider u = (y, x, 0). Then

∇ · u =
∂y

∂x
+
∂x

∂y
= 0

E.g. 2.2: Consider u = (x,−y, 0). Then

∇ · u =
∂x

∂x
+
∂(−y)
∂y

= 1− 1 = 0

I.e. both flows are incompressible.

Exercise: Prove (8) holds for both E.g.’s 2.1/2.2 with S defined as a circle of radius a centred on
the origin.

4Usually OK for very subsonic flows.
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2.3 Streamfunctions (for incompressible flows)

Theorem: If ∇ · u = 0, then there exists a vector field A(r, t) s.t.

u = ∇×A (9)

Defn: The vector field A is called the vector potential.

Remark: A is not unique since if A is replaced by A+∇f for any scalar potential f , the same
u results from (9). This is because ∇×∇f = 0 for any f (null identities in MVC).

Remark: How easy is it to find A given u ? If you try writing out each component of (9) you’ll
see things look very complicated – and are, in general – unless the flow has a simplified structure
to it.

2.4 Two-dimensional flows

We will consider this description of 2D flows in two different useful coordinate systems.

2.4.1 Cartesians

Consider A = (0, 0, ψ(x, y, t)). Then

∇×A =

(

∂ψ

∂y
,−∂ψ

∂x
, 0

)

= (u(x, y, t), v(x, y, t), 0) = u

(and clearly ∇ · u = 0).

Key point: In other words, we can represent both velocity components of a two-dimensional
incompressible flow in terms of a single function as

u(x, y, t) =
∂ψ

∂y
, v(x, y, t) = −∂ψ

∂x
(10)

Remark: Why does this make sense ? Because incompressibility means that the flow component
in the x-direction has to be related to the component in the y-direction.

In addition ψ has a very useful physical interpretation. Let (x(s), y(s), 0) be a streamline with s
measuring arclength along a streamline as before. Then consider

dψ

ds
=
∂ψ

∂x

dx

ds
+
∂ψ

∂y

dy

ds
= −vλ(s)u+ uλ(s)v = 0

using the chain rule and the definition of a streamline.

It follows that ψ(x, y, t) = const on a streamline of the flow.

Defn: The function ψ(x, y, t) is called the streamfunction.
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ψ= constant

E.g. 2.3: Consider u = (y, x, 0). Then

∂ψ

∂y
= y, ⇒ ψ(x, y) = 1

2
y2 + f(x)

and
∂ψ

∂x
= −x, ⇒ ψ(x, y) = −1

2
x2 + g(y)

for some arbitrary functions f, g. These can work together if

ψ(x, y) = 1
2
(y2 − x2)

(an additive constant does not alter the streamlines)

Defn: Points in the flow where u = 0 are called stagnation points. For steady flows, streamlines
can only cross at stagnation points.

2.4.2 Polars

Consider A = ψ(r, θ, t)ẑ in polars (x = r cos θ, y = r sin θ). Then (look up definition of curl in
polar coordinates)

∇×A =
1

r

∂ψ

∂θ
r̂− ∂ψ

∂r
θ̂

It follows that if we write express the 2D flow in polars as u(r, θ, t) = urr̂ + uθθ̂ then the two
scalar components of the velocity in the radial and angular directions are given by

ur(r, θ, t) =
1

r

∂ψ

∂θ
, uθ(r, θ, t) = −∂ψ

∂r
(11)

Note: Using definition of divergence in polars

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

= 0
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after using (11), confirming incompressibility (but we didn’t need to of course !)

In polars coordinates, (2) is replaced by dr/ur = rdθ/uθ and ψ(r, θ, t) = const define streamlines.5

E.g. 2.3: (Rotational flows.) Fluid rotates around the origin. So ur = 0 and uθ is independent
of θ, or:

ur = 0 =
1

r

∂ψ

∂θ
, ⇒ ψ ≡ ψ(r)

uθ = f(r) = −∂ψ
∂r











This allows for a variety of flows all with the same streamlines. E.g. if ψ(r, θ) = −Ar then uθ = A
(the fluid exhibits solid body rotation); if ψ(r) = −A ln r then uθ = A/r (we will come to know
this as a point vortex or line vortex.)

E.g. 2.4: (A two-dimensional point source also known as a line source.) Fluid flows radially
from the origin. So uθ = 0 and ur is independent of θ, or:

ur = f(r) =
1

r

∂ψ

∂θ

uθ = 0 = −∂ψ
∂r











2nd eqn. implies ψ = ψ(θ) but, from 1st eqn. ∂ψ/∂θ must be independent of θ. So ψ = Aθ where
A constant. Then f(r) = A/r.

Defn: The source strength is the flux of fluid from the source point.

Since the flow is incompressible, the flux at the origin equals the flux through any closed boundary
surrounding the origin (this is just a restatement of (8)).

Most easily calculated by measuring the flux through a circle C, radius r centred at the origin:

Source strength, m =

∫

C

u · n̂ ds =
∫ 2π

0

u · r̂ rdθ =
∫ 2π

0

urr̂ · r̂ rdθ =
∫ 2π

0

A

r
rdθ = 2πA.

and A = m/2π (see line integrals in MVC). Confirms mass flow through a circle surrounding the
origin is independent of the radius of the circle.

5The details of how to show this is a bit tricky. Start with describing the streamline by the curve r = r(s)r̂(s)
in polars where s is arclength. Then dr/ds = (dr/ds)r̂ + r(dθ/ds)θ̂ = λ(s)u = λ(s)(ur r̂ + uθθ̂). This means
dr/ds = λur and dθ/ds = uθ/r and we can divide one by the other to determine a relation defining streamlines
in polars. We can also confirm, using the chain rule, that dψ/ds = (∂φ/∂r)(dr/ds) + (∂φ/∂θ)(dθ/ds) = 0 after
substituting for each term, from which we assert that ψ is constant along a streamline.
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Summary: The flow u =
m

2πr
r̂ is generated by the streamfunction ψ(r, θ) =

mθ

2π
.

Note: converting to Cartesians, ψ =
m

2π
tan−1(y/x).

E.g. 2.5: A (horizontal) dipole.

Put a source of strength m at x = 0 and an equal sink (a source of −ve strength) at x = a and
let a→ 0.

θ

(x,y)

y

x
θ

x=a -1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

Intuitive result: Nothing ! In some sense correct, but...

ψ = lim
a→0

[m

2π
θ − m

2π
θ′
]

= lim
a→0

m

2π

[

tan−1
(y

x

)

− tan−1

(

y

x− a

)]

Combine this by noting that tan(A−B) = (tanA− tanB)/(1 + tanA tanB). Then

ψ = lim
a→0

m

2π
tan−1

(

y/x− y/(x− a)

1 + y2/x(x− a)

)

= lim
a→0

m

2π
tan−1

( −ay
x2 + y2 − ax

)

= −µ y

2π(x2 + y2)

using tan−1A ≈ A when A → 0 and defining µ = lima→0{ma} be the dipole strength s.t.
0 < µ <∞.

Note: Converting to polars, ψ = −µr sin θ
2πr2

= −µsin θ
2πr

.

Q: What is ψ for a vertical dipole ?

2.5 Three-dimensional (axisymmetric) flows

Again we will use simplified vector potentials now in two different 3D coordinate systems to
describe certain flows having some restrictive property – axisymmetry in this case.

2.5.1 Cylindrical polars

Use cylindrical coordinates (r, θ, z) and choose A = (Ψ(r, z, t)/r)θ̂, then

∇×A = −1

r

∂Ψ

∂z
r̂+

1

r

∂Ψ

∂r
ẑ
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(curl in cylindrical polars). So an incompressible flow u = urr̂+ uθθ̂ + uzẑ satisfies

ur(r, z, t) = −1

r

∂Ψ

∂z
, uz(r, z, t) =

1

r

∂Ψ

∂r

are both independent of θ and uθ = 0 and the flow is said to be axisymmetric.

Can be shown streamlines determined by dr/ur = dz/uz or by Ψ = const on streamlines (actually
stream surfaces or stream tubes as 3D flow.)

Note: For 3D flows, Ψ is called the Stokes’ streamfunction.

θ
r

y

x

z

U

E.g. 2.6: Let u = U ẑ (uniform flow in direction of z-axis). Then

ur = −1

r

∂Ψ

∂z
= 0, uz =

1

r

∂Ψ

∂r
= U

First eqn implies Ψ ≡ Ψ(r) and 2nd eqn then gives Ψ = 1
2
Ur2.

θ r

z

x−axis

z

x

yr

Cylindrical polars Spherical Polars

θ

φ

2.5.2 Spherical polars

Coordinates (r, ϕ, θ) and with A =
Ψ(r, ϕ)

r sinϕ
θ̂ then

∇×A =
1

r2 sinϕ

∂Ψ

∂ϕ
r̂− 1

r sinϕ

∂Ψ

∂r
ϕ̂

from the definition of curl in spherical polars.

Matching to the axisymmetric flow u = ur(r, ϕ)r̂+ uϕ(r, ϕ)ϕ̂ with uθ = 0 we have

ur =
1

r2 sinϕ

∂Ψ

∂ϕ
, uϕ = − 1

r sinϕ

∂Ψ

∂r
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Can show again that setting Ψ = const gives stream surfaces.

E.g. 2.7: (a 3D point source.) Clearly uθ = 0 and flow does not depend on azimuthal angle θ,
so can use streamfunction Ψ(r, ϕ) in spherical polars. Also

uϕ = 0, ⇒ Ψ ≡ Ψ(ϕ)

whilst

ur = f(r) =
1

r2 sinϕ

∂Ψ

∂ϕ

means we must have Ψ = A− B cosϕ, for A,B constants, and so f(r) = B/r2.

The source strength found from measuring flux through sphere surrounding origin:

Source strength, m =

∫

S

u · n̂ dS =

∫ π

0

∫ 2π

0

B

r2
r2 sinϕdθdϕ = 4πB

since u = urr̂ = f(r)r̂ = (B/r2)r̂, and n̂ = r̂, dS = r2 sinϕdθdϕ, S = {0 < θ < 2π, 0 < ϕ < π}
(from 1st year Calculus & MVC).

Defining, for e.g., Ψ = 0 on ϕ = 0 to determine A we get

Ψ(ϕ) =
m

4π
(1− cosϕ)

Note: We can convert this solution into cylindrical polars (r, θ, z) (where r means a different
thing now !) using geometry to get

Ψ =
m

4π

(

1− z√
z2 + r2

)

.

Key points: One of the two main principles of fluid motion is conservation of mass; this leads
to the continuity equation linking changes in density to flow velocity.

If the flow is incompressible then ∇ · u = 0. For such flows we can always find a vector potential
A such that u = ∇×A. This is only really useful for simplified flows, which are 2D flows and 3D
flows which are axisymmetric about the z-axis. In these cases it is possible to express the velocity
components of the flow in terms of a single ‘streamfunction’ – this is the key: two unknown
flow components plus the conditions of incompressibility are used together to express the flow in
terms of a single unknown. The bonus of this approach is that the flow can easily be visualised
by sketching lines on which the streamfunction is constant.

We have introduced some basic flows: streaming flows, rotational flows including point vortices
and 2D and 3D point sources and dipoles with extensive use of vector calculus in cylindrical and
spherical coordinates.

21



3 Flow dynamics for an incompressible inviscid fluid

3.1 Forces on a fluid

Fluids move in response to the forces that are exerted on each fluid particle or ‘parcel’.6

These forces are of two types:

• Forces on parcel of fluid, volume δV , that are proportional to δV are known as body forces.
E.g. gravitational force on δV is −δmgẑ = −ρgδV ẑ.

• Forces that are transmitted across the surface element δS of a fluid parcel are called surface
forces. These require more thought.

When the fluid is a rest, the surface force must be in the direction of the normal, n̂ (the definition
of a fluid implies it would deform if a tangential force were applied.)

In this course, we consider fluids for which this statement remains true even if they are in motion.
Tangential components of forces on fluids when in motion are due to a molecular property of the
fluid called viscosity.

Defn: An fluid is said to be inviscid (or ideal) when surface forces act in the normal direction
only, even in motion.

That is for an inviscid fluid, the surface stress (defined as the force per unit area) on the surface
of a fluid parcel is in the direction n̂ normal to a surface element δS and hence the δFs = −pn̂δS =
is force exerted by exterior fluid on fluid inside δV .

The coefficient of proportionality, p(r, t), represents the force per unit area in normal direction and
is called the pressure. It is directed inwards (hence the minus sign) because fluids are normally
in a state of compression.

Q: Can p(r, t) also depends on n̂ ?

A: It can’t (proof is long and not important for this course).

That is to say pressure is isotropic: at a point in the fluid pressure is the same in all directions.

Key points: A fluid responds to forces. There are body forces which act on the bulk (think of
gravity). Surface forces act between one layer of a fluid and another. For an ideal fluid, there are
no tangential forces between layers (like friction) and forces are normal to surfaces (like reaction
forces). The force per unit area in the normal direction is called the pressure and this acts equally
in all directions at a point in the fluid.

3.2 Equation of motion

This the equivalent of ‘Newton’s Law’ for an inviscid fluid.

6Remember, under the continuum hypothesis a particle is a small finite volume δV with a reference position.
As the fluid moves, the shape of δV changes but it contains the same mass.
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Consider a fixed volume V with surface S. The momentum within V may change as a result of
(i) body forces (ii) surface forces, and (iii) fluid momentum transported out of V .

u.n(     )z

y

x0

n
S

V

dS

n
uρ

dS
δt

Total momentum in V =

∫

V

ρudV

In time δt, the fluid momentum leaving a small section of surface δS is ρuδxδS where δx = (u·n̂)δt.
So rate of momentum transport of momentum (the momentum flux) is ρu(u · n̂)δS.

Thus Newton’s Law applied to a volume V of the fluid reads

d

dt

∫

V

ρudV = −
∫

S

ρu(u · n̂)dS −
∫

S

pn̂dS +

∫

V

fdV (12)

where f represents the body force density or force per unit volume (e.g. for gravity f = −ρgẑ).
In each i = 1, 2, 3 components,

∫

V

∂

∂t
(ρui)dV = −

∫

S

ρui(ujnj)dS −
∫

S

pnidS +

∫

V

fidV.

since V is fixed. Now apply the divergence theorem to get
∫

V

∂

∂t
(ρui)dV = −

∫

V

∂

∂xj
(ρuiuj)dV −

∫

V

∂p

∂xi
dV +

∫

V

fidV.

since V is an arbitrary volume within the fluid, we must have

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ fi.

This is (one form of) the equation of motion, but it can be simplified by expanding as

ui
∂ρ

∂t
+ ρ

∂ui
∂t

+ ρuj
∂ui
∂xj

+ ui
∂

∂xj
(ρuj) = − ∂p

∂xi
+ fi

and using the continuity equation (6) in component form:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0
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so that we have

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+ fi.

Finally, we can identify this in vector notation as

ρ
∂u

∂t
+ ρ(u ·∇)u = −∇p+ f

or, using the material derivative, as

ρ
Du

Dt
= −∇p+ f . (13)

This is the momentum equation for the fluid more commonly known as Euler’s equation (due
to Euler 1756).

Remark: (13) contains 3 equations but has four unknowns (the 3 cpts of u and p.) Mass
conservation provides a 4th equation which closes the system.

Remark: Euler’s equation can be read as “mass times acceleration equals sum of forces”. Note
that pressure itself does not act to accelerate a fluid, but pressure gradients do.

Remark: The addition of viscosity leads to an additional term on the RHS of (13). The modified
equation is called Navier-Stokes equation.

E.g. 3.1: From E.g. 2.7 (point source in 3D), ur = m/4πr2, or

u =
m

4πr2
r̂

in spherical polars. Here, ∇ ·u = 0 by construction of solution (but can confirm using divergence
in spherical polars:

∇ · u ≡ 1

r2
∂

∂r
(r2ur) = 0 )

We also have ∂u/∂t = 0 whilst

ρ(u ·∇)u = ρ

(

ur
∂

∂r

)

urr̂ = − ρm2

8π2r5
r̂

To find a pressure field able to sustain this flow, equate to −∇p from Euler’s equation. It follows
that p = p(r) so that

−∇p = −∂p
∂r

r̂ = − ρm2

8π2r5
r̂

and it follows from equating components of r̂ both sides and integrating up that

p = p0 −
ρm2

32π2r4

where p0 is the pressure at infinity.7

Q: Does this make sense ? The pressure increases with r which makes sense because the flow is
slowing down in the radial direction, so a force is holding it back.

7this is a model problem, so we can do this. Often in practical problems we use infinity as an approximation
for ‘a long way away’
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3.3 Hydrostatics

If u = (U1, U2, U3) is constant (a uniform streaming flow) then ∇ · u = 0, ∂u/∂t = 0 and
(u ·∇)u = 0 and the flow is not accelerating.

Then (13) reduces to
∇p = f (14)

This means gradients in pressure must balance body forces.

An example we can understand in everyday life is that pressure must increase to support the
weight of the fluid above it.

Thus, consider gravity acting as body force. Then f = −ρgẑ and (14) is

∇p = −ρgẑ (15)

E.g. 3.3: If ρ is constant −ρgẑ = −∇(ρgz) so that (14) becomes

∇(p+ ρgz) = 0

This integrates to
p+ ρgz = const (16)

I.e. pressure increases with depth (remember z points upwards).

For a lake, ρ = 1000kgm−3 and g = 10ms−2 so pressure increases by 10KPa for every metre below
the surface.

E.g. 3.4: If ρ = ρ(z) (as in the oceans, atmosphere), then (15) can be integrated to give

p(z) = p(z0)− g

∫ z

z0

ρ(z′)dz′

E.g. 3.5: (Archimedes’ principle ∼ 250BC)

V

S n

z

Stationary

fluid, density ρ

Consider a static arrangement of a body of volume V with surface S immersed in fluid of density
ρ. The forces due to the fluid acting on that body are surface forces (i.e. −pn̂δS integrated over
S). Thus

Force on submerged body = −
∫

S

pn̂dS = −
∫

V

∇pdV = ẑ

∫

V

ρg dV

using the divergence theorem and (15).
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Therefore force on body of volume V due to the fluid is equal to the weight of fluid displaced.

Q: What about a body intersecting two fluids of different densities (air/water) ?

3.3.1 Problem: Lock gates

Find the force required to hold back a body of fluid behind a lock gate.

z
H

H

p

p

p

atm

atm
p

2

1

2

1
( )

( )z
z

In x < 0, solve (14) for p1:
∂p1
∂x

=
∂p1
∂y

= 0,
∂p1
∂z

= −ρg to give p1(z) + ρgz = const as in (15).

We also have p = patm (constant atmospheric pressure8) on z = H1 so

p1(z) = patm + ρg(H1 − z), 0 < z < H1

and similarly, in x > 0,

p2(z) =

{

patm, z > H2,
patm + ρg(H2 − z), 0 < z < H2,

Force exerted by fluid on gate (per unit width of gate) from x < 0 is

F1 =

∫ H1

0

p1(z)n̂dz

Here n̂ = x̂ is the vector pointing out of the fluid into the gate. Thus the x-component is, say,

F1 = F1 · x̂ =

∫ H1

0

p1(z) dz = patmH1 +
1
2
ρgH2

1

Similarly, the force exerted by fluid on the gate from x > 0 is

F2 = −
∫ H1

0

p2(z) dz = −patmH1 − 1
2
ρgH2

2

(the minus sign is because n̂ = −x̂ in the fluid to the right of the gate).

Thus the net horizontal force is

F1 + F2 =
1

2
ρg(H2

1 −H2
2 )

8we can prove/we will show later that pressure is continuous across fluid/fluid interfaces such as water/air.
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Checks: If H1 > / = / < H2 then forces act in right way.

Q: What about torque ? (Problem sheet)

3.4 The momentum integral theorem (for steady flows)

For steady flows, LHS of (12) is zero and if we also assume a conservative body force, f = −ρ∇Φ9

then

0 = −
∫

S

ρu(u · n̂)dS −
∫

S

pn̂dS −
∫

V

ρ∇Φ dV

Using the corollary to the divergence theorem in Appendix A.9.1 we get

∫

S

ρu(u · n̂) + (p+ ρΦ)n̂ dS = 0 (17)

for a fixed closed surface S surrounding V .

Eqn (17) is referred to as the momentum integral theorem.10

Note: The divergence theorem works in 2D and 3D and so S can be a closed 2D surface sur-
rounding a 3D volume or a closed 1D curve surrounding a 2D surface.

3.4.1 Problem: Jet impinging on a wall

Find the force exterted by axisymmetric jet hitting a the wall.

n̂ = r̂

S3

u = Urr̂

S2

u = −U ẑS1

n̂ = −ẑ

n̂ = ẑ

S4

patm

patm

9For gravity Φ = gz
10One can regard the relationship of (17) to (13) in the same way as (8) is related to (6). Thus (17) balances

momentum flux through fixed surface in the same way that (8) balances mass flux through a fixed surface. The
advantage of using either of these is that you need only apply them on the bounding surface of the flow where you
have data rather than everywhere in the volume where the detail of the flow is not known or, perhaps, important.
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Ignore the effects of gravity (you can make a technical argument that the timescales over which
such a flow evolves mean that gravity has a negligible effect on the dynamics, but as students –
just accept it.)

Take a control surface, S, around the flow cutting the flow far from the point of impingement.
Divide S into four segments: S = S1 ∪ S2 ∪ S3 ∪ S4 (see figure). Assume uniform outward flow
parallel to wall across S3, u = Urr̂ and uniform input flow across S1, u = −U ẑ. So U is given and
Ur is something to be found.

Also assume pressure on all boundaries apart from wall S4 is patm (constant atmospheric). Then
(17) with Φ = 0 reads

∫

S

ρu(u · n̂) + pn̂ dS = 0.

Now, here’s a neat trick that often helps in this type of problem:
∫

S

pn̂dS =

∫

S

(p− patm)n̂dS +

∫

S

patmn̂dS = −
∫

S4

(p− patm)ẑ dS

since

∫

S

patmn̂dS =

∫

V

∇patmdV = 0 (corollary to divergence theorem) since patm is constant.

Also,
∫

S

ρu(u · n̂) dS =

∫

S1

ρU2ẑ dS +

∫

S3

ρU2
r r̂ dS.

since u · n̂ = 0 on the wall and the fluid surface11

Thus we have

0 = −
∫

S4

(p− patm)ẑ dS +

∫

S1

ρU2ẑ dS +

∫

S3

ρU2
r r̂ dS

and if we dot product with ẑ we get (ẑ · r̂ = 0)

∫

S4

(p− patm)dS = ρU2A

where A =
∫

S1
dS equals the cross-sectional area of the incoming jet. The left-hand side is the

integrated pressure (in excess of atmospheric) exerted by the fluid integrated over the wall which
equals the force exterted by wall on fluid and is therefore ρU2A.

Q: What about Ur ? Can do this once you know about ...

3.5 Bernoulli’s equation for steady flows

We start with the vector identity (see Appendix A.8(3))

(u ·∇)u = ∇(1
2
u · u)− u× ω

11i.e. there is no flow across these surfaces so the component of u in the direction normal to the fixed surface is
zero.
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where we have defined ω = ∇× u (we shall come to know this as the vorticity).

Write |u|2 = u · u and use above in (13)

∂u

∂t
− u× ω = −∇(p/ρ+ Φ+ 1

2
|u|2) (18)

and we have assumed f = −ρ∇Φ as in §3.4. The flow is steady, so
∂

∂t
= 0 and taking the dot

product with u on both sides gives

u · (u× ω) = 0 = u · ∇(p/ρ+ Φ + 1
2
u2)

The definition of a streamline is
dr

ds
= λ(s)u, so

d

ds
(p/ρ+ Φ + 1

2
|u|2) = dxi

ds

∂

∂xi
(p/ρ+ Φ + 1

2
|u|2) = λu ·∇(p/ρ+ Φ+ 1

2
|u|2) = 0

Consequently,

p/ρ+ Φ + 1
2
|u|2 = const, along any streamline in the flow (19)

This is Bernoulli’s equation (for steady flows.)

Remark: Ignoring body forces, the Bernoulli equation says that pressure reduces when speed
increases. This explains how two pieces of paper attract when you blow between them, contrary
to basic intuition.

E.g. 3.6: (Jet against the wall) Follow a streamline along the surface of the flow from the
incoming jet to the outgoing jet. There is no gravity so Φ = 0 and p = patm at all points. So
Bernoulli gives us speed is constant and Ur = U .

Note: The solution to the jet problem is not yet complete as haven’t used conservation of mass.
What would this tell you ? How would you apply it ?

E.g. 3.7: (3D point source). From E.g. 2.7

u =
m

4πr2
r̂

and the flow moves steadily outwards along radial lines from the origin. Use Bernoulli along one
of these streamlines from infinity (where p = p0) to a general point:

p0/ρ+
1
2
02 = p/ρ+ 1

2
|u|2

to give

p = p0 −
ρm2

32π2r4

the same as the answer in E.g. 3.2
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E.g. 3.8: A small rod is fixed vertically in a stream of constant speed U . How high does the
water rise up the rod ?

The flow is steady, so can use Bernoulli along a streamline. Choose the streamline on the surface
(i.e. p = patm) of the stream which connects a point far upstream (set to z = 0) to a stagnation
point at the front of the rod, (z = h). Along this streamline p/ρ+ gz + 1

2
|u|2 is constant. So

patm/ρ+ g.0 + 1
2
U2 = patm/ρ+ gh+ 1

2
02

gives

h = U2/2g

(about 5cm for U = 1m/s)

3.5.1 Problem: Flow out of a tank

A tank of uniform cross section A0 has a small hole, area Ae, at a height h above the base. The
height of the fluid above the hole is H . Find (i) the flow speed from the hole; (ii) the time for the
fluid to drain; and (iii) the distance travelled by the jet out of the hole.

H

h

U

U

A
patm

e

Ae

o

o
area

area

streamlinesz

Since the hole is small and the level of fluid in the tank falls very slowly reasonable approximation
is that the flow is steady at each instant in time.

Here gravity is in play, so Φ = gz. Set z = 0 at the bottom of the base (this is an arbitrary choice
and doesn’t affect the final answer).

Streamlines connect the surface to the exit.

Along any one of these streamlines apply Bernoulli’s equation, so

patm/ρ+ g(h+H) + 1
2
U2
0 = patm/ρ+ gh+ 1

2
U2
e
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or
gH = 1

2
(U2

e − U2
0 ) (20)

One equation, but two unknowns (U0 and Ue).

However, conservation of mass hasn’t yet been used ! Using (8) we can write

A0U0 = AeUe (21)

since the fluxes across two boundaries must be equal.

Using (21) in (20) gives

Ue =

√
2gH

√

1− (Ae/A0)2

Since it has been assumed that Ae ≪ A0,

Ue ≈
√

2gH.

(ii) If H = H(t) is the height of the fluid above the hole, then the velocity of this surface is dH/dt.
Since H(t) is measured upwards,

dH

dt
= −U0 = −

(

Ae

A0

)

Ue

by (21). I.e.
dH

dt
≈ −(Ae/A0)

√

2gH.

If initially H = H0 at t = 0 and H = 0 when t = td, the draining time is found by integrating up:

(Ae/A0)

∫ td

0

dt = −
∫ 0

H0

dH√
2gH

or
td ≈ (A0/Ae)

√

2H0/g

(iii) Distance travelled by the jet. The flow speed is maximum when t = 0 and H = H0. Here
Ue ≈

√
2gH0.

As soon as fluid particles emerge from the hole they are at atmospheric pressure and the only
forces they are subject to are gravitational. Thus they obey the same equations as a projectile
fired horizontally with speed Ue.

It is a simple to calculate the time taken to hit the ground as t =
√

2h/g and the distance travelled
to be

x = Uet =
√

2gH0

√

2h/g = 2
√

H0h

If we assume the filling height is fixed Hf = H0 + h then

x = 2
√

(Hf − h)h

and this is maximised when dx/dh = 0, which a simple calculation shows is when h = 1
2
Hf and

whence xmax = Hf .

Experiment: You can do an experiment with a water bottle to check these predictions !
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3.5.2 Problem: Steady flow through a slowly diverging pipe

Find the pressure jump needed to drive a flow through a pipe of varying cross-section.

streamline

area

area

U
1

U2

A

A2

1

Mass conservation (equating mass fluxes at two ends of pipe using (8)

A1U1 = A2U2

Bernoulli’s equation (ignoring gravity) along streamline in flow:

1
2
ρU2

1 + p1 =
1
2
ρU2

2 + p2

Hence, the pressure difference needed to sustain this flow is

∆p = p2 − p1 =
1

2
ρ(U2

1 − U2
2 ) =

1

2
ρU2

1 (1−A2
1/A

2
2) > 0

(as the pipe widens, the flow slows down and the pressure increases).

Key points: The motion of ideal fluid is governed by the Euler equation, which expresses
conservation of momentum and is the fluid equivalent of Newton’s Law for solid body mechanics.

If the flow is uniform and steady or at rest, then the body forces must balance pressure gradients.
When there are no body forces, this means the background pressure is constant; under gravity
the pressure gradient acts as a force against gravity and pressure increases with depth to support
the weight of the fluid above.

There are two alternative manifestations of Euler’s equation when the flow is steady: (i) the
momentum integral theorem expresses the balance of momentum flux within a closed surface; (ii)
Bernoulli’s equation also expresses conservation of momentum flux along individual streamlines
in the flow.

Without proof, we have asserted that pressure is continuous across interfaces between different
surfaces.

To solve a problem, one can use either Euler’s equation directly, the momentum integral theorem
or Bernoulli’s equation (but no more than one of these as this will duplicate information). To find
the complete solution to a problem one also needs to use conservation of mass as this principle is
not integrated into the momentum conservation equations.
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4 Vorticity

4.1 Analysis of effects of local fluid motion

Consider a short line segment in the fluid, with ends r and r + δr. At a small time δt later, the
two ends have been advected by the fluid to the points

r+ u(r, t)δt, and r+ δr+ u(r + δr, t)δt

Expanding the latter term using multivariable Taylor’s theorem (MVC), gives

r+ δr+ u(r, t)δt+ δr ·∇u(r, t)δt+ . . .

Thus the two ends of the line segment have undergone rigid-body translation in the flow apart
from a term

δr ·∇u(r, t) ≡ δu, say

We continue by investigating this ‘relative motion’ term:

In suffix notation,

[δu]i = δxj
∂ui
∂xj

= δxj

[

1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

+
1

2

(

∂ui
∂xj

− ∂uj
∂xi

)]

≡ δxj [eij + Ωij ]

≡ [δv]i + [δw]i (22)

Note: The tensors eij = eji and Ωij = −Ωji are said to be symmetric and antisymmetric
(respectively).

4.1.1 The antisymmetric part

Consider from the definition

ǫijkΩij =
1

2
ǫijk

(

∂ui
∂xj

− ∂uj
∂xi

)

=
1

2

(

ǫijk
∂ui
∂xj

− ǫjik
∂ui
∂xj

)

= −ǫkji
∂ui
∂xj

= −[∇× u]k (23)

Let us define
ω = ∇× u

Then (23) says ǫijkΩij = −ωk. Now consider (tricky, but necessary !) multiplying both sides with
ǫlmk:

ǫlmkǫijkΩij = −ǫlmkωk

The LHS is

ǫlmkǫijkΩij = ǫklmǫkijΩij = (δilδjm − δimδjl)Ωij = Ωlm − Ωml = 2Ωlm

(using a double product and antisymmetry). This means that

Ωlm = −1
2
ǫlmkωk
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or, to make it easier, relabel as

Ωij = −1
2
ǫijkωk

This means the contribution of the antisymmetric component to the local velocity anomaly is

[δw]i = δxjΩij = −δxj 12ǫijkωk =
1
2
[ω × δr]i

and so

δw = 1
2
ω × δr

This corresponds (e.g. Mech 1) to rigid body rotation of angular velocity 1
2
ω.

Defn: The vector ω = ∇×u is called the vorticity and is a measure of the local rate of rotation
in the flow field described by u.

Defn: A flow is called irrotational if ω = 0.

4.1.2 The symmetric part

It turns out (details ommitted) that under a particular choice of right-angled axes (called the
principal axes of strain) that eij diagonalises so that eij = 0 if i 6= j.

Then the contribution of the symmetric part to the relative motion between the end points of the
line segment is

δv = δr · e, where e = (e11, e22, e33)

This implies a stretching (when eii > 0) and compression (when eii < 0) along respective axes of
strain.

Defn: eij is called the rate of strain tensor.

E.g. 4.1: Consider a shear flow, u = (ky, 0, 0).

y

x

y

x

y

x

Original shear flowu v
w

straining component
rotational component

The vorticity is ω = ∇× u = −kẑ (Check !)
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For this simple (linear) example we can write

u =





1

2





0 k 0
k 0 0
0 0 0



+
1

2





0 k 0
−k 0 0
0 0 0







 r

where r = (x, y, z).

Thus u = v +w where

• v = (1
2
ky, 1

2
kx, 0) is called a straining flow (see E.g. 2.3) and is irrotational: ∇× v = 0.

• w = (1
2
ky,−1

2
kx, 0) is a rotating flow (see E.g. 1.5).

E.g. 4.2: In E.g. 2.3 we considered a general rotating flow u = f(r)θ̂ (in cylindrical polars).
According to the definition of curl in cylindrical polars,

ω = ∇× (f(r)θ̂) =
1

r

∂

∂r
(rf(r))ẑ

Thus rotating flow can only be irrotational if f(r) = A/r or u = (A/r)θ̂.

Defn: This is a point vortex (i.e. all the vorticity is at the origin).

Key points: A general fluid flow observed at a local scale exhibits three separate effects: a rigid
body translation, a rigid body roation and stretching/compression along perpendicular axes.

The rotation is attributed to a vorticity field in the flow. If the vorticity is zero through the flow
(apart from perhaps at isolated singularites – point vortices), it is said to be irrotational.

4.2 The vorticity equation

We start with Euler’s equation written as in (18), namely

∂u

∂t
− u× ω = −∇(p/ρ+ Φ+ 1

2
|u|2)

Taking the curl of this gives
∂ω

∂t
−∇× (u× ω) = 0

since ∇×∇f = 0. We can use a vector identity:

∇× (u× ω) = u(∇ · ω)− ω(∇ · u) + (ω ·∇)u− (u ·∇)ω = (ω ·∇)u− (u ·∇)ω

since the flow is incompressible and ∇ · ω = ∇ · (∇× u) = 0. Hence

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u
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or
Dω

Dt
= (ω ·∇)u (24)

This is called the vorticity equation.

E.g. 4.3: Consider a flow of the form u = (0, 0, (1 − x2 − y2)f(t)) where f(t) is an arbitrary
function of time. Then (check)

ω = ∇× u = (−2yf(t), 2xf(t), 0)

which means the RHS of (24) is
(

−2yf(t)
∂

∂x
+ 2xf(t)

∂

∂y

)

(0, 0, (1− x2 − y2)f(t)) = (0, 0, 4xy − 4yx)f 2(t) = 0

Equating to the LHS

(−2y, 2x, 0)f ′(t) + (1− x2 − y2)f(t)
∂

∂z
(−2yf(t), 2xf(t), 0) = 0

means f ′(t) = 0 and so f(t) = constant are only possible solutions.

4.2.1 Vorticity in 2D

In 2D flows, u = (u(x, y), v(x, y), 0) and so, by definition ω = (0, 0, ω(x, y)) ≡ ω(x, y)ẑ. It is then
clear that the term

(ω ·∇)u =

(

ω(x, y)
∂

∂z

)

u = 0

and so
Dω

Dt
= 0

That is, vorticity is conserved as it moves with the flow.

Note: If ω = 0 at time t = 0, then ω = 0 for all time; vorticity cannot be generated in a 2D flow.

4.3 Kelvin’s circulation theorem

In 3D the conservation of vorticity (the fluid analogue of conservation of angular momentum in
solid-body mechanics) takes a more subtle form:

Defn: The circulation of a velocity field is defined to be

Γ =

∫

C(t)

u · dr (25)

where C(t) is a closed loop which moves with the fluid and dr is an infinitesimal line segment
along C(t).
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Note: By Stokes’ theorem

Γ =

∫

C(t)

u · dr =
∫

S(t)

(∇× u) · n̂dS =

∫

S(t)

ω · n̂dS

where S(t) is any surface whose edges connect with C(t).

Kelvin’s theorem: Circulation is conserved as it moves with the flow, or
DΓ

Dt
= 0 .

Proof:
DΓ

Dt
=

D

Dt

∫

C(t)

u · dr =
∫

C(t)

Du

Dt
· dr =

∫

C(t)

−∇(p/ρ+ Φ) · dr

where D/Dt has been taken under the integral since the path C(t) moves with the fluid.

Now, by Stokes’ theorem

DΓ

Dt
= −

∫

S(t)

∇×∇(p/ρ+ Φ) · n̂dS = 0

using ∇×∇f = 0 for any f .

Note: Irrotational flows can have circulation if they have point sources of vorticity.

E.g. 4.4: Consider the point vortex u = (A/r)θ̂ (E.g. 4.2)

Then ω = ∇× u = 0 apart from at r = 0. Choose C to be the circle r = R

Γ =

∫

C

u|r=R · dr =
∫ 2π

0

A

R
θ̂ · Rθ̂dθ =

∫ 2π

0

Adθ = 2πA.

(following MVC for computing line integrals: parametrise C by r = Rr̂ = R(cos θ, sin θ), so
dr = (dr/dθ)dθ = R(− sin θ, cos θ)dθ = Rθ̂dθ.)

Therefore, a point vortex can be defined in terms of its circulation by u = (Γ/2πr)θ̂ (in an
analogous way to a point source being defined in terms of its source strength).

4.3.1 Problem: Circulation in a shear flow

Consider the shear flow u = (ky, 0, 0). At time t = 0 let C0 denote the circle centred on the origin
of radius a.

(i) Calculate C(t), the locus of this circle as it moves with the flow.

(ii) Calculate the circulation, Γ, around C(t).

(iii) Find the answer to (ii) another way.
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(i) Consider a tracer particle placed at (x0, y0) = (a cos θ, a sin θ) at t = 0. The curve C0 is formed
from points (x0, y0) for 0 < θ < 2π. To get C(t) we consider tracking the tracer particles as the
flow evolves which means integrating the particle paths











dx

dt
= ky, x(0) = a cos θ

dy

dt
= 0, y(0) = a sin θ

which integrates to y(t) = a sin θ (a constant) first and then x = a cos θ+ kat sin θ. So C(t) is the
curve r = (a cos θ + kat sin θ, a sin θ, 0) for 0 < θ < 2π.

(ii) The circulation is

Γ =

∫

C(t)

u · dr =
∫ 2π

0

(ka sin θ, 0, 0) · dr
dθ
dθ =

∫ 2π

0

(ka sin θ, 0, 0) · (−a sin θ + kat cos θ, a cos θ, 0) dθ

(path integrals in MVC). This integrates to give

Γ = −kπa2

(iii) Kelvin’s circulation theorem tells us that the value of Γ found in part (ii) is constant (and
our answer confirms this). Therefore it is the same as at t = 0 when C(t) = C0 a circle. For our
flow u = (ky, 0, 0) a simple calculation gives us ω = ∇× u = −kẑ. So

Γ =

∫

C0

u · dr =
∫

S0

ω · ẑdS

where S0 is the interior of the circle, radius a, centre (0, 0), lying in the x − y plane with normal
ẑ (by the right-hand thumb rule in MVC). Thus

Γ = −k
∫

S0

dS = −kπa2

Key points: The vorticity equation is just version of Euler’s equation which tells us about
conservation of angular momentum, rather than translational momentum, in the flow. It provides
information about how vorticity is transported by the flow. For 2D flows, it tells us that vorticity is
conserved and so a flow with no initial vorticity will be free of vorticity for all time. More generally,
Kelvin’s circulation theorem tells us that a the circulation in the flow (related to vorticity) is
conserved as you move with the flow.
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5 Irrotational flows: potential theory

5.1 The velocity potential

If ω = ∇× u = 0 throughout the domain (apart from at isolated singularities) – i.e. irrotational
– it follows that there exists12 a φ(r, t) s.t.

u = ∇φ (26)

Defn: φ is called the velocity potential.

If the fluid is also incompressible then, ∇ · u = 0 and

∇ ·∇φ ≡ ∇2φ = 0 (27)

That is, φ satisfies Laplace’s equation.

Remark: Similar concept to streamfunction for incompressible flows in that flow components are
determined as derivatives of a single function. However, extra condition of irrotationality means
potential can be used for 2D and 3D flows.

5.2 Some basic flows

Before exploiting some of the added benefits of potential theory, let us return to consider how
some of our basic flows can be expressed in terms of a velocity potential.

5.2.1 A uniform stream

If u = U = (U1, U2, U3) then (26) says































∂φ

∂x
= U1 ⇒ φ = U1x+ f(y, z)

∂φ

∂y
= U2 ⇒ φ = U2y + g(x, z)

∂φ

∂z
= U3 ⇒ φ = U3z + h(x, y)

where f, g, h are arbitrary functions. These are compatible if

φ = U1x+ U2y + U3z + const = U · r

Note: it is normal to ignore the additive constant on the velocity potential as it does not change
u which is defined by derivatives.

12and it is unique – there is a straightforward proof of this, ommitted from the notes

39



5.2.2 A 2D point source

In E.g. 2.4 we found u =
m

2πr
r̂ (in cylindrical polars) and the streamfunction was found to be

ψ =
mθ

2π
.

Here














uθ = 0 =
1

r

∂φ

∂θ
⇒ φ = φ(r)

ur =
m

2πr
=
∂φ

∂r
⇒ φ =

m

2π
ln r

5.2.3 A 2D point vortex

In E.g. 4.4 we found u =
Γ

2πr
θ̂ so

ur = 0 =
∂φ

∂r
⇒ φ = φ(θ)

uθ =
Γ

2πr
=

1

r

∂φ

∂θ
⇒ φ =

Γθ

2π

5.2.4 A 2D dipole

Consider a source, represented by the potential φs = (m/2π) ln r at (0, 0) and a sink a distance a
from the origin at ad̂ where d̂ = (cosα, sinα) is a unit vector in the direction α

φd(r) = lim
a→0

{φs(r)−φs(r−ad̂)} = lim
a→0

{φs(r)− (φs(r)−ad̂ ·∇φs(r)+O(a
2))} = lim

a→0
{ad̂ ·∇φs(r)}

using multivariable Taylor’s theorem. Letting µ = lima→0{ma}, represent the dipole strength;
then

φd =
µ

2π

d̂ · r̂
r

where r̂ = (cos θ, sin θ), r =
√

x2 + y2.

E.g. 5.1: if α = 0 so that d̂ = (1, 0) then

φd =
µ cos θ

2πr

represents a horizontal dipole. In general

φd(r, θ) =
µ cos(θ − α)

2πr
.
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5.2.5 A 3D point source

In E.g. 2.7 we found u =
m

4πr2
r̂ (in spherical polars, so r =

√

x2 + y2 + z2 now).

Here














uϕ = 0 =
1

r

∂φ

∂ϕ
and uθ = 0 =

1

r sinϕ

∂φ

∂ϕ
⇒ φ = φ(r)

ur =
m

4πr2
=
∂φ

∂r
⇒ φ = − m

4πr

5.2.6 A 3D dipole

We can follow §5.2.4 but with φs = − m

4πr
to get

φd =
µd̂ · r̂
4πr2

E.g. 5.2: an axisymmetric dipole aligned with the z-axis has d̂ = (0, 0, 1) and gives

φd =
µ cosϕ

4πr2

where ϕ is the polar angle.

5.3 Constructing more complex flows by superposition

Because Laplace’s equation is linear, if φ1 and φ2 are two solutions then so is αφ1 + βφ2 (linear
superposition).

In fact we have already used this to construct dipoles.

Q: Can we use superposition to create complex flows from basic ones ?

5.3.1 Steady 2D flow past a circular cylinder

Select a potential as the sum of a horizontal stream, speed U in the +ve x-direction and a horizontal
dipole, strength µ, at the origin:

φ = Ux+
µ cos θ

2πr
Note: We have mixed coordinate systems in the two terms, so switch both terms to plane polars:

φ = Ur cos θ +
µ cos θ

2πr

Consider the radial flow component

ur(a, θ) =
∂φ

∂r

∣

∣

∣

∣

r=a

=
(

U − µ

2πa2

)

cos θ
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We can make this zero for all θ if the dipole strength is chosen to be

µ = 2πUa2

In other words, the 2D flow past an infinitely-long circular cylinder can be represented by the
potential

φ = U

(

r +
a2

r

)

cos θ (28)

Alternative method: Because the flow is 2D we can also use streamfunctions. So combining
streamfunctions for a horizontal stream and dipole (E.g. 2.5) gives

ψ = Uy − µ sin θ

2πr
= Ur sin θ − µ sin θ

2πr

With µ = 2πUa2, we see that ψ(a, θ) = 0 for all θ and because the flow is steady, the circle r = a
is a streamline of the flow. By definition, the fluid is everywhere parallel to the streamline and
thus no fluid crosses it. This means the streamline around r = a can be replaced by a rigid body.

Note: ψ(r, θ) = 0 on θ = 0 and θ = π. Thus the streamline which defines the circle also extends
to infinity along the x-axis. At the points (±a, 0) front and back of the circle, both r̂ and θ̂ com-
ponents of the flow are zero and we have stagnation points. Recall from earlier that dividing
streamlines for stready flow imply flow stagnation.

Remark: What about the dipole inside the cylinder ? Are we saying that you need fluid inside

a cylinder as well ? No, the potential in (28) defines a flow which exists in r > a in the presence
of a solid boundary on r = a. The fact that we constructed this flow using a stream and a dipole
is a mathematical trick. Later we see that the dipole appears as an image (or reflection) of the
exterior flow in the cylinder surface.

r=a

=0
=π θθ

U

r=a
u u

=u

u=0

=0

=0u

r

rθ

θθ=0

5.3.2 Steady flow past a sphere

Similar idea to above, but in 3D, we combine potentials for a uniform stream of speed U along
the z-axis and a dipole aligned with the z-axis (§5.2.6):

φ = Uz +
µ cosϕ

4πr2
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Writing both terms in spherical polars with z = r cosϕ gives

φ = Ur cosϕ+
µ cosϕ

4πr2

Then the radial component of the flow on r = a is

∂φ

∂r

∣

∣

∣

∣

r=a

= cosϕ
(

U − µ

2πa3

)

and with µ = 2πUa3 this is zero and hence we have a solid boundary – a sphere – at r = a.

Note: Can also construct with Stokes’ streamfunctions.

5.3.3 Flow past a semi-infinite cylinder

Can try lots of different combinations. E.g. Consider axisymmetric 3D flow generated by a stream
along z-axis and a 3D point source:

φ = Ur cosϕ− m

4πr

Now less easy to identify a solid body in the flow. So use Stokes’ streamfunction (§2.5.1 and
§2.5.2)

Ψ = 1
2
Ur2 +

m

4π
(1− cosϕ)

but note that first term is in cylindrical polars and the second is in spherical polars. Converting
to spherical polars in which r → r sinϕ gives

Ψ = 1
2
Ur2 sin2 ϕ+

m

4π
(1− cosϕ)

Need to plot Ψ to see streamsurfaces, but need to analyse how the streamline Ψ = 0 along the
negative z-axis reaches a stagnation point (Exercise).

ψ

ψ

ψ=0

=m/2

=m/2

=m/2ψ π

π

π
stagnation point

5.4 Kinematic Boundary Condition

We have been sort of putting this off and making oblique references to this already. The kine-
matic boundary condition provides information about the flow velocities at the boundary of a
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fluid.

For a fixed solid boundary with normal n̂, it reads

u · n̂ = 0

(the flow component perpendicular to the boundary is zero).

For a boundary which is moving with a prescribed velocity U(r, t)

U · n̂ = u · n̂

(the flow component perpendicular to the boundary matches the normal component of the wall
velocity).

In both cases the conditions ensure the fluid does not penetrate the boundary and are referred to
as no-flow conditions.

For a so-called free surface which moves in response to the fluid (e.g. the interface between two
fluids such as air and water or oil and water) the argument is a bit more subtle. Define such a free
surface by a function S(r, t) = 0. A particle which sits on the the fluid remains on the surface as
the flow evolves, and mathematically this is expressed as

0 =
DS

Dt
≡ ∂S

∂t
+ u ·∇S (29)

If there are two fluids, such as oil above water, separated by a free surface described by S then
(29) applies to each phase to give:

DS

Dt
=
∂S

∂t
+ uoil ·∇S = 0, on S = 0 from above

DS

Dt
=
∂S

∂t
+ uwater ·∇S = 0, on S = 0 from below











Now ∇S points in the direction normal to the surface S = const (Calc 1, MVC), so n̂ = ∇S/|∇S|
is the unit normal to the surface S = 0. It follows that

uoil · n̂ = uwater · n̂, on S = 0 (30)

This is the same condition as before, but here the motion of the surface is free and previously it
was prescribed.

5.5 Bernoulli’s theorem for unsteady, irrotational flows

From (18), the modified version of Euler’s equation is

∂u

∂t
− u× ω = −∇(p/ρ+ Φ + 1

2
|u|2).
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For irrotational flows, u = ∇φ, and ω = 0 so

∇

(

∂φ

∂t
+
p

ρ
+ Φ + 1

2
|u|2
)

= 0

It follows that
∂φ

∂t
+
p

ρ
+ Φ+ 1

2
|u|2 = C(t) (31)

where C(t) is an arbitrary function of time.

Recall Φ = gz for gravitational forces.

Notes: (i) (31) applies throughout the fluid, not just on a streamline.

(ii) Redefining φ → φ +

∫ t

C(t′) dt′ has the effect of setting the RHS of (31) to zero but doesn’t

change the flow field.

Remark: The connection between pressure and velocity potential in Bernoulli’s equation (an
embodiment of conservation of momentum) allows to use velocity potentials to solve dynamical
fluid problems. Some examples follow.

5.6 Problem: Flow out of a bottle

z

H(t) (z,t)u

Area=A(z)

Area = Ae

atm

atmp=p

p=p

At time 0, H(0) = H ,dH/dt(0) = 0
0

Assume bottle has slowly-varying cross-sectional area A(z) which varies from A(H0) = A0 to
A(0) = Ae where H(t) measures height of fluid from the exit, and at time t = 0, H(0) = H0 and
dH/dt|t=0 = 0.

Assume A0/Ae > 1, but do not assume A0/Ae ≫ 1 as problem §3.5.1. So cannot approximate to
quasi-steady flow. But we can assume irrotational flow.

Problem: find time for bottle to empty
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Because A(z) varies slowly with z, the velocity is approximately aligned with ẑ and only a function
of z (and t). So we write

u = w(z, t)ẑ

Conservation of mass (5) implies that the volume flux through z = H is the same as across any
other depth in the fluid, or:

w(H, t)A(H) = w(z, t)A(z), for 0 < z < H(t).

The kinematic boundary condition says that the surface of the fluid moves with the fluid, so

w(H, t) =
dH

dt
≡ Ḣ

Combining, we have

u = w(z, t)ẑ, where w(z, t) =
A(H)Ḣ

A(z)

We still need to apply momentum conservation to get a solution and will use unsteady Bernoulli
because we know the pressure is patm on the surface and the exit.

This means we need to derive a velocity potential for the flow. Since u = ∇φ it follows that

∂φ

∂z
= w(z, t)

and so

φ(z, t) =

∫ z

0

w(z′, t) dz′ = A(H)Ḣ

∫ z

0

1

A(z′)
dz′

(the lower limit on the integral just sets an additive constant to φ and doesn’t alter the velocity
field.)

Unsteady Bernoulli’s equation (gravity clearly in play) is

(p/ρ) + 1
2
|u|2 + gz +

∂φ

∂t
= C(t)

everywhere in the fluid. Apply at top surface z = H(t):

patm/ρ+
1
2
Ḣ2 + gH +

d

dt

(

A(H)Ḣ
)

∫ H

0

1

A(z′)
dz′ = C(t)

Apply on exit (z = 0):

patm/ρ+
1
2

(

A(H)

Ae
Ḣ

)2

+ 0 + 0.
d

dt

(

A(H)Ḣ
)

= C(t)

Subtract the two equations to leave

(A(H)Ḧ + Ḣ2A′(H))

∫ H

0

dz′

A(z′)
+ 1

2

(

1− A2(H)

A2
e

)

Ḣ2 + gH = 0 (32)
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Since the bottle is slowly varying A′(H) ≈ 0.

This is an awkward-looking 2nd order non-linear ODE for H(t) with initial conditions H(0) = H0,
dH/dt|t=0 = 0. In principle it can be solved numerically (e.g. CompMaths).

However, if we assume A(z) ≈ A0 = A(H0) for most of the bottle

A(H)

∫ H

0

dz′

A(z′)
≈ A0

∫ H

0

dz′

A0

= H(z)

and (32) is approximated by

HḦ + 1
2

(

1− A2
0

A2
e

)

Ḣ2 + gH = 0

The next bit is very fancy:

HḦ = H
d

dt
Ḣ = H

dH

dt

d

dH
Ḣ = HḢ

d

dH
Ḣ = H

d

dH
(1
2
Ḣ2)

and if we let s(H) = 1
2
Ḣ2 then we get a 1st order ODE

ds

dH
+

(

1− A2
0

A2
e

)

s

H
= −g

to solve (c.f. integrating factors – left as an exercise !)

Experiment: If time permits the solution will be tested against experiments.

5.7 Problem: The collapse of a spherical cavity

Suppose that at t = 0 we have a spherical cavity, initially at rest, radius R0 in an infinite fluid. We
assume negligible pressure in the cavity (set p = 0) and a constant postive background at infinity
of p0 > 0. The pressure gradient causes the cavity to collapse; this is assumed to happen quickly
enough to ignore the influence of gravity13.

Problem: find the evolution of the radius of the spherical cavity R(t) < R0 for t > 0 and time of
collapse.

The flow is spherically symmetric, so

u(r, t) = ur(r, t)r̂

in spherical coordinates.

The kinematic boundary condition on the surface of the cavity means

ur(R, t) = Ṙ (33)

13A problem of practical importance as cavitation bubbles are formed on the surfaces of high speed propellors
on ships; their collapse creates engineering difficulties
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A velocity potential φ is introduced (the flow is assumed to be irrotational) and so u = ∇φ means
φ = φ(r, t) and

∂φ

∂r
= ur(r, t)

There are two ways of invoking conservation of mass into the solution. One is say that the flow is
generated by a 3D point sink of unknown strength (constructed for incompressible flows).

The other is say that incompressibility means φ satisfies ∇2φ = 0. The only solution of Laplace’s
equation in spherical coordinates which is independent of ϕ and θ is A/r (separation solutions
from APDE2) and so

φ(r, t) =
A(t)

r

Thus

ur = −A

r2

and so (33) implies Ṙ = −A(t)/R2, or A(t) = −R2Ṙ and hence

φ(r, t) = −R
2Ṙ

r
, ur = −R

2Ṙ

r2
.

Need to use conservation of momentum and unsteady Bernoulli is good because we know pressure
on cavity (p = 0) and at infinity (p = p0). Thus:

0 + 1
2
Ṙ2 +

∂φ

∂t

∣

∣

∣

∣

r=R

= C(t) = p0/ρ+ 0 + 0

since φ→ 0 and ur → 0 as r → ∞ whilst |u|2 = u2r = Ṙ2 on cavity.

Continuing,

1
2
Ṙ2 − 1

R

d

dt
(R2Ṙ) = p0/ρ

or
1
2
Ṙ2 − 1

R

(

2RṘ2 +R2R̈
)

= p0/ρ

or
3
2
Ṙ2 +RR̈ = −p0/ρ

which is an ODE for R(t).

Fancy trick: notice that

d

dt

(

R3Ṙ2
)

= 3R2Ṙ3 + 2R3ṘR̈ = −2p0
ρ
R2Ṙ

using the ODE. Equating LHS and RHS and noticing another trick

d

dt

(

R3Ṙ2
)

= −2p0
ρ

d

dt

(

1
3
R3
)
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we can now integrate up w.r.t. t to get

R3Ṙ2 = −2p0
3ρ

R3 + C

where C is a constant, determined by the initial condition: Ṙ = 0 when R = R0. Hence

Ṙ2 =
2p0
3ρ

(

R3
0

R3
− 1

)

or
dR

dt
= −

√

2

3

p0
ρ

(

R3
0 − R3

R3

)1/2

where the negative sign must be chosen because Ṙ < 0 – by assumption the cavity is collapsing.
Integrating up gives

∫ R(t)

R0

R3/2 dR

(R3
0 −R3)1/2

= −
∫ t

0

(

2p0
3ρ

)1/2

dt

Hmmm. Tricky. If the cavity collapses at time t = tc then R(tc) = 0 implies (making substitution
R = R0s in integral)

∫ 1

0

s3/2 ds

(1− s3)1/2
=

tc
R0

(

2p0
3ρ

)1/2

and the integral can be evaluated numerically to a value of 0.747. Hence

tc = 0.915

(

ρ

p0

)1/2

R0

That’s a pretty neat result.

5.8 Problem: cylinder moving through a fluid

Suppose a cylinder of radius a moves along the x-axis in an unbounded otherwise stationary fluid.
Its position as a function of time is s(t) = (s(t), 0) such that U(t) = (U(t), 0), U(t) = ṡ(t), is its
velocity.

Problem: find force exerted by fluid on cylinder.

We know that u → 0 as |r− s| → ∞ and this is a “boundary condition at infinity”.

The kinematic boundary condition the cylinder is

u · n̂ = U · n̂, on |r− s| = a

with n̂ = r̂ = (cos θ, sin θ). That is, we are going to use polar coordinates (r, θ) which are centred
on the cylinder and therefore are in a moving frame of reference.

Also assume potential flow, u = ∇φ and incompressibility implies ∇2φ = 0 where φ = φ(r, θ, t).
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Then we want ∇φ → 0 as r → ∞ and

n̂ ·∇φ =
∂φ

∂r
= U(t) cos θ, on r = a. (34)

since n̂ = r̂ = (cos θ, sin θ).

Select separation solutions of ∇2φ in plane polars which fit the conditions at infinity and on the
cylinder. Then the only possible solution is

φ = A(t)
cos θ

r

Remark: This is a horizontal dipole potential which is not surprising since we constructed a
streaming flow past a cylinder in §5.3.1 with a stream and a dipole. That is, an alternative way
of constructing φ is from set of basic incompressible flows.

Imposing (34) gives

A(t) = −U(t)a2, so φ = −U(t)a2 cos θ
r

(35)

What is the force exerted by the fluid on the cylinder ? General formula is:

F = −
∫

S

pn̂ dS

and need p(r, θ) from Bernoulli14 (no influence of gravity):

(p/ρ) + 1
2
|u|2 + ∂φ

∂t
= C(t) = (p0/ρ)

where p→ p0, u → 0 and φ→ 0 as r → ∞.

Elsewhere in the flow,

u = ∇φ = φrr̂+ (φθ/r)θ̂ = U(t)
a2

r2
cos θr̂+ U(t)

a2

r2
sin θθ̂

Now U is a function of time, but so are θ and r since they are in a moving frame of reference.

Points in the fixed frame of reference r are connected to the moving frame of reference with

r = s(t) + (r cos θ, r sin θ)

Taking time derivatives of each component gives

{

0 = U + ṙ cos θ − rθ̇ sin θ

0 = ṙ sin θ + rθ̇ cos θ

14since we are regarding U(t) as prescribed, we do not need Bernoulli to solve for the flow; in this example,
Bernoulli allows us to find the pressure that results from the prescribed motion
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since ṡ(t) = U(t). Eliminating (e.g. multiplying the top by cos θ and the bottom by sin θ and
adding) gives

ṙ = −U cos θ, rθ̇ = U sin θ. (36)

So the time derivative applied to (35)

∂φ

∂t
= −U̇ a

2

r
cos θ + U

a2

r
θ̇ sin θ + U

a2

r2
ṙ cos θ = −U̇ a

2

r
cos θ − U2a

2

r2
cos 2θ

simplifying using (36) Applying Bernoulli on the cylinder r = a:

p = p0 − 1
2
ρU2 + ρU̇a cos θ + ρU2 cos 2θ.

Now the force in x-direction is

Fx = F · x̂ = −
∫

S

pn̂ · x̂ dS = −
∫ 2π

0

p cos θa dθ = −πρa2U̇

(remember n̂ = (cos θ, sin θ) and in y-direction

Fy = F · ŷ = −
∫ 2π

0

p sin θa dθ = 0

(as expected, by symmetry).

Note: Fx is just mass per unit length of the cylinder times acceleration. It is often called an
‘added mass’ term.

Note: if U(t) is constant then the force on the cylinder is zero. This is an example ofD’Alembert’s
Paradox (explained later) in which all steadily moving rigid bodies experience no force due to
the fluid under the ideal fluid assumption.

5.9 Kinetic energy for potential flows

The kinetic energy of fluid, constant density ρ, in a volume V with bounding surfaces S is
defined as

Ekin =
ρ

2

∫

V

|u|2 dV =
ρ

2

∫

V

∇φ ·∇φ dV =
ρ

2

∫

V

∇ · (φ∇φ)−∇2φ dV

using a result from vector calculus. Now ∇2φ = 0 and the divergence theorem gives

Ekin =
ρ

2

∫

S

φn̂ ·∇φ dS (37)

That is, the kinetic energy in the fluid can be determined from φ and the normal component of
the gradient of φ on the surfaces bounding the fluid.
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E.g. 5.3: (translating cylinder poblem of §5.8)
We had in (35)

φ = −U(t)a2 cos θ
r

giving

∇φ = U(t)
a2

r2
cos θr̂ + U(t)

a2

r2
sin θθ̂ = U(t) cos θr̂+ U(t) sin θθ̂

on the cylinder. Putting this in (37)

Ekin =
ρ

2

∫ 2π

0

U2(t)a cos2 θ adθ

since n̂ = −r̂ as it points out of the fluid and there is no contribution from a bounding surface at
infinity since the integral tends to zero there. I.e.

Ekin = 1
2
ρπa2U2 = 1

2
MU2

where M = ρπa2 is the mass (per unit width) of the cylinder.

Note: An extension of Newton’s Law in Mechanics states that the rate of change of energy equals
the power. In this case

dEkin

dt
=

d

dt
(1
2
MU2) =MUU̇

whilst in §5.8 we found F =MU̇ and so the power is

F ·U =MUU̇

and the two agree.

I.e. The kinetic energy method can be used to find the force due to the fluid.

5.9.1 Corollary: A freely falling cylinder

Since the force on the cylinder due to the fluid is MU̇ in the direction of travel of the cylinder, we
can solve for a freely-falling cylinder of mass (per unit length) Mc by Newton’s Law (mass times
acceleration equals sum of the forces)

McU̇ = −MU̇ + (Mc −M)g

accounting for the Achimedian upthrust means

U̇(t) =
(Mc −M)g

M +Mc
, ⇒ U(t) =

(Mc −M)gt

Mc +M
(= ṡ)

for a cylinder starting from rest and so cylinder falls ballistically a distance

s(t) =
(Mc −M)1

2
gt2

Mc +M
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after time t. In reality drag associated with viscosity provides a resistive force.

Experiment: Repeat calculation above for a sphere and then choose Mc close to M (close to
neutral buoyancy) so that the influence of drag is reduced. For e.g. a water bomb balloon filled
with salty water.

Key points: For the irrotational motion of an ideal incompressible fluid, the three components
of velocity can be expressed as the gradient of a single scalar function – the velocity potential.
This is similar to the streamfunction. The streamfunction does not require the motion to be
irrotational, but its practical use is limited to 2D or quasi-2D flows. The velocity potential can
be used for 2D and 3D flows.

Velocity potentials are easily be constructed for the basic flows introduced for the streamfunction.
More complex flows can be constructed by superposition of these basic flows.

A significant result is the alternative version of Bernoulli’s equation for unsteady irrotational
flows which holds throughout the flow. This allows us to consider a range of unsteady flows.
Many such examples include moving surfaces and the kinematic boundary condition tells us how
to connect the fluid to fixed or moving surfaces.

Finally, we show that the total kinetic energy of the flow can be expressed in terms of the velocity
potential on the boundary of the flow. This not only allows the KE to be easily computed, but
gives us information about the force on a body in the flow.
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6 Complex potentials for two-dimensional flows

6.1 Definition of the complex potential

Consider 2D flows u = (u, v) in which the flow is irrotational and the fluid incompressible. Then
the flow can either be described by a potential φ(x, y) (§5) or by a streamfunction ψ(x, y) (§2.4.1)
such that

u =
∂φ

∂x
=
∂ψ

∂y

v =
∂φ

∂y
= −∂ψ

∂x















(38)

Defn: Let z = x+ iy and define the complex potential W (z) = φ(x, y) + iψ(x, y). Then W (z)
is analytic (or holomorphic, or complex differentiable) since

W ′(z) =
dW

dz
=
∂φ

∂x
+ i

∂ψ

∂x
= −i∂φ

∂y
+
∂ψ

∂y
(39)

and (38) are the Cauchy-Riemann equations for the function W = φ+ iψ.

Note: ∇2φ = ∇2ψ = 0 follows directly from (38).

Note: ∇φ ·∇ψ =
∂φ

∂x

∂ψ

∂x
+
∂φ

∂y

∂ψ

∂y
= 0 meaning equipotential lines (where φ = const) are

perpendicular to streamlines (where ψ = const). Sometimes φ and ψ are called harmonic con-
jugates.

Defn: The complex velocity following from (38) and (39) is defined as

W ′(z) = u− iv ≡ qe−iχ (40)

in complex polars where q = |W ′(z)| =
√
u2 + v2 is the speed of the flow and χ is the angle it

makes from the x-axis.

E.g. 6.1: (a straining/stagnation point flow)

Consider W (z) = kz2.

Then W = k(x+ iy)2 = k(x2 − y2) + 2ikxy and so

{

φ = ℜ{W} = k(x2 − y2)
ψ = ℑ{W} = 2kxy

Also, W ′(z) = 2kz = 2kx + i2ky so u = 2kx and v = −2ky or q = 2k
√

x2 + y2 = 2kr and
χ = tan−1(−y/x) = −θ.

Note: We can obviously do this in reverse: e.g. if we have φ we can find ψ and hence W (z).
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6.2 Some common potentials

Flows we’ve seen before now defined as complex potentials and then separated into real and
imaginary parts; the associated φ(x, y) and ψ(x, y).

(i) Uniform stream along x axis:

W (z) = Uz = Ux+ iUy

(ii) 2D source at the origin, strength m:

W (z) =
m

2π
log(z) =

m

2π
log(reiθ) =

m

2π
(log(r) + log(eiθ)) =

m

2π
log(r) + i

mθ

2π

(iii) 2D vortex of strength Γ:

W (z) = − iΓ

2π
log(z) = . . . =

Γθ

2π
− i

Γ

2π
log r

Note: The difference between a source and a vortex is just a factor of i.

(iv) Horizontal dipole of strength µ:

W (z) =
µ

2πz
=

µz

2π|z|2 =
µx

2π(x2 + y2)
− i

µy

2π(x2 + y2)

which can easily be written in (r, θ).

6.3 Flow at a corner

Consider W (z) = kzα, where k, α ∈ R.

Writing z = reiθ we find φ = krα cosαθ, ψ = krα sinαθ.

Streamlines given by ψ = const. In particular, ψ = 0 on θ = 0, π/α and represents flow in a
‘corner’ of angle π/α

Notes:

(i) If α = 1, corner angle is π (a straight wall) and flow is a horizontal stream of speed k.

(ii) If α > 1 then flow is in a corner, angle < π.

(iii) α ≥ 1
2
, since the largest angle of a corner is 2π.

(iv) Speed of the flow is given by

W ′(z) = kαzα−1 = kαrα−1ei(α−1)θ = u− iv = qe−iχ.

So if α > 1, and the corner angle < π, flow speed tends to zero as r → 0.

If 1
2
< α < 1 (reflex angles) there is a singularity (infinite velocity at r = 0) in the flow

speed:
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6.4 Translation, rotation and superposition

The complex potential W1(z) ≡ W (z − z0) represents the flow generated by W , centred around
the origin z0 = x0 + iy0 in the complex plane.

The complex potential W1(z) ≡W (ze−iα) represents the flow generated by W rotated an angle α
about the origin (since ze−iα = rei(θ−α).)

Linear superposition of complex potentials αW1(z) + βW2(z) forms a new complex potential.

E.g. 6.2: The complex potential

W (z) = Uze−iα +
m

2π
log(z − i)

represents a source of strength m placed at (x, y) = (0, 1) in a uniform stream of speed U flowing
at an angle α w.r.t. the positive x-axis.

6.5 Mass flux and circulation

Theorem: The mass flux/circulation of W (z) through/around a closed loop C is

∫

C

W ′(z)dz = Γ + im (41)

Proof:
∫

C

W ′(z) dz =

∫

C

(u− iv)( dx+ i dy) =

∫

C

(u dx+ v dy) + i

∫

C

(u dy − v dx)

=

∫

C

u · dr+ i

∫

C

u · n̂ ds

= Γ + im

since n̂ ds = ( dy,− dx) (by geometrical arguments).

E.g. 6.3: Consider the source
m

2π
log(z). Then

∫

C

W ′(z) dz =
m

2π

∫

C

1

z
dz =

{

im, if C encloses the origin
0, otherwise
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by Cauchy’s Residue Theorem. I.e. captures a source of mass flux at the origin.

E.g. 6.4: Consider the dipole
µ

2πz
. Then

∫

C

W ′(z) dz = − µ

2π

∫

C

1

z2
dz = 0

(since 1/z2 is not a simple pole). So a dipole produces no mass flux or circulation.

6.6 Method of Images: flow next to a wall

Theorem: Let f(z) be a complex potential for a flow in an infinite domain. Then

W (z) = f(z) + f(z) (42)

represents the complex potential of a flow in y > 0 in the presence of a rigid wall along y = 0.

Notation: f(z) ≡ f(z) and means insert z as the argument of the function and then conjugate
everything. What this actually does is conjugate everything apart from z (and so the function is
still analytic !)

Proof: Consider

ψ(x, 0) = ℑ{W (x+ i0)} = ℑ{f(x) + f(x)} = 0

Therefore ψ = 0 on y = 0 and y = 0 is a streamline and can be interpreted/replaced by a rigid
wall.

Remark: This is no good if the image potential f(z) has introduced singularities into y > 0.
But if f(z) has a singularity at z = z0, the image potential has a singularity at z = z0. So if all
the singularities of f(z) lie in y > 0 then all the singularities of the image potential lie in y < 0
and outside the new domain y > 0 above the wall.

Corollary: The complex potential

W (z) = f(z) + f(−z) (43)

represent a flow flow in x > 0 in the presence of a rigid wall along x = 0; all singularities of f(−z)
are hidden in x < 0.

Proof: Consider

ψ(0, y) = ℑ{W (0 + iy)} = ℑ{f(iy) + f(−iy)} = ℑ{f(iy) + f(iy)} = 0

and so ψ = 0 along x = 0 and there is a streamline along x = 0 which can be replaced by a wall.
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6.6.1 Problem: Vortex next to a wall

Find the path of a point vortex above a wall.

Point vortex (§6.2) at z = z0 = x0 + iy0 with y0 > 0 given by f(z) = − iΓ

2π
log(z − z0).

Next to a wall at y = 0, use (42) to give

W (z) = − iΓ

2π
log(z − z0) +

iΓ

2π
log(z − z0)

The motion of the vortex at z = z0 is determined by the flow field generated by everthing other
than itself.

Thus, the vortex in y > 0 moves due to the presence of the image vortex in y < 0 (and vice versa).
Specifically, the velocity field created by the image vortex is

d

dz
(W (z)− f(z)) =

iΓ

2π

1

(z − z0))

and so
d

dz
(W (z)− f(z))

∣

∣

∣

∣

z=z0

=
iΓ

2π

1

(z0 − z0))

is the complex velocity u − iv at z = z0 Assume z0(t) = x0(t) + iy0(t) represents the Lagrangian
path of the centre of the vortex at time t. Then

u− iv ≡ dx0
dt

− i
dy0
dt

(

≡ dz0
dt

)

=
Γ

4πy0
.

That is to say,
dx0
dt

=
Γ

4πy0
,

dy0
dt

= 0.

These are coupled ODEs but the latter integrates to give y0(t) = y0(0) and using this in the former
and integrating gives

x0(t) = x0(0) +
Γt

4πy0(0)

So the vortex moves with a constant speed u = Γ/4πy0 parallel to the wall. The image vortex also
moves like this and so the pair of vortices travel in tandem parallel to the wall.

6.7 Blasius’ Theorem

Theorem: Suppose a fixed rigid body, boundary C (a closed loop) is in a steady flow, potential
W (z). Then the force F = (Fx, Fy) is determined from

Fx − iFy = i1
2
ρ

∫

C

(W ′(z))
2
dz (44)
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Proof: We have

W ′(z) = u− iv = qe−iχ

so |u| = q. So, Bernoulli (no g, no t) says

p/ρ+ 1
2
q2 = p0/ρ

where p0 is a constant background pressure which exists in the absence of the flow. Hence

p = p0 − 1
2
ρq2.

and the force on C is given by

F = −
∫

C

pn̂ ds =

∫

C

ρq2n̂ ds

since
∫

C
p0n̂ ds =

∫

C
∇p0dxdy = 0 by the divergence theorem and the fact that p0 is a constant.

By definition, the flow velocity is everywhere parallel to the boundary C and letting χ(s) denote
the angle that C makes to the positive x-axis as a function of arclength gives

dx

ds
= cosχ,

dy

ds
= sinχ, ⇒ dz = dx+ idy = eiχds.

Also, by geometrical considerations n̂ = (ys,−xs) = (sinχ,− cosχ). So if we write F = (Fx, Fy)
in terms of its components and define a complex force F = Fx − iFy then the force from above
can be written out as

F = Fx − iFy = −
∫

C

p(sinχ+ i cosχ) ds = −i
∫

C

pe−iχ ds

= i1
2
ρ

∫

C

(q2e−2iχ) eiχ ds

= i1
2
ρ

∫

C

(qe−iχ)2 dz = i1
2
ρ

∫

S

(W ′(z))
2
dz

6.8 Method of Images: Flows next to cylinders

Theorem: Suppose f(z) is a complex potential in the absence of a cylinder with no singularities
in |z| < a. Then

W (z) = f(z) + f(a2/z) (45)

is the complex potential representing a flow in the presence of a cylinder on |z| = a.

This is called the Milne-Thompson circle theorem.

Proof: On |z| = a, zz = a2 and so a2/z = z. Hence

f(a2/z) = f(z) = f(z)

59



Thus, on |z| = a, W (z) = f(z) + f(z) and ℑ{W} = ψ = 0. The streamline may be replaced by
rigid boundary and no new singularities have emerged in |z| > a.

E.g. 6.5: Choose f(z) = Uz (§6.2, uniform flow). Then (45) gives us

W (z) = Uz + U
a2

z

I.e. stream plus horizontal dipole of strength µ = −2πUa2.

Note: Exactly the flow found in §5.3.1 for flow past a cylinder.

Using Blasius, the complex force is

Fx − iFy =
1

2
iρ

∫

C

U2

(

1− a2

z2

)

dz =
1

2
iρU2

∫

C

(

1− 2
a2

z2
+
a4

z4

)

dz = 0

since there are no simple poles inside C. We already had this result from §5.8 when U is constant.

6.8.1 Problem: Vortex outside a cylinder

Find the complex potential for a point vortex outside a cylinder and determine its motion.

In absence of cylinder, point vortex at z0 is f(z) =
−iΓ
2π

log(z − z0). With a cylinder, radius

a < |z0| (45) gives

W (z) = − iΓ

2π
log(z − z0) +

iΓ

2π
log

(

a2

z
− z0

)

= − iΓ

2π

{

log(z − z0)− log

(

1

z
(−z0)

(

z − a2

z0

))}

= − iΓ

2π

{

log(z − z0) + log(z)− log

(

z − a2

z0

)

− log(−z0)
}

The 2nd and 3rd terms are images at the origin and an inverse point to z0 and the last term
is a constant and can be ignored, because constants do not affect the flow velocities which are
determined by derivatives.

(i) Motion of vortex

The velocity field at z = z0 is due to the image vortices, or

u− iv = W ′(z0)− f ′(z0) = − iΓ

2π

{

1

z0
− 1

z0 − a2/z0

}

Better to work in polar coordinates, so let z0 = r0(t)e
iθ0(t) track the position of the vortex whence

qe−iχ = − iΓ

2π

{

1

r0eiθ0
− r0e

−iθ0

r20 − a2

}

=
iΓ

2π
e−iθ0

(

a2

r0(r20 − a2)

)

=
Γa2

2πr0(r
2
0 − a2)

e−i(θ0−π/2).
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Thus, the speed of the point vortex is Γa2/2πr0(r
2
0 − a2) and its direction is at right angles to its

position. Remembering the representation for velocity in polars:

u = ṙ0r̂+ r0θ̇0θ̂ = − Γa2

2πr0(r20 − a2)
θ̂

(Mech 1) means
dr0
dt

= 0,
dθ0
dt

= − Γa2

2πr20(r
2
0 − a2)

and the first equation integrates to r0(t) = r0(0), a constant (initial radial distance to the vortex).
The second integrates to

θ0(t) = θ0(0)−
Γa2t

2πr20(0)(r
2
0(0)− a2)

.

Thus, the vortex moves at constant angular velocity in a circle around the cylinder.

(ii) Force on cylinder

From the Blasius formula and our definition of W (z) we have

Fx − iFy = 1
2
iρ

∫

C

(

− iΓ

2π

)2(
1

z − z0
+

1

z
− 1

z − a2/z̄0

)2

dz

= −iρΓ
2

8π2

∫

|z|=a

(

1

(z − z0)2
+

1

z2
+

1

(z − a2/z̄0)2

+
2

z(z − z0)
− 2

(z − z0)(z − a2/z̄0)
− 2

z(z − a2/z̄0)

)

dz

We can use Cauchy’s Residue Theorem to evaluate the integral. The first 3 terms in the integral
are poles of order 2 and don’t contribute. Also, z0 is outside |z| = a but a2/z̄0 is inside |z| = a
and only simple poles inside will count. So we get

Fx − iFy = −iρΓ
2

8π2
(2πi)

(

2

−z0
− 2

(a2/z̄0 − z0)
− 2

a2/z̄0
− 2

−a2/z̄0

)

.

The last two terms cancel and the others combine as

Fx − iFy =
ρΓ2

2π

(

− 1

z0
− z̄0
a2 − |z0|2

)

=
ρΓ2a2

2πz0(|z0|2 − a2)
.

Writing z0 = r0e
iθ0 shows that the force is of magnitude

ρΓ2a2

2πr0(r20 − a2)

and is in the direction of θ0.

E.g. if z0 = b > a, a real number, then Fy = 0 and Fx > 0 and the cylinder feels a force towards
the vortex.
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6.9 Conformal mappings

For more complicated geometries, it can be hard to identify a complex potential representing the
flow.

A very powerful tool in complex analysis involves using a coordinate transformation in complex
coordinates or conformal mapping to map a complicated domain into a simpler one in which
the flow can be found. The inverse mapping then provides the solution to the original complicated
problem.

A B D

= g(z)ζ
D’

Γ

A

B

C
D

E

F C E F

The z−plane
The zeta plane

D
Γ

Note: One has to formally check a number of technicalities of this approach which we do not
have time for here. Thus, it can be shown that an analytic function g, say, defining the mapping
from a region D in the z-plane to a region D1 in the ζ-plane with ζ = g(z) preserves boundary
conditions, the strength of singularities and harmonicity of functions. For example, a source of
strength m located at z = z0 in D satisfying Laplace’s equation next to a wall with a no-flow
condition is transformed under the mapping g to a source of strength m at ζ = ζ0 = g(z0) next to
a (geometrically transformed) wall with a no-flow condition in D1.

6.9.1 Problem: Vortex next to a corner

Find the flow generated by a point vortex in the presence of a right-angled boundary.

Consider the mapping ζ = g(z) ≡ z2/3 such that z = ζ3/2 ≡ g−1(ζ) the inverse.

With z = reiθ, when θ = 0 so that z = r, ζ = r2/3. That is, the positive real axis in the z-plane is
mapped to the positive real axis in the ζ-plane.

When θ = 3
2
π, z = −ir and so ζ = r2/3eiπ = −r3/2. That is, the line from z = 0 to z = −i∞ is
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mapped to the negative real axis in the ζ-plane.

So a point vortex in the z-plane at z = z0 of strength Γ in the presence of a rigid corner from
z = −i∞ to z = 0 to z = ∞ is mapped to a point vortex of strength Γ at ζ = ζ0 where
ζ0 = g(z0) = z

2/3
0 with a rigid wall along the real ζ-axis. I.e. the problem in the ζ-plane is a point

vortex in the upper half plane bounded by a wall.

The problem in the mapped ζ-plane is one whose solution we have already found by elementary
methods (see §6.6.1): it has the solution

W1(ζ) = − iΓ

2π
log(ζ − ζ0) +

iΓ

2π
log(ζ − ζ0)

where ζ0 = z
2/3
0 and ζ = z2/3. The use of the subscript 1 refers to the fact that this is the complex

potential in the domain D1.

The complex potential describing the flow in the z-plane is therefore

W (z) = − iΓ

2π
log(z2/3 − z

2/3
0 ) +

iΓ

2π
log(z2/3 − z

2/3
0 )

To find the path of the vortex, subtract the vortex at z0 from W (z) as before:

(u− iv)z=z0 =
d

dz

(

− iΓ

2π
log(z2/3 − z

2/3
0 ) +

iΓ

2π
log(z2/3 − z

2/3
0 ) +

iΓ

2π
log(z − z0)

)

z=z0

.

A bit tricky... need to Taylor expand the function z2/3 − z
2/3
0 about z = z0 and get

z2/3− z
2/3
0 (= f(z0)+ (z− z0)f

′(z0)+ ...) = 0+(z− z0)(2/3)z
−1/3
0 +(1/2)(z− z0)

2(−2/9)z
−4/3
0 + . . .

So

(u− iv)z=z0 =
d

dz

(

− iΓ

2π
log
(

(2/3)z
−1/3
0 − (1/9)(z − z0)z

−4/3
0

)

+
iΓ

2π
log(z2/3 − z

2/3
0 )

)

z=z0

and this gives

dz̄0
dt

= − iΓ

2π

(

1

6z0
− (2/3)z

−1/3
0

(z
2/3
0 − z̄

2/3
0 )

)

.

Pretty damned awkward to work out the path the vortex takes from this equation.

6.9.2 Velocities under maps

Under a conformal mapping ζ = g(z), the relationship between velocity fields in D and D1 is most
easily established using the chain rule:

W ′(z) = u− iv =
dW1

dζ

dζ

dz
≡W ′

1(ζ)g
′(z)

E.g. 6.6: Consider the map ζ = ze−iα ≡ g(z). The line z = seiα, −∞ < s < ∞ is mapped to
ζ = s (in fact easy to see this is a rotation of axes through an angle α.)
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A uniform flow W1(ζ) = Uζ is transformed into W (z) = Uze−iα whilst g′(z) = eiα so

u− iv =W ′
1(ζ)g

′(z) = Ue−iα = U cosα− iU sinα

so u = (u, v) = (U cosα, U sinα) is a flow rotated through α, as expected.

Key points: For 2D flows, complex variables can be used to describe the flow domain. Any
analytic function of complex variable z represents a complex potentialW (z) with real part velocity
potential and imaginary part streamfunction. This is a powerful tool for generating complex flows.

The derivative W ′(z) provides the velocity components, the integral of W ′(z) around a closed
loop provides information on sources of mass flux and circulation, the integral of W ′(z)2 provides
us with information about the forces.

The method of images allows us to consider flows next to planar and circular boundaries. Complex
mappings are introduced as a method of solving flows in complex domains by mapping complex
variables into a domain in which the flow can easily be solved.
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7 Flow past cylinders and aerofoils

7.1 Flow past a circular cylinder with circulation

Start with e.g. in §6.8 in which we formulate the flow past a cylinder and add circulation of
strength Γ to the flow by placing an “image” point vortex at the origin. The complex potential is

W (z) = Uz + U
a2

z
− iΓ

2π
log(z) (46)

If we write z = reiθ then

W (z) = Ureiθ + U
a2

reiθ
− iΓ

2π
log(reiθ)

= Ureiθ + U
a2

r
e−iθ − iΓ

2π
log(r) +

Γθ

2π

= U cos θ

(

r +
a2

r

)

+
Γθ

2π
+ iU sin θ

(

r − a2

r

)

− iΓ

2π
log(r)

Since W = φ+ iψ we have

φ = U cos θ

(

r +
a2

r

)

+
Γθ

2π

(the same as (28) when Γ = 0) and

ψ = U sin θ

(

r − a2

r

)

− Γ

2π
log(r)

7.1.1 Analysis of flow

The flow components are

ur =
∂φ

∂r
=

1

r

∂ψ

∂θ
= U cos θ

(

1− a2

r2

)

which is zero on r = a (confirming that the addition of circulation has retained the no-flow
condition on the cylinder) and

uθ =
1

r

∂φ

∂θ
= −∂ψ

∂θ
= −U sin θ

(

1 +
a2

r2

)

+
Γ

2πr

On r = a this is

uθ = −2U sin θ +
Γ

2πa

The stagnation points on the cylinder are where ur = 0 and uθ = 0 and occur where

sin θ =
Γ

4πUa
(47)
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If Γ = 0, these are at θ = 0, π (front and back of cylinder). If |Γ| < 4πUa two stagnation points sit
symmetrically about x = 0 on cylinder. If |Γ| > 4πUa no real roots of (47) exist (the stagnation
point moves into the body of the fluid).

Exercise: Repeat the analysis using W ′(z) to access the fluid velocity components to come to
the same conclusion as above.

7.1.2 Forces on a circular cylinder

From (46)

W ′(z) = U − U
a2

z2
− iΓ

2πz

Using Blasius around the closed circle C of radius a centred at the origin to compute the force
gives

Fx − iFy = i1
2
ρ

∫

C

(

U − U
a2

z2
− iΓ

2πz

)2

dz

= i1
2
ρ

∫

C

(

U2 − iUΓ

πz
+ C2z

−2 + C3z
−3 + C4z

−4}
)

dz

where Ci are constants we don’t need since the only contribution by Cauchy’s Residue Theorem
is from the simple pole, so

Fx − iFy = i1
2
ρ.(2πi).

(

−iUΓ
π

)

= iρUΓ

So Fx = 0 meaning there is no drag force !15

If Γ = 0 then Fy = 0 (expected since the flow is symmetric). In general Fy = −ρUΓ so if Γ < 0
the cylinder experiences a lift force. This is called the Magnus effect. 16

15Reality is more complicated and this result holds for an ideal fluid; viscous effects lead to a much more
complicated flow.

16Practically how can one introduce circulation in a flow involving a cylinder (mathematically we have placed an
image vortex inside the cylinder) ? Viscous forces on a spinning cylinder tend to drag the fluid with the rotating
surface creating a circulating component of the flow and this is familiar to us as swerve on a football for example
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7.2 Forces on arbitrary cylinders

You might be tempted to argue that the previous result, namely that the force in the direction of
the uniform stream is zero, to be a consequence of the symmetry of the cylinder. As we shall show
now, this is not the case; a cylinder of any cross section experiences no force in a uniform stream.

Consider a cylinder of arbitrary cross-section C, in a uniform stream, U , which generates circula-
tion of strength Γ. Far away from the cylinder, it has to be that

W (z) → Uz − iΓ

2π
log z

(origin inside C) since all other contributions to the flow on account of the local perbutative effects
of the cylinder must decay (and faster than that for a source). So

W ′(z) → U − iΓ

2πz
, as z → ∞

Also, by definition, W (z) is analytic outside C in the fluid and so
∫

C

(W ′(z))
2
dz = lim

R→∞

∫

|z|=R

(W ′(z))
2
dz

is a consequence of Cauchy’s Residue Theorem, since there are no singularities in between C and
|z| = R.

So
∫

(W ′(z))
2
dz =

∫

|z|=R

(

U − iΓ

2πz

)2

dz

Referring to §7.1.2 for the circle, easy to see that we get the same result of

Fx − iFy = iUρΓ

I.e. in the absence of circulation there is no force on a cylinder of arbitrary cross section. This is
known as D’Alembert’s paradox.

However, with circulation there is a lift force is −UρΓ (this is called the Kutta-Joukowski lift
theorem).

7.3 Problem: Lift on aerofoils

We use the previous theory to demonstrate the fundamental ideas that underpin flight: how to
aerofoils generate lift.

7.3.1 Mapping plates to circles

Consider the (inverse) mapping17 called the Joukowski map

z = ζ +
a2

ζ
(48)

17Mappings are often easiest to construct by consideration of the inverse for actually, fairly obvious reasons
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Now ζ = aeiσ for 0 < σ < 2π describes a circle of radius a in the ζ-plane. In the z-plane

z = aeiσ +
a2

aeiσ
= 2a cosσ

which describes the line −2a < x < 2a, y = 0 in the z-plane. The mapping squishes the circle flat
like you’d squash a rubber tube between two hands.

Note: We can invert the mapping (48) by writing it as ζ2 − zζ + a2 = 0 and solving as

ζ = 1
2
(z +

√
z2 − 4a2)

but the square root is awkward so we will avoid this.

Note: We are going to represent our aerofoil as a flat plate of length 4a in the z-plane and now
have a mapping from a circle, whose solutions we already understand.

E.g. 7.1: In the ζ-plane if we choose a solution representing a streaming flow, speed U , past a
cylinder of radius a (E.g. 6.5)

W1(ζ) = U

(

ζ +
a2

ζ

)

Then (48) gives us

W (z) = Uz

which is a uniform flow in the positive x-direction. This is expected as the ‘plate’ is transparent
to the flow. Obviously this is not a lift-generating solution and we need to do more.

7.3.2 Inclined flow past a plate with circulation

Consider the complex potential from §7.1 for horizontal flow past a cylinder with circulation Γ,
but in a complex ξ-plane. We call it

W2(ξ) = U

(

ξ +
a2

ξ

)

− iΓ

2π
log(ξ)

We know from §7.1.2, §7.2, that this flow generates a lift force of −ρUΓ.
The mapping (see E.g. 6.6) ξ = ζe−iα rotates axes through α and results in the complex potential
in the ζ-plane of

W1(ζ) = U

(

ζe−iα +
a2eiα

ζ

)

− iΓ

2π
log(ζ)

plus a constant which we can ignore (because W ′(ζ) determines the flow). I.e. the complex
potential W1(ζ) represents the flow angled at α to the horizontal past a circular cylinder with
circulation.

Finally we map using (48) into the z-plane which determines a complex potentialW (z) representing
the inclined flow upon a horizontal plate of length 4a with circulation.
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Note: What has happens to the dipole & vortex embedded in the original complex potential W2

under these rotation and squishing maps ? It is sitting on the plate18

Note: We could write down W1(z) explicitly as we have determined ζ = g(z), but this is not
necessary...

The velocity in the z-plane is determined (see §6.9.2) by

u− iv =W ′
1(ζ)

dζ

dz
= W ′

1(ζ)
1

dζ

dz

(from MVC: the derivative of the inverse map is the inverse of the derivative of the map) which is
more convenient since this allows us to write

u− iv =

[

U

(

e−iα − a2eiα

ζ2

)

− iΓ

2πζ

]

/

(

1− a2

ζ2

)

We are interested in velocity on the plate, and if we let ζ = aeiσ which we’ve already established
maps to z = 2a cosσ then

u− iv =
U(e−iα − eiαe−2iσ)− i(Γ/2πa)e−iσ

(1− e−2iσ)

=
U(ei(σ−α) − e−i(σ−α))− i(Γ/2πa)

(eiσ − e−iσ)

=
U sin(σ − α)− Γ/4πa

sin σ
(49)

Note: The right-hand side is real, so v = 0 as we expect.

7.3.3 The Kutta condition

In the absence of circulation (49) gives us

u =
U sin(σ − α)

sin σ

and u → ∞ when σ → 0, π. These correspond to the sharp leading and trailing edges of the plate.
This is to be expected – in §6.3 we showed that the flow speed goes to infinity around sharp edges
in the boundary.

We also note that, there are stagnation points in the flow at σ = α and σ = α+π. In the physical
z-plane these are points (for small α) under the plate backwards of the leading egde and on the
top of the plate forwards from the trailing edge.

18one has to be a bit cleverer than we’ve been and invent a mapping which has some girth to it so that the
singularities in the original potential are still removed from the physical domain. Mathematically, we are OK
though.
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An aerofoil has a rounded leading edge which suppresses the singularity there. There are subtle
physical reasons why a fluid will avoid sharp turns elsewhere, and our focus turns to the trailing
edge.

The Kutta condition resolves the singularity at the trailing edge by incorporating the right amount
of circulation such that the stagnation point found forward of the trailing edge on top of the plate
when there is no circulation moves to the trailing edge to suppress the singularity.

Thus, if we choose
Γ = −4Uπa sinα (50)

from (49) with

u =
U(sin(σ − α) + sin(α))

sin σ
→ U cosα

as σ → 0 (e.g. using L’Hopital’s rule) but, most importantly, this is a finite value !

This means that the lift force on our plate provided by the flow round the cylinder and mapped
into the flow past the plate is

Fy = −ρUΓ = πU2ρL sinα

where L = 4a is the length of the plate (the chord). This is actually a pretty good approximation
to a real wing under ideal flying conditions (e.g. not under high angles of attack.)

Below is a graphical representation of the aerofoil flow in the mapped plane around the circle and
the flow in the physical plane satisfying the Kutta condition at the rear of the plate.

Remarks: Finally, we comment on the presence of circulation around the wing, which is the
crucial ingredient needed for flying. In the first instance, there is nothing wrong with that from
the point of view of a potential flow description. However, where is this circulation coming from
when one imagines starting up the flow, with zero circulation ? Since the net circulation in a
large circle around the wing must vanish initially, and the Kutta condition requires a circulation
Γ < 0 around the wing, this means that in the process of the point of separation moving to the
trailing edge, vortices of positive circulation (rotating counterclockwise) are shed from the wing.
Eventually the vortices are convected downstream, and no longer matter for the problem.
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8 Free surfaces and waves

Free surface flows are defined by a fluid motion in which a portion of the boundary of the fluid
does not move in a prescribed way. That is, the fluid surface evolves in time as part of the solution.
Perhaps the easiest example to understand is that of the surface of a body of heavy fluid such as
water which we observe will support wave-like motion (e.g. surface of cup of tea).

We are not going to need any new physics to describe such a surface. These principles are already
in place. What we know from observations of the surface of water (on the ocean for example) is
that the solutions can be very complicated (e.g. breaking waves !)

We shall avoid such complications in due course by making certain approximations. For now, we
assume that the flow is irrotational and the fluid is incompressible and inviscid19. We shall also
assume 2D flows but this is only to keep things simple.

z=−h

z

x
ζ(x,t) = z

z=0

Density = ρ

Pressure = p
atm

8.1 Governing equations (non-linear)

We can use potential theory, so u = ∇φ and

∇2φ = 0 (51)

Note: u = (u, 0, w) and φ = φ(x, z, t) is still 2D but the motion is in the (x, z) plane.

Choose z = 0 to coincide with the undisturbed free surface and set the base of the fluid at z = −h,
a constant.

Let the free surface of the water in motion be described by

z = ζ(x, t).

Below z = ζ(x, t) we have our fluid, density ρ and above we have air of negligible density and
constant atmospheric pressure patm.

On z = −h the kinematic boundary condition says that u · ẑ = 0 or w = 0 or

∂φ

∂z
= 0, on z = −h (52)

19all good approximations unless the surface is in extreme conditions
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So far so good. Now the interesting bit... the free surface. Two condition apply here: (i) the
kinematic boundary condition says that a fluid particle on the surface has to move with the
surface; (ii) the pressure on the surface of the fluid must equal patm (this is called the dynamic
boundary condition20)

(i) The surface can be described by S(x, z, t) = z−ζ(x, t) = 0. Then according to (29), DS/Dt = 0.
In other words

D

Dt
(z − ζ(x, t)) =

(

∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)

(z − ζ(x, t))

= −∂ζ
∂t

− ∂φ

∂x

∂ζ

∂x
+
∂φ

∂z
= 0, on z = ζ(x, t) (53)

(ii) Unsteady Bernoulli on surface gives

patm/ρ+
1
2

(

(

∂φ

∂x

)2

+

(

∂φ

∂z

)2
)

+
∂φ

∂t
+ gζ = C(t), on z = ζ(x, t) (54)

Note: Laplace’s equation, (51) looks OK and (52) looks OK. But the two free surface conditions
(53), (54) look like a real headache. For a start they are non-linear. But worse still, they must
be applied on a surface which is part of the solution ! But let’s not get upset; afterall, we know
that this free surface problem gives rise to all sorts of complex solutions like breaking waves. So
it is not a surprise that things look complicated... and they really are !

8.2 Linearised equations

The way forward is to make the following approximation

ζ(x, t) ≪ h,

∣

∣

∣

∣

∂ζ

∂x

∣

∣

∣

∣

≪ 1

which limits the free surface to small amplitudes. It follows that |φ| ≪ 1 also.

This allows us to make two further approximations:

(A) products of small terms can be neglected. This enables us to remove the non-linear terms
from our boundary conditions.

E.g. Since φ is small and so is ζ then
∣

∣

∣

∣

∂φ

∂x

∂ζ

∂x

∣

∣

∣

∣

≪
∣

∣

∣

∣

∂ζ

∂t

∣

∣

∣

∣

(B) Since ζ is small, we can use a Taylor expansion around the mean level z = 0 and subsequently
use (A) to neglect small terms. This enables us to overcome the difficulty of not knowing
where the boundary conditions should be imposed.

20we’ve used this before, as early as the lock gate problem but without giving it a special name.
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E.g.:
∂φ

∂t

∣

∣

∣

∣

z=ζ

=
∂φ

∂t

∣

∣

∣

∣

z=0

+ ζ
∂

∂z

(

∂φ

∂t

)

z=0

+ ζ2 . . .

But according to (A) the second (and later) term(s) on the RHS is much smaller than the
first so we neglect it.

Applying these principles reduces (53) to

∂ζ

∂t
=
∂φ

∂z
, on z = 0 (55)

and (54) to
∂φ

∂t
+ gζ = C(t)− patm/ρ, on z = 0 (56)

Finally, the terms on the RHS are not space-dependent and so do not affect the flow velocities.
Formally we can redefine

φ→ φ− patmt/ρ+

∫ t

C(t′)dt′

and this does not affect any of the other conditions of the problem. It’s only effect is that (56) is
now

∂φ

∂t
+ gζ = 0, on z = 0 (57)

This completes the process known as linearisation.

Note: Linearised pressure in the fluid is

p(x, z, t)

ρ
+
∂φ

∂t
+ gz = C(t)

and because of φ→ φ′ this transforms to

p(x, z, t)− patm
ρ

= −∂φ
∂t

− gz (58)

the LHS representing the pressure in excess of atmospheric and the RHS has a hydrostatic com-
ponent (−gz) which exists in the absence of any motion and a dynamic component −∂φ/∂t which
therefore accounts for the pressure variations due to fluid motion.

8.3 Travelling waves

Let us assume the surface is sinusoidal21 and takes the following form:

ζ(x, t) = H sin(kx− ωt) (59)

Then
21why not ?
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• Wave height is H ; ζ oscillates between ±H .

• Motion is periodic with period T = 2π/ω (ω is angular frequency).

• Surface repeats in space every λ = 2π/k (λ is wavelength)

• Moves to the right with speed c = ω/k (c is called phase speed, see APDE2.)

At the moment (59) is not a solution, it’s an ansatz (a guess). We need to see if it satisfies our
governing equations (the linearised versions) and this means we need φ(x, z, t).

Since from (57)
∂φ

∂t
= −gζ reasonable to write

φ(x, z, t) = cos(kx− ωt)Z(z)

for some Z(z). Really this is a separation of variables solution (e.g. APDE2) and we’ve written
φ = X(x, T )Z(z).

Then from (51)
−k2 cos(kx− ωt)Z(z) + cos(kx− ωt)Z ′′(z) = 0

and so Z ′′(z)− k2Z(z) = 0. A general solution22 is

Z(z) = A cosh k(z + h) +B sinh k(z + h)

for constants A,B. Because of (52), need B = 0 and so

Z(z) = A cosh k(z + h)

At this point we still have two conditions (55) and (57) to apply, but only one constant, A, remains
unknown23

From (57) first
gH sin(kx− ωt) = −Aω sin(kx− ωt) cosh kh

and then

A =
−gH

ω cosh kh

determines the constant A, meaning that φ is now fully known. Finally, applying (55) gives

−ωH cos(kx− ωt) = kA cos(kx− ωt) sinh kh

and this therefore implies

−ωH = k

( −gH
ω cosh kh

)

sinh kh

or
ω2

g
= k tanh kh (60)

22can write other forms of the general solution here like Z(z) = Ce−kz +Dekz or Z(z) = E coshkz + F sinhkz
23Awkward
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This is called the dispersion relation (for gravity waves on finite depth water).

Note: In the derivation of the solution we chose (59) as a sine function. We could have also
chosen a cosine with equal success. In general we could combine both sine and cosine and work
with complex exponentials.

8.4 The character of waves

With reference to (60) we make the following notes:

• Changing k → −k, (60) still holds. Then

ζ(x, t) = H sin(kx+ ωt)

is a wave travelling to the left, speed c = −ω/k.

• k = 2π/λ is called the wavenumber (the number of wavelengths that fit into 2π).

• (60) implies complicated relations between period, wavelength and speed. Very qualitatively,
large wavelengths have long periods and high phase speed (and vice versa).

8.4.1 Long waves

If kh≪ 1 (so that λ≫ h) then waves are long compared to the depth.

Then tanh kh ≈ kh and (60) tells us ω2/g ≈ k2h and the wave speed is

c = ω/k =
√

gh

Note: In the long wavelength limit, wave speed does not depend on wavelength of wave period.
Waves of all frequencies travel at the same speed and they are called non-dispersive.

8.4.2 Short waves

If kh≫ 1 (so that λ/h≪ 1) then waves are short compared to depth

Then tanh kh ≈ 1 and (60) tells us ω2/g ≈ k or

c = ω/k =
√

g/k =
√

gλ/2π

In the short wavelength limit, the wave speed doesn’t depend on depth (because it’s relatively far
away) but does depend on wavelength (and period).

E.g. 8.1: (2004 Indonesian Boxing Day Tsunami)

Indian ocean is deep ∼ 4km, but an earthquake moves a lot of water and consequently waves
happen to be very long (∼ 10km) so λ/h ≫ 1 and “shallow water” approximately applies. So
wave speed is

c =
√

gh =
√
10× 4000 = 200ms−1 = 400mph
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(which matches observations made at that time). The energy flux or power (per length of wave)
transported by a wave in the shallow limit happens to be given (no proof) by E = 1

2
ρgcH2, where

c =
√
gh here. Energy flux must be constant for all x, so

E = 1
2
ρgH2

√

gh = const

and this implies H4h = const. Therefore H ∼ 1/h1/4.

If depth goes from 4000m to 4m the wave height increases by a factor of 10001/4 ≈ 6. So a 50cm
tsunami wave (typically they are this small out to sea – boats will not notice them) in the ocean
is a 3m wave at the coast.

A 3m wave might not seem that big (you’ll see waves this big around the UK), but it’s the power
of the wave that causes the disruption. Putting in the numbers above gives E = 250, 000W/m
(watts per metre) or 250kW/m. That’s the same power as 10 electric cars generate for every metre
of coastline.

8.5 Problem: Oscillations in a closed container

Liquids readily slosh back and forth in a closed container (e.g. tea in a tea-cup). There are
many associated important practical problems: sloshing in road tankers, water on decks of ships,
resonance in harbours, etc...

z=0

z=−h

x=Lx=0

x

z

z=  (x,t)ζ

Example: consider a two-dimensional rectangular box with rigid walls at x = 0, L and a bottom
on z = −h, filled with fluid to z = 0.

We adopt the small-amplitude theory from before but require additional kinematic boundary
conditions at the two lateral sides of the container. These are that u · n̂ ≡ u · x̂ ≡ u = 0 or

∂φ

∂x
= 0, on x = 0, L (61)

8.5.1 Normal modes

This is different to before as we do not seek travelling waves. However, we still expect solutions
which are periodic in time. So we write

ζ(x, t) = η(x) sinωt
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for some unknown η(x) (c.f. normal mode solutions in APDE2), and assume a time-compatible
separation solution for φ

φ(x, z, t) = X(x)Z(z) cosωt

Then Laplace’s equation gives

X ′′(x)Z(z) cosωt+ Z ′′(z)X(x) cosωt = 0

which implies
X ′′(x)Z(z) + Z ′′(z)X(x) = 0

This separates (APDE2):
X ′′(x)

X(x)
= −Z

′′(z)

Z(z)
= −k2 (62)

where −k2 is the separation constant.

Solving (62) for Z(z), with (52) gives Z(z) = A cosh k(z + h) as before.

We also note that we can combine (55) and (57) to eliminate ζ by adding g times the first equation
to ∂/∂t of the second to give

∂2φ

∂t2
= −g∂φ

∂z
, on z = 0

which implies
−ω2X(x)Z(0) cosωt = −gX(x)Z ′(0) cosωt

and it follows that ω2/g = k tanh kh as before in (60)24

Now solving (62) for X(x) gives

X(x) = B cos(kx) + C sin(kx)

and this solution, when subjected to (61) has to satisfy X ′(0) = X ′(L) = 0.

Then easy to show (APDE2) that must have C = 0 whilst the separation constants are k = nπ/L

and so
X(x) = B cos(nπx/L)

So pulling everything together we have

φ(x, z, t) = C cos(nπx/L) cosh k(z + h) cosωt

for some constant C = A.B. This is our normal mode solution in which the frequency is determined
from using k = nπ/L in (60) to give

ω2/g = (nπ/L) tanh(nπh/L) ≡ ω2
n/g, n = 0, 1, 2, . . . (63)

Also, we can now use the solution in either linearised condition applying on the surface to determine
η(x) and it follows that

ζ(x, t) =
ωC cosh kh

g
cos(nπx/L) sinωt

24Not unsurprising as applying conditions at the bottom and surface of the fluid are independent of the lateral
boundary conditions.
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In constrast to the travelling wave solutions where waves of any frequency could propagate on the
surface of a fluid, here the solution exists only at a set of discrete wave frequencies given by (63).
The value of n (the mode number) tells you how many oscillations are occurring across the box.

Note: n = 0 is not a valid mode number since (63) gives ω = 0, φ = 1, and ζ = 0 and there is no
motion in the fluid.25

The fundamental frequency is the lowest (gravest) frequency, given here by n = 1.

E.g. Let L = 1m, h = 20cm. Then the fundamental frequency (n = 1) is

ω ≡ ω1 =
√

9.81× π × tanh(π × 0.2) = 4.14s−1

given a period of τ = 2π/4.14 = 1.51 seconds. The shape of the surface is given by the variation
of x in ζ(x, t), which is cos(πx/L) and it is modulated by the signal sinωt.

n=1 n=2 large n

The n = 2 mode gives a period of τ = 0.86s a shape function of cos(2πx/L) etc...

As n→ ∞, tanh(nπh/L) → 1 and so ωn →
√

gnπ/L.

25In fact, you can discount a sloshing mode with no x-dependence – a flat surface oscillating up and down – as
it would violate mass conservation in the container.
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Appendix: Revision

A summary of key results from previous courses: MVC, MCF and APDE2.

A.6 Suffix notation and summation convention

Suppose that we have two vectors u = (u1, u2, u3) and v = (v1, v2, v3). Then the dot product is
defined to be

u · v =

3
∑

i=1

uivi or, more simply, write u · v = uivi

(drop the summation symbol on the understanding that repeated suffices imply summation.)

Definition A.1 (Kronecker delta)

The Kronecker delta is defined by

δij =

{

1, i = j
0, i 6= j

}

So in summation convention, δijaj = ai since

δijaj ≡
3
∑

j=1

δijaj = ai

Example A.2 (Uses of the Kronecker delta)

1. δii = 3

2. δijuivj = ujvj ≡ u · v.

Definition A.3 (Levi-cevita tensor)

The antisymmetric symbol ǫijk is defined by

• ǫ123 = 1

• ǫijk is zero if there are any repeated suffices. E.g. ǫ113 = 0.

• Interchanging any two suffices reverses the sign: e.g. ǫijk = −ǫjik = −ǫkji
• Above implies invariant under cyclic rotation of suffices: ǫijk = ǫjki = ǫkij

With this definition all 27 permutations are defined. There are only 6 non-zero components,

ǫ123 = ǫ231 = ǫ312 = 1, ǫ213 = ǫ132 = ǫ321 = −1,
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Definition A.4 (cross product)

The cross product is defined by

w = u× v = (u2v3 − u3v2)x̂+ (u3v1 − u1v3)ŷ + (u1v2 − u2v1)ẑ

But can now be written in component form as

wi = ǫijkujvk

where summation over j and k occurs.

Example A.5 (triple product)

Consider the triple product,

w · (u× v) = wiǫijkujvk

where summation is over i, j, k so result is scalar. It follows that

w · (u× v) = ǫjkiwiujvk = u · (v×w)

= ǫkijwiujvk = v · (w × u)

= −ǫjikwiujvk = −u · (w× v)

= −ǫikjwiujvk = −w · (v × u)

Example A.6 (double product)

The double product of ǫijk is

ǫijkǫilm = δjlδkm − δjmδkl

Example A.7 (vector triple product)

The vector triple product is defined by the result

w× (u× v) = (w · v)u− (w · u)v

Proof:

[w× (u× v)]i = ǫijkwj[u× v]k

= ǫijkwjǫklmulvm

= ǫkijǫklmwjulvm

= (δilδjm − δjlδim)wjulvm

= wjuivj − wjujvi = (w · v)ui − (w · u)vi

True for i = 1, 2, 3, hence result.
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A.7 Differential operators

Here we consider operations on a function φ(r) and a vector field f(r) where r = (x1, x2, x3).

One can regard ∇ as the vector operator

(

∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

. Without using any information (but

always remembering the true meaning of the symbol!), one can also use the much sleaker notation
∇ ≡ (∂1, ∂2, ∂3). I will usually do that whenever using summation convention. Then

• The gradient is ∇φ. So [∇φ]i =
∂φ

∂xi
≡ ∂iφ

• The divergence is ∇ · f = ∂fi
∂xi

≡ ∂ifi (in summation convention)

• The curl is ∇× f where [∇× f ]i = ǫijk
∂fk
∂xj

≡ ǫijk∂jfk.

• The Laplacian is ∇2φ = ∇ ·∇φ =
∂2φ

∂x21
+
∂2φ

∂x22
+
∂2φ

∂x23

• (f ·∇)f =

(

f1
∂f1
∂x1

+ f2
∂f1
∂x2

+ f3
∂f1
∂x3

)

x̂+

(

f1
∂f2
∂x1

+ f2
∂f2
∂x2

+ f3
∂f2
∂x3

)

ŷ

+

(

f1
∂f3
∂x1

+ f2
∂f3
∂x2

+ f3
∂f3
∂x3

)

ẑ

Example A.8

1. [∇(xj)]i = ∂jxi = δij

2. ∇ · r = ∂ixi = δii = 3

3. [∇× r]i = ǫijk∂kxj = ǫijkδkj = ǫijj = 0

4. ∇r = r/r, where r2 ≡ r · r.

Proof: [∇r]i = ∂i
√
xjxj =

∂ix
2
j

2
√

x2j

=
xj∂ixj
r

=
xjδij
r

=
xi
r
.

A.8 Three important vector identities

1. ∇ · (φf) = ∂i(φfi) = φ∂ifi + fi∂iφ = φ∇ · f + f ·∇φ

2. ∇× (φf) = φ(∇× f) + (∇φ× f)

Proof: [∇× (φf)]i = ǫijk∂j(φfk) = φǫijk∂jfk + fkǫijk∂jφ = φ[∇× f ]i + [∇φ× f ]i.
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3. f × (∇× f) = ∇(1
2
f · f)− (f ·∇)f

Proof:

[f × (∇× f)]i = ǫijkfj [∇× f ]k = ǫijkfjǫklm∂lfm = ǫkijǫklmfj∂lfm

= (δilδjm − δimδjl)fj∂lfm = fj∂ifj − fj∂jfi = ∂i
1

2
fjfj − (f ·∇)fi

The result follows.

A.9 Integral results

A.9.1 The divergence theorem

n

SV

dS

u n

dS

d x

Consider a volume V bounded by a closed surface S with outward unit normal n̂. Then for a
vector field f(r)

∫

V

∇ · fdV =

∫

S

f · n̂dS

(and note n̂dS ≡ dS)

Corollary: Let f(r) = aφ(r) where a is an arbitrary constant vector, and φ(r) a scalar function.
Since ∇ · (aφ(r)) = a ·∇φ(r), so the divergence theorem reduces to

a ·
∫

V

∇φdV = a ·
∫

S

φn̂dS

True for any a, so
∫

V

∇φdV =

∫

S

φn̂dS
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A.9.2 Stokes’ theorem

n

C

S

dr

dS

Let C be a closed curve bounding a surface S with unit normal n̂.

Then for a vector field f(r),
∫

C

f · dr =
∫

S

(∇× f) · n̂dS

where dr is a line element on C.

Corollary: Let f(r) = aφ(r) where a is an arbitrary constant vector. Then
∫

C

aφ · dr =
∫

S

(∇× aφ) · n̂dS

and from an earlier result (∇× aφ) = φ(∇× a) + (∇φ× a) = (∇φ× a). Using the vector triple
product result, (∇φ× a) · n̂ = −a · (∇φ× n̂) and then

a ·
∫

C

φdr = −a ·
∫

S

∇φ× n̂dS

Therefore
∫

C

φdr = −
∫

S

∇φ× n̂dS

A.10 Curvilinear coordinate systems

Many problems can be approached more simply by choosing a coordinate system that fits a given
geometry. Instead of writing the position vector r as a function of Cartesian coordinates (x, y, z),
r is now written as function of three new coordinates: r(q1, q2, q3). The coordinate lines are swept
out by varying one of the coordinates, keeping the other two constant. We will deal only with the
by far most important case of orthogonal coordinate systems, in which the coordinate lines always
intersect one another at right angles.

Evidently,
∂r

∂qi
is a vector which points in the direction of the i-th coordinate line.

If each of these vectors are normalized to unity, we obtain the local basis system:

q̂i =
1

hi

∂r

∂qi
, hi ≡

∣

∣

∣

∣

∂r

∂qi

∣

∣

∣

∣

. (64)
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The quantities hi(q1, q2, q3) are called scale factors or metric coefficients. The fact that the co-
ordinate system is orthogonal means that all q̂i, computed at a point (q1, q2, q3), are orthogonal.
However, the direction of q̂i of course changes as one goes along the coordinate lines.

Example A.9 (Cylindrical polar coordinate system)

The position vector (x, y, z) = r is

r = (r cos θ, r sin θ, z) ,

and the coordinates (q1, q2, q3) are (r, θ, z). Thus the scale factors become h1 = 1, h2 = r, and
h3 = 1, and the local basis is

r̂ =
∂r

∂r
= (cos θ, sin θ, 0) ,

θ̂ =
1

r

∂r

∂θ
= (− sin θ, cos θ, 0) ,

ẑ =
∂r

∂z
= (0, 0, 1).

It is simple to confirm that r̂, θ̂, ẑ are indeed mutially orthogonal.

Remark A.10 (Integration)

As the coordinates are varied by δq1, δq2, and δq3, respectively, r describes a volume whose sides

are orthogonal. The length of each side is hiδqi, and thus the volume of the cuboid is dxdydz =
h1h2h3dq1dq2dq3. Thus integration in a curvilinear coordinate system is achieved by the formula

∫

V

f(r)dxdydz =

∫

V

f(q1, q2, q3)h1h2h3dq1dq2dq3. (65)

E.g. In cylindrical polars, the volume element is rdrdθdz.

In the curvilinear coordinate system, ∇ has the representation (see MVC for derivation)

∇ =
q̂1

h1

∂

∂q1
+

q̂2

h2

∂

∂q2
+

q̂3

h3

∂

∂q3
. (66)

This is sufficient to derive the vector identities which follow (again, see MVC notes for details).

A.11 Cylindrical polar coordinates

Coordinate system is r = (r, θ, z) where the relationship to Cartesians is x = r cos θ, y = r sin θ.
The unit vectors are r̂ = x̂ cos θ + ŷ sin θ, θ̂ = −x̂ sin θ + ŷ cos θ and ẑ. In the following, f =
(fr, fθ, fz) ≡ frr̂+ fθθ̂ + fzẑ.
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• The gradient is ∇φ = r̂
∂φ

∂r
+ θ̂

1

r

∂φ

∂θ
+ ẑ

∂φ

∂z

• The divergence is ∇ · f = 1

r

∂(rfr)

∂r
+

1

r

∂fθ
∂θ

+
∂fz
∂z

• The curl is ∇× f =
1

r

∣

∣

∣

∣

∣

∣

r̂ rθ̂ ẑ
∂/∂r ∂/∂θ ∂/∂z
fr rfθ fz

∣

∣

∣

∣

∣

∣

.

• The Laplacian is ∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
+
∂2φ

∂z2

• (f ·∇)f =

(

fr
∂fr
∂r

+
fθ
r

∂fr
∂θ

+ fz
∂fr
∂z

− f 2
θ

r

)

r̂+

(

fr
∂fθ
∂r

+
fθ
r

∂fθ
∂θ

+ fz
∂fθ
∂z

+
frfθ
r

)

θ̂ +
(

fr
∂fz
∂r

+
fθ
r

∂fz
∂θ

+ fz
∂fz
∂z

)

ẑ

A.12 Spherical polar coordinates

Coordinate system is r = (r, ϕ, θ) where the relationship to Cartesians is x = r sinϕ cos θ, y =
r sinϕ sin θ, z = r cosϕ.26

The unit vectors are r̂ = x̂ sinϕ cos θ+ŷ sinϕ sin θ+ẑ cosϕ, ϕ̂ = x̂ cosϕ cos θ+ŷ cosϕ sin θ−ẑ sinϕ
and θ̂ = −x̂ sin θ + ŷ cos θ.

In the following, f = frr̂+ fϕϕ̂+ fθθ̂.

• The gradient is ∇φ = r̂
∂φ

∂r
+ ϕ̂

1

r

∂φ

∂ϕ
+ θ̂

1

r sinϕ

∂φ

∂θ

• The divergence is ∇ · f = 1

r2
∂(r2fr)

∂r
+

1

r sinϕ

∂(sinϕfϕ)

∂ϕ
+

1

r sinϕ

∂fθ
∂θ

• The curl is ∇× f =
1

r2 sinϕ

∣

∣

∣

∣

∣

∣

r̂ rϕ̂ r sinϕθ̂
∂/∂r ∂/∂ϕ ∂/∂θ
fr rfϕ r sinϕfθ

∣

∣

∣

∣

∣

∣

.

• The Laplacian is ∇2φ =
1

r2
∂

∂r

(

r2
∂φ

∂r

)

+
1

r2 sinϕ

∂

∂ϕ

(

sinϕ
∂φ

∂ϕ

)

+
1

r2 sin2 ϕ

∂2φ

∂θ2

• Gulp ! (f ·∇)f =

(

fr
∂fr
∂r

+
fϕ
r

∂fr
∂ϕ

+
fθ

r sinϕ

∂fr
∂θ

−
f 2
ϕ + f 2

θ

r

)

r̂+
(

fr
∂fϕ
∂r

+
fϕ
r

∂fθ
∂ϕ

+
fθ

r sinϕ

∂fϕ
∂θ

+
frfϕ
r

− f 2
θ cotϕ

r

)

ϕ̂+
(

fr
∂fθ
∂r

+
fϕ
r

∂fθ
∂ϕ

+
fθ

r sinϕ

∂fθ
∂θ

+
frfθ
r

+
fϕfθ cotϕ

r

)

θ̂

26This definition and ordering of variables is often called the “Mathematician’s version” and is aligned with the
MVC course, but beware that it is common to see the “Physicist’s version” in which ϕ is used to measure the
azimuthal angle and θ the polar inclination
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A.13 Line and surface integrals

When the curve C is parametrised by r = p(t) for t1 < t < t2.
∫

C

u(r) · dr =
∫ t2

t1

u(p(t)) · p′(t)dt

E.g.: in 2D plane polars, p(θ) = r(cos θ, sin θ) = rr̂ parametrised a circle and p′(θ) = rθ̂ =
r(− sin θ, cos θ) so dr = θ̂rdθ.

Next, ds = |dr| in
∫

C

f(r)ds =

∫ t2

t1

f(p(t))|p′(t)|dt

E.g.: for a circle, ds = |dr| = rdθ

For 2D integrals given a mapping s(u, v) from (u, v) ∈ D to S
∫

S

u(r) · n̂dS =

∫∫

D

u(s(u, v)) ·Ndudv

(n̂dS ≡ dS) where N = su × sv (check directions of normal are correct).

E.g.: For a sphere of radius r, s(ϕ, θ) = r(cosϕ sin θ, sinϕ sin θ, cos θ) and N = r2 sinϕr̂ so
n̂dS = r̂r2 sinϕdϕdθ

Next, dS = |dS|
∫

S

f(r)dS =

∫∫

D

f(s(u, v))|N|dudv

E.g.: For a sphere of radius r, dS = r2 sinϕdϕdθ

A.14 Cauchy-Riemann equations

A complex function f(z) = u(x, y) + iv(x, y) where z = x + iy and u and v are real function is
differentiable if the Cauchy-Riemann equations

ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y),

hold. A consequence of this is that the functions u are v are said to be harmonic, that is to say
they satisfy ∇2u = ∇2v = 0.

A function which is differentiable at every point in an open set V is said to be holomorphic (or
analytic). It follows that a holomorphic function satisfies the Cauchy-Riemann equations on V .

A.15 Cauchy’s Integral Theorems

A function f which is holomorphic on V and the path C lies within V then

f(a) =
1

2πi

∮

C

f(z)

z − a
dz
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where a lies inside C and the integral around C is counter-clockwise. If a lies outside C then the
integral evaluates to zero.

It follows further that

f (n)(a) =
n!

2πi

∮

C

f(z)

(z − a)n+1
dz.

Cauchy’s residue theorem states that

∮

C

f(z)dz = 2πi
∑

Res(f, ak)

where f(z) is holomorphic on V \{a1, . . . , an} where ai are isolated singularites – that is to say
f(z) is meromorphic on V .

In the above, if a is a pole of order n then

Res(f ; a) = lim
z→a

1

(n− 1)!

dn−1

dzn−1
(z − a)nf(z)

If the pole is order 1 then

Res(f ; a) = lim
z→a

(z − a)f(z)

and if f(z) = g(z)/h(z) where h(z) has a zero of order 1 then

Res(f ; a) = g(a)/h′(a)

A.16 Separation of variables

A.16.1 Cartesians

In Cartesian coordinates, separation solutions of Laplace’s equation are of the form

cosh νx cos νy, cosh νx sin νy, sinh νx cos νy, sinh νx sin νy

for any complex ν. E.g. if ν is replaced by iν with ν real, the positions of x and y in the above are
interchanged. The values of ν are normally determined by imposing lateral boundary conditions.

Separation solutions of the wave equation (∇2 + k2)φ = 0 are of the form

cos νx cosµy

(with sines interchangeable with cosines as above) where ν2 +µ2 = k2 and ν and µ determined by
boundary conditions.
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A.16.2 Plane polars

Separation solutions of Laplace’s equation in 2D plane polar coordinates are

rν cos νθ, rν sin νθ

for all real ν (positive and negative). For solutions which are continuous for all θ, ν must be an
integer.

Separation solutions of the 2D wave equation (∇2 + k2)φ = 0 in plane polars are (assuming
continuous solutions for all θ) are

Jn(kr) cosnθ, Jn(kr) sinnθ, Yn(kr) cosnθ, Yn(kr) sinnθ,

where Jn and Yn are Bessel functions. They both oscillate and decay at infinity but Yn(kr) are
singular at the origin and Jn(kr) are bounded at the origin.

A.16.3 3D cylindrical polars

By separating e±µz Laplace’s equation in 3D is transformed in to the 2D wave equation in plane
polars, so solutions are

e±µzJn(µr) cosnθ

as the first of the four combinations indicated in the previous section. If µ is replaced by iµ to turn
exponentials in z into oscillatory terms, the Bessel functions Jn and Yn are replaced by modified

Bessel functions In and Kn.

For the wave equation in 3D cylindrical polars we separate in the same way but the argument in
the exponential becomes

√

µ2 + k2.

A.16.4 3D spherical polars

In 3D spherical polars, solutions of Laplace’s equation which are axisymmetric about the polar
axis (independent of θ) are

rnPn(cosϕ), and Pn(cosϕ)/r
n+1

for n = 0, 1, 2, . . . where Pn are Legendre polynomials (P0(x) = 1, P1(x) = x and P2(x) =
1
2
(3x2 − 1), and so on.)

The first set are bounded at the origin, unbounded at infinity and for the second these are reversed.
Singular solutions at the origin are therefore:

1

r
,

cosϕ

r2
,

3 cos2 ϕ− 1

2r3
, . . .

and those bounded at the origin are

1, r cosϕ, 1
2
r2(3 cos2 ϕ− 1), . . .
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