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The SS Great Britain in dry dock in Bristol

The SS Great Britain is a museum piece housed in a dry dock on Bristol’s
floating harbour. Designed by the Victorian engineer Isambard Kingdom Brunel
(also responsible for the design of Bristol’s Clifton Suspension Bridge, and
Temple Meads Train Station), at 98m she held the record for the longest passenger
ship in the world from 1845 to 1854. The first ship to combine a screw propeller
with an iron hull, the Great Britain was the first iron-hulled steamship to cross
the Atlantic in 1845.

When launched in 1843, Great Britain was by far the largest vessel afloat.
However, her protracted construction and high cost had left her owners in a
difficult financial position, and they were forced out of business in 1846 after the
ship was left stranded by a navigational error.

Sold for salvage and repaired, Great Britain carried thousands of immigrants
to Australia until converted to sail in 1881. Three years later, she was retired to
the Falkland Islands where she was used as a warehouse, quarantine ship and
coal hulk until scuttled in 1937.

In 1970 the SS Great Britain was towed back to the Bristol dry dock where
she was built. Now listed as part of the National Historic Fleet, she is an award-
winning visitor attraction and museum ship in Bristol Harbour, with 150,000-
170,000 visitors annually and has become emblematic of the city of Bristol.

Front cover

"The SS ’Great Britain’ under steam and sail, saluting a ship of war" by Joseph
Walter, 1845. ©Bristol Museums, Galleries & Archives. (reproduced with kind
permission)
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PREFACE

The International Workshop on Water Waves and Floating Bodies is an annual
meeting of engineers and scientists with a particular interest in water waves and
their effects on floating and submerged marine structures. The IWWWFB was
initiated by Professor D. V. Evans (University of Bristol) and Professor J. N.
Newman (MIT) following informal meetings between their research groups in
1984. First intended to promote communications between workers in the UK
and the USA, the interest and participation quickly spread to include researchers
from many other countries around the world. The workshop places particular
emphasis on the participation of younger researchers, on the stimulation of
discussions between engineers and scientists, and to the presentation of
preliminary basic scientific work before its publication elsewhere. The
workshop is an important reference point for organizing and spreading
knowledge in this area. In particular, the workshop proceedings are freely
accessible through the dedicated internet address www.iwwwfb.org where all
contributions from 1986 on can be found.

Over 95 abstracts were submitted to this year’s workshop, out of which 64 have
been retained for presentation and are included in the proceedings. The
contributions cover a wide range of topics related to the interaction between
ocean waves and marine structures, while the authors cover all career stages
from PhD students to the most senior and distinguished researchers.

This is the sixth year since the establishment of the Tuck Fellowship which, in
memory of Prof. Ernie Tuck, supports the participation of one PhD student, or
young researcher, each year. Eleven applications for the Tuck Fellowship were
received this year and the prize was awarded to Hugh Wolgamot, a Research
Fellow in his first year post-PhD at the University of Western Australia, while
Tomasz Bobinski, a PhD student at Laboratoire de Physique et Mécanique des
Milieux Hétérogènes, UMR CNRS, was selected as the runner-up.

The organisation of a workshop of this size relies on the efforts of many people
not immediately visible to the participants. Richard and Jun are particularly
grateful to Samantha Dixon and Liz Clark for all their hard work in helping
make this event possible.
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(Abstract submitted to the 30th IWWWFB workshop, Bristol, UK, 2015)

A high-order finite-difference linear seakeeping solver tool for

calculation of added resistance in waves ∗

Mostafa Amini Afshar, Harry B. Bingham, and Robert Read
Department of Mechanical Engineering, Technical University of Denmark

E-mail: maaf@dtu.dk, hbb@dtu.dk, rrea@mek.du.dk

1 Introduction

During recent years a computational strategy has been developed at the Technical University of
Denmark for numerical simulation of water wave problems based on the high-order finite-difference
method, [2],[4]. These methods exhibit a linear scaling of the computational effort as the number of
grid points increases. This understanding is being applied to develop a tool for predicting the added
resistance (drift force) of ships in ocean waves. We expect that the optimal scaling properties of
this solver will allow us to make a convincing demonstration of convergence of the added resistance
calculations based on both near-field and far-field methods. The solver has been written inside a
C++ library known as Overture [3], which can be used to solve partial differential equations on
overlapping grids based on the high-order finite-difference method. The resulting code is able to solve,
in the time domain, the linearised potential flow forward-speed hydrodynamic problems; namely the
steady, radiation and diffraction problems. The near-field formulation of the wave drift force has also
been implemented, and development is under way to include far-field methods. This paper presents
validation results based on analytical solutions for exact geometries.

2 Mathematical formulation

A moving Cartesian coordinate system O-xyz is adopted, which is in steady translation with the
body’s forward speed U. The origin of the coordinate system is at the mean free surface position, and
z is vertically upward. The body is under the action of incoming waves, and is free to oscillate in 6
degrees of freedom. Assuming a potential flow model, the governing equation is:

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, where φ = −Ux + φb + φu and φu = φ0 + φs +

6∑

k=1

φk.

−Ux + φb arises due to the forward speed of the body, and represents the solution of the steady
wave resistance problem. For the Neumann-Kelvin linearisation (φb = 0), and for the double-body
linearisation, the following boundary value problem is solved to obtain the base flow, φb = φdb.

∇2φdb = 0,
∂φdb
∂n

= ~W · n on s0,
∂φdb
∂z

= 0 on z = 0, ∇φdb → 0 in the far field,

where and ~W = (U, 0, 0). Moreover φ0 and φs are the velocity potentials of the incident waves and
the scattered waves respectively, while the body is assumed to be fixed (the diffraction problem). The
velocity potentials due to oscillatory motions of the body in the kth direction (the radiation problem)
are given by φk. The decomposed velocity potentials mentioned above are substituted into the non-
linear boundary conditions. The linearised conditions are then obtained by Taylor-series expansion
around the mean water level z = 0 and mean body position s0 respectively:

∂φu
∂t

= −gηu + U
∂φu
∂x
− ∇φb · ∇φu −

1

2
∇φb · ∇φb + U

∂φb
∂x
− gηb = 0, (1)

∂ηu
∂t

=
∂φu
∂z

+ U
∂ηu
∂x
− ∇φb · ∇ηu + ηu

∂2φb
∂z2

− ∇φb · ∇ηb + U
∂ηb
∂x

+ ηb
∂2φb
∂z2

= 0. (2)

and
∂φu
∂n

=
6∑

k=1

(ξ̇k · nk + ξk ·mk), and
∂φs
∂n

= −∇φ0(r, t) · n, on z = s0.

∗The authors wish to thank the Danish Maritime Fund for supporting this work.
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Here, ξk is the translation or rotation of the body, and ξ̇k is the corresponding velocity. The normal
vectors nk and the m terms are defined as follows:

(n1, n2, n3) = n, (m1,m2,m3) = (n · ∇)( ~W −∇φb),
(n4, n5, n6) = (r× n), (m4,m5,m6) = (n · ∇)

(
r× ( ~W −∇φb)

)
,

where r is the position vector. The above mentioned linear initial boundary value problem is solved
in the time domain. Instead of finding the radiation and diffraction impulse response functions, the
response of the body is calculated when exposed to a pseudo-impulsive Gaussian forcing given by
ξk(t) = ζ0(t) = e−2π2s2 t2 , where s is a parameter to control the shape of the pseudo impulse. ζ0 is
the amplitude of the incident waves for the diffraction problem. Having solved for φu, the first-order
force on the body can also be obtained from the linearised Bernoulli equation:

p = −ρ
[(

∂

∂t
− ~W · ∇

)
φu − ~W · ∇φb +∇φb · ∇φu +

1

2
∇2φb

]
. (3)

The frequency-domain added mass and damping coefficients ajk, bjk, and the wave exciting force
coefficient Xj are then obtained by a Fourier transform of the time-domain data. The Froude-Krylov
part of the wave excitation force is however, computed from the closed form expression in the frequency
domain. Finally the body motion ξ̂k in the frequency domain is found by solving the equations of
motion:

6∑

k=1

ξ̂k
[
−ω2(Mjk + ajk) + iωbjk + cjk

]
= AXj , j = 1, 2, . . . , 6 (4)

where Mjk is the inertial mass, cjk is the hydrostatic coefficient matrix, and A is the incident wave
amplitude. The wave drift force is calculated in the frequency domain by considering the second-order
pressure terms in the Bernoulli equation. All the terms in these expressions are obtained as described
above, via Fourier transform of the corresponding pseudo-impulsive quantities [1].

3 The numerical method

The entire physical domain is descretised by overlapping structured and body-fitted grids using the
Ogen grid generator. There are three sets of grid points including discretisation, interpolation and
hole points. Each grid is mapped to a uniform Cartesian computational grid, where discretisation
of the continuous derivatives takes place using fourth-order finite-difference schemes. There are two
layers of ghost points generated to handle the derivatives at the boundaries. The continuity equation
is descretised by a fourth-order centered scheme. A non-homogeneous Neumann boundary condition is
applied at the body to satisfy the body boundary condition. The Dirichlet boundary condition is used
to specify the velocity potential at the free surface. The resulting system of equations including the
interpolation equations, and the right hand side vector b is constructed as [A][φ] = [b], and solved by a
direct LU factorisation method. The free-surface conditions, (1) and (2) are integrated in time using
the fourth-order Runge-Kutta method, and φ and η at the free surface are updated at each time step.
As the free-surface conditions are in fact a system of hyperbolic equations, a special care is required
to set the ghost points while evaluating the convective derivatives at the boundaries. In the region
where ~W · n < 0, extrapolation from the internal points is used to populate the ghost layers, which
turns the centered scheme at the boundary into an upwind scheme. For the region where ~W · n > 0,
a Neumann condition is used to set the ghost points at the boundaries. The dynamic free-surface
boundary condition and the known Neumann condition for φ on the body boundary can be used to
derive a corresponding Neumann condition for η:

∇η · n = −1

g

(
∂

∂t
(∇φ · n)− U ∇

(
∂φ

∂x

)
· n
)

(5)
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where this expression corresponds to the Neumann-Kelvin linearisation. A similar relation can be
obtained for the double-body flow linearisation. The above treatments are necessary for ensuring a
stable numerical scheme and for preventing spurious reflections at the boundaries. Moreover in the
case of grid stretching, the centered scheme is not suitable for evaluation of the convective derivatives.
The unequal weighting of the neighboring points in the convective derivative on a stretched grid will
always produce an effective downwinding in some areas of the free-surface, which leads to instability.
Two remedies are available: either a centered scheme is used and at the same time a Savitzky-Golay
type filter is applied to the solution at each time step, or an upwind-biased scheme is used for evaluation
of the convective derivatives.

4 Results

The radiation problem for surge and heave body motion has been solved for a floating cylinder with
Fr = U/

√
ga = 0.03, where a is radius of the cylinder. The radiation problem for sway and heave

motion has been solved for a submerged sphere with Fr = 0.40 with a submergence depth of h = 2a.
The diffraction problem in the case of the head waves for the submerged hemisphere with Fr = 0.40 has
also been solved. Just the imaginary part of the complex force is shown here, and ν = ω2

e/g, ν0 = ω/g.
The numerical results show very good agreement with the analytical solutions from [5] and [6]. The
deep-water limit has also been shown in the figure, as the analytical results are for the deep water
condition. The wave drift force along the x coordinate and the body motions have been calculated for
the case of a floating hemisphere with Fr = 0, and results have been compared with those calculated
using WAMIT. Contributions from both the water line integral and the body surface integral in the
near-field method are shown in the figure, and d is the diameter of the hemisphere. The horizontal
line in the drift force figure shows the analytical asymptotic value −1

3 for the short waves. The results
of the developed solver in the figure are shown with the name OceanWave3D.

5 Conclusions

A seakeeping solver has been developed based on the high-order finite-difference method applied on
overlapping grids. A stable numerical scheme has been achieved either by using a centered scheme
and applying a mild filter to the solution, or by using the upwind-biased difference scheme for the
convective derivatives in the free-surface boundary conditions. The solver has been validated for exact
geometries, and work is under way to validate the code for real ship geometries. The solver is being
developed to include more models for the wave drift force calculation, and to run in parallel in order
to demonstrate convergence of the added resistance based on both far-field and near-field methods.

References

[1] Amini Afshar, M. Towards Predicting the Added Resistance of Slow Ships in Waves. PhD thesis,
DTU Mechanical Engineering, 2015.

[2] Bingham, H. B. and H. Zhang. On the accuracy of finite-difference solutions for nonlinear water
waves. Journal of Engineering Mathematics, 58(1-4):211–228, 2007.

[3] Brown, D. L., W. D. Henshaw, and D. J. Quinlan. Overture: An object-oriented framework for
solving partial differential equations on overlapping grids. Object Oriented Methods for Interoper-
able Scientific and Engineering Computing, SIAM, pages 245–255, 1999.

[4] Engsig-Karup, A. P., H. B. Bingham, and O. Lindberg. An efficient flexible-order model for 3d
nonlinear water waves. Journal of computational physics, 228(6):2100–2118, 2009.

3



[5] Wu, G. and R. E. Taylor. Radiation and diffraction of water waves by a submerged sphere at
forward speed. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
417(1853):433–461, 1988.

[6] Wu, G. and R. E. Taylor. The hydrodynamic force on an oscillating ship with low forward speed.
Journal of Fluid Mechanics, 211:333–353, 1990.

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

ka

a
ij

ρ
π
a
2
ω

U g

 

 

Wu and Taylor (1990)
OceanWave3D

a31

a13

Floating cylinder, a13 and a31

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

νa

a
2
2

ρ
π
a
3

 

 

Wu and Taylor (1998)
OceanWave3D

Submerged sphere, a22

0 0.5 1 1.5 2 2.5
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

ν0a

Im
{
X

3
}

ρ
g
π
a
3
ν

 

 

Wu and Taylor (1998)
OceanWave3D

ν0h = π

Submerged sphere, heave force imaginary

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

νa

a
3
3

ρ
π
a
3

 

 

Wu and Taylor (1998)
OceanWave3D

Submerged sphere, a33

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω2 d
g

ξ 3 A

 

 

WAMIT
OceanWave3D

Floating hemisphere, RAO

0 0.5 1 1.5 2 2.5 3
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ka

F
(2
)

1

ρ
g
A

2
L

 

 
OceanWave3D (total)
OceanWave3D (body)
OceanWave3D (waterline)
WAMIT

Floating hemisphere, wave drift force

Figure 1: Validation results for various quantities using a floating two-dimensional cylinder, a sum-
berged sphere, and a floating hemispere.

4



Abstract for the 30th International Workshop on Water Waves and Floating Bodies, Bristol (UK), 12 – 15 April, 2015  

  

On the modeling of nonlinear wave-wave and wave-body 

interactions in a realistic sea state  

Wei Bai*, Xingya Feng, Xianglong Chen and Kok Keng Ang  
Department of Civil and Environmental Engineering, National University of Singapore, Singapore 

 E-mail: w.bai@nus.edu.sg  

 

Highlights:  

 A time-domain nonlinear potential model is developed 

to solve wave-body interactions in a realistic sea state.  

 

 Nonlinearity is demonstrated through simulating 

focused waves and wave diffraction by side-by-side 

barges subject to an irregular wave field. 

 

1. Introduction  

This abstract aims to present a nonlinear potential flow 

model which generates a realistic sea state and solves 

wave-body interaction problems. The fully nonlinear 

potential flow theory (FNPF) remains one of the 

advanced and efficient methods to model water waves 

and wave-body interactions. Recently, various 

numerical models have been developed in order to 

implement FNPF efficiently. Engsig-Karup et al. [1] 

presented a higher-order finite difference (FD) model, 

OceanWave3D, which was proved very accurate in 

simulating wave-wave and wave-body interactions by 

comparisons against experiments. Guerber et al. [2] 

presented a two-dimensional model with a freely or 

forced moving submerged horizontal cylinder and 

solved the boundary value problem by a higher-order 

boundary element method (HOBEM), which was 

simulated to represent the wave energy converters 

(WECs). Targeted at improving the computational 

efficiency, Shao and Faltinsen [3] developed a new 3D 

FNPF model based on harmonic polynomial cells. The 

computational domain is discretized by harmonic 

polynomials such that velocity potential at each field 

point is interpolated by a set of harmonic polynomials. 

However, these models focus much on modelling 

regular wave fields. Ducrozet et al. [4] presented a 

modified higher-order spectral (HOS) nonlinear 

potential model with a controlled wave maker. The key 

point in the modified model is wave generation by an 

additional potential which satisfies the no-flux condition 

on wave maker and nonlinear free surface conditions. 

Validation cases of 2D irregular waves and 3D focused 

waves illustrate high accuracy with comparisons against 

experimental data.  

In this abstract, we present a 3D FNPF model based 

on HOBEM and focus on modelling irregular wave 

fields and wave-body interactions in a realistic sea state. 

One of our concerns is the associated nonlinearity 

which is yet much discussed in the previous work. 

We first simulate a 2D focused wave in a rectangular 

numerical wave tank (NWT). Of interest is the presence 

of higher frequency components induced by nonlinear 

wave-wave interactions, which however cannot be 

identified in linear models. To improve computational 

efficiency, we modified the rectangular NWT into a 

circular tank. In the modified tank, no wave maker is 

modelled; instead, we impose an irregular wave field as 

an incoming wave. Only the scattered wave field needs 

to be solved. To demonstrate its capacity, we simulate a 

case of two side-by-side barges in a realistic sea state 

and comparisons with model tests are presented. The 

nonlinearity in the wave response is investigated. 

2. Numerical model 

2.1 Rectangular NWT 

Following the basic assumptions of FNPF theory, i.e. 

fluid is incompressible, inviscid and flow irrotational, 

the velocity potential (x,y,z,t) satisfies the Laplace 

equation in the domain, 

2 0  .          (1) 

On the free water surface SF, the kinematic and dynamic 

boundary conditions in the Lagrangian description are 

D

Dt
 

X
,                (2) 

D 1

D 2
gz

t


      ,               (3) 

where D/Dt is the material derivative, X denotes the 

position of water particles on the free water surface. On 

solid walls, non-flux condition is satisfied. 

A wave maker is located at one end of the 

rectangular tank, and a numerical beach is placed at the 

other end to avoid reflection from the end wall. In order 

to generate any desired irregular wave field, we need to 

specify the movement of wave maker (piston type). 

Given any targeted wave spectrum S(ω) (discretized 

into N harmonics), the displacement of wave maker is 

specified as 
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1

( ) 2 ( ) cos( )
N

WM WM n n p n n

n

x t S k x t p  


    ,  (4) 

0( ) ( )WM n nS e S  ,                         (5) 

2

0

4sinh ( )

2 sinh(2 )

n

n n

k h

k h k h
e


 ,                       (6) 

where e0 is a transfer function; ωn is the wave frequency, 

kn the wave number, and pn the phase offset of the nth 

component. In addition, h is the water depth and Δω is 

the frequency interval. xp is a reference position, and in 

the case of focused waves it is the focal point. More 

details on the irregular wave generation can be found in 

Frigaard et al. [5]. 

 

2.2 Circular tank model  

While modelling wave-body interaction problems using 

the above rectangular NWT, the side wall effect 

becomes significant, unless in a very wide tank which 

requires huge computational effort. In order to eliminate 

tank wall effects and improve computational efficiency, 

we develop a nonlinear decomposition model which 

solves wave-body interactions in a circular tank. In the 

decomposition model, the incident wave field is 

specified explicitly while only the scattered wave is 

solved instead of computing the original total wave.  

The total velocity potential (x,y,z,t) can be separated 

into an incident wave part and a scattered part, i.e.  = 

I+S. The free surface is updated from the 

contributions of incident and scattered velocities. The 

incident flow potential and velocities are evaluated 

explicitly in the fluid domain. By substituting the 

separation of potential and elevation into Eqns. (1), (2) 

and (3), the decomposition leads to the following 

boundary value problem (BVP) for the scattered 

component: 

2 0S  ,          (7) 

with boundary conditions on free surface: 

D

D

S
I

t
   

X
, on SF                      (8) 

D 1 1

D 2 2

S
S I Igz

t


           , on SF      (9) 

and on body surfaces: 

S I

n n

  
 

 
, on SB                         (10) 

where the subscripts ‘I’ and ‘S’ denote the components 

of incident and scattered waves respectively.  

The generation of a realistic sea state is similar to 

that in the rectangular wave tank, except that there is no 

wave maker in this circular tank. Once the energy 

spectrum is chosen, the free surface elevation and the 

velocity potential can be calculated as a sum of N (N 

should be large enough to reproduce the desired 

spectrum) harmonics, 

1

( , ) cos( ),

2 ( ) ,

N

n n n n

n

n n

Iz x t A k x t p

A S



 



  

 


              (11) 

1

cosh ( )
( , , ) sin( )

sinh

N

n n

n n n n

n n n

I

k z h
x z t A k x t p

k k h


 




   , (12) 

where An is the amplitude of the nth wave component. 

The phase is a random function following the standard 

uniform distribution, ranging from 0 to 2π. No transfer 

function is required due to the nature that no wave 

maker is used in this model.  

A higher-order boundary element method (HOBEM) 

is employed to simulate the wave-body interactions in 

the time domain. Time integration is performed via the 

4th order Runge-Kutta scheme, and free surface 

conditions are updated based on a Mixed Eulerian 

-Lagrangian scheme. 

3. 2D Focused waves  

We employ the rectangular NWT presented in Section 

2.1 to simulate 2D focused waves. In our higher-order 

boundary element simulations, the focused waves (Case 

D55) are performed in a water depth of 0.7 m, of which 

the nonlinearity has been validated through comparison 

with the experimental results in Baldock et al. [6]. The 

wave conditions are designed according to the 

configuration of Case D (with the input amplitude of 

55mm) in Baldock et al. [6]. The wave group is 

comprised of 29 individual wave components and they 

are subject to a spectrum within a wave period range 

(0.8 - 1.2s). 

The time history of the simulated wave elevation at 

focal point is compared with the experimental data as 

shown in Fig. 1 and the linear prediction is also 

included. A good agreement is achieved between the 

present numerical result and the experimental data, 

while the linear prediction is different from them. It is 

observed that the discrepancy is especially remarkable 

at the focused crest. This may be due to the contribution 

of nonlinear interaction between different wave 

components during the wave propagation. Fig. 2 shows 

the normalized power spectra derived from the data of 

the three time histories shown in Fig. 1. The normalized 

power spectrum of the present numerical result (black 

solid line) is very close to that of the experimental result 

(black dot line), though both of them significantly 

diverge from the spectrum derived from the linear 

prediction (gray dash line). There is a minor energy 

leakage towards the lower harmonics, while a large 

amount of energy is transferred to the higher harmonics. 

The significant redistribution of the wave energy is 

clearly identified and again confirms that the energy 

transferred into higher harmonics mainly results in the 

crest discrepancy shown in Fig. 1. This may suggest that 
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the nonlinear wave-wave interaction, which is one of 

the essential features in the realistic irregular wave field, 

is also incorporated in the present numerical wave 

model. 

 
Fig. 1. Comparisons of the time history of wave elevation at 

the focal point 

 

 
Fig. 2. Normalized power spectra derived from the time 

histories  

4. Twin-barge in irregular waves  

The circular tank model presented in Section 2.2 is 

employed to simulate wave-body interaction problems. 

The problem of gap resonance has attracted much 

attention recently due to unrealistic predictions of wave 

response from linear models. We consider a case of two 

side-by-side rectangular barges, which has been 

investigated in Molin et al. [7]. The configuration of the 

side-by-side barges at model scale is as follows: barge 

length is 2.47 m, width 0.6 m, draft 0.18 m and gap 

width 0.12 m. The water depth is set as 3 m (the same as 

in the tests), and the tank radius for the present 

simulations is either 5 m or four times the incident wave 

length, whichever is larger. The incident wave heading 

considered here is 90 degrees, i.e. beam sea. In the 

experiments in Molin et al. [7], the barges are fixed and 

subject to an irregular sea state with the 

Pierson-Moskowitz spectrum of a significant wave 

height Hs = 0.02 m and a peak period Tp = 1 s. In our 

simulations, we utilize the same PM spectrum, and 

consider only the beam sea situations. The frequency 

range is truncated to 3~20 rad/s which covers more than 

95% of the energy. The number of wave components is 

N = 480 which is large enough for the accurate 

reproduction of the targeted spectrum. With a small 

time step in the long time simulations, no numerical 

instability was encountered despite of inclusion of some 

short-period wave components. A typical time history 

of output surface elevation in the gap at midship is 

plotted in Fig. 3, which is normalized by the significant 

wave amplitude As (defined as half the significant wave 

height here). 

 

 

Fig. 3. Time history of elevation in the gap at midship with 

side-by-side barges in beam sea subject to a PM spectrum 

 

(a) (b)  

(c) (d)   

Fig. 4. Contours of free surface elevations near the barges 

subject to irregular waves at different time instants: (a) t =14.5 

s; (b) t = 15.7 s; (c) t = 20.4 s and (d) t = 24.4 s 

 

Fig. 5. Free surface RAOs in the gap at midship with barges in 

beam sea subjected to PM spectrum of Hs = 0.02 m and Tp = 1 

s 

  An overview of the free surface elevations near the 

barges at some time instants is shown in Fig. 4. 

Although the surface elevations along the wave 

propagating direction (unidirectional incident wave) are 
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mostly random, some peak regions can be clearly 

recognized within the gap at certain time instants, which 

indicates the possible trapping or resonant phenomenon. 

For instance, at t = 14.5 s in Fig. 4(a) we can observe 

three peak regions distributed along the narrow gap; and 

at t = 24.4 s the whole surface in the gap tends to be 

high except at the two openings. This figure implies that 

in random wave simulations wave in the gap may 

experience all the possible resonant modes at different 

time instants in one run if the numerical model is fine 

enough and the simulation runs for an enough long 

time. 

  A close investigation ought to be done by spectral 

analysis, in order to make a direct comparison against 

the experimental results in Molin et al. [7]. To obtain 

response RAOs, cross spectral analysis is utilized in 

processing the recorded time histories of the present 

simulations. However, with a single set of record of 

signals, the generated energy spectrum tends to be raw 

with large errors. To achieve a convergent results from 

the statistical point of view, we repeat the run for ten 

times and each run contains 200 s simulating time, with 

considering the computing resources. The resulting 

RAOs are predicted by averaging the results in these ten 

runs. One must bear in mind that in this process 

information within the small frequency interval of 1/200 

Hz might be missing according to the current adopted 

simulating time and sampling rate.  

  Fig. 5 shows the response RAOs of the surface 

elevation in the gap at midship with side-by-side barges 

in beam sea. It can be seen that our results demonstrate 

a similar character to that of the experiments, where 

several peaks are formed at certain frequencies. These 

peaks are corresponding to the associated wave 

resonances in the gap. The resonant frequencies are well 

captured at these peaks in Fig. 5, and the overall 

agreement of RAO values with the experiments is 

favorable except at the second and third peaks. Our 

simulation generates a higher value at the second peak, 

but a lower one at the third peak than the experiments. It 

is noticed that the present frequency range near 

resonances tend to be broader at higher modes, and the 

peak values are reduced at higher modes compared to 

that at lower ones, which seem reasonable. A fourth 

peak is also formed near the frequency 9.5 rad/s, 

however this mode is even broader and the peak value is 

much lower compared to the first mode. The simulation 

in irregular waves, as in the experiments, can 

successfully capture the possible resonant modes, the 

accuracy, anyhow, is limited by the fact that the 

responses are extracted from time recordings at 

corresponding positions through spectral analysis. This 

is sensitive in regard to obtaining precise RAOs with a 

small frequency interval (this is similar to that in the 

experiments, as commented by Molin et al. [7]). 

  As far as the nonlinearity concerns, we impose an 

irregular sea state of low significant wave height Hs = 

0.002 m as the incident wave. We repeat the case with 

the same parameters including the random phases of 

every wave components in the incident wave, except for 

the significant wave height. A comparison of wave 

elevation in the gap at midship is presented in Fig. 6 for 

these two spectra. Both elevations are normalized by 

significant wave amplitude AS. The difference between 

the elevations can be explained by the nonlinearities in 

the decomposition model, although the incident wave 

fields are represented by linear wave combinations. This 

suggests that the present decomposition model is able to 

capture nonlinear effects despite of adopting a simple 

irregular wave model as the incident wave. 

 

Fig.6. Comparison of wave elevation in the gap at midship for 

spectra of different significant wave heights 

5. Conclusions 

We demonstrate the accuracy of a nonlinear potential 

flow model by simulating focused waves. The 

nonlinearity in wave-wave interactions explains the 

discrepancy between linear prediction and experiments. 

Capability of a nonlinear decomposition model is 

illustrated by modelling the case of side-by-side barges 

subject to a realistic sea state. Nonlinearity associated 

with wave-body interactions is also identifies. 
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Highlights:

• Taking the appropriate limit of the solution of the Helmholtz equation in a wedge geometry
suggests a novel set of cross-channel expansion functions, used to model wave propagation in
a channel of non-uniform width, which depend on both the local channel width and the slope
of the channel walls.

• Numerical results for an extended multi-modal expansion incorporating these novel expansion
set will be presented at the Workshop.

1. Introduction

In 2005, Ehrenmark derived in [1] a new dispersion relation for linear surface gravity waves on
finite-depth fluid, extending the classical formula ω2/g = k tanh(kh), in which ω is the prescribed
angular wave frequency, h is the constant depth, k is the wavenumber and g is the acceleration due
to gravity, to the case in which the fluid bed is sloping linearly, with h′ ≡ constant = tanα, say,
for α small. He found that

ω2/g = k tanh((α cotα)kh), (1.1)

in which the combination α cotα → 1 in the limit as h′ → 0, so recovering the classical result as
the bed flattens out. This result comes from a two-term asymptotic expansion, for small α, of an
integral form of the standing wave solution on a plane beach, using the method of steepest descent.
In [1] this extended dispersion relation is then used within various forms of the mild-slope equation
(MSE) to derive numerical solutions which agree well with numerical solutions of the full linear
problem, even for relatively steep bed slopes.

Here we follow a similar procedure, but applied to the propagation of linear surface gravity waves
along a uniform-depth channel, bounded by vertical walls at y = ±h±(x), with x and y denoting
(horizontal) Cartesian coordinates, which vary with x. If the channel walls vary linearly with x
then the domain is wedge-shaped (analogous to Ehrenmark’s plane beach geometry); the solution
is easily found explicitly in terms of appropriate polar coordinates, with azimuthal dependence
proportional to cos[µn(θ − θ1)] for n ∈ N0, where µn = nπ/(θ2 − θ1) for particular θ1, θ2. The
appropriate limit of this solution recovers at leading order the uniform width solution, whose cross-
channel dependence is proportional to cos[αn(y + h−)] for n ∈ N0, where αn = nπ/w, in which
w(x) = h−(x) + h+(x) is the channel width. But if the full unapproximated expression for µn is
retained, the cross-channel eigenvalue αn is replaced by

ᾱn = αn

(
w′
/

tan−1

(
w′

1− h′−h′+

))
.
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This suggests that a multi-modal approximation in which the solution is expanded in terms of
cos[ᾱn(y + h−)] may yield accurate results, in the same way as the MSE incorporating (1.1) per-
forms well, and this we investigate here.

2. Statement of problem

We consider the propagation of linear surface gravity waves in a channel of uniform depth h. Carte-
sian coordinates (x, y, z) are used, z being measured vertically upwards from the undisturbed free-
surface. The channel occupies the region −h−(x) < y < h+(x), for given continuous functions
h±(x), so that we require the solution φ(x, y) of the boundary-value problem

{
φxx + φyy + k2φ = 0 (−h−(x) < y < h+(x))
φy ∓ h′±φx = 0 (y = ±h±(x))

(2.2)

together with appropriate radiation conditions. The wavenumber k is the positive root of the dis-
persion relation ω2 = gk tanh(kh), in which ω > 0 is the prescribed angular wave frequency
(harmonic time-dependence proportional to e−iωt is implicit throughout) and g is the acceleration
due to gravity.

2.1 Multi-modal expansion

In regions of constant width, the solution of (2.2) can be written as

φ(x, y) =

∞∑

n=0

(A+
n e

iγnx +A−n e
−iγnx)φ(n)(h±, y), φ(n)(h±, y) = cos[αn(y + h−)], (2.3)

where A±n are constants, w = h+ + h− is the channel width, αn = nπ/w, and

γn =

{ √
k2 − α2

n if k ≥ αn,
i
√
α2
n − k2 if k < αn,

but in regions where the channel width varies with x a multi-mode expansion of some sort is com-
monly used to approximate the solution (see [2] for a sophisticated example). The simplest multi-
mode expansion assumes that the local modal structure can be approximated by that of a uniform
width channel of the same (local) width, so that we write

φ ≈ φ̄ =
M∑

n=0

vn(x)φ(n)(h±(x), y) (2.4)

for some prescribed M ∈ N0, and where now h± = h±(x). Because this approximation cannot
hope to exactly satisfy (2.2) we instead require that

∫ h+

−h−

(
φ̄xx + φ̄yy + k2φ̄

)
φ(m)(h±(x), y) dy = 0, (m = 0, 1, . . . ,M).

This yields a system of differential equations of the form

A(x)v′′(x) + 2B(x)v′(x) + C(x)v(x) = 0,

in which v = (v0, . . . , vM )T , and A, B and C are known matrix-valued functions whose entries are
integrals of combinations of the φ(m) and their derivatives.
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2.1.1 Solutions in the wedge geometry, and its limiting form

As an extension of the standard multi-mode expansion, we seek to approximate the local modal
structure by that of the solution for a linearly widening or narrowing channel, i.e. for a wedge.

Consider the channel close to the point x = x0. For x near x0, we have h±(x) ≈ h±(x0) +
h′±(x0)(x−x0), and provided w′(x0) 6= 0 the two straight lines y = ±[h±(x0) +h′±(x0)(x−x0)]
meet at (x, y) = (x̄, ȳ) where

x̄ = x0 −
w(x0)

w′(x0)
, ȳ =

h+(x0)h′−(x0)− h′+(x0)h−(x0)

w′(x0)
.

If the channel is locally widening (narrowing) with increasing x then x̄ < x0 (x̄ > x0). These
straight lines form the boundaries of our wedge-shaped domain, and (x̄, ȳ) is its apex. In terms of
polar coordinates (r, θ) defined by r2 = (x− x̄)2 + (y− ȳ)2, tan θ = (y− ȳ)/(x− x̄), the solution
of the Helmholtz equation in the domain {(r, θ) : r > 0, θ1 < θ < θ2} subject to homogeneous
Neumann conditions on θ = θ1, θ2 for r > 0 can be written as

φ =
∞∑

n=0

[AnJµn(kr) + Yµn(kr)] cos[µn(θ − θ1)], µn = nπ/(θ2 − θ1), (2.5)

where Jµn and Yµn denote Bessel functions of order µn and first and second kind, respectively.
Here the boundaries of the wedge are

θ1 = tan−1

(−h−(x0)− ȳ
x0 − x̄

)
, θ2 = tan−1

(
h+(x0)− ȳ
x0 − x̄

)
,

and we’ve assumed that the channel is locally widening, so that x̄ < x0; a similar expression results
if the channel is locally narrowing.

In the limit as the channel walls straighten out, we recover from (2.5) the uniform width solution
(2.3). To see this, write h′±(x0) = εh̄′±(x0) and w′(x0) = εw̄′(x0), in which 0 < ε � 1 and
h̄′±(x0), w̄′(x0) = O(1), and consider the limit ε→ 0. Then

r =
[
(x− x̄)2 + (y − ȳ)2

]1/2
=

w

εw̄′
+ (x− x0) +O(ε)

and µn = nπ/εw̄′ +O(ε), in which w, w̄′ etc. are all evaluated at x = x0, so that

Jµn(kr) ∼ Jnπ/εw̄′
(
nπ

εw̄′
× k

nπ
[w + εw̄′(x− x0)]

)
,

and similarly for Yµn(kr). If kw/nπ < 1 then use of Debye’s asymptotics for Bessel functions of
large argument and order (e.g. [3, Eq. (9.3.2)]) shows that

Jµn(kr) ∼ constant× exp(x
√
α2
n − k2),

which agrees with the form of the modes (2.3) which grow as x increases. A similar calculation for
Yµn(kr) recovers the modes which decay with increasing x. (If n = 0, the standard expansions of
J0 and Y0 for large argument yields the analogous results.) If instead kw/nπ > 1 then use of [3,
Eq. (9.3.3)] gives

Jµn(kr) ∼ constant× cos[(x− x0)
√
k2 − α2

n]

and
Yµn(kr) ∼ constant× sin[(x− x0)

√
k2 − α2

n]
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as ε → 0, which can be combined to give the form of the propagating modes from (2.3). (For
simplicity we suppose here that k doesn’t coincide with a cut-off frequency αn.)

More interesting for our purposes is the behaviour of the azimuthal terms in (2.5) in the limit ε→ 0.
With a bit of rearranging, we have

µn = nπ

/
tan−1

(
εw̄′

1− ε2h̄′−h̄′+

)
(2.6)

=
nπ

εw̄′
+O(ε), (2.7)

so that, when combining (2.7) with the behaviour

θ − θ1 =
εw̄′

w
(y + h−) +O(ε2)

we see that
cos[µn(θ − θ1)] ∼ cos[nπ(y + h−)/w]

as ε → 0, which agrees with the form of φ(n) in (2.3). However, retaining the full expression (2.6)
yields the approximate cross-channel structure

cos[µn(θ − θ1)] ≈ cos[ᾱn(y + h−)], (2.8)

where

ᾱn = αn

(
εw̄′
/

tan−1

(
εw̄′

1− ε2h̄′−h̄′+

))

≡ αn

(
w′
/

tan−1

(
w′

1− h′−h′+

))
. (2.9)

In (2.9), αn is recovered if the width w is unchanging with x.

2.1.2 An extended multi-modal expansion

Given (2.9), we propose an extended multi-modal expansion

φ ≈ φ̄ =

M∑

n=0

vn(x)φ̄(n)(h±(x), h′±(x), y), φ̄(n)(h±, h′±, y) = cos[ᾱn(y + h−)]. (2.10)

Numerical results using this expansion will presented at the Workshop.
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This abstract presents an analysis of an attenuator-type Wave Energy Converter (WEC) with 40 Os-
cillating Water Column (OWC) chambers for the extraction of wave energy. Linearized potential flow
calculations are made in the frequency-domain using WAMIT [8]. An equivalent linearized damping
coefficient to represent the air turbine Power Take Off (PTO) system is found for each condition by
iterating to find the consistent response-damping pair for a given frequency and incident wave ampli-
tude. The absorbed power is estimated based on the pressure in each chamber and the PTO damping
coefficient. The calculations are compared to model-scale measurements in a slack-moored condition,
and generally good agreement is found. Work is in progress to move the solution to the time-domain
and include a more sophisticated PTO model which includes nonlinear and air compressability effects
in the turbine.

1 Theory

Evans [2], extended first-order, radiation-diffraction theory to include the response of one or more
partially enclosed OWC chambers, together with the usual rigid-body motions. This theory was
also discussed by Lee et al [3, 4] and it is implemented in WAMIT as Free-Surface Pressure (FSP)
modes. The applied pressure on the water surface in each internal chamber is expressed in a modal
decomposition of the form

p0(x, y) = −ρg

6+Mp∑

j=7

ξj nj(x, y) (1)

where nj gives the spatial form of mode j and Mp is the total number of modes, with ρ the fluid density
and g is the gravitational acceleration constant. Here we will only consider one piston-type mode for
each OWC chamber, as this is the only mode that contributes to the flux through the turbine, thus Mp

is the total number of chambers and nj = 1 on chamber surface j. For the FSP modes, the boundary
condition on the internal free surface becomes

∂zφ − ω2

g
φ = − iω

ρg
p0 = iω

6+Mp∑

j=7

ξjnj, on z = 0 (2)

and ξj thus represents the pressure head response to a unit amplitude applied pressure on internal
free-surface j, with ω the radian frequency of oscillation and φ the total velocity potential. This leads
to an equation of motion of the same form as the rigid-body modes so that the complete system can
be written in the standard non-dimensional form as

6+Mp∑

k=1

[
−ω̄2

(
M̄jk + Ājk − i B̄jk

)
− 1

iω̄
B̄0

jk + c̄jk

]
ξ̄k = X̄j , j = 1, 2, . . . , 6 + Mp (3)

with Mjk, Ajk, Bjk, cjk,Xj the inertia, added mass, damping, hydrostatic restoring and incident wave
exciting force coefficients respectively. All quantities are made non-dimensional with respect to a
length scale L, ρ, g, and the incident wave amplitude A; more details can be found in the WAMIT
user manual [8]. The air turbine PTO damping coefficient matrix B0

jk is diagonal, and only non-zero
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Figure 1: Left: Photo of the scale model ready for testing. A removable bow section is fitted in this
picture, but results are presented here only without the bow. Right: The high-order geometry used
for the WAMIT calculations. Bright green patches indicate the FSP surfaces.

for the FSP modes with j > 6, while all inertia terms associated with the FSP modes are zero. The
new terms in the equation are given by

B̄0
jj =

ρ
√

gL

L2
Bj0, qj = −ρg Bj0 ξj , cjj = −Sj0

L2
(4)

where a linear relation has been assumed between the volume flux qj through chamber j and the
pressure in that chamber, and Sj0 is the area of internal free-surface j. Since the structure itself must
create the excess pressure in each chamber, there is hydrostatic coupling between the FSP modes and
the heave, roll and pitch modes which must also be included in c̄jk. The total efficiency of the device
can be written as a capture width ratio

W =
W

Wmax
=

6+Mp∑

j=7

B̄j0 ξ̄∗
j ξ̄j

c̄g

L

Lc
(5)

where c̄g = cg/
√

gL, with cg the wave group velocity, and Lc the length-along-the-wave-crest chosen
for normalization. More complete details of this formulation can be found in [1] along with a more
complete presentation and discussion of the results shown here.

2 Results

Figure 1 shows a picture of the scale model and the patch boundaries of the high-order geometry
used for the WAMIT calculations. This geometry was produced using the MultiSurf surface modeling
software [7]. The FSP internal chamber surfaces are indicated by the bright green patches of the
numerical model. The model was tested with and without the removable bow section shown in the
picture, but here we consider only the data without the bow section. This design is a variant of the
I-beam attenuator [6] which was inspired by the Kaimei concept developed in the late 1970s by Masuda
and his colleagues in Japan [5]. The target installation area of the device is the Danish North Sea, so
the full-scale chambers measure 6 by 5 by 7.5 m in the x, y and z directions respectively, which gives
a resonant period of 5.9s. The total device length is L = 150m. The model is at scale 1:50 and was
tested at the Hydraulic and Maritime Research Center (HMRC) at University College Cork, Ireland
in 2013 [9, 10]. The air turbine PTO system was model led by an orifice in each chamber lid of 1.3%
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Figure 2: The equivalent linearized damping coefficient (left) and the pressure response (right) in the
bow Chamber for the freely floating model.

of the chamber surface area. This is a good model of an impulse turbine, and produces a quadratic
relation between the flux and the pressure in the chamber so that q2 = B1|p|. To find the equivalent
linear damping coefficient Bj0, we equate the power loss over one cycle of the two relations which gives

Bj0 =

√
3π

8ρg|ξj |
B1. (6)

The quadratic damping coefficient B1 is a constant and has been accurately determined from a simple
experiment. Since the equivalent linear damping coefficient is a function of the response amplitude
however, we must iterate the solution of (3) and (6) for each incident wave frequency and amplitude.
The initial guess is taken to be ξj/A = 0.5, and the solution generally converges to single precision
accuracy in about 10 iterations or less.

The model has been tested at a series of mono-chromatic incident wave conditions corresponding
to wave steepness values of H/λ = 0.025, 0.04 and 0.06, where H = 2A is the wave height and λ
is the wave length. The device is slack-moored and free to feather with the incoming waves so that
they are always incident from ahead. Symmetry about the y = 0 plane is invoked, and the pressure
is measured in all chambers along the starboard side of the vessel. The results for the equivalent
linear damping coefficients and the pressure in chamber #1 at the bow of the model are shown
in Figure 2. We have also computed a numerically optimized linear damping coefficient using the
Matlab constrained optimization routine fmincon. In all cases, we have constrained the response to
ensure that the chamber surface elevation does not exceed 2.5m which is the distance from the mean
water level to the submerged chamber opening. The optimized values are also shown in the figure,
along with the corresponding experimental measurements. Similar behavior is found for the other
chambers. Figure 3 shows the predicted total absorbed power as a capture width ratio with respect to
the length L = 150m, and also in MW for the full-scale device. The measured and computed chamber
pressures and the total mean power absorption are in reasonably good agreement, though somewhat
over-predicted near the resonant period and under-predicted in long waves.

We are now working on moving the numerical solution to the time-domain so that a more accurate
model of the air turbine PTO system can be included in the calculations. Experimental results are also
available in irregular wave conditions, and these will be compared with. Structural loading calculations
are also in progress, in order to estimate the construction costs so that a cost of energy prediction
can be made. One major advantage for OWC-type devices is the relative simplicity of the structure,
with no moving parts in the water, which should allow for relatively inexpensive building materials
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Figure 3: Left: The capture width ratio of the moored 40 chamber model with respect to L = 150m.
Right: The corresponding full-scale power absorption in mega Watts.

and opportunities for mass production.
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Highlights

We investigate experimentally ǫ-near-zero (ENZ) analogue for water waves in nonlinear regime
by tuning bathymetry of the system. We obtain uniform phase at the edge of a semi circular
lens, resulting in expected lensing effect. Two-dimensional time space measurements of the surface
elevation allow us to separate the linear component and harmonics generated due to nonlinearities.
The origin of the harmonics is analyzed in the frame of the competition between free-waves and
bound-waves. The results show dominance of free-waves. Surprisingly, we observe a cascade of sub
wavelength focal spots with respect to the first harmonic.

1 Introduction

One of the group of newly-designed metamaterials is the so-called ǫ-near-zero materials. In the
context of electromagnetic wave, medium filled with such material can be characterized by a very
large wavelength. This property makes tailoring phase pattern feasible. Using a semi circular shape
at the output of ENZ material, one can obtain extremely well focused wave at the center of such
lens. Two-dimensional electromagnetic wave in transverse magnetic polarization can be described
by the following equation:

∇
(

1

ǫ
∇H

)
+

ω2

c2
0

H = 0. (1)

with H the magnetic field, ω is the frequency, c0 is the light speed in vacuum and ǫ is the permit-
tivity. As ǫ approaches zero value, refractive index tends to vanish. This allows to achieve constant
phase throughout the medium.

In the context of water waves, the ENZ analogy can be analyzed by first considering shallow
water approximation:

∇ (h∇η) +
ω2

g
η = 0 (2)
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Figure 1: Experimental setup. Position of the lens is marked with white dashed line.

where h denotes the water depth at rest and g stands for the gravitational acceleration. In this
regime, wavenumber is given as kSW = ω/

√
gh. By comparing Eqs.(1) and (2), one obtains corre-

spondence of permittivity for water waves, i.e. 1/ǫ ↔ h, indicating that the ENZ can be realized in
water waves system for h−1-near-zero. By increasing depth, we end up with deep water approxima-
tion for which wavenumber is given as kDW = ω2/g. Therefore, the efficiency of the h−1-near-zero
is given through refractive index defined as n = kSW/kDW =

√
g/ω2h.

2 Experimental arrangements

Our system consists of a lens inside a waveguide. The lens is a semi circular edge of diameter
d = 20cm. The width of the waveguide is adjusted to the size of the lens. The lens is a boundary
between two regions with different depths. Depth in a shallow water part (behind the lens) is set
to hSW = 7 mm, while in a deep water region it is 67 mm. Waves are generated by a paddle wave
maker working within a frequency range ω ∈ [6.28; 13.19] s−1, which is shown together with the
experimental setup in Fig. 1. We perform time space resolved measurements of the surface elevation
using Fourier Transform Profilometry method adapted by our team for water wave measurements
[2, 3]. We project fringes by means of a high-resolution projector (1920 × 1080pix2). Images are
recorded using 4MPix camera with sampling frequency 15Hz. The area of interest is 0.4 × 0.2 m2

large and covers deep and shallow water regions.

3 Results and analysis

As expected, in the deep water region wave has a almost constant phase and focuses in shallow
water region. As shallow water waves are easily nonlinear, we give the measure of nonlinearity by
Ursell number, which in our case is typically of order Ur = 378. Hence, we investigate strongly
nonlinear case. Temporal spectrum, determined at the center of the lens, indicates the magnitude
of second harmonic which is 30% of the fundamental component, while higher-order terms remain
significant.

Temporal decomposition of the obtained surface elevation fields allows us to separate the influ-
ence of each of harmonics. We suppose that surface elevation η can be expressed as:
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Figure 2: Measured dispersion relation in: a) shallow-water region and b) deep-water region. Solid
lines correspond to linear dispersion relation in both regions.

η(x, y, t) =

N∑

n=0

η̂n(x, y) exp (inωt) (3)

where η̂n(x, y) denote complex field corresponding to the n-th harmonic of the fundamental pulsa-
tion ω. We extract η̂n using Fast Fourier Transform.

To describe nature of the harmonics we consider two different types of waves related to nonlinear
regime, i.e. bound-waves and free-waves. We can discriminate them because of the difference in
dispersion relation. Wavenumber related to free-waves can be described as k = D(nω), whereas
bound-waves indicate relation k = nD(nω). To determine dispersion relation in our experiments
we first consider inhomogeneous Helmholtz equation. Neglecting source terms [1], appearing due
to nonlinearities, yields the homogeneous problem corresponding to free-waves:

(
∆ + k2

n

)
η̂n (x, y) = 0 (4)

where kn is linked to nω through the linear dispersion relation. To calculate wavenumber kn from a
given complex pattern η̂n(x, y), the norm function ||

(
∆ + k2

n

)
η̂n|| is minimized in the complex plane

kn [4]. We determine wavenumbers in the far-field of deep and shallow-water regions separately. By
applying described procedure we obtain k for the first and higher harmonics. Measured dispersion
relation for all of the components is presented in Fig. 2a),b). In shallow-water part results are in
agreement with linear dispersion relation. This confirms that harmonics are dominated by free-
waves rather than bound-waves.

Having the nature of harmonics described, we are interested in the quality of the obtained
focusing, which is presented in Fig. 3. We show the total field, defined as I(x, y) = max

t∈[0,T ]
η2(x, y, t),

and the intensity fields In (x, y) = |η̂n (x, y) |2 (normalized by the maximum intensity value of each
term max In) corresponding to first four harmonics. Surprisingly, each successive n−th harmonic is
characterized by more and more focused spot. Shape of the focal spot differs among harmonics. The
lateral size of the focal spot is decreasing for higher-order terms, meanwhile the horizontal extension
remains almost constant. We determine the efficiency of the lens by the following quantities: (i)
axial and lateral extension of the focal spot Lx and Ly, (ii) axial position of the maximum intensity
X, and (iii) contrast of the focal spot Amax/A. The results indicate that Lx/λSW, with λSW being
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Figure 3: Normalized intensity of the wave field (I/Imax) for ω1 = 9.86 s−1 and ω2 = 12.39 s−1.
White dashed line marks the position of the lens. Scale bar in the left top figure corresponds to
0.1 m.

wavelength in shallow water region, varies slowly with the pulsation, while Ly/λSW follows expected
scaling law λ/2.

4 Conclusions

Characteristic property of the ENZ metamaterials is their incredibly high value of phase velocity,
resulting in almost constant phase through a medium. Theoretically, this should allow to perfectly
focus waves at a single point. Due to intrinsic properties of water waves one has to face constraints,
which do not allow to obtain similar phase velocities. The limitation is governed by the deep-water
approximation. Nevertheless, our experiments illustrate that thanks to ENZ analogy it is possible
to focus water waves efficiently. With large amplitude of an incident wave we obtained surprising
cascade of highly focused nonlinear components.
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Oil spill caused by maritime accidents can damage valuable ecosystems and have a huge economic impact on fishing and
tourism industries. In order to minimize the damage it is important to predict the trajectory of the spilt oil slick and use
an effective clean-up strategy. Oil booms represent a valid solution, but their performance has a limitation in sufficiently
strong currents and high sea waves. This motivated research efforts in the development of suitable prediction tools useful
for the design and for setting the operative limits of these devices. Experiments are instead more difficult to perform.
However some relevant studies have been documented along the years, most of them in 2D conditions, with fixed boom
and in steady current. For example, Delvigne (1989) studied a scaled boom interacting with different types of oil and
identified the failure mechanisms involved. A comprehensive documentation of full- and model-scale tests in 2D and 3D
conditions is provided e.g. by Grilli et al. (2000).

Here a physical investigation is ongoing based on dedicated model tests to be used for gaining further insights on the
phenomena involved and as reference data for numerical-tools development. The experimental set-up and some of the
results of the analysis are discussed in the following.

Experimental set-up The model tests were performed inside a tank with internal length, height and width, respectively,
L = 3 m, H = 0.6 m and w = 0.1 m, at the CNR-INSEAN Sloshing Lab. The experimental set-up is shown in the left of
figure 1 and was designed for 2D flow conditions in the tank. However clear 3D features were recorded when instabilities
and boom failures occurred. The tank is made of perspex sheets, 1.5 cm thick, and is fixed at the edges to an aluminum

Figure 1: Left: tank mounted on the 6-DOF MISTRAL Hexapode excitation mechanism. Right: boom model and pressure
sensors.

frame for structural strengthening. Vertical reinforcements along the front and rear walls were not used in order to have
an optimal view of the flow. The boom, in scale 1:6, is shown in the right of the figure. It is realized in rigid expanded
polyurethane but geometrically reproducing the different parts of a real boom with an outer floater radius rout = 4 cm, a
draft D = 11cm and a skirt height hskirt = 8 cm. It was equipped with seven pressure sensors with sampling frequency
10kHz: two transversally on the edge of the skirt and the others along the centerline of the cylinder, three on the oil side
and two on the water side. The tank was filled of water up to 45 cm (Hw = 0.75H), so to ensure a ratioHw/D sufficiently
large, and therefore limited bottom effects on the phenomena, and to avoid liquid leakage from the tank (tested without
roof). This arrangement was mounted on a 6-DOF motion simulator which prescribes a sway motion with steady-state
amplitude of 0.15 m and frequency 0.2 Hz, after a ramp lasting for the first three periods. An accelerometer was used to
check the quality of the enforced motion (see left plot of figure 2). These motion parameters were selected in order to
realize a slowly-varying current with horizontal speeds of the liquid around 0.2 m/s, which is in the range for boom failure
for the chosen geometry and scale (Delvigne 1989). The model was located in the central tank section, where the highest
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liquid velocities inside the tank are obtained and failure can occur more easily. In order to reproduce a behavior similar to
that of an operative boom, the model is left free in heave by two vertical fishing lines that act as a rail. In particular, each
one is fixed at the tank bottom by a spring, it is anchored to a metal plate above the tank and passes through a pipe in the
boom. This setting allows also a limited motion in sway and a partial rotation of the boom, mainly due to the deformation
of the springs.

A prescribed amount of vegetable oil is released on the right side of the tank relative to the boom and, before starting
a test, it is waited until the emulsion has disappeared and calm conditions are achieved. After each test with boom failure,
the oil passed on the left side of the tank is collected and brought back to the right side. The oil stuck to the tank wall
is removed with a piece of cloth but is then lost, leading to a variation in the oil volume which is however very limited.
The oil is a soybean oil with density ρo = 919kg/m3 and kinematic viscosity νo = 56 · 10−6m2/s, chosen because of
its non toxicity and its properties close to those of a more realistic Bunker B (BB) oil for which entrainment-boom failure
typically occurs. One must note that the given density and viscosity refer to nominal values, a more precise evaluation
would require a direct measurement of the oil properties. To prevent the oil from passing between the model and the tank
walls a felt strip has been attached to the boom sides. Moreover, a thin layer of insulating acetoxy silicone was spread on
it to avoid oil absorption.

Video recordings of the experiments were done using two low-speed cameras (with 25 fps) to provide a global view
of the test and two high-speed cameras (with 100 fps) to give a detailed view of the flow nearby the boom. The two
low-speed cameras have a view overlapping so to allow the reconstruction of the overall tank view by image analysis.
Similarly it is done for the two others for a wider view around the boom. Using the images from the enlarged views and
glass particles with 1µ diameter as seeding, the liquid velocities were measured with the Particle Tracking Velocimetry
(PTV) technique (Miozzi 2004). A dedicated light system was used to properly illuminate the particles. An example of
predicted water velocities is given in the right of figure 2 showing a vortical structure shed from the boom bottom.

Figure 2: Right: prescribed sway motion (blue line) and measured acceleration (red line) of the tank. Left: enlarged view
of the tank with the boom and the local velocities estimated with the PTV technique.

Preliminary standard sloshing tests, i.e. without boom and oil, were performed to characterize the flow and verify if
velocities in the range of expected critical speed for the failure could be achieved in the central section of the tank. Then
five different volumes of oil (V0) were examined: 0.5, 0.7, 0.8, 0.9 and 1l. In each case the oil was set on the right of the
boom and tests until steady-state conditions were performed. The general features of the phenomena are discussed next
in terms of the oil case with V0 = 1l.

General features The occurrence of boom failure is a possible consequence of an instability developing under certain
conditions at the water-oil interface. The latter seems to be associated with the formation of a headwave (sloped interface
leading to and including a thicker oil slick) when there is a combination of sufficiently large slope, thick slick and high
local oil-water relative velocity. From a preliminary analysis of the present experimental data, the instability could be
affected by the vortex shedding from the boom toward the oil side (see right panel of figure 2). Indeed the vortical
structure seems to induce a minimum in the oil slick thickness in the first part of each motion period (e.g. from time
instant A to about time instant D for the fifth period shown in the left plot of figure 2) contributing in the formation of
a headwave close to the boom. However, when the instabilities originate at the oil-water interface the vortex is almost
destroyed and can only affect the local inflow velocity in the later evolution. Let us consider a generic period with
instability occurrence for V0 = 1l, e.g. the fifth period of the tank motion with labelled time instants in the left plot of
figure 2. From A to B the oil headwave moves far from the boom. This process continues until D, when the tank position
has reached its maximum. At this stage, a thickened area in the oil slick starts to form. After that the oil is pushed towards
the boom and instabilities appear at the water-oil interface, in the form of growing waves traveling toward the boom. They
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appear both in the mid section of the tank and along the front wall, with clear 3D features. This behavior is qualitatively
similar for each period with instability. What happens later depends on the strength of the instability and on the kinematic
flow conditions in the specific case. For the amount of oil here considered, the instability occurs the first time at the fourth
period (see left plot of figure 3) but it is weak and disappears without consequences. At the fifth period it is able to lead

Figure 3: From left to right: enlarged views with instability of water-oil interface during the fourth, fifth and six period
of the tank oscillation for the case with V0 = 1l. These instants are near the time G in the corresponding period (see left
plot of figure 2 for G definition) and show the maximum amplitude of the instability for the fourth and fifth periods and
the onset of boom failure for the sixth period.

to interface breaking with spilling of oil drops into water, but not to a boom failure (see centre plot of figure 3). The latter
occurs at the sixth period because of a sufficiently high local speed (see right plot of figure 3) and is an entrainment failure
with filaments and droplets of oil detaching from the oil slick and passing beneath the boom. For all three periods the
instability starts between the corresponding time instants E and F, soon after the tank has started to move from the oil side
toward the boom. The sixth period is in steady-state conditions for the tank motion (see left plot of figure 2), however
also in the following periods the flow features close to the boom do not repeat periodically because part of the oil moves
to the left side of the tank reducing the amount on the right. Similar conditions occur with the other amounts of oil.

The used experimental set-up allows only a rough estimate of the wavelengths, speed and growth rate of the insta-
bilities. A closer view to these parameters would help in clarifying the nature of the instabilities. From our preliminary
investigations they could start as Holmboe waves which become steep in time and may transform in Kelvin-Helmotz
instabilities if they are energetic enough. The latter seems to be the responsible for interface breaking with oil drops
spilling in water and possible boom failure. The confirmation of this needs a new dedicated experimental study. Available
theoretical instability analyses, performed in this context, consider a steady inflow. Interesting works are, for instance,
Leibovich (1976) and Smyth and Peltier (1989). The former examines the Kelvin-Helmotz instability at the interfaces of
three fluids (water, air and oil) and confirms, among others things, a greater instability for thicker oil. The latter examines
possible transition between Kelvin-Helmotz and Holmboe instabilities.

Oil leakage during boom failure When boom failure occurs oil is spelt downstream the boom, i.e. at its left side. The
amount of this oil is an important parameter when dealing with real booms and their performances in waves and current.
In this perspective, the present study is relevant in the case of slowly-varying currents or long waves since the flow inside

Figure 4: Left: snapshot from the image analysis used to estimate the average speeds and the cross-sectional circular
areas of the oil along the selected vertical tank section. Right: time evolution of the total intersection area of the oil (Aoil,
dashed line) and of the oil flux (Qoil, solid line) for the case with V0 = 1l.
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the tank is periodic with a long period. The volume of leaked oil is measured as time integral of the oil flux across a
convenient vertical section of the tank near the mean position of the boom (see left plot of figure 4). At this stage the
flow has clear 3D features. Therefore as a first approximation, for each oil droplet or filament passing the section, the
corresponding intersection segment is assumed as the diameter of a corresponding circular oil cross-section. Left plot of
figure 4 provides a snapshot exemplifying the performed analysis. The luminosity (red line) and its gradient (blue line)
along the vertical tank section are used to identify and estimate the areas of the circular oil cross-sections. The PTV
technique provides the horizontal speed (black line) along the section from which the averaged oil speed (indicated by
a green cross) is evaluated for any intersection area. Using the averaged oil speeds and the cross-sectional areas, the oil
flux (Qoil) can be estimated in time. An example is provided in the right plot of figure 4 for the case with V0 = 1l (during
the sixth period of tank motion), together with the evolution of the total intersection area of the oil (Aoil). These curves
are obtained by smoothing the original data with a moving average filter that substitutes the instantaneous estimate of the
variable with the average among the twenty estimates closest in time. This is done so to minimize the influence of errors
associated with the identification process of the oil crossing the vertical section. From the results, both quantities (Aoil and
Qoil) change quickly in time because of the instability and breaking phenomena of the water-oil interface, leading to rapid
passage of the oil below the boom. The boom failure starts around the time instant G of the examined period and lasts
for this case about 0.24T , with T the tank oscillation period. Reducing the initial volume V0 leads to a delay in the boom
failure and shortens the event duration. For example, with V0 = 0.9l the phenomenon lasts 30% less than with V0 = 1l.

The time integration of the oil flux leads to the volume of oil leaked into the left side of the boom (Vl). Table 1
provides this quantity for all V0 examined and shows a nonlinear behavior, with increasing slope toward largest V0 and
highest value of about 4% of V0 for V0 = 1l.

Table 1: Volume of leaked oil, Vl, for the different volumes of released oil, V0.

V0(ml) 1000 900 800 700 500
Vl(ml) 36.8 9.9 2.5 0.4 0

(Vl/V0) ∗ 100 3.68 1.1 0.31 0.06 0

The physical investigation is still ongoing. From what discussed also above, some aspects highlighted the need for
additional model tests. In particular, clearer views of the water-oil interface would help for a better understanding of the
instability nature. It is also important to fully assess the relevance of the vortex shedding by reducing it through proper
shaping of the boom and to investigate the instability occurrence in absence of the body. So a second-step experiment has
been planned and the results from both activities will be documented at the Workshop.

This research activity is partially funded by the Research Council of Norway through the Centres of Excellence funding
scheme AMOS, project number 223254, and partially by the Flagship Project RITMARE - The Italian Research for the
Sea - coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University
and Research within the National Research Program 2011-2013.
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LAGRANGIAN NUMERICAL WAVE-CURRENT FLUME

E.Buldakov, D. Stagonas, R. Simons

Department of Civil Engineering, UCL, Gower Street, LONDON, WC1E 6BT, UK

SUMMARY

Lagrangian formulation for surface waves with vorticity is used to create a numerical wave-current flume.
The numerical flume is then used to reproduce a physical experiment on focused wave groups in sheared
currents. The numerical results include evolution of the free surface of focused wave groups in still water and
over in-line and opposing currents and flow kinematics under such waves. Numerical results are compared
with experiment and demonstrate good agreement.

1 INTRODUCTION

The natural way of modelling strong deformations of a fluid domain is using equations of fluid motion in the
Lagrangian form which is solved in a fixed domain of Lagrangian labels. Lagrangian models are capable of
efficient modelling of very steep and overturning waves. Advantages of the Lagrangian approach for numer-
ical modelling of steep waves were demonstrated in Buldakov (2013b), Buldakov (2013a) were a simple fully
Lagrangian numerical model was developed and applied for various wave problems.

Another advantage of the Lagrangian formulation is very simple representation of vortical flows. The vorticity
in Lagrangian coordinates is constant in time and is specified by initial velocity conditions. This paper exploits
this advantage of the Lagrangian formulation. We generalise the previously developed numerical method for
free-surface flows with arbitrary sheared currents. Certain practical problems of numerical implementation of the
method, such as excessive deformation of physical computational domain, are addressed and successfully solved.
The method is then used to create a numerical wave-current flume. The numerical flume is used to reproduce
physical experiments on evolution of wave groups over currents. An iterative methodology of generating focused
wave groups on currents (Stagonas et al., 2014) is used for both physical and numerical experiments. The results
for surface elevation and wave kinematics are obtained and good comparison is achieved between numerical and
experimental results.

2 LAGRANGIAN 2D WATER-WAVE FORMULATION WITH VORTICITY

A general Lagrangian formulation for two-dimensional flow of inviscid fluid with a free surface can be found
in Buldakov et al. (2006). We consider time evolution of Cartesian coordinates of fluid particles x(a, c, t) and
z(a, c, t) as functions of Lagrangian labels (a, c). The formulation includes the Lagrangian continuity equation
and the Lagrangian form of vorticity conservation

∂(x, z)

∂(a, c)
= J(a, c) ;

∂(xt, x)

∂(a, c)
+
∂(zt, z)

∂(a, c)
= Ω(a, c) , (1)

and the dynamic free-surface condition
xttxa + zttza + g za

∣∣
c=0

= 0 . (2)

Functions J(a, c) and Ω(a, c) are given functions of Lagrangian coordinates. J(a, c) is defined by initial positions
of fluid particles associated with labels (a, c). We select (a, c) = (x0, z0), which gives J = 1. Ω(a, c) is the
vorticity distribution and is defined by the velocity field at t = 0. A sheared current can be defined by specifying
vorticity depending only on the vertical Lagrangian coordinate c. For our choice of Lagrangian labels the parallel
current can be specified as x = a+ V (c)t; z = c, where V (c) = V (z0) is the current profile. Substitution to the
second equation of (1) gives

Ω(a, c) = Ω(c) = V ′(c) . (3)

Therefore, waves on a sheared current with an undisturbed profile V (z0) are described by equations (1) with the
free surface boundary condition (2) and the vorticity distribution given by (3). A particular problem within a
general formulation is defined by initial conditions and boundary conditions on the bottom and side boundaries.

3 LAGRANGIAN NUMERICAL WAVE-CURRENT FLUME

The problem formulated in the previous section is solved numerically using a finite-difference technique. Detailed
description of the numerical method can be found in Buldakov (2013a) and Buldakov (2013b). The numerical
method for the formulation with vorticity is mostly identical to the irrotational formulation. Here we only
mention differences relevant to the formulation with a sheared current used for construction of a numerical
wave-current flume. In the numerical formulation we do not use vorticity distribution directly. We differentiate
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Figure 1: Left: thick dashed – target amplitude spectrum; thin solid – linearised amplitude spectra for all
computational and experimental cases at the focus point (x = 0). Right: phase spectra at the focus point
(x = 0) and at positions x = ±0.7h = ±0.108λ. Thin – experimental, thick – computational. Solid – no current,
dotted – in-line current, dashed – opposing current (computational only). Frequency is scaled by the peak
frequency ωp and amplitude spectral density by the ratio of the linear focus amplitude A to the peak frequency
A/ωp.

the vorticity conservation equation with respect to time to exclude Ω. Vorticity is implicitly defined by the
initial condition, when we specify x and z for three initial time steps, which are required to start time marching.
The numerical wave-current flume is created by specifying boundary conditions allowing safe inlet and outlet of
the current flow into the computational domain, wave generation and absorption of waves reflected from domain
boundaries. The two latter requirements are satisfied using re-formulated free-surface boundary condition (2)
which includes time-varying pressure gradient and artificial dissipation

xttxa + zttza + g za + k(a) ((xt − V (c))xa + ztza + g za) = Px(a, t)
∣∣
c=0

.

The last term in the right-hand side represents the artificial surface dissipation with the space-varying dissipation
coefficient k, and the term on the left-hand is the surface pressure gradient. The dissipation coefficient is selected
to be zero in the working section of the flume and gradually grows to a large value near the inlet and outlet
boundaries. As the result, the free surface at the boundaries remains relatively steady and does not move from its
original position. This serves a double purpose. First, reflections from the boundaries are significantly reduced.
Second, the boundary conditions at the inlet and outlet boundaries can be specified simply as the undisturbed
velocity profile at the inlet (xt(ain, c, t) = V (c)) and as a parallel flow at the outlet (za(aout, c, t) = 0). The wave
in the flume is generated by creating an area in front of one of the wave absorbers where pressure distribution
of a prescribed shape is defined. Time-varying amplitude of this pressure disturbance is used as a control input
for wave generation. An additional difficulty with numerical realisation of the Lagrangian formulation with a
sheared current is sheared deformation of the original domain in physical coordinates which indefinitely increases
with time. The shape of the domain eventually becomes impractical as it moves out of an area of interest.
Besides, accuracy of computations for strongly deformed computational cells considerably reduces. To avoid
these difficulties we perform sheared deformation of the Lagrangian domain to compensate the deformation
of the physical domain. Such deformation takes place after several time steps and moves boundaries of the
physical domain back to the original vertical lines. After this Lagrangian labels are re-assigned to new values
to preserve the rectangular shape of the Lagrangian computational domain with vertical and horizontal lines of
the computational grid.

4 NUMERICAL AND EXPERIMENTAL SETUPS

We use the numerical wave-current flume to reproduce results obtained during experimental study of focused
wave groups over sheared currents performed in the coastal recirculating flume in the fluids laboratory of the
Department of Mechanical Engineering at UCL. The flume has the width of 1.2m and the distance between
two piston wavemakers is about 16m. The depth for all tests was set to h = 0.5m. A recirculating system
with three parallel pumps and vertical inlets 13m apart is used to create a current. A paddle on the right
end of the flume is used as a wave generator and the opposite paddle as an absorber. Blocks of wire mesh of
trapesiodal shape are installed on top of the inlet and outlet to condition the flow and create a desired current
profile. Surface elevation at selected points along the flume is measured by resistance wave probes and a PIV
system is used to measure flow kinematics. Wave groups are generated with 4 constant phase shifts within the
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Figure 2: Comparison of computational (solid) and experimental (dashed) time histories of linearised surface at
the focus position x = 0 (thick) and at position x = −6.34h = −0.98λ (thin). Left: no current. Right: in-line
current. Time is scaled by the peak period Tp and surface elevation is scaled by the linear focus amplitude A.
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Figure 3: Comparison of computational (solid) and experimental (dashed) time histories of plus (thick) and
minus (thin) second-order components at the focus position x = 0. Left: no current. Right: in-line current.
Time is scaled by the peak period Tp and surface elevation is scaled by the linear focus amplitude A.

same amplitude spectrum. The resulting signals for surface elevations are used to extract linear part of the
signal as well as non-linear components including second order subharmonics and second, third and fourth order
super-harmonics. An iterative procedure is used to focus the wave group at a prescribed location and time.
More details of the experimental setup and the methodology can be found in Stagonas et al. (2014). At this
stage only tests for waves without current and over in-line currents are completed.

To validate the numerical results we select a moderately non-linear wave group with a Gaussian linear
amplitude spectrum. The peak frequency of the spectrum is fp = 0.6Hz for water depth h = 0.5m. The
corresponding linear wave length is λp = 6.488h. The linear focus amplitude of the wave is A = 0.1h. The
normalised linear target spectrum is presented on figure 1. The numerical waves were generated in still water
and over in-line and opposing currents of maximal velocity V0 = 0.09C, where C =

√
gh is linear shallow water

celerity. The profile for computations was created using preliminary ADV measurements of current velocity.
The working section of the numerical flume free from wave generator and absorbers is set to about 20h. The
origin of the coordinate system is set to the focusing position at the center of the flume with a horizontal axis
pointing against the wave propagation direction. The waves in the numerical flume were generated using the
same iterative focusing procedure as in the physical flume. Calculations are performed for waves without current
as well as for in-line and opposing currents. Calculation results include time histories of surface elevation at the
same positions as in physical experiment and flow kinematics at the focus point.

5 RESULTS

Results of numerical tests and their comparison with physical experiment are demonstrated on figures 1-5.
Figure 1 demonstrates efficiency of the focusing procedure for all experimental and computational cases. The
evolution of phases near the focus point is physically relevant for different current cases and compares well
between computations and experiment. The behaviour of the linearised wave at the focus point is identical for
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Figure 5: Left: Comparison of computational (lines) and experimental (dots) horizontal velocity profiles for the
incoming current (a) and under the crest of the peak focused wave at focus position x = 0 and focus time t = 0
without current (b) and over in-line current (c). Right: Computational profiles of horizontal velocity under
peak (solid) and trough (dashed) focused waves. (a) – in-line current; (b) – no current; (c) – opposing current.
Velocity is scaled by the shallow-water celerity C =

√
gh and vertical coordinate is scaled by depth h.

all cases (figure 2), which is not surprising as this was the aim of the iterative focusing procedure. However,
good comparison at the position one wave length before the focusing point demonstrates that the dispersion
relation is represented by the numerical model with good accuracy. Figure 3 shows that non-linear terms are
also well captured by the numerical model. The calculated wave profiles presented for at focus time for different
current direction for peak and trough focused waves are shown on figure 4. Finally, figure 5 demonstrate good
agreement with measured wave kinematics. The discrepancy observed for the in-line current case is explained
by the defect in the incoming current profile for this experimental run. It is hoped that further analysis of
experimental results and generating more experimental cases will allow to remove this discrepancy.

The authors thank EPSRC for supporting this work withing the Supergen Marine Technology Challenge.
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Highlights 

    Measurements of heaving motions of a floating air-filled bag caused by forced oscillations of the internal pressure. 

    Partial validation of a linear frequency-domain numerical model. 

 

1. Introduction 

A proposed wave energy converter related to that described by Farley (2011) consists of a pressurised axi-symmretic 

air-filled bag, ballasted to float at about half depth.  The bag contracts and expands under the action of wave-induced 

heaving motion, pumping air into and out of a secondary, rigid, chamber (V2 in figure 1(a)) which acts as an air spring. 

The system’s resonant frequency in heave is determined largely by V2 and the volume of the bag V1. Oscillating air 

flow between V1 and V2 drives a power take-off. 

This paper describes experiments and numerical modelling aimed at understanding the behaviour of this device. Rather 

than test it in waves, in this initial investigation we chose to replace the power take-off with an oscillating air pump. 

Forcing air into and out of the bag periodically caused it to heave and radiate waves when floating in water initially at 

rest. Measurements of the bag’s response are compared with the predictions of a linear frequency-domain radiation 

theory, which uses a finite difference approach to model the harmonic deformations of the bag. Agreement is promising 

on the whole, providing some insights into the likely performance of the device when operating as a wave energy 

converter. 

2. Experimental arrangements 

The experiments were carried out in the wave basin 

at Plymouth University, measuring 35m x 15.5m, 

with a water depth of 3m. The overall height of the 

bag and ballast container (sketched in fig. 1(b)) was 

about 1.6m. Since the compressibility of air is the 

same as in the prototype, the volumes of V1 and V2 

had to be considerably larger than those implied by 

the cube of the scale factor (about 1:16), in order 

for the resonant frequency to be scaled correctly. 

Accordingly, V1 was augmented by the volume of 

an additional air chamber which was connected to 

the top of the bag by a 100mm diameter flexible 

hose, and to a similar chamber representing V2, as 

sketched in figure 1(b). Both chambers were 

mounted on the gantry spanning the tank, and each 

had a volume of 1m
3
. The duct between them 

housed an oscillating air pump. 

The form of construction of the bag, both for the model and envisaged for the full-scale device, is that of a membrane 

enclosed within an array of longitudinally very stiff tendons distributed around the circumference. This gives it the 

appearance of a pumpkin, with the membrane bulging out between the tendons, which are intended to carry all of the 

meridional load. In the model the membrane was unreinforced polyurethane film and the 16 tendons, welded on, were 

made from 30mm wide polyurethane-coated polyester strips. Ballast was provided by lead shot inside a cylindrical steel 

container with a hemispherical base, mounted beneath the bag. The device is shown in figure 2, floating in the tank. 

The air pump consisted of two pairs of 300mm diameter bellows on either side of diaphragms which were driven by 

electro-magnetic digital linear actuators. A sketch is shown in figure 3. Other instrumentation included pressure 

transducers in the bag and on either side of the air pump, and a displacement transducer recording the elevation of the 

top of the bag. Video cameras recorded the motion of the bag from the side, both above and under water.  

Figure 1 (a) Configuration of (a) the full-scale device 

and (b) the laboratory model. 

(b) 

V2 V1 

V1 

Ballast 

Oscillating 

air pump 

(a) 

V1 

V2 

Power take-off 

Ballast 

Bag 

29



Figure 3. The oscillating air pump. 
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Figure 2. Combined 

under- and above-water 

images of the bag and 

ballast container. 

 

Driving the air pump generated an oscillating air flow into and out of the bag, causing it 

to heave and radiate waves. Measurements were made over a range of frequencies in 

each of five conditions defined by the initial pressure in the bag and its elevation. As 

discussed by Kurniawan et al. (2015), for a given internal pressure there are in general 

two elevations at which the bag is in equilibrium in still water. 

3. Linear frequency domain numerical model 

For the purpose of computing the response of the model device to an oscillating air 

flow, the shape of a tendon in the vertical plane, together with the outline of the ballast 

container, can be represented by a series of straight elements of uniform length h 

between nodes. Nodes and elements are numbered from the bottom of the ballast 

container to the top of the bag on its axis. (The inlet pipe at the top is omitted.) In still 

water conditions, the inclination of the nth element from the horizontal is n. 

Resolving forces in the normal direction at the nth node on the bag (where the radius 

and the elevation relative to the water surface are Rn and Zn) leads to  

   1
12

tann n n n nR P gH Z h T      , (1) 

assuming that all loads are carried by the tendons. In equation (1) P is the internal 

pressure, T is the total tension in all tendons, and Hn = 1 when Zn < 0, otherwise 0. 

Resolving forces at the node at the bottom where the tendon joins the top of the ballast 

container (n = 1) provides one boundary condition, namely 
2

1sinT W R P   , where W is the submerged weight of 

the ballast, while at the top (n = N), N-1 = by symmetrySolutions to equation (1) for the shape of the bag in still 

water can be found by various means (Kurniawan et al., 2015). 

In solving the dynamic case, the time dependent nature of each parameter is represented by a small harmonic 

perturbation about the mean, i.e. the static solution. Thus the radius of the nth node becomes the real part of 
i

n nR r e   

where rn  is a complex amplitude,  is the frequency and  is time. Similar adjustments are made to elevations: 
i

n nZ z e  ; inclinations, 
i

n ne
   ; the tension, iT te  ; the internal pressure, 

iP pe  , and the internal 

volume of the bag iV ve  .  Also, beneath the water surface all surfaces experience hydrodynamic pressure whose 

complex amplitude is denoted n.  

The solution procedure is first to introduce these perturbations into equation (1), expand the result, discard terms 

involving products of small quantities, and subtract the static solution in the usual way.  It is helpful to define  

1 1 1 1; ; ; ,n n n n n n n n n n n nR R R Z Z Z r r r z z z   
            n = 1, 2, … N1. (2) 

The elements of the column matrix {r} = {r1   r2    …  rN-2 }
T
  and  z1, the complex amplitude of the heaving motion 

of the ballast, become the primary unknowns. To a first approximation all other parameters can be expressed in terms of 

these, ultimately rendering the problem in the form of a set of complex linear equations. Besides the geometry of the 

system in still water, the other independent parameters are the volume swept out by the air pump, and its frequency . 

Hydrodynamic pressures are computed by using 

an approach for calculating wave radiation by 

axisymmetric bodies set out by e.g. Fenton (1978) 

and Isaacson (1982) (both of which contain 

significant errors). For a given geometry and a 

given set of normal velocities {} at the nodes, the 

result can always be expressed in the form {} = 

[D]{}. In the present case the elements of [D] are 

computed from the known initial geometry of the 

device, and those of  {} can be related to {r} 

and z1 by way of the complex amplitude of the 

internal pressure, which is assumed to follow the 

adiabatic law in response to the oscillatory flow of 

air from the air pump. 
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4. Measurements and predictions 

Slow inflation and deflation 

Figure 4 shows a plot (as a continuous grey line) of the measured 

trajectory traced out by the elevation of the top of the bag against its 

internal pressure, as the bag is slowly inflated in still water. As 

described by Kurniawan et al. (2015), the pressure initially falls as 

the bag rises, then increases again as the membrane tightens. The 

trajectory returns along almost the same path as the air is released 

again. A dashed line represents a numerical solution of equation (1) 

for these quasi-static conditions. Better agreement with the 

measurements than that shown by Kurniawan et al. has been 

achieved here by empirically increasing the length of the tendons in 

the numerical model from 1.5m (as they were when unstressed in 

the laboratory model) to 1.65m. Of this 150mm difference, about 

35mm can be attributed to stretch in the 16 tendons which, over the 

range of the test conditions, would have been under a tension of at 

least 300N each. The remaining difference is tentatively associated 

with the actual inflated form of the membrane. The bag was 

constructed from 16 ‘petals’ welded together at the tendons. Since 

the petals were two-dimensional and less stiff under tension than the 

tendons, it is inevitable that when the bag was inflated, they would 

bulge out, stretching in both directions and taking some of the load 

away from the tendons.  With this in mind it seems reasonable to 

argue that the effective tendon length should be increased to reflect the greater 

meridional length of the bulging and load-carrying membrane. Accordingly, 

results presented below were computed for a tendon length of 1.65m. Also, 

amid some uncertainty (within a range of about 8%) about the effective 

submerged ballast weight, the calculations used a figure of 3659N to provide a 

reasonable fit with the measurements.  

Initial conditions for the wave radiation tests and predictions are identified 15 

in figure 4. 

Computed resonant frequencies 

Behind the concept of this device lay the idea that the negative stiffness of a 

body that shrinks as it sinks and expands as it rises in water otherwise at rest 

would cause it to have a longer resonant period in heave than a rigid body of 

the same size and shape. This might be an advantage, leading to a reduction in 

the size of a wave energy converter designed for a given sea-state. Computed 

resonant periods for compressible and rigid bodies having the shape of defined 

by the initial conditions in the 5 test cases are plotted in figure 5. For the 

compressible air-filled bag, predicted periods are more than 15% longer than 

those for rigid bodies of the same shape, though obviously the frequency 

response of the bag depends on the stiffness of the air spring, and therefore the 

volume of air enclosed, and connected to it. 

Response of the device to an oscillating air flow 

In these tests the air pump was operated over a range of frequencies in turn, at amplitudes that generated a small 

heaving motion in the device. Results are plotted below as a function of the period of the driving motion. On the left 

figure 6 shows, for each case, the amplitude of the vertical motion of the top of the bag, and on the right its phase 

relative to that of the air pump.  

Computed amplitudes and phases agree reasonably well with the measurements for those cases, 5 and 4, in which the 

bag is strongly inflated and high in the water. The difference between measured and predicted resonant frequencies 

becomes more pronounced in cases 3, 2 and 1. In the last of these the pressure drop across the membrane would have 

been negative in the lower part of the bag so that its profile would be concave, but the reason for the disagreement is not 

clear. Nevertheless, the present numerical model seems to be a good starting point for an investigation into the 

performance of the device as a wave energy converter. 

 

Figure 4. Trajectories of the elevation of 

the top of the bag when inflated and 

deflated slowly in still water. The grey 

line is the measurement, the broken line 

the prediction, using a tendon length of 

1.65m. Initial conditions for dynamic 

tests are identified 15. 

 

Figure 5. Resonant heave 

periods of the air-filled bag 

driven with the air pump (dark 

grey), and  of a rigid body of the 

same initial shape (light grey). 
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Figure 6. On the left, measured and computed heaving amplitudes of the top of the bag as 

functions of excitation period for a constant pump displacement of 1 litre. The phase of the 

motion related to that of the air pump is shown on the right. Measurements are shown as points 

and broken lines, numerical predictions as continuous lines. 
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1 Introduction 

We investigate the violent slamming of a steep wave onto a vertical wall. The novelty of our work relies on the 

assumption of a breaking type impact. With reference to the plane impermeable wall of Fig. 1, it is assumed that 

a thin air pocket is formed adjacent to the wall, between the lower and the upper impacted sections of the wall. 

The solution process, as outlined in the sequel, could be extended to accommodate an uneven bottom 

configuration. However, in the present study it is explicitly assumed that the bottom is horizontal.  

 
Figure 1 Definition sketch; The curves are free surfaces on which 0 . 

The boundary conditions at x=0 in the intervals  z0  and hz   are defined by default through the 

normal components of the velocities of the wave before impact, which are assumed to be the constants V1 and V2, 

respectively. In the general case we assume that 21 VV  . In the intermediate region   z the associated 

boundary condition is governed by the pressure which can be a function of z. The present analysis assumes that 

the pressure impulse (and accordingly the potential) in the air pocket is zero. Nevertheless the outlined 

methodology can be extended to accommodate non zero constant potential using the same procedure. It is also 

assumed that at the time of impact the width of the intermediate section between the wave front and the wall 

0 .  

2 The mixed boundary value problem 

In the realm of potential theory, the mixed boundary value problem in terms of ),( zx , which is the sudden 

change in the velocity potential is: 

02   , )0,0( hzx  , (1) 

0/  z , )0,0(  zx , (2) 

0 , ),0( hzx  , (3) 

1/ Vx  , )0,0(  zx , (4) 

0 , ),0(   zx , (5) 

2/ Vx  , ),0( hzx   , (6) 

0 , )0,( hzx  . (7) 

The form of the solution that satisfies eqs. (1)-(3) and the far-field behaviour (7) is  
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n
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nezCzx
 





 )cos(),(

1

 (8) 

where ,/)2/1( hnn    n ϵ N and Cn are coefficients to be found from the remaining boundary conditions 

(4)-(6). Note that the present analysis is applied at the instant of the impact and hence Cn are constants, 

independent of time.   

3 Triple trigonometrical series 

Introducing eq. (8) into the boundary conditions (4)-(6) we find the following problem that involves triple 

trigonometrical series 

1

1

)cos( VzC

n

nnn 




 , )0(  z , (9) 

0)cos(

1




n

nn zC  , )(   z , (10) 

2

1

)cos( VzC

n

nnn 




 , )( hz  . (11) 

Most literature on mixed boundary value problems that involve trigonometrical series, concern dual – not 

triple – relations. Relevant examples are the studies of Tranter [1-3]. For a review of dual trigonometrical series 

the reader is referred to the classical book of Sneddon [4], which cites nearly all studies prior to the time it was 

published. Triple trigonometrical series concern more complicated mixed-boundary value problems and relevant 

examples are the works of Tranter [5] and Kerr et al. [6]. However, in both papers the boundary data in two of 

the three boundary sets are identically zero.  

The required analysis to solve the mixed problem governed by eqs. (9)-(11) is quite complicated and 

therefore only the basic steps are given in the sequel. After several mathematical manipulations, the triple series 

of eqs. (9)-(11) are transformed into the following three conditions on new coefficients nB  

)()/(2)(

1

yFyyJB

n
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nn yJB  , )1( cy  . (14) 

where  )/(2)1( 2
12/1

n
n
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2/1 ,  /b ,  nn  , /hc   nn  , /zy  . The next step is to reduce the triple 

trigonometrical series to dual by satisfying the last one (14). This is accomplished assuming an alternative form 

of the unknown constants Bn according to which  

)(
)(

1

0

2/122
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2/1 

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Eq. (15) satisfies eq. (14) as it holds that [7] 

0
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1
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1
2/1

2/12
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Introducing eq. (15) into eqs. (12) and (13) the problem is reduced to the dual trigonometrical series  
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2/12
10 yFy

cJ

yJJ
EyaE

m n n
p

n

nnpm
m 








 







 



, )0( by  , (17) 
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 for j=1,2.  (19) 

The reduced model of eqs. (17) and (18) is processed further using specific expressions that relate the 

infinite series of Bessel functions which appear in eqs. (17) and (18) and the Sonine-Schafheitlin integral. In 

particular it can be shown that   
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where 2F1 is the hypergeometric function with single variable. Finally, after further mathematical manipulations 

the dual trigonometrical series of eqs. (17) and (18) are reduced to the more compact forms 
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The new unknowns of the problem are now the coefficients ,m  whilst the parameters 

)(),(),(, **  GF  depend only on the given data of the problem (via expressions omitted for brevity). Dual 

trigonometrical series of the form of eqs. (22) and (23) have been treated by several authors (see Sneddon [4]). 

The coefficients m  are  
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where Pn denotes the Legendre polynomial of degree n and     
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4 Some results 

Although eqs. (24)-(26) appear in a compact set of expressions, the coefficient 0  lies within the definition of 

the function )(1 th . The right-hand side of eq. (24) depends on 0 , so this coefficient can be computed after 

rearrangement of terms or by an iterative scheme. Once 0  is accurately evaluated, expression (26) is wholly 

determined and can be used in eq. (25) to compute the other coefficients. Also, the truncation of the infinite 

series expressions has to be handled sensitively to ensure that eq. (16) is satisfied accurately and at least 200 

modes were found necessary to achieve an accuracy of 4 significant digits for the coefficients m . The rapid 

decrease in magnitude of  m , with increasing m, is shown in Fig. 2.  

In the following we present some results for wave impacts for which we hold fixed h=1m, β=0.8m, 

V2=(gh)1/2≈3m/s and vary α and V1. The solution process indeed converges quite fast, not only for the leading 
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term  0  but also for the other expansion coefficients m , 0m . Figs. 3 and 4 show the pressure impulse 

p  [see eq. (8)] for unit density  , along the lower portion of the wall for several α (Fig. 3) and several 

values of the velocity V1 (Fig. 4). As expected the pressure impulse is reduced for lower velocities. An 

interesting result is that the pressure impulse obtains its maximum value at the bottom. Also, for the same 

velocities the pressure impulse is decreased for longer wetted sections (Fig. 3). Further fluid mechanical 

consequences of the results will be presented in the talk.  
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Figure 2 The expansion coefficients m , 0m  for h=1, α=0.1, β=0.8 and V1=V2=3 where 9744.10  .

 
Figure 3 Normalized pressure impulse for equal 

velocities V1=V2=3 and variable α=0.1, 0.3 and 0.5. 

 
Figure 4 Normalized pressure impulse for α=0.1 

and variable velocity V1=3, 2 and 1. 
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Highlights: 

 Added resistances of KVLCC2 in short waves are predicted by 2nd order TEBEM and compared with published 
results by other numerical solutions and experimental results. 

 It is found the strength of low-pass filter in numerical treating the free surface elevation plays an important role for 
accurate predicting the added resistance in short wave.  

1. Introduction 
The rankine panel method (RPM) for wave-ship interaction has been widely used nowadays. The advantage of 

RPM is possibility to deal with more complicated free-surface conditions. Nakos (1990), Kring (1994) and Huang 
(1997) analysed the nonlinear ship motion by a time-domain three dimensional RPM. Kim et al. (2011) compiled a 
seakeeping analysis program (WISH) for the linear and nonlinear seakeeping analysis and wave loads forecasting by the 
B-spine RPM. Shao and Faltinsen (2012) proposed a body-fixed formulation to avoid the difficulty which needs to 
calculate the high order derivatives in the earth coordinate system by HOBEM. 

However, a disadvantage of the Rankine panel methods is the necessity of discretization of the free surface 
surrounding the body, which increases the number of unknowns and also introduces the numerical instability due to the 
saw-tooth behavior in the time domain numericalsimulations for forward speed problems. Vada and Nakos (1993) and 
Kim et al (1997) considered that the instability observed in their numerical simulation process were caused by the 
energy from the external force, which would be accumulated on a wave period with zero group velocity. Buchmann 
(2000b) pointed out the non-uniformity in the spatially discretized models may cause this phenomenon. However, the 
reason for the instability has not been fully understood. Several researchers utilized the low-pass filter to suppress the 
numerical instability. Nakos (1990) and Kring (1994) used five-point filter formulation to suppress the spurious waves 
for the ship motion RAOs. The seven-point formulation is used by Kim (1997) for the nonlinear interactions of surface 
waves with bodies without forward speed. He and Kashiwagi (2012) studied the ship steady wave problem using the 
seven-point formulation. Shao and Faltinsen (2012) utilized a three-point filter to retrain the saw-tooth behavior for the 
added resistance problem for the fine ship. These numerical experiments had not shown the impacts of the filter for the 
simulation of blunt ship added resistance problems. 

The ship motions are negligible in short waves, and the added resistance is mainly due to wave reflection at the 
bow. Because the reflection added resistance is very small for fine ship, the strength or frequency of application of the 
filter causes almost no influence on added resistance of fine ship. However, for large blunt ship, the reflection added 
resistance in short wave give important contribution in low sea state. It is found application of low-pass filter  has 
sensible influence on the numerical results of added resistance of blunt ship. The strength and frequency of using filter 
is discussed for KVLCC2 ship. 
2. Numerical Method 

For forward speed ship motion problems, the velocity potential consists of three components: the steady 
potential Φ which is computed based on the double-body flow,  incident wave potential Iϕ and disturbing wave 
potential dϕ respectively. The potentialΦ and dϕ can be obtained by solving each of the following problems : 
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(1b)

WhereU
r

is the ship forward speed, jξ means the displacement in j direction, nr is the normal vector points out of the fluid 
domain. The added resistance is calculated by the near-field formulation.  
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 (2) 

Whereζ is the wave elevation, δ is the total displacement of ship motion, WL represents the waterline.  
    TEBEM method (Duan et al. ,2014) is used to solve the boundary value problem. A low-pass filter similar(Shao 
and Faltinsen, 2012) is applied on the collocation points on the free surface to restrain the instability of wave elevation. 
 ( )1 11 2j j j jc c cζ ζ ζ ζ− += + − +  (3) 

Where the subscript j is mesh number of collocation point. c is the strength of low-pass filter, ζ means the wave 
elevation after smoothing. The filter will affect the solution of velocity potential indirectly through the dynamic 
free-surface conditions. At each time step the filter is first applied in the azimuthal direction for all points on the free 
surface panels and then the filter is used in the radial direction for all points on the free surface. 
3. Numerical Results and Discussion 

To show the role of the strength of low-pass filter on the added resistance in short wave, A typical public blunt 
ship KVLCC2 ship model in head sea is selected as demonstration.  

Calculation condition for KVLCC2 in short wave 
Ship motion Heave and Pitch Wave length / Lλ  0.3 
Time-step 0.01T Simulation time 35T 

Free-surface panel 1525 Free-surface size 5LPP 
Body-surface panel 1212 Damping zone type O-type grid 
Strength of the filter 0.002,0.003,0.004 Damping zone size 2LPP 

Forward speed Fr=0.142 Damping zone strength 0 15μ =  
Figure 1 and 2 show the panel discretization on the half free surface and body surface, the triangle elements were 

used on hull surface of the bow and stern part. Fig.3 and 4 show the motion response of the heave and pitch of 
KVLCC2 model respectively, where the length ratio of wave to ship is from 0.3 to 2.0. The added resistance is shown in 
Fig.5. The agreement is good between the 2nd TEBEM and the other numerical solution and experiment results. In Fig.6, 
the contribution of the bow, stern and middle part of KVLCC2 for added resistance at / 0.3Lλ = is shown. It is found the 
contribution to the added resistance in short waves is primarily from bow segment, whereas the stern and middle part is 
quite small. Fig.7 and 8 show the contribution from the waterline and square of velocity integration for the added 
resistance at the bow part. It can be seen the waterline integration is almost twice of the square of velocity integration 
but in opposite sign. 

 

Fig.1 the panel sketch of the free surface  Fig.2 the panel sketch of the body surface
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Fig.14 the history of added resistance due to the square of 
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Fig.9 and 10 show the history of the added resistance value with different strength of low-pass filter, the wave 
elevation around the bow are shown in Fig.11 and 12. It can be seen the history is not stable when the strength of filter 
is equal to 0.002. Form Fig. 9 and 11, although the added resistance is stable for period / 20 30t T = − , but it is changed 
after 30 and the wave elevation values has been chaotic for period / 20 30t T = − . So the added resistance is not 
consistent with local fluid flow as 0.002C = . Fig.13 and 14 show the waterline and square of velocity integration vary 
with different strength of filter, it can be concluded that the strength of filter play a key role for the added resistance 
prediction in short waves. 
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Highlights:

• This paper presents a novel numerical approach based on the Particle–In–Cell (PIC) technique for
the solution of the incompressible Navier–Stokes equations with emphasis on free surface deformation
and two–way fluid–solid interactions. As a hybrid Eulerian–Lagrangian approach, this method has
the flexibility of the Smoothed Particle Hydrodynamic (SPH) method as well as the efficiency of an
Eulerian method.

• Two–way fluid–solid interaction simulation has been integrated inside the numerical model by
adopting the Distributed Lagrangian Multiplier (DLM) technique proposed in Patankar [7].

1 Introduction

In the past few decades Computational Fluid Dynamics (CFD) techniques have been widely used for
both academic research and commercial engineering applications. CFD techniques have become more
and more popular as computational power has continued to increase. For the solution of the Navier–
Stokes equations three principal approaches are typically employed these being: Eulerian methods,
Lagrangian methods and hybrid Eulerian-Lagrangian methods. While grid based Eulerian methods
perform well in terms of equation discretization, enforcing incompressibility and improving compu-
tational efficiency[3], they have drawbacks with regards to integration of the advection term and
require more effort in handling the free surface boundary especially when its is subject to extensive
deformation. From this point of view, purely Lagrangian techniques such as the SPH method and
Moving Particle Semi Implicit (MPS) schemes seem to be more suitable for free surface fluid problems
as they can handle large free surface deformation easily (e.g.[1]). In addition Lagrangian methods
can integrate the advection term relatively trivially through advecting the discretized fluid elements.
However, pure Lagrangian methods tend to be extremely demanding in terms of CPU time as millions
of particles may be used for high accuracy (e.g.[1]).

Our work is motivated by the idea of developing a hybrid Eulerian–Lagrangian approach based
on the PIC framework which exhibits both the flexibility of the SPH method in terms of ability to
simulate complex problems and the computational efficiency of Eulerian methods. The PIC method
was originally devised for compressible flows by Francis Harlow [5] in 1955. The idea being that
particles, which carry and advect fluid mass and momentum, are seeded on an underlying mesh on
which the main process of solving the Navier Stokes equations is undertaken. Information between
particles and the grid is transferred via interpolations. The classic PIC method (e.g. [5]) suffered
from high numerical dissipation due to the direct velocity transfer at each time step. Brackbill and
Ruppel [2] suggested incrementing the particle velocity by the change of velocity on the grid, which
reduced the dissipation significantly. In a previous work the authors applied the PIC technique to
various complicated 2D flow problems including full two–way fluid–solid interactions can be found in
[6]. In this paper we will present a 2D validation case and an example case from the 3D version of the
PICIN numerical model which is currently under development.

2 Numerical model

The numerical model employs the framework of PIC methodology and solves the incompressible Navier
Stokes equations for a Newtonian fluid in both 2 and 3 spatial dimensions. Two–way fluid–solid
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interaction model is integrated inside this model using the approach proposed in [7], which forms part
of the overall governing equations :

∇· u⃗ = 0 in Ω, (1)

D [u⃗] = 0 in S, (2)

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = f⃗ − 1

ρ
∇p + ν∇2u⃗ in F, (3)

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = f⃗ − 1

ρS
∇p + ∇ · Π in S, (4)

with boundary conditions:
u⃗ = u⃗Γ(t) on Γ(t) (5)

and:
u⃗ = u⃗i and (Π − pI) · ⃗̂n = T⃗ on ∂S(t), (6)

where Ω, F and S denote the overall computational domain, fluid region and solid region. Γ and ∂S
represent the overall solid boundary and solid region boundary. u⃗ is the velocity field, p represents the
pressure, f⃗ is the gravity force, ν accounts for the fluid dynamic viscosity coefficient, and ρ and ρS

are the fluid density and solid density, respectively. u⃗Γ(t) and u⃗i represents boundary velocity and T⃗
is the traction force of the fluid on the solid. As an incompressibility constraint, equation (1) ensures
a divergence free velocity field in the whole domain and gives rise to pressure field as a Lagrange
Multiplier. Similarly, Equation (2), which represents a rigid body constraint, enforces a deformation
free velocity field. Here Π is the extra deformation stress in addition to pressure and it is nothing
but distributed Lagrange Multiplier due to rigid body constraint [7]. It is noted that for any vector
u⃗, D [u⃗] =

[
∇u⃗ + (∇u⃗)T

]
/2, which measures the spatial deformation of u⃗.

The overall solution has been divided into two major steps, i.e. Eulerian step and Lagrangian step.
In the Eulerian step, the pressure projection technique of Chorin [4] has been adopted to solve for
fluid motion on the MAC grid. A second–order accurate technique has been employed here for the
Dirichlet–type free surface boundary condition and the non grid–aligned solid boundary is resolved
via a cut–cell approach. In the Lagrangian step the particles, which are initially seeded inside the
fluid cells, are advected. They carry with them the updated divergence free velocity field interpolated
from the grid. Thus, the advection term of Navier–Stokes equation is integrated with respect to
time. We note here that the velocity field will be transferred back to the grid for the next time
step computation after the particles are advected. The two–way fluid solid interaction is treated in a
manner such that the solid objects are firstly solved as if they were fluid and then a velocity correction
inside the solid region is made by taking account of the density difference between solid and fluid. The
rigid body restraint is finally enforced by finding a unique solid velocity considering all the momentum
contributions from solid region. This technique is straightforward to implement and can treat floating
bodies very efficiently. More details of the numerical model can be found in Kelly et al. [6].

3 Case study

3.1 Case 1 : Movement of caisson breakwater

A 2D case of caisson breakwater movement was used for the validation of our 2D numerical model.
This case was previously investigated experimentally in Wang et al [9] and numerically in Rogers et
al [8] by SPH method. Figure 1 depicts the simulation sketch of a wave paddle generating waves
that travel to impact the caisson breakwater which was placed on a fixed foundation and allowed to
move horizontally . The generated wave has a period of 1.3s and a height of 0.15m. The caisson was
given a density of 1440 kg/m3 and the numerical fiction force between caisson and the foundation was
adopted following the method proposed in [8], where the fiction force was switched from static force
and dynamic force based on the relationship between caisson velocity and a threshold velocity which we
found had a very sensitive effect on the motion of caisson. Here, following [8], the caisson foundation
is considered to be impermeable. The simulation presented here used a cell size of ∆x = ∆z = 0.013m
with a total number of about 64,000 particles. The CFL number was set at 0.5 to adapt the time step
and it took about 1.4hrs for 15 seconds of simulation on an Intel(R) i5-3470 CPU@3.2GHz core.
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Figure 2 shows snapshots of our simulation at time instants roughly similar to those presented in
[8]. A comparison of results shows that the wave behavior is similar to that observed in [8]. Figure
3 presents comparisons of the caisson displacement and overall horizontal wave force between experi-
mental data and numerical results. It is noted here that the experimental data has some limitations
for a comprehensive comparison as reported in [8]. We started to measure the displacement data
around the time instant when the caisson was just activated to move backward after a slight forward
motion due to seaward water level decline because of the first wave propagation and the wave force
was compared from our first relatively stable wave force. It can be seen from Figure 3(a) that the
numerical fiction force sensitively influences the motion of caisson though the displacement magnitude
is captured by the numerical model. Also, in Figure 3(b), the agreement of impact peak wave force
and lowest wave force are acceptable though slight phase difference occurs. Overall, the numerical
model quantitatively captures the principal characteristics of caisson movement due to wave actions.

Figure 1: Numerical model set-up for caisson breakwater (Units: mm).

(a) (b)

(d)(c)

Figure 2: Snapshots of numerical simulation for caisson movement. The colour represents pressure
field ranging from min value 0 kPa(blue) to max value 4 kPa (red).

3.2 Case 2 : 3D solid impacting water surface

A falling missile–shaped object impacting water surface case was used to test our 3D version PIC
solver. Figure 4 shows snapshots of the numerical simulation – an object falls into water within a tank
and causes water surface evolution due to the impact. This is an on-going study using our recently
developed 3D version of the PIC solver, we will present more results in the workshop.
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1 Introduction

Many studies have been devoted to the phe-
nomenon of Faraday waves, which appear at
the free surface of a fluid when the container
is submitted to periodical vertical oscillations
[3, 9, 12]. The interest of this setup is that
it gives rise to the formation of various pat-
terns. According to the forcing amplitude, fre-
quency and fluid viscosity, the free surface can
exhibit standing solitary waves [2, 16, 19] or
patterns of different symmetry, such as stripes,
squares, hexagons, quasicrystalline ordering, or
star-shaped waves [4, 5, 6, 15]. These symmetry
breaking result from the nonlinear couplings be-
tween waves. Thus, the study of Faraday waves
constitutes a privileged way to explore complex
nonlinear phenomena by the mean of a sim-
ple experimental device. Understanding these
waves has also applications in hydrodynamics,
for instance in sloshing related problems.

Despite noticeable advances in the theoretical
understanding of Faraday waves [11, 13, 14, 18]
some of their fundamental properties remain
into darkness. For instance, the relation of
dispersion ω(k) of parametrically-forced water
waves is often erroneously identified with that
of free, unforced surface waves; this approxima-
tion holding only without forcing and without
dissipation. However, the knowledge of the ex-
act dispersion relation is of crucial importance.

The first aim of this work is to establish the
actual relation of dispersion of Faraday waves
for nonzero forcing and dissipation. As shown
below, the dispersion relation of free, unforced
waves is significantly altered in the case of
parametrically–forced excitations: two different

wavenumbers correspond then to the same an-
gular frequency. We carry out their stability
analysis and we discuss the nature of the bi-
furcation giving rise to the wavy surface state
from the rest state when the forcing is increased.
Thus, the threshold of the Faraday instability
is established as well as the selected wavenum-
bers in both cases of short and long waves. At
last, it is shown that the transition can be either
smooth (supercritical) or discontinuous and hys-
teretic (subcritical), depending on the thickness
of the liquid layer.

2 Mathieu equation

Consider a container partly filled with a New-
tonian fluid of depth d, moving up and down in
a purely sinusoidal motion of angular frequency
Ω and amplitude A, so that the forcing accel-
eration is Ω2A cos(Ωt). In the reference frame
moving with the vessel, the fluid experiences a
vertical acceleration due to the apparent grav-
ity G(t) ≡ g − Ω2A cos(Ωt), g being the gravity
acceleration in the laboratory frame of reference
and t being the time.

Let be x = (x1, x2) and y respectively the
horizontal and upward vertical Cartesian co-
ordinates moving with the vessel. Ordinates
y = −d, y = 0 and y = η(x, t) respectively cor-
respond to the horizontal impermeable bottom,
of the liquid level at rest and of the imperme-
able free surface. The Fourier transform of the
latter is ζ(k, t) ≡

∫∫ ∞
−∞ η(x, t) exp(−ik · x)d2x,

where i2 = −1 and k is the wave vector with
k = |k|.

For parametrically-driven infinitesimal sur-
face waves, ζ is described by a damped Mathieu
equation [3, 4]

ζtt + 2 σ ζt + ω 2
0 [ 1 − F cos(Ωt) ] ζ = 0, (2.1)

where σ = σ(k) is the viscous attenuation, ω0 =
ω0(k) is the angular frequency of linear waves
without damping and without forcing, and F =
F (k) is a dimensionless forcing. For pure gravity
waves in finite depth, we have

ω 2
0 = gk tanh(kd), F = Ω2 A / g. (2.2)

In (2.1), the damping coefficient σ originates
in the bulk viscous dissipation and in the viscous
friction with the bottom in the case of shallow
water. For free gravity waves in the limit of
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small viscosity, we have [7, 8]

σ = νk2

[
2 +

coth(2kd)

sinh(2kd)

]
+

k
√

kνc0/2

sinh(2kd)
(2.3)

where ν is the fluid kinematic viscosity and c0 =√
gd. The first term in the right-hand side of

(2.3) represents the bulk dissipation, while the
second one models the friction with the bottom.

It is well known that systems obeying a
(damped) Mathieu equation with excitation an-
gular frequency Ω exhibit a series of resonance
conditions for response angular frequencies ω
equal to nΩ/2, n being an integer [1]. These
solutions are expressed in term of the Mathieu
functions together with a dispersion relation in-
volving the so-called Floquet exponent. Math-
ieu functions are transcendent and cannot be
expressed in term of simple functions in closed
form. In order to understand qualitatively these
solution we therefore consider here approxima-
tions in the limit of small forcing and dissipa-
tion.

Assuming F ≪ 1 and σ ∼ O(F ), an approx-
imate dispersion for the sub-harmonic response
(n = 1) is (with n = 1, ω = Ω/2)

ω0 / ω ≈ 1 ±
√

(F/4)2 − (σ/ω)2, (2.4)

where ω0 is related to k via (2.2). One condition
to obtain stationary waves is that ω0 is real, thus
defining a threshold F↓ = 4σ/ω with F > F↓
for the forcing in order to obtain time-periodic
waves. Interestingly, we note that there are two
wavenumbers k corresponding to the same wave
angular frequency ω (for Ω, F and σ given),
whatever the relation ω0 = ω0(k).

Assuming now F ≪ 1 and σ ∼ O(F 2), an ap-
proximate dispersion for the harmonic response
(n = 2, ω = Ω) is

ω0 / ω ≈ 1 + 1
12F 2 ±

√
1
64F 4 − (σ/ω)2. (2.5)

The condition of reality for ω defines the thresh-
old F 2 > 8σ/ω. Analog approximations for all
n can be easily derived.

Despite a limited range of validity, these rela-
tions clearly demonstrate that two wavenumbers
(i.e., two ω0 ≡ ω±

0 ) correspond to the angular
frequency ω = nΩ/2. Equations (2.4) and (2.5)
result from a linear approximation, and their va-
lidity is restricted to waves of infinitesimal am-
plitude. However, nonlinearities play a signifi-
cant role for waves of finite amplitudes, and we
will now look closely at the nonlinear effects in
an amplitude equation.

3 Amplitude equation

Seeking for an approximation in the form
η(x, t) = Re{A(t)} cos(kx) + O

(
A2

)
, assuming

|kA| ≪ 1 and weak forcing and dissipation (i.e.,
F ∼ O(|A|2) and σ ∼ O(|A|2)) an equation for
the slowly modulated amplitude A can be de-
rived in the form [10, 13]

dA

dt
+ (σ − iω0)A − FΩ

8i
eiΩtA∗

− KΩk2

2i
|A|2A = 0, (3.1)

a star denoting the complex conjugate. It is
obvious that the sign of the nonlinear term in
(3.1), via the sign of K, plays a key role in the
stability of the solutions.

For pure gravity waves on finite depth, we
have [17] (with s = sech(2kd))

K =
2 − 6s − 9s2 − 5s3

16(1 + s)(1 − s)2
.

Note that K changes sign with the depth: K >
0 for short waves, K < 0 for long waves and
K = 0 for kd ≈ 1.058. Defining B = A exp( i

4π−
i
2Ωt), (3.1) yields

dB

dt
=

(
iω0 +

Ω

2i
− σ

)
B +

FΩ

8
B∗

+
KΩk2

2i
|B|2B, (3.2)

which is a more convenient form for the analysis
below.

We focus now on two solutions of (3.2) that
are of special interest here: the rest B = 0 and
the standing wave of constant amplitude. The
first one is trivial and we investigate below its
stability. The second one is obtained seeking for
solutions of the form B = a exp( i

4π − iδ), a and
δ being constants, equation (3.2) yielding thus

ω0

ω
= 1 + K(ka)2 ±

√
F 2

16
− σ2

ω2
, (3.3)

with ω = Ω/2. As a → 0, the approximate dis-
persion relation (2.4) is recovered. If F = σ = 0,
the dispersion relation of weakly nonlinear, un-
forced, standing waves in finite depth is recog-
nised too. Therefore, compared to free nonlinear
waves, the dispersion relation of parametrically-
forced waves is characterised by the shift in an-
gular frequency ∆ω = ±

√
(Fω/4)2 − σ2 inde-

pendent of the wave amplitude a.
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In the subsequent discussion, we consider that
the relation K(k) is uni-valued and we limit our
study to the case K > 0 (for K < 0 the analysis
is similar replacing ω0 − ω by ω − ω0).

According to the equation (3.3), we have

K(ka)2 =
ω0

ω
− 1 ∓

√(
F

4

)2

−
(σ

ω

)2

, (3.4)

with the constraint K(ka)2 to be real and pos-
itive. The last term in the right-hand side of
(3.4) being real, the forcing F must exceed a
minimum value F↓ = 4σ/ω to generate at least
a stationary nonzero amplitude wave, as already
mentioned above. The condition F > F↓ being
fulfilled, if we have moreover F < F↑ with

F↑ ≡ 4 ω−1
√

(ω0 − ω)2 + σ2 ,

there are two stationary solutions of nonzero
amplitude of the dispersion relation (in addition
to the solutions with the opposite phase and to
the rest solution B = 0).

If F > F↑, the positivity of the right-hand side
of (3.4) yields only one nonzero solution of (3.1)
(in addition to the solution with the opposite
phase and to the rest solution). Thus, disre-
garding the phase, the flat surface is the unique
solution for F < F↓, there are three solutions
(one being the rest) in the range F↓ < F < F↑,
and two solutions (one being the rest)) in the
range F > F↑. An important question to ad-
dress now is, whether or not, these stationary
solutions are stable.

4 Stability analysis

Introducing a small perturbation into the sta-
tionary solutions of the amplitude equation
(3.2), we look for the eigenvalues of the lin-
earised system of equations obeyed by the per-
turbation. The stability analysis that we con-
duct below resembles that carried out in [10]
for the parametric pendulum. However, a ma-
jor difference is that the eigenfrequency of a
freely-oscillating pendulum is unique, whereas
free, unforced, water waves exhibit a continuous
spectrum of mode frequencies. Moreover, the
sign of the nonlinear terms in the wave equa-
tion depend on the depth [17].

First, we study the bifurcation from rest (i.e.,
the stability of the trivial solution B = 0). The
linearised equation (3.2) has two eigenvalues λ1

and λ2 such that

λj = −σ + (−1)j

√
(F ω / 4)

2 − (ω − ω0)
2
.

If (Fω/4)2 < (ω − ω0)
2 + σ2, the real parts of

both eigenvalues are negative. Therefore, the
rest is stable. If (Fω/4)2 > (ω − ω0)

2 + σ2, the
eigenvalue λ2 is real and positive. Therefore,
the rest is unstable and

F↑ = 4
√

(1 − ω0/ω)2 + (σ/ω)2 (4.1)

corresponds to the minimal forcing necessary to
destabilise the rest state and to generate surface
waves.

Second, we analyse the stability of the per-
manent solutions of finite amplitude a > 0
of the amplitude equation (3.2). We consider,
for simplicity, small perturbations in the form
B = [a + b(t)] exp i(π/4 − δ), a, δ and ω0 be-
ing given in (3.3), and b a complex amplitude to
be determined such that |b| ≪ a. To the linear
approximation, the eigenvalues of the resulting
equation are (j = 1, 2)

λj = − σ + (−1)j ×
√

σ2 − K(2ωka)2
[
1 − ω±

0 /ω + K(ka)2
]
.

The criterion for having both eigenvalues real
and negative is 1 − ω±

0 /ω + K(ka)2 > 0. This
inequality is to be coupled with (3.4). Thus, it
appears clearly that, for the case K > 0, the
two eigenvalues are both negative if ω0 = ω−

0 ,
thence ω0 < ω. The corresponding stationary
solution is therefore stable. The other station-
ary solution ω0 = ω+

0 , existing in the range
F↓ < F < F↑, corresponds to λ1 < 0 and λ2 > 0
and is therefore unstable.

Note that the neutrally stable limiting case
λ2 = 0 is obtained for F = F↓ or ka = 0 or
K = 0. The two first cases correspond to the
rest (i.e., no waves), while the third one requires
a higher-order equation to conclude on the sta-
bility. Note also that the opposite conclusions
hold for K < 0: the stable solution corresponds
then to ω0 = ω+

0 (i.e., ω0 > ω).

5 Wavenumber selection

We can now determine the wavenumbers se-
lected at the instability onset. The minimal
forcing required to destabilise the free surface
from rest is given by (4.1), where ω0 is related
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to the wavenumber k by (2.2), the dissipation
factor σ being given in (2.3). The first wave to
emerge from rest is the one requiring the smaller
value of F↑, i.e., this wave corresponds to the
wavenumber such that ∂F↑/∂k = 0, i.e.,

∂ F↑
∂k

=
16 (ω0 − ω)

ω2 F↑

∂ ω0

∂k
+

16 σ

ω2 F↑

∂ σ

∂k
= 0,

(5.1)
together with ω = Ω/2.

In the limiting case of deep water (i.e., d =
∞, ω0 =

√
gk, σ = 2νk2, the most unstable

wavenumber k given by (5.1) is

2ω0 = ω +
√

ω2 − 16σ2.

In the opposite limit of long waves (i.e. kd ≪ 1,
ω0 = k

√
gd, σ = (gd)1/4

√
kν/8d2), the most

unstable wavenumber corresponds to

ω0 = ω − 16ν/d2.

In both cases, the first mode emerging from the
rest is such that ω0 < ω. The same conclu-
sion arises for arbitrary depth and with surface
tension under quite general assumptions (to be
explained at the conference). We conclude that
the critical mode ω0(k) selected at the desta-
bilisation threshold F↑ of the rest state fulfils
the inequality ω0 < ω = Ω/2 in both cases of
short and long waves. However, as we men-
tioned above, the sign of the nonlinear term in
equation (3.1) depends on the depth, K being
positive for short waves, and negative for long
ones. Therefore, we conclude that the transition
from the rest to the wavy state is subcritical (i.e.,
with hysteresis) for long waves, and supercritical
(i.e., smooth) for short waves.

6 Conclusion

The dispersion relation of Faraday waves is
modified compared to that of free, unforced
waves: the forcing amplitude and the dissipa-
tion play a key role in the relation of disper-
sion. For a given forcing frequency, there are
two corresponding wavenumbers. We have de-
termined the value of the forcing at the insta-
bility threshold, in both cases of short and long
waves, as well as the selected wavenumbers. We
have also studied the nature of the bifurcation
at the instability onset, and we have shown that
the transition is supercritical for short waves
and subcritical for long waves.
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SUMMARY In this paper the wave breaking induced by modulational instability is investigated numerically. The wave
train is composed by a fundamental component with two sideband disturbances and the analysis is performed for those
conditions in which the instability leads the limiting steepness to be exceeded. Due to the different speeds characterizing
individual waves and the peak of the envelope, the breaking is recurrent and several breaking events are found. The study
is focused on the quantification of the initial energy fraction dissipated by the entire breaking process and on the changes
operated by the breaking to the initial spectrum.

1. INTRODUCTION

Free surface waves break when the steepness reaches some
limiting values. There are several phenomena which can
make this happen, e.g. wind-wave and wave-current inter-
actions, shoaling effects, modulation of long waves operated
by shorter ones, among others. In typical background deep-
water oceanic conditions for dominant waves, however, these
processes are two: linear superposition and modulational in-
stability (Babanin et al., 2011).

Due to the complexity of field measurements, detailed
experimental studies of the breaking process have been mainly
done in laboratory (Perlin et al., 2013). Most of the studies
investigate the breaking induced by the dispersive focusing
technique, e.g. (Rapp & Melville, 1990; Drazen et al., 2008;
Grue et al., 2003) among many others. In this way the
breaking occurs at the focusing point as one single event.
This is not the case of the wave breaking taking place in
open ocean, for which recurrence is observed (Donelan et
al., 1972; Lamont-Smith et al., 2003) as a consequence of
the interaction of the peak wave component with the group
envelope. The generation of such breaking in laboratory is
hampered by the quite long distances needed for the devel-
opment of the modulational instability. Moreover, even if
the first breaking event can be generated, the limited lengths
of wave tanks do not allow to follow the breaking process
up to the end.

The energy dissipation and the spectrum changes asso-
ciated to the breaking are very important for wave fore-
casting models operating on large scales (e.g. Xiao et al.,
2013). In order to investigate those aspects, in previous
studies the breaking generated by modulational instability
was simulated numerically (Iafrati et al., 2012; 2013; 2014).
The recurrence of the breaking process was observed and
the energy amount dissipated by single breaking events was
quantified for some conditions. However, not all simulations
performed arrived at the end of the breaking processes and
thus it wasn’t possible to quantify the total energy dissipa-
tion and the changes to the pre-breaking spectrum.

In this paper some analyses similar to those discussed
in Iafrati et al. (2014) are performed. Larger initial steep-
nesses are considered in order to shorten the transient needed
to get to the onset of the breaking. Differently from Iafrati
et al. (2014), here the open source Gerris code is adopted

which has a sharp interface treatment and rather flexible
adaptive refinement capabilities, which allow an efficient use
of the computational resources. The time histories of the
total energy content in water as well as the corresponding
evolution of the spectra and of the maximum wave steep-
ness are shown. It is worth remarking that results presented
here are based on a two-dimensional assumption. It is hoped
that some preliminary results of three-dimensional simula-
tions can be presented at the Workshop.

2. NUMERICAL SETUP

By following what was presented in a previous edition of
this Workshop (Landrini et al., 1998), the initial condition
is composed by a fundamental wave component with two
small side band disturbances, amplitude of which is one
tenth of the fundamental component at the beginning of
the simulation. The free surface elevation η is thus

η(x, 0) =
ε0
k0

[
cos(k0x) + 0.1 cos

(
6

5
k0x

)
+ 0.1 cos

(
4

5
k0x

)]

where k0 = 2π/λ0 the wave number and ε0 = a0k0 the
steepness, a0 denoting the amplitude of the fundamental
component of wavelength λ0. The initial velocity field in
the water domain is taken from linear theory as

u(x, 0) = ε0

[√
g

k0
exp(k0y) cos(k0x)

+ 0.1

√
6

5

√
g

k0
exp

(
6

5
k0y

)
cos

(
6

5
k0x

)

+ 0.1

√
4

5

√
g

k0
exp

(
4

5
k0y

)
cos

(
4

5
k0x

)]

v(x, 0) = ε0

[√
g

k0
exp(k0y) sin(k0x)

+ 0.1

√
6

5

√
g

k0
exp

(
6

5
k0y

)
sin

(
6

5
k0x

)

+ 0.1

√
4

5

√
g

k0
exp

(
4

5
k0y

)
sin

(
4

5
k0x

)]
,

where g = 9.81 m s−2 is the gravity acceleration. Sim-
ulations are conducted for fundamental wavelength λ0 =
0.60 m, which is used as reference value for lengths. Periodic
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case Re steepness
I 105 0.18
II 105 0.20
III 105 0.22
IV 1455664.8 0.18
V 1455664.8 0.20
VI 1455664.8 0.22

Table 1: Simulation conditions

boundary conditions are used at the sides in the horizontal
direction. The domain width is 5λ0 whereas in the vertical
direction the domain spans from y = −0.5λ0 to y = 1.5λ0,
y = 0 being the still water level.

Simulations are performed by using the open-source Ger-
ris software (http://gfs.sourceforge.net) which solves the in-
compressible Navier-Stokes equations and has adaptive mesh
refinement capabilities by using quad-octree discretization.
The solver is based on a projection method and uses a mul-
tilevel Poisson solver (Popinet, 2009). The governing equa-
tions of the problem are:

du

dt
= α(T )

{
−∇p+∇ · [µ(T )(∇u +∇uT )] + σκδsn

}

for the fluid, and:

d

dt

∫

V

T dv +

∮

S

(Tu) · n ds = 0

for the interface advection, where u and p are, respectively,
the velocity field and the pressure, α = 1/ρ, ρ(T ) the local
fluid density, µ(T ) the dynamic viscosity, T the Volume-
of-fluid variable, κ the interface curvature, σ the surface
tension coefficient and δs the Dirac distribution which is
zero out of the interface.

The fluid properties are related to the VOF variable T
as:

ρ(T ) = ρaT + ρw(1− T )

µ(T ) = µa · T + µw(1− T )

so that T = 1 in air and T = 0 in water. The sim-
ulations presented here refer to the following parameters:
µa = 1.810 · 10−5 N s m−2, µw = 10−3 N s m−2, ρa = 1.25
kg/m3, ρw = 1000 kg/m3 and σ = 0.072 N/m (subscripts
a and w stand for air and water, respectively). Nondimen-
sional parameters of the problem are:

Re =
√
gλ0

ρwλ0
µw

= 1455664.8 (1)

We =
√
gλ0

ρwλ0
σw

= 219.95 (2)

where a quantity related to the phase speed,
√
gλ0, is used

as reference velocity. As a first step of the study, in or-
der to get confidence with the computational tool and with
its adaptive refinement capabilities, simulations were per-
formed using the much lower value of Re = 105. For this
case several simulations were performed and it was found

that a maximum resolution of 512 point for wavelength is
enough to resolve all the dissipative scales, leading to a grid
of 2560x1024 points. In order to limit the computational
effort, the adaptive refinement is used. The refinement is
based on the gradient of the VOF function and on the vortic-
ity. In a second step, the full Reynolds number was adopted,
which required a maximum resolution of 2048 grid point for
wavelength for convergence in terms of energy dissipation.
The cases studied are summarized in Table 1.

3. NUMERICAL RESULTS

In order to show the dissipation of the wave energy as a
result of the breaking process, the time history of the total
energy in water, computed as the sum of the kinetic and
potential components, is drawn in Fig. 1 for the case with
initial steepness ε0 = 0.20. Note that the energy is nondi-
mensionalized by using the square of the reference velocity
used for the definition of the Reynolds and Weber numbers,
i.e. gλ0. The time is made nondimensional by the charac-
teristic time T0 = λ0/

√
gλ0. Note that, from linear theory,

the wave period of the fundamental component is
√

2π ' 2.5
nondimensional time units.

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

 0.0024

 0.0025

 0.0026

 0.0027

 0  20  40  60  80  100

E
w

( 
t 

)

t /T0

Case II
Case V

Figure 1: Time history of the total mechanical energy con-
tent in water for cases II and V.

From the time histories of the energy it can be seen that,
independently of the Reynolds number, there is an initial
phase during which the instability develops (see Iafrati et
al., 2014). During this stage the energy diminishes only
due to the viscous effects associated to the orbital motion.
Next, the breaking starts. As already discussed in Iafrati et
al. (2014), the breaking is recurrent with a period which is
twice the period of the fundamental wave component. This
is explained as the wave crest propagates with the phase
speed cp whereas the envelop propagates with the group
velocity cg which is half of the phase speed (Lamont-Smith
et al., 2003).

The data in Fig. 1 indicate that the energy amount dis-
sipated by the single breaking event can vary substantially.
In terms of the total energy dissipated by the breaking pro-
cess, the simulations at the two Reynolds numbers, although
being characterized by a quite different decay in the pre-
breaking stage, display a quite similar behavior during the
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breaking process, in terms of the total energy fraction dissi-
pated by the breaking and of duration of the process, which
is about 20 wave periods in both cases. This is a quite im-
portant finding as it indicates that the scale does not play
a too relevant role on those aspects, and thus makes the
present result applicable to wavelengths much longer than
the 0.60 m adopted here.
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Figure 2: Comparisons of the spectra at different times dur-
ing the breaking process. The figures refer to the times in-
dicated by circles in Fig. 1. No substantial differences occur
between the results at the two Reynolds numbers.

The occurrence of breaking causes a reduction of the
higher wavelength components. In order to highlight the
phenomenon and to provide a quantitative estimate the
spectra at different phases of the breaking process are drawn
in Fig. 2. The phenomenon, which was discussed on the ba-
sis of experimental data by Tulin and Waseda (1999) and
was referred to as downshifting, is clearly shown also by the
computational results. By comparing the spectra at the two
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Figure 3: Sketch of the way used to compute the wave height
and the wavelength for the calculation of the maximum wave
steepness.

Reynolds numbers shown in Fig. 2c with the corresponding
energy contents at the same time shown in Fig. 1, it can
be noticed that the spectra are essentially similar although
the energy content is quite different. It would seem that
the spectrum is mainly related to the time elapsed from the
breaking on set rather than the actual energy dissipation,
but the point needs a much deeper investigation. Figure
2 indicates that also in terms of the spectra, the results of
the simulations at the two different Reynolds display a quite
nice overlapping, despite the different dissipation rate in the
pre-breaking stage.

Among the many open questions concerning the break-
ing generated by the modulational instability, an important
question is when the breaking ends. As an attempt of an-
swering this question, at each time step the maximum wave
steepness is computed. Several definitions exist for that
parameter, which depends on how the wavelength and the
wave amplitude are defined. In this work the maximum
steepness is computed as the maximum of the quantity

ε =
H

2

2π

l

where H is the vertical distance between the crest and the
trough at the right whereas l is the distance between the
two troughs next to the crest (see Fig. 3).

In Fig. 4 the time histories of the maximum wave steep-
ness are plotted together with the corresponding energy con-
tents in water. The threshold steepness of 0.32 discussed in
Grue and Fructus (2010) and in Iafrati (2009) is also drawn.
Although simulations IV and VI are still going, the results
indicate that the breaking starts when a limiting steepness
is reached and ceases once the steepness drops below the
threshold value. Note that once the breaking ceases the
energy dissipation rate takes about the same slope of the
pre-breaking phase. These conclusions are essentially simi-
lar to what was found for a gentle spilling breaking in Iafrati
(2011). It is worth noticing that the reduction of the wave
steepness shown in Fig. 4 is only partly related to the re-
duction in the wave amplitude whereas a important role is
played by the downshifting phenomenon. This is clearly
seen in Fig. 2 where the peak of the spectrum moves from
k = 10.47 m−1 to k = 8.37 m−1.

Before closing this section, it is worth providing a few
additional considerations on the time histories of the maxi-
mum steepness provided in Fig. 4. The maximum steepness
oscillates with a period of about 5 nondimensional units,
which is twice the wave period. As already discussed, this
is a consequence of the interaction between the wave com-
ponents and the group envelope. A second remark concerns
the peak values of the steepness reached during the break-
ing process for which numerical results predict maximum
values exceeding 0.55. In Toffoli et al. (2010), the value
0.55 was found to be a limiting steepness for oceanic waves.
It is not clear at the moment if the larger values found here
are caused by the way in which the maximum steepness is
computed during the breaking event when the free surface
takes quite complicated shapes. Further studies are needed
to clarify this aspect.
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Figure 4: Time histories of the maximum wave steepness
and of the total energy content in water for the three
different steepnesses: a) case IV (ε0 = 0.18), b) case V
(ε0 = 0.20), c) case VI (ε0 = 0.22). The horizontal line
indicate the threshold steepness of 0.32.
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1 Introduction

We consider the linear problem of water waves scattering by a vertical cylinder with non-circular cross
section extending from the sea bottom to the free surface in water of finite depth h. We assume a
plane wavetrain incident from x ∼ −∞ and propagating at an angle α to the positive x−direction
toward a vertical cylinder whose cross section is described by the equation r = R+ εf(θ) with ε� 1.
The function f(θ) describes the deviation of the shape of the cylinder from the circular one, f(θ) = 0
corresponds to the circular cylinder with radius R. The problem of wave scattering by a nearly circular
cylinder was formulated in [1]. The top view of the problem is shown in Figure 1. The problem of
wave diffraction by a vertical cylinder has been solved by a number of researchers for many different
shapes. The challenge of the present study is to solve the complex body geometries with less effort.
The abstract presents the results which have been obtained for one simple geometry: a cylinder with
elliptic cross section.

Figure 1: Top view of the problem configuration.

2 Mathematical Formulation of The Problem

The linear boundary problem is formulated with respect to the velocity potential Φ(r, θ, z, t)

Φ(r, θ, z, t) = <
{
gA

ω

cosh[k(z + h)]

cosh(kh)
φ(r, θ)e−iwt

}
,

where φ satisfies the Helmholtz equation (∇2 + k2)φ = 0 in the flow region, A is the incident wave
amplitude, k = 2π

λ is the wave number, λ is the incident wave length, ω is the wave frequency related
to the wave number k by the dispersion relation ω2 = gk tanh(kh), where g is the gravitational
acceleration. The coordinate system (r, θ, z) is used with the origin at the free surface and the z-axis
directed upwards. The axis of the corresponding circular cylinder with ε = 0 coincides with the z-axis.

The boundary condition on the cylinder r = R+ εf(θ) is

∂φ

∂n
= 0 on r = R+ εf(θ), −h < z < 0, (1)
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where ~n is the unit normal vector on the cylinder. This boundary condition can be written as

∂φ

∂r
(R+ εf(θ), θ)− εf ′(θ)

[
R+ εf(θ)

]2
∂φ

∂θ
(R+ εf(θ), θ) = 0. (2)

We approximate the boundary condition (2) up to O(ε5) using the Taylor expansion at r = R and
substitute the fifth order asymptotic expansion of the potential φ

φ(r, θ) = φ0(r, θ) + εφ1(r, θ) + ε2φ2(r, θ) + ε3φ3(r, θ) + ε4φ4(r, θ) +O(ε5), (3)

into the boundary condition (2) with the result

φ0,r + ε

[
φ1,r + f(θ)φ0,rr −

f ′(θ)
R2

φ0,θ

]

+ ε2
[
φ2,r + f(θ)φ1,rr −

f ′(θ)
R2

φ1,θ +
f2(θ)

2
φ0,rrr +

2f(θ)f ′(θ)
R3

φ0,θ −
f(θ)f ′(θ)

R2
φ0,rθ

]

+ ε3
[
φ3,r + f(θ)φ2,rr −

f ′(θ)
R2

φ2,θ +
f2(θ)

2
φ1,rrr +

2f(θ)f ′(θ)
a3

φ1,θ −
f(θ)f ′(θ)

R2
φ1,rθ

+
2f2(θ)f ′(θ)

R3
φ0,rθ +

f3(θ)

6
φ0,rrrr −

3f2(θ)f ′(θ)
R4

φ0,θ −
f2(θ)f ′(θ)

2R2
φ0,rrθ

]

+ ε4
[
φ4,r + f(θ)φ3,rr −

f ′(θ)
R2

φ3,θ +
f2(θ)

2
φ2,rrr −

f(θ)f ′(θ)
a2

φ2,rθ +
2f(θ)f ′(θ)

R3
φ2,θ

− 3f2(θ)f ′(θ)
R4

φ1,θ −
f2(θ)f ′(θ)

2a2
φ1,rrθ +

2f2(θ)f ′(θ)
a3

φ1,rθ +
f3(θ)

6
φ1,rrrr

− 3f3(θ)f ′(θ)
R4

φ0,rθ +
f3(θ)f ′(θ)

a3
φ0,rrθ −

f3(θ)f ′(θ)
6a2

φ0,rrrθ +
f4(θ)

24
φ0,rrrrr +

4f3(θ)f ′(θ)
R5

φ0,θ

]
= 0,

(4)

where the functions are computed at r = R. Since the right hand side of this equation is zero, the
coeffcients of εi, i = 0, 1, 2, 3, 4, on the left hand side of (4) are equal to zero. Using (4) we derive five
boundary conditions for five unknown potentials φi(r, θ), i = 0, 1, 2, 3, 4, first two of them are:

φ0,r(R, θ) = 0, (5)

φ1,r(R, θ) =
1

R2
f ′(θ)φ0,θ(R, θ)− f(θ)φ0,rr(R, θ). (6)

It is clear that φ0(r, θ) is the velocity potential of the diffraction problem for the circular cylinder
r = R with the solution (see [1])

φ0(r, θ) =
∞∑

m=0

εmi
m

[
Jm(kr)− J ′m(kR)

H
(1)′
m (kR)

H(1)
m (kr)

]
cos[m(θ − α)],

which satisfies equation (5), where εm is the Neumann symbol which is given by ε0 = 1, εm = 2,
m ≥ 1. The series converges exponentially as m→∞.

The most general representations of φi(r, θ), i = 1, 2, 3, 4, which satisfy the radiation condition at
infinity are

φi(r, θ) =

∞∑

m=0

[
Ci,m cos[m(θ − α)] +Di,m sin[m(θ − α)]

]
H(1)
m (kr),

where the evanescent modes are not included (see [1]) and Ci,m and Di,m, i = 0, 1, 2, 3, 4, are unknown
coeffcients. The coefficients can be determined using the boundary conditions (5),(6) and the other 3
conditions and hence we can find the velocity potentials with the accuracy O(ε5).
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We also assume that f(θ) can be written as a Fourier series

f(θ) =
f c0
2

+
∞∑

m=1

[f cm cos(mθ) + fsm sin(mθ)],

where the coeffcients f ci and fsi , i = 0, 1, 2, . . . depend on a particular shape of the vertical cylinder
in waves. If the function f(θ) is independent of ε then the right hand side of the conditions (5), (6)
and the other 3 conditions depends only on θ. So we can write these conditions as φi,r(a, θ) = Gi(θ),
i = 0, 1, 2, 3, 4, where Gi(θ) are represented by their Fourier series. After writing Gi(θ) as Fourier
series, we can find the unknown coefficients Ci,m and Di,m, i = 0, 1, 2, 3, 4.

If the function f(θ, ε) depends on θ and ε, then we can use the asymptotic expansion of f(θ, ε) as
ε→ 0:

f(θ, ε) = f0(θ) + εf1(θ) + ε2f2(θ) + ε3f3(θ) + ε4f4(θ) +O(ε5),

or higher order, and substituting this into (4) and then applying the same procedure as in the previous
case we can find the unknown coefficients. As an example of this case, we have solved a problem for
the cylinder with elliptic cross section of small eccentricity in the next section and calculated the
hydrodynamic forces acting on this cylinder. The x and y components of the hydrodynamic force due
to the fluid motion are given by

Fx = <
{−iρgA tanh(kh)

k

[∫ 2π

0
φ(a+ εf(θ), θ)[εf ′(θ) sin θ + [a+ εf(θ)] cos θ] dθ

]
e−iwt

}
, (7)

Fy = <
{−iρgA tanh(kh)

k

[∫ 2π

0
φ(a+ εf(θ), θ)[−εf ′(θ) cos θ + [a+ εf(θ)] sin θ] dθ

]
e−iwt

}
. (8)

Dividing Fx and Fy by ρgAπa2 tanh(kh), we arrive at the non-dimensionalized force components F̃x
and F̃y.

3 Example: Elliptic cylinder

The ellipse’s equation in the polar coordinates with the origin at the focus reads

r =
a(1− e2)
1− e cos θ

, (9)

where e =
√

1− b2

a2
, 0 < e < 1, is the eccentricity of the ellipse, a is semi-major axis, b is semi-minor

axis. Assuming e� 1 and setting e = ε we can write (9) in the form of Fourier series and then using
Taylor expansion about ε = 0 we obtain

r = R+ εf(θ) = a
√

1− ε2 + 2a
√

1− ε2
∞∑

n=1

[
ε

1 +
√

1− ε2
]n

cos(nθ)

= a+ εa cos θ − ε2a sin2 θ − ε3a cos θ sin2 θ + ε4a cos2 θ sin2 θ +O(ε5).

Hence,

R = a,

f(θ) = a cos θ − εa sin2 θ − ε2a cos θ sin2 θ + ε3a cos2 θ sin2 θ +O(ε4) (10)

in (2). Rewriting conditions (5),(6) and the other 3 conditions for the function (10) we get:

φ0,r(a, θ) =0,

φ1,r(a, θ) =− 1

a
sin θφ0,θ(a, θ)− a cos θφ0,rr(a, θ),

φ2,r(a, θ) =− a cos θφ1,rr(a, θ) + a sin2 θφ0,rr(a, θ)−
a2 cos2 θ

2
φ0,rrr(a, θ)−

1

a
sin θφ1,θ(a, θ).

In the same manner, we can write the conditions for φ3,r(a, θ) and φ4,r(a, θ).
Substituting (10) into the equations (7), (8) and dividing them by ρgAπa2 tanh(kh), we get non-

dimensionalized force components F̃x, F̃y for elliptic cylinder.
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4 Results and Conclusions

We have applied the asymptotic analysis described above to scattering problems of one-dimensional
waves by a vertical cylinder with non-circular cross section. For an elliptic cylinder, we compared
our results with the results by Williams [2] who used the expansion of the exact expressions for the
forces which are given by the Mathieu functions for small values of the elliptic eccentricity parameter.
The present asymptotic approach provides a good approximation for the forces exerted on the elliptic
cylinder with eccentricity ε = 0.5 to the incident wave for values of α = 0◦ and α = 90◦ (see Figure 2,
Figure 3). We found that, if the incident wave makes zero angle with the positive x-axis and ka→ 0,
then

F̃x =

[
2− 3

2
ε2 − 1

8
ε4 +O(ε6)

]
cosωt,

and if the incident wave makes the angle of π
2 with the positive x-axis and ka→ 0, then

F̃y =

[
2− 1

2
ε2 − 1

8
ε4 +O(ε6)

]
cosωt,

which coincide with the asymptotic formulae from [2].
In conclusion, for different shapes of a vertical cylinder, r = R+ εf(θ), we can find the wave forces

acting on the cylinder by using the formulae (7) and (8).

Figure 2: The x-component of the non-
dimensionlized force on elliptic cylinder for ε =
0.5. (Solid curve is from [2], dotted curve is by
the present method).

Figure 3: The y-component of the non-
dimensionlized force on elliptic cylinder for ε =
0.5. (Solid curve is from [2], dotted curve is by
the present method).
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Ship waves at finite depth in the presence of uniform vorticity
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Highlights

• Theory for ship waves in the presence of a shear flow of uniform vorticity is extended to the case of finite
water depth.

• The presence of a shear flow, at arbitrary angle with the ship’s direction of motion, introduces novel
features such as asymmetric wakes, non-constant Kelvin wake angles and critical ship velocity above
which transverse waves vanish.

• An explicit expression for the critical velocity with both shear and finite depth is derived, together with
limits for the corresponding sector of wave propagation forbidden at supercritical velocities. A subtle
interplay between shear flow and water depth is found.

I. INTRODUCTION

The theory of ship waves dates back to Lord Kelvin,
who showed in 1887 that the angle formed by the
waves in a ship’s wake always forms the same angle,
ϕK = 19◦28′[1]. The theory was developed further, in
particular, by Havelock [2, 3], and is reviewed in the
classical literature[4, 5]. Ship waves, and the Kelvin
angle in particular, have lately received much atten-
tion in the literature [6–13]. Recently, the classical
theory was extended by one of us to include the pres-
ence of a Couette-type shear flow of uniform vorticity
below the surface [14], forming an arbitrary angle with
the ship’s direction of motion.

Several realistic situations involve the presence of
shear flow beneath the water surface; examples in-
clude shallow rivers, sub-surface currents, and when
the water near the surface is set in motion by wind
(e.g. [15]). As a model flow we consider the simplest
shear flow, namely a flow of uniform vorticity (Cou-
ette profile). While somewhat idealised compared to
real flows (note that G.I. Taylor observed this kind of
profile where a bubble curtain surfaces [16]), it allows
reasonably straightforward analysis, and is an impor-
tant stepping stone towards understanding the inter-
action of ship waves with more general shear profiles.

The presence of a shear flow below the surface was
found in Ref. [14] to have a profound influence on
the ship waves, determined mainly by the dimensional
group FrS = V S/g where S is the shear (vorticity),
V is the speed of the ship and g the acceleration of
gravity. It may be interpreted as a “shear Froude
number” based on the length g/S2, and implies, cru-
cially, that even moderate shear becomes important
for fast–moving ships.

In the following we extend the theory to the case
where the water has a finite depth h. While the re-
derivation of the governing equations is only slightly

∗ simen.a.ellingsen@ntnu.no

z

x
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V

U(z)

h

FIG. 1. The geometry considered.

complicated by the incorporation of the extra param-
eter, the introduction of a finite depth is by no means
trivial, since the effects of water depth and shear flow
interact with each other.

A particularly interesting point reported in Ref. [14]
is that the presence of the shear flow implies that in
every direction of ship motion except exactly along
the shear current, there exists a critical ship velocity
Vcrit beyond which no transverse waves are produced
by the boat. The physical reason is that the shear
limits the phase velocity of even very long waves, and
that transverse waves, propagating in directions close
to that of the ship’s movement, cannot keep up with a
ship moving faster than the maximum phase velocity.
Exactly the same phenomenon is well known to appear
in the case of ship waves at finite depth [3], where the
phase velocity can never exceed cmax =

√
gh.

II. THEORY

The geometry of the problem is shown in Fig. 1.
A ship travels at velocity V relative to the surface
of the water. We choose the coordinate system so
that the surface velocity is zero, and the basic flow is
U(z) = Sz along the x axis. The water depth is h, the
water density is ρ and we assume incompressible flow.
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We let β be the angle between the ship’s motion and
the shear flow as shown in Fig. 1. The ship perturbs
the basic flow so that the velocity and pressure field
become

v = [U(z) + û, v̂, ŵ]; p = −ρgz + p̂. (1)

We work to linear order in these perturbations. Not-
ing that ship waves must appear stationary as seen
from the moving ship, the perturbed quantities can
depend on time only through the combination ξ =
r⊥ − Vt where r⊥ = (x, y). We therefore subject all
physical quantities to the plane Fourier transform

û(ξ, z) =

∫
d2k

(2π)2
u(k, z)eik·ξ, (2)

etc. Here k = (kx, ky) = (k cos θ, k sin θ). The physi-
cal value is the real part.

Because of the presence of vorticity in an essen-
tially three–dimensional problem, the velocity poten-
tial could not be used, and it was necessary to solve
the full Euler equations, where the only assumptions
made was incompressibility and that viscosity may be
neglected. The Euler equations and continuity equa-
tion then read

ikxu + ikyv + w′ =0; (3a)

i(kxU − k · V)u + Sw = − ikxp/ρ; (3b)

i(kxU − k · V)v = − ikyp/ρ; (3c)

i(kxU − k · V)w = − p′/ρ, (3d)

where a prime denotes derivation w.r.t. z. We can
eliminate u, v and p from these equations to ob-
tain an equation for w alone (Rayleigh equation):
w′′ = k2w. When subjected to the boundary con-
dition w(k,−h) = 0 we obtain the solutions

u =iA

[
kx cosh k(z + h) +

Sk2
y sinh k(z + h)

k(kxU − k · V)

]
(4a)

v =iA

[
ky cosh k(z + h) − Skxky sinh k(z + h)

k(kxU − k · V)

]

(4b)

w =kA sinh k(z + h) (4c)

p = − iA[(kxU − k · V) cosh k(z + h)

− S cos θ sinh k(z + h)]. (4d)

where A(k) is as yet undetermined.
The ship is modelled as a travelling pressure distur-

bance on the surface, chosen to have Gaussian form
for ease of comparison with literature [7, 8]:

p̂ext = p0e
−π2ξ2/b2 ; pext = (b2p0/π)e−k2b2/(2π)2 (5)

where pext is the Fourier transform of p̂ext and ξ =
|ξ|. Here b is the “size” of the ship, and the ship’s
Froude number is Frb = V/

√
gb. Moreover we define

the surface elevation ζ(ξ) relative to an undisturbed
surface to be

ζ(ξ) =

∫
d2k

(2π)2
B(k)eik·ξ. (6)

Inserting the above solutions and definitions into the
dynamic and kinematic boundary conditions at the
free surface now gives two equations with A and B as
unknown, from which we eliminate A to produce

B(k) = −1

ρ

kpext(k)

gk − (k · V)2 coth kh − S cos θ(k · V)
.

(7)
This, in principle, is the full solution for the sur-
face wave, where the generalisation from the infinite
depth case reported in Ref. [14] is only the extra factor
coth kh in the denominator. While seemingly innocu-
ous, the added factor not only complicates the further
analysis but its physical repercussions are also pro-
found.

III. THE FAR-FIELD SOLUTION

The linear theory of ship waves, indeed of any waves
generated by a localised source, encounter the same
difficulty, that resulting expressions for the surface
elevation contain a pole (or several) in the k plane.
As discussed at length in the classical literature (e.g.
[5, 17], the contribution from this pole contains the
far-field, while further contributions to the integral
vanish as ξ → ∞. Physically this may be understood
by noting that the zero of the denominator of (7) cor-
responds exactly to the condition

V cos(θ − β) = c(k) (8)

where [18]

c(k) =

√
(g/k) tanh kh + (S/2k)2 cos2 θ tanh2 kh

− (S/2k) cos θ tanh kh (9)

is the phase velocity for a wave vector k. Equation (8)
results from insisting that waves seen in the far–field
must satisfy the dispersion relation and have a phase
velocity which produces waves which are stationary
as seen from the source. In the following it will be
convenient to work with the angle γ = θ − β instead
of θ.

A complication is now that unlike the case of infinite
depth, no explicit expression for the value of k at the
pole may be found. The solution K(γ) must instead
be found numerically. The contribution from the pole
is found by using the Sokhotsky-Plemelj theorem ex-
actly as in Ref. [14], and the resulting expression in
the far–field may be written

ζ(ξ) = − 1

4ρπ

∫ π/2

−π/2

dγK(γ)pext(K(γ))

× sin[K(γ)ξ cos(γ + β − ϕ)]
∂
∂kG(k, γ)|k=K(γ)

; (10)

G(k, γ) =k − g

V 2

[
1

cos2 γ

− FrS cos(γ + β)

cos γ

]
tanh kh, (11)
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FIG. 2. Example of an asymmetric ship wake resulting
from a sub–surface shear current normal to the ship’s di-
rection of motion. Here β = π/2, Frb = 0.8, FrS = 0.5 and
h = ∞. The ship travels towards the right, and the dashed
lines show the Kelvin angles (as defined in Ref. [14]) on
either side of the wake.

where we have noted that only angles |γ| < π/2 can
possibly satisfy Eq. (8), i.e., the wave propagation di-
rection must have positive component along the direc-
tion of ship motion. K(γ) now solves G(k, γ) = 0. An
example of a boat wake with side–on shear is shown in
figure 2, where the asymmetry both of the wake and
of the Kelvin angles is clear to see.

IV. THE CRITICAL VELOCITY

When the velocity exceeds a critical value, it is
necessary to further restrict the integration sector in
Eq. (10), because waves propagating close to paral-
lel with the ship motion (so–called transverse waves)
are unable to keep up. To wit, equation (8) cannot
be satisfied in a propagation direction θ for which
V cos γ > cmax(θ) where cmax is the maximum phase
velocity in said direction. From Eq. (9) one quickly
verifies that the maximum velocity is found as k → 0,
hence the velocity V is supercritical when,

V cos γ >
√

gh + [ 12Sh cos(γ + β)]2 − 1
2Sh cos(γ + β).

We can re-write the condition for supercriticality as

max
γ

[FrS cos γ cos(γ + β) + Frh cos2 γ] > 1 (12)

where Frh = V/
√

gh and the maximum is taken with
respect to γ. Some straightforward but tedious alge-
bra reveals that the maximum of the left hand side of
(12) is found where tan γ = −1

2FrS sin β. This is the
propagation direction whose waves are first to vanish
once the velocity exceeds the critical. Inserting this

back into (12) we may write the condition for the ve-
locity to be supercritical to be

FrS(cos β + 1
2FrS sin2 β) + Fr2h > 1. (13)

At infinite depth (Frh → 0) the critical value of FrS

was found in Ref. [14] to be FrS,crit = 1/ cos2(β/2).
That what we have found is a generalisation of this
is obvious when noting that Eq. (13) may be written
instead as

Fr2h
1 + FrS sin2(β/2)

+ FrS cos2(β/2) > 1. (14)

Solved with respect to velocity, the critical value of
V can be found as

Vcrit = 2
√

gh

√
Fr2Sh + 4 − FrSh cos β

4 + Fr2Sh sin2 β
(15)

where we defined the dimensionless group FrSh =
S

√
h/g (again a Froude number, with respect to

length h and velocity Sh). Eq. (15) is readily found
to have the appropriate limits as h → ∞ and S → 0.

We may finally derive, from Eq. (12), the angu-
lar sector in which waves are unable to keep up with
the source and must be excluded from the integral of
Eq. (10). A little algebra gives the two cutoff angles
as

γ±
co =arctan

[
− 1

2FrS sinβ

±
√

( 1
2FrS sinβ)2 + Fr2h + FrS cos β − 1

]
.3g

(16)

Angles γ−
co < γ < γ+

co must be excluded from the inte-
gral, and only waves travelling at a sufficiently large
angle with the ship’s motion (diverging waves) may
contribute to the wake.

V. DISCUSSION

The wake of waves behind a moving ship can change
quite radically when a shear flow is present beneath
the surface. The wake can be asymmetric and have
a smaller or larger Kelvin angles than for uniformly
flowing water, depending on the relative direction of
motion of ship and shear flow. The presence of shear
also limits the phase velocity of waves, introducing a
critical velocity beyond which the transverse part of
the wake disappears. This phenomenon is previously
known from ship waves on water of finite depth. In
the present endeavour we have laid out the theory for
ship waves in the presence of both shear flow and finite
depth, and found the critical ship velocity as an ex-
plicit function of shear, depth and the ship’s direction
of motion.
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Highlights:

• A small gap approximation is used to show total
transmission through multiple narrow gaps in barriers
across a channel.

• Coupled integral equations are solved exactly on the
basis of the small gap approximation.

1. Introduction

The phenomenon of ‘extraordinary transmission’ was
first discovered in the field of optics. A recent review
is given by Garcia de Abajo (2007).
Total transmission of a plane wave at a certain fre-
quency is very familiar in the theory of linear water
waves involving transmission over a long obstacle or
past a pair of obstacles. See for example Newman
(1965) and Porter & Evans (1995).
The solution to the problem of the transmission of
plane waves through a gap in a barrier spanning a
narrow channel is well-known. See for example Jones
(1986) for an electromagnetic context. In this paper
we show that 100% transmission can occur at a given
frequency for an infinite sequence of spacings, when
one or more extra identical barriers with small gaps
are introduced. Specifically we consider the transmis-
sion of long waves down a channel of width 2d contain-
ing N equally-spaced thin rigid barriers spanning the
channel each containing a central narrow gap of width
2a. It is shown by comparison with a full numerical
treatment that a small-gap approximation to the sin-
gle barrier is remarkably accurate for a range of gap
sizes. The technique is extended to obtain closed-form
expressions for the reflection and transmission coeffi-
cients through the periodic array which are shown, as
the spacing between the barriers increases, to reduce to
the simple expressions based on a wide-spacing aproxi-
mation (WSA) given, for example, by Martin (2014). A
key feature of the problem is the derivation of the con-
dition under which we are in a pass or stop-band for the
periodic structure. Also obtained is the condition for
total reflection which disappears as the barrier spacing
increases which is consistent with its non-appearance
under the WSA.

2. The N-barrier problem

Since the channel walls and the barriers extend
throughout the depth it is possible to factor out the

depth dependence and we also assume a time harmonic
dependence e−iωt. Thus we seek a two-dimensional po-
tential φ(x, y) satisfying

(∇2 + k2)φ = 0 (1)

in the fluid, where the wavenumber k is the real positive
root of

ω2 = gk tanh kh (2)

where h is the depth of the channel. The barriers oc-
cupy x = bn = nb, n = 0, 1, 2, . . . , N − 1, and the gaps
occupy L = {|y| < a}. The no-flow condition on the
walls demands

φy(x, ±d) = 0, −∞ < x < ∞ (3)

whilst on the nth barrier (n = 0, 1, 2, . . . , N − 1)

φx(b±
n , y) = 0, a < |y| < d. (4)

For x < 0, general solutions of (1) satisfying (3) are

φ(x, y) = eikx + RNe−ikx +

∞∑

r=1

F
(0)
r eαrx cos pry

αr
(5)

where pr = rπ/d, αr = (p2
r − k2)1/2, α0 = −ik, k <

π/d. For x > (N − 1)b, we write

φ(x, y) = TNeik(x−bN−1)

−
∞∑

r=1

F
(N−1)
r e−αr(x−bN−1) cos pry

αr
. (6)

Finally, for (n − 1)b < x < nb, n = 1, 2, . . . , N − 1, we
write

φ(x, y) =
∞∑

r=0

(F
(n)
r coshαr(x − bn−1) − . . .

αr sinh αrb

. . . F
(n−1)
r coshαr(bn − x)) cos pry

. (7)

In the above RN and TN are the reflection and trans-
mission coefficients for N barriers and F

(n)
r are un-

determined coefficients. These definitions ensure that
φx(b+

n , y) = φx(b−
n , y), |y| < d, n = 0, 1, 2, ..., N −1 and

we write

φx(bn, y) ≡ F (n)(y) =
∞∑

r=0

F (n)
r cos pry (8)
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whence (4) is used to give

F (n)
r =

1

ǫr

∫

L

F (n)(t) cos prt dt (9)

with ǫ0 = 2d, ǫr = d, r > 0. In particular,

ik(1 − RN ) = F
(0)
0 , ikTN = F

(N−1)
0 . (10)

Continuity of pressure across the gap in the nth barrier
demands φ(b+

n , y) = φ(b−
n , y), y ∈ L and gives, after

using (5), (6), (7) and (9), n = 1, 2, . . . , N − 2,

∫

L

(
F (n+1)(t)K1(y, t) − 2F (n)(t)K2(y, t)

+ F (n−1)(t)K1(y, t)
)
dt = 0, (11)

and
∫

L

(
F (1)(t)K1(y, t) − F (0)(t)K3(y, t)

)
dt = 2, (12)

∫

L

(
F (N−1)(t)K3(y, t)−F (N−2)(t)K1(y, t)

)
dt = 0 (13)

all for y ∈ L, in which

K1(y, t) =

∞∑

r=0

cos pry cos prt

ǫrαr sinh αrb
, (14)

K2(y, t) =

∞∑

r=0

coth αrb cos pry cos prt

ǫrαr
, (15)

and

K3(y, t) =
∞∑

r=0

(1 + coth αrb) cos pry cos prt

ǫrαr
. (16)

3. The single barrier approximation

This generic problem forms the basis of the approach
to the N -barrier problem. It is straightforward to show
that R1+T1 = 1 and that the horizontal velocity across
L, F (0)(y) satisfies

∫

L

F (0)(t)K(y, t) dt = −R1, y ∈ L, (17)

with ∫

L

F (0)(t) dt = 2ikd T1 (18)

where

K(y, t) =

∞∑

r=1

cos pry cos prt

αrd
. (19)

Note that the term r = 0 does not appear here. At this
point we exploit the assumption that a/d ≪ 1 so that
the kernel K(y, t) is dominated by a logarithmic term.
Thus, we can write (e.g. Jones (1986) equn. (16.1))

K(y, t) = − 1

2π
ln 2| cos(πy/d) − cos(πt/d)|

+

∞∑

r=1

( 1

αrd
− 1

rπ

)
cos pry cos prt (20)

so that for y, t → 0

K(y, t) ∼ − 1

2π
ln |y2 − t2| + 1

π
(S − ln(π/d)) (21)

where

S = π

∞∑

r=1

( 1

αrd
− 1

rπ

)
. (22)

Substituting (21) into (17) and using the fact that
F (0)(y) is even in y, gives

∫

L

F (0)(t) ln |y − t| dt = A, y ∈ L, (23)

where A = πR1 + (S − ln(π/d))
∫

L F (0)(t) dt. The sin-

gular integral equation (23), where F (0)(y)(a2 − y2)1/2

is bounded, has an explicit solution, but all we require
is the result

∫

L

F (0)(t) dt = A/ ln(a/2). (24)

For a proof see Cooke (1970), and, for applications in
water waves, Evans (1975), and Packham & Williams
(1972) who also describe a three-dimensional version.
It follows from (18), (23) and (24) that

T1 = cos δeiδ

R1 = −i sin δeiδ

}
tan δ = 2κ(S(κ) − ln ν) > 0

(25)
where

κ = kd/π < 1, ν = πa/2d. (26)

The phase of T1 will play a key role in the general
theory and we make use of the result which follows
from the above that if

∫

L

F (n)(t)K(y, t) dt = C, y ∈ L, (27)

then for y, t → 0

1

2d

∫

L

F (n)(y)dy = F
(n)
0 = kC cot δ. (28)

4. Solution for N barriers

Returning to the general case we have, from (14) to
(16), as y, t → 0,

K1(y, t) ∼ (−cosec kb + E1)

2kd
, (29)

K2(y, t) − K(y, t) ∼ (− cotkb + E2)

2kd
, (30)

and

K3(y, t) − 2K(y, t) ∼ (− cot kb + E2 + i)

2kd
, (31)

where

E1 =
∞∑

r=1

2kd

αrd sinh αrb
, E2 =

∞∑

r=1

2kde−αrb

αrd sinh αrb
(32)
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where the Ei → 0 as b/d → ∞, i = 1, 2. Substituting

in (11)–(13), using (28) and defining F
(n)
0 = kµn gives

µn+1 − 2 cosαµn + µn−1 = 0, n = 1, 2, . . . , N − 2
(33)

and
(p + i)µ0 + 2 = qµ1, (34)

(p + i)µN−1 = qµN−2. (35)

In the above

p = 2 tan δ − (cotκλ − E2), q = (−cosecκλ + E1)
(36)

with κ = kd/π, λ = πb/d and

cosα =
(cosα0 − E2 sin kb)

(1 − E1 sinkb)
(37)

where

cosα0 =
cos(δ + kb)

cos δ
≡ cos(δ + kb)

|T1|
. (38)

Clearly α → α0 as Ei → 0 which corresponds to
b/d → 0 or a wide-spacing approximation (WSA). For
parameter values such that | cosα| < 1 it turns out
we are in a pass-band which ensures wave transmission
through the periodic array. For other values we are in
a stop-band and transmission is not possible. See for
example Linton & McIver (2001) equn. (6.52).
Finally,

RN = 1 + iµ0, TN = −iµN−1. (39)

The solution of (33) satisfying (35) is, for n =
0, 1, 2, . . . , N − 1,

µn = µN−1

(
(p + i)UN−n−2 − qUN−n−3

)
/q (40)

where Un(α) = sin(n + 1)α/ sinα, so that U−2 = −1,
U−1 = 0, U0 = 1. Thus from (39)

RN = 1 + iµ0 =
qµ1 − (p − i)µ0

qµ1 − (p + i)µ0
(41)

after using (35). Now (40) can be used to show

RN =
(p2 + 1)UN−2 − 2pqUN−3 + q2UN−4

(p + i)2UN−2 − 2q(p + i)UN−3 + q2UN−4
.

(42)
Similarly

TN =
2iq

(p + i)2UN−2 − 2q(p + i)UN−3 + q2UN−4
. (43)

The above expressions turn out to hold for N = 2 also
where only (32) and (33) are required. The energy con-
dition |RN |2 + |TN |2 = 1 can be shown to be satisfied
exactly after some algebra.
It is clear from (43) that TN = 0 if q = 0 for all N > 1
which is obvious on physical grounds. Less obvious is

the fact that the condition is independent of the small-
ness of the gap. Now from (36) and (32), q = 0 implies

sin κλ =

[ ∞∑

r=1

2κ

(r2 − κ2)1/2 sinh λ(r2 − κ2)1/2

]−1

.

(44)
It is clear that provided the right-hand-side of (44) is
less than unity, solutions of the form λ(κ) exist, but
that there will be a cut-off at, say, λ = λc(κ) above
which no solution is possible. This is consistent with
the WSA valid for large λ which predicts no solution.
The vanishing of |TN | for any N > 1 is an unusual
phenomenon, rare in water wave problems which was
first shown by Evans & Morris (1972) in considering
the scattering of waves by a pair of partially-immersed
vertical barriers. For detailed and accurate computa-
tions see Porter & Evans (1995). However, it is the
phenomenon of total transmission which is the main
interest in this paper, particularly in the light of the
assumption of small gaps. Thus the numerator in (42)
is real so it can be expected that RN = 0 for certain
values of p, q, and α. As a special case we consider
wide barrier spacing when the Ei in (32) tend to zero.
After considerable algebra it can be shown that (42)
and (43) become

RN =
UN−1R1

UN−1 − T1eikbUN−2
(45)

TN =
T1

UN−1 − T1eikbUN−2
(46)

in agreement with Martin (2014) equn. (21). The con-
dition RN = 0 for total transmission is now simply
UN−1(α0) = 0 or α0 = mπ/N , m = 1, 2, . . . , N − 1 so
that from (38)

cos
mπ

N
=

cos(δ + kb)

cos δ
, m = 1, 2, . . . , N − 1. (47)

Thus for example, for N = 2 we have cos(δ + kb) = 0
or δ + kb = (2p − 1)π/2, p an integer.

5. Results

In Fig.1 the solid lines describe the variation of |R1|
with kd for gap sizes a/d = 0.1, 0.2, 0.3, 0.4 using an ac-
curate numerical method described in Porter & Evans
(1995). The crosses are computed using the small-gap
result given in (25). The agreement for a/d = 0.1 is
excellent over the whole range of kd < π and this value
together with kd = 1 will be used in the further com-
putations for multiple barriers.
The result (47) shows that a WSA approximation pro-
vides N − 1 equations to determine when RN = 0 and
|TN | = 1 for each region in which cosα0 < 1 and we
are in a pass-band, and we might expect that to be the
case generally when the numerator of (42) vanishes.
This is confirmed in Fig. 2 where N = 4 and a/d = 0.1
throughout. The solid lines show, in (kd, b/d)−space,
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Figure 1: Comparison of small gap approximation
against exact results for a single barrier.

where R4 = 0 and the crosses are based on the WSA.
Thus for example for kd = 1 as b/d increases there are
three different spacings at which R4 = 0 followed by
a gap before a further three cut in and so on. Alter-
natively, Fig. 2 shows that at a given spacing there
are three distinct wavenumbers for which total trans-
mission occurs with further groups of three at higher
frequencies occurring for larger spacings. It is also clear
that for most purposes the WSA is entirely adequate
in predicting the results. The solution for b/d . a/d is
less clear as it conflicts with the small-gap approxima-
tion. Also shown in Fig. 2 is a dotted line on which
T4 = 0 derived from (44) and which has no counterpart
in a WSA. It is possible to consider a semi-infinite ar-
ray of barriers by ignoring condition (35) and assuming
µn = Ae±inα as a solution of (33) whence (34) gives

R∞ =
qe±iα − (p − i)

qe±iα − (p + i)
(48)

the sign chosen so that |R∞| does not exceed unity.
The WSA counterpart of (48) requires replacing α by
α0. Fig. 3 shows a plot of |R4| and |R∞| against b/d
based on the exact small-gap theory with the WSA
results overlaid. It shows clearly the triplets of zeros
of R4 separated by stop bands.
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Highlights: 

 A compressible multiphase flow solver based on OpenFOAM has been successfully applied to 

simulate breaking wave impact on a vertical wall.  

 Different types of wave impact on a vertical wall have been produced. The results of the pressure 

distribution near the impact area and the maximum impact pressure have been analysed. 

 

1. Introduction 

The loading caused by steep storm waves impacting coastal and offshore structures such as vertical sea walls, 

FPSOs and LNG carriers can cause significant damage. Accurate prediction of the breaking wave impact 

pressure is a key factor in the design of such structures. The fundamental role of the extreme impact pressures 

that are impulsively exerted on sea walls has been underlined by both experimental (e.g. Hattori et al. [1]; 

Bullock et al. [2]) and theoretical (e.g. Peregrine [3]) studies. In addition, numerous numerical works have 

been carried out to provide a reliable tool for the estimation of wave impact pressure. Lin and Liu [4] gave 

an overview and discussion of the different numerical techniques which have been used for interface tracking 

in breaking wave simulation, while Christensen et al. [5] undertook a comprehensive review of advances in 

numerical modelling and measurement techniques for the study of the surf zone. 

In this study, a compressible multiphase flow solver based on the frame of open source CFD tool – 

OpenFOAM is used to simulate the breaking wave propagation, overturning and impact on a vertical wall. 

With a suitable predefined initial condition, different types of wave impact on a vertical wall have been 

produced. The results of the pressure distribution near the impact area and the maximum impact pressure will 

be analysed. 

2. Numerical tools 

OpenFOAM is a freely available set of applications developed to solve particular problems in continuum 

mechanics, which consists of a wide range of solvers and libraries. It has gained popularity in coastal and 

offshore engineering studies (Jacobsen et al. [6]; Chen et al. [7]; Morgan et al. [8]). twoPhaseEulerFoam is 

one of the component solvers included in the OpenFOAM package. In this solver, both air and water-air 

mixture are treated as compressible fluids, which are continuum and described by Eulerian conservation 

equations. The averaged inter-phase momentum transfer term accounts for the transfer of momentum between 

the two phases. 

The averaged momentum and continuity equations for each phase φ can be written as: 

   











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 M
gpRUU
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U
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
                                          (1) 
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


U

t
                                                                         (2) 

where the subscript φ denotes the phase, α is the phase fraction, 
U  is the averaged phase velocity, effR

is the 

combined Reynolds and viscous stress, 
M  is the averaged inter-phase momentum transfer term and 



stands for the mass gained by each phase per unit volume and time. 

65



Combining equation (2) for the two phases when φ = a (for air) and φ = b (for water-air mixture) yields the 

volumetric continuity equation which can be formulated as an implicit equation for pressure. 

The governing equations are solved by a pressure-based method PIMPLE, which is a hybrid PISO/SIMPLE 

algorithm used to couple the pressure and velocity fields. Whilst the free surface is handled by a volume of 

fluid (VOF) method with bounded compression techniques.  

3. Numerical simulation 

To avoid simulating waves from the wavemaker through to breaking, generation of breaking waves can be 

performed by starting from an initial deformed free surface. With a suitable initial free surface shape for the 

numerical simulation, different types of wave impact on the wall can be easily generated (Scolan et al. [9]). 

Here we use a hyperbolic tangent shape to define the initial free surface:   

                                       LxLxRAhy  0,2tanh                                                                    (3) 

where L is the length of the wave tank, h is the mean water depth, A is the amplitude of the mode and R is the 

parameter controls the slope of the difference in height. The shape is defined in a coordinate system where 

the origin is located at the bottom left corner. By varying the parameters, a large range of wave shapes can 

be generated to simulate different types of wave impact on the vertical wall.    

There are many different classifications being used for wave impact. According to Bullock et al. [2], there 

are four distinct types of wave impacts, where the impact type changes with decreasing distance between the 

breaking point and the wall: 

    (a): the aerated impact, where the wave has broken in front and hits the wall with an aerated water mass; 

    (b): the air pocket impact, where the wave crest hits the wall with enclosing a thin air bubble; 

    (c): the flip through impact, where the wave crest hits the wall and runs up without trapping air bubble; 

(d): the slosh impact, where the run up of the wave is higher than the wave crest, so that the wave crest  

       hits the water layer instead of the wall. 

We focus on air pocket and flip through impact in this investigation for the maximum impact pressure on the 

vertical wall. By setting constant parameters L = 2m, A = 0.16m and R = 5, and varying the mean water depth 

h from 0.22m to 0.26m, several cases of wave impact on a vertical wall are numerically simulated. The height 

of the numerical domain is chosen as 0.6m, which is much higher than the height of the initial free surface, 

to leave enough space for the air flow and wave impact to be fully developed. 

For a mean water depth of 0.22m, with wave overturning and breaking on the vertical wall, the wave crest 

hits the wall and encloses a large air-pocket. With increasing the mean water depth, the size of the entrapped 

air-pocket decreases, until it vanishes. After that, the wave impact type changes from air-pocket impact to 

flip through impact, where the wave crest hits the wall and runs up without trapping air bubble. These can be 

seen clearly in Fig. 1, for h = 0.22m and 0.24m, the wave impacts on the wall with entrapped air bubble (air-

pocket impact), while for h = 0.25m and 0.26m, the wave impacts on the wall without trapping air bubble 

(flip through impact).  

         
(a) air-pocket impact                                                               (b) flip through impact 

Fig. 1. The free surface profiles at the time of peak impact for different initial water depths. 
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Fig. 2 shows the pressure distribution at the time of peak impact for different initial water depths relative to 

Fig. 1. The maximum pressure is located at the jet impact area. For an air-pocket impact, the pressure inside 

the air bubble is very high, and smaller air pockets tend to lead to higher pressures. For example, the air-

pocket size for h = 0.24m is smaller than that for h = 0.22m, but the maximum pressure for h = 0.24m is 

30kPa, which is much higher than 18kPa for h = 0.22m (Fig. 2 (a) and (b)). The flip through impact has a 

rather smaller impact area and generates a higher impact pressure (Fig. 2 (c) and (d)). For h = 0.25m, the 

maximum impact pressure reaches 51kPa, which is much higher than that of air-pocket impact.  

 
     (a) air-pocket impact                                                               (b) flip through impact 

Fig. 2. The pressure distributions at the time of peak impact for different initial water depths. 

For the air-pocket impact, the entrapped air bubble is compressed horizontally against the wall by water 

pushing behind, and vertically by the trough run-up, which leads to oscillations of the air pocket (Bullock et 

al. [2]). The pressure on the wall will oscillate after the crest impact, associated with the compression and 

expansion of the air pocket. These phenomena can be seen clearly in Fig. 3 (a), the pressure on the wall 

oscillates after the peak impact where the measured points are located inside and below the air pocket. For 

the flip through impact, the pressure on the wall reaches to a sharp peak pressure when the wave crest hits 

the wall, and then damps very quickly with no pressure oscillation as shown in Fig. 3 (b). The duration of the 

high pressure impact is very small, less than 1ms.  

 

 
 

     (a)  air-pocket impact as h = 0.24 m 

 
 

        (b) flip through impact as h = 0.25 m 
 

Fig. 3. Time histories of impact pressure on the wall at different locations. 

Fig. 4 shows the dimensionless pressure distributions along the wall for different initial water depths. It can 

be seen that the air-pocket impact causes a round peak pressure, which causes a larger impact area on the 

wall. The impact pressure for the small air pocket is larger than that for the big air pocket. The flip through 

impact exhibits a single sharp peak pressure, which indicates the larger impact pressure is not only related to 

smaller durations, but also to smaller impact areas. The largest pressure is created by flip through impact, for 

h = 0.25m, with the maximum dimensionless impact pressure reaching p/ρgho=26. The mean water depth is 

also sensitive to the impact pressure. For ~1cm of difference in the mean water depth, the maximum impact 

pressure on the wall is reduced about 50%.  
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Fig. 4. Pressure along the wall at the moment of 

maximum impact pressure. 

 

Fig. 5. Variation of dimensionless maximum 

impact pressures with impact locations 

Fig. 5 shows the variation of dimensionless maximum impact pressures with impact locations. For the 

conditions of our predefined initial free surface, with increasing the mean water depth from mean water depth 

h = 0.22m to h = 0.26m, the wave impact point also occurs higher on the wall, whilst the trapped air pocket 

size decreases until it vanishes, corresponding maximum impact pressure reaches its peak value, and the 

impact type changes from air-pocket impact to flip through impact. After that, the maximum impact pressure 

will be reduced with increasing the mean depth, although impact location still grows higher 

4. Conclusion 

An open source compressible multiphase flow solver twoPhaseEulerFoam has been successfully used to 

simulate air-pocket and flip through wave impact on a vertical wall. The results show that the variability of 

the impact pressure is very large. The air pocket impact causes a round peak which happens at the location 

of the jet impact, whilst the flip through impacts exhibit a single sharp peak at the location where the wave 

crest and wave trough meet. The pressure oscillation inside the trapped air pocket has been recorded while 

the flip through impact does not generate pressure oscillation after the wave crest hits the wall.  
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Highlightsq A multiple scattering method with an interaction distance is presented, which includes hydrodynamical
interactions between devices that are within an arbitrarily specified distance from each other.q The method allows for faster modelling and optimization of wave energy parks to a chosen degree of
accuracy, as compared to well-established software. Irregular waves measured at the west coast of Sweden
are used as input in a time-domain model where the motion and power of the devices are computed.q The paper is an extension to the approximate method presented at the previous workshop [1].

1 Introduction

Wave energy technology is currently at the stage where several developers are taking the step to full-scale,
commercial energy production. For most of the concepts, large-scale electricity production requires that single
wave energy converters (WECs) are combined into larger arrays, or parks. In particular, this is true for the
wave energy concept developed at Uppsala University, where the individual WECs are relatively small and
consist of surface buoys connected to linear direct-driven generators at the sea bed, see figure 1. The devices
in a wave energy park are not independent but will interact both hydrodynamically and electrically, and the
interactions may cause large increase or decrease in the produced electricity, depending on the park geometry,
wave direction, distance between devices, etc. With the present advancement of several wave energy concepts
into the commercial and full-scale phase, the need for reliable simulation tools that can model full wave energy
parks is immense, and the area is receiving increasing attention [2, 3, 4, 5].

This paper focuses on the hydrodynamical interactions between large arrays of floating buoys by scattered
and radiated waves. In general, when the number of interacting structures in an array grows, the complexity
of the model increases, and the numerical simulations are a challenge that call for new methods and theories.
Here, a nearest-neighbour approach is taken to enable simulations of large WEC arrays. A model based on the
multiple scattering theory [6, 7] is presented, which includes full hydrodynamical interaction between all bodies
within an arbitrarily defined interaction distance, but excludes the interaction between devices that are further
apart than this distance. The interaction distance is so defined that either the interaction by scattered waves
is excluded for devices sufficiently far apart (point-absorber approximation [8, 9]), or that the interaction by
radiated waves is excluded, or both. As such, the model resembles somewhat the hierarchical multiple scattering
theory [10] or similar models of semi-infinite WEC arrays using asymptotic approaches [11, 12], or modules of
multiple scales [13]. This method is a cruder, yet perhaps more flexible way to include only the most relevant
hydrodynamical interaction. No dependency of different length scales is needed, and any park geometry can be
studied; the distance between the WECs may vary, and the positions may be completely arbitrary. The method
presented here is a work-in-progress to address multiple parameter optimization of large wave energy parks.

The hydrodynamical coefficients computed with this semi-analytical method are used as input in a time-
domain method where the motion of the buoys are computed as a convolution with incident irregular waves,
measured at the Lysekil test side on the west coast of Sweden. The power of each device can then be computed
and serves as data for comparisons and optimization methods for wave energy parks. The results of the method
are compared with results where the hydrodynamics is computed using the state-of-the art software WAMIT.

2 Theory

Coupled equations of motion Arrays of N point-absorber wave energy converters (WECs) are studied,
each consisting of a cylinder buoy with radius R and draft d, connected by a stiff line to a direct-driven generator.
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Figure 1: A wave energy park based on the concept of Uppsala
University wave energy converters.

The total force determining the dynamics of
the float is given as a sum of the exciting
force Fexc(t) from the incident waves, the ra-
diation force Frad(t) from the oscillations of the
floats, the hydrostatic restoring force Fstat(t) =
−ρgπR2z(t) and the damping power take-off
force of the generator Fexc(t) = −γż(t)−ksz(t),
where ks is the spring constant of a retracting
spring. In this paper, the buoys are constrained
to move in heave only. To compute the dynam-
ical forces, we assume non-steep waves and that
the fluid is non-viscous, irrotational and incom-
pressible. Then, the fluid velocity potential sat-
isfies the Laplace equation, the boundary con-
straints can be linearized, and the total fluid
velocity potential will be the superposition of
incoming, scattered and radiated waves, φ = φ0 + φS + φR. In the frequency domain, the time-dependence
is factored out and the dynamical forces are given as integrals of the fluid velocity potentials over the wetted
surface of the buoys. The vertical coordinate in the frequency domain can be solved for in terms of a transfer
function H(ω), see [1]. In irregular waves, the position is then obtained by a convolution between the inverse
Fourier transform of the transfer function with the amplitude of the incident waves, z(t) = (h ∗ ηin)(t). With
the position in time determined, the absorbed power of the WEC can be calculated as P (t) = γż(t)2. The
irregular waves used to actuate the model are measured outside the Swedish west coast, where the wave climate
in general is relatively moderate and the linear approximation can be used with good agreement with full-scale
experiments [14].

Multiple scattering theory Divide the fluid domain with depth h into interior and exterior domains un-
derneath and outside each buoy. A general solution to the Laplace equation and the boundary conditions can
be found by separation of variables. In local cylindrical coordinates (rj , θj , z) with origin in the center of the
cylinder, the solution in the exterior domain takes the form

φj,ext =
∞∑

n=−∞

[ ∞∑

m=0

ψm(z)

(
αjmn

Kn(kmrj)

Kn(kmR)
+ βjmn

In(kmrj)

In(kmR)

)]
einθj , (1)

where ψm(z) are normalized vertical eigenfunctions. The wave number k0 = −ik is a root to the dispersion
relation ω2 = gk tanh(kh) and Kn(k0r) ∝ Hn

(1)(kr) and In(k0r) ∝ Jn(kr) correspond to propagating modes.
The wave numbers km, m > 0 are roots to the dispersion relation ω2 = −gkm tan(kmh) and correspond to
evanescent modes. A general potential in the interior domain underneath the cylinder can be written in the
form

φj,int =
∞∑

n=−∞

[
V j

2(h− d)2

(
(z + h)2 − r2

2

)
+ γj0n

(rj
R

)|n|
+ 2

∞∑

m=1

γjmn cos(λm(z + h))
In(λmrj)

In(λmR)

]
einθj , (2)

where λm = mπ/(h−d). Consider an incoming wave φ0 propagating along the x-axis. In the diffraction problem,
all buoys are considered fixed (V j = 0 for all j ∈ N). The diffracted wave in the exterior domain of a buoy
i ∈ N will be a superposition of the incident wave and the scattered waves from the remaining cylinders incident
on a buoy, which can be added by applying addition theorems for Bessel functions, φi,extD = φi0 + φjS

∣∣
i
+ φiS . By

requiring continuity between the exterior and interior domains and truncating the infinite sums, the unknown
coefficients αmn, βmn and γmn can be solved for according to the multiple scattering theory [7].

In the radiation problem, the buoys are free to move but there is no incident wave φ0. The exterior potential
will in general be a superposition of the outgoing radiated and scattered waves, and the incoming radiated and
scattered waves from the remaining buoys, φi,extD = φiR+φiS+φjS

∣∣
i
+φjR

∣∣
i
. Again, continuity requirements across

the domain borders will imply a system of linear equations where the unknown coefficients can be solved for.

Interaction distance The multiple scattering approach includes a diffraction matrix with all the interaction
terms. We introduce an interaction distance Dint,S for the diffraction problem, and only include the interaction
terms corresponding to devices that are within this distance from each other. The resulting diffraction matrix
will be sparse and the computational costs are lowered. Further, a separate interaction distance Dint,R for the
radiation problem is introduced, which specifies which devices should interact by radiated waves, i.e. which
non-diagonal terms in the radiation force are to be computed. This further speeds up the simulations.
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Figure 2: Array with 32 WECs in four clusters, numbered clockwise as in the left figure. b) Power capture ratio
for all 32 devices, computed by both the analytical method with infinite interaction distance and with WAMIT.
c) The real part of the excitation force in the array: without, with partial and with full multiple scattering.

3 Results

Accuracy and computational cost The hydrodynamical model has been implemented in a Matlab code
and connected to a time-domain model with time-series of measured waves as input. The inversion of the
diffraction matrix is computed using the object-oriented factorization algorithm of [15].

In figure 2, the power capture ratio PCR = P̄ /(2JR), where J is the energy transport of the incident wave
travelling along the x-direction, has been computed for each of the devices in an array with 32 WECs, using the
analytical method with full multiple scattering (infinite interaction distance). As can be seen from the figure,
due to symmetry, the WECs in the two clusters 1 and 4 (and 2 and 3) have identical PCR, and the agreement
with WAMIT is good, but with only 28% of the computational cost of WAMIT. All simulations are performed
on a standard desktop PC with Intel(R) Xeon(R) 3.07 GHz processor and 6 MB RAM.

In figure 2c), the real part of the excitation force in the same park with 32 WECs is computed without
multiple scattering (Dint,S = 0), with partial multiple scattering (Dint,S = 50) and with full multiple scattering
(Dint,S = ∞). The partial multiple scattering includes diffraction between devices within 50 m distance from
each other; the resulting excitation force will be a combination of single-body and full multiple scattering.

No hydrodynamical interaction for distant structures In figure 3, the power per device for an array
with 9 WECs in a square configuration (shown in the figure) has been computed for different values of the
interaction distance. The horizontal and vertical distance D between adjacent WECs in the array is increased
from 4 m to 80 m. For interaction distances Dint,S,R = 0 (blue crosses), no hydrodynamical interaction is
computed, which implies that the average power per device is constant, independent of the separation distance
between devices. For Dint,S,R = 50 (purple plus signs), only hydrodynamical interaction between devices within
50 m from each other is accounted for. When full hydrodynamical interaction is included (black dots), the
agreement with WAMIT is very good. From the figure it is clear that the approximation with Dint,S,R = 50
agrees with the full multiple scattering simulation when the separating distance between adjacent devices is
D < Dint,S,R/2

√
2 = 17.7, since all devices are within 50 m distance from each other. When D exceeds

Dint,S,R/2
√

2, the corner WECs lose hydrodynamical contact, and for D exceeding Dint,S,R/
√

5, Dint,S,R/2
and Dint,S,R/

√
2, more of the hydrodynamical interactions within the park are lost. At D > Dint,S,R, no

hydrodynamical interactions are computed. These distances are indicated by vertical lines in figure 3. The
computational time (lower plot) decreases with reduced number of hydrodynamical interaction terms to be
computed.

No multiple scattering for distant structures It is also possible in the model to choose a different
interaction distance for the radiation Dint,R and diffraction Dint,S problems. In figure 4, the average power per
device has been computed as function of number of devices in square array with WECs at 20 m distance from
each other. The agreement between the analytical method with full multiple scattering and WAMIT is very
good, the deviation between the methods is never larger than 0.2%. Interaction distance Dint,R = Dint,S = 50
gives an approximation whose error increases with the number of WECs: 3% for an array with 25 WECs and 7%
for 49 WECs. A better approximation, which gives the same time savings, is to include interaction by radiation
for all WECs (Dint,R = ∞), but neglect multiple scattering (Dint,S = 0). Also here, the error increases with
the number of devices, but is still less than 3% for an array with 49 WECs.
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Figure 3: Power per device computed with the an-
alytical model with different interaction distances in
the array with 9 WECs, compared to the value com-
puted using WAMIT. The lower plot shows the total
computational time for each of the simulations.
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Figure 4: Average power per device computed with
WAMIT, with the analytical method, and with the
approximate analytical method with different inter-
action distances, as well as the corresponding compu-
tational time for each simulation.

4 Discussion

An advantage of having introduced the interaction distance in the model can be seen in figures 3: when WECs
are far away from each other, the error of neglecting their hydrodynamical interactions is less than when they
are close. Indeed, the point-absorber approximation has been found to give accurate results when the separating
distance between devices is D > 5R [16]. Hence, in a large park, a suitable interaction distance can be defined,
such that both an acceptable accuracy and computational speed is achieved. Depending on the accuracy needed,
this interaction distance can be increased or decreased as wanted. As figure 4 shows, for large parks it may be
advantageous to choose different interaction distances for the radiation and diffraction problems.

Up to now, most optimization studies of wave energy parks have either compared different array configura-
tions by trial-and-error, changed one-parameter at a time or studied only regular waves. Multiple parameter
optimization of large-scale wave energy parks requires a hydrodynamical model which is both reasonably accu-
rate and fast. This model is a work-in-progress to address optimization modelling of wave energy parks in a
more systematic way and with realistic, irregular waves as input.
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Highlights

• Presentation of an HOS scheme for modelling non-
linear water waves over a variable bathymetry.

• Validation of the method for a small variation of the
bottom with Bragg reflection.

• Application of the HOS model to wave propagation
over a bathymetry with high variation of the bottom:
submerged bar.

Introduction

The accurate modelling of surface gravity waves over
non-negligible bottom topography is of major interest
in the field of marine renewable energy. These marine
renewable structures are intended to be located in limited
water depth, where the effect of variable bathymetry is
very significant on local wave conditions. Indeed, when
entering shallow water, waves are strongly affected by the
bottom through shoaling, refraction, diffraction, reflection
and the resulting variations in local wave speed.

In [8] two different schemes for modelling a bathymetry
with a High-Order Spectral (HOS) method have already
been presented. This highly non-linear potential model
has been initially developed [16, 5] for a flat bottom and
extensively validated for different configurations in the
LHEEA Lab [7, 6] from regular waves up to irregular
multidirectional wavefields. This model, named HOS-
ocean is available as an open-source version1. In the
present paper, we focus on the efficient scheme allowing
the use of FFTs presented in [8].

A few HOS applications consider a variable bathymetry.
Liu and Yue [10] provided one simulation case with a
bottom variation using the HOS method, but considering
only a small variation of the bottom. This case reproduces
Class I Bragg reflection and will be presented here as a
validation of our model. The second case presented in
this paper is more extreme with large bottom variations.
Nevertheless, our method shows good results which
are compared both to experimental results [11, 4] and
numerical results obtained with other methods [1, 9].

1https://github.com/LHEEA/HOS-ocean/wiki

Methods and Algorithms

Hypothesis and formulation of the problem

In this section, the main hypothesis and equations are
presented briefly. More details are available in [8].
z = η (x, t) represents the free surface elevation, h the

total water depth, h0 the mean depth and β (x) the bottom
variation, such as −h (x) = −h0 + β (x). Thus we have :
−h0+β (x) ≤ z < η (x). A potential flow formalism is used
(incompressible and inviscid fluid, irrotational flow) and
we assume periodic boundary conditions in the horizontal
plane so that the domain is considered infinite. We obtain
the following set of equations:

• Laplace equation in the fluid domain:

∆φ = 0 (1)

• Free-surface boundary conditions (FSBC) written

in terms of surface quantities η and φ̃ (φ̃ (x, t) =
φ (x, z = η, t)):

∂η

∂t
=

(
1 +

∣∣∣∣
∂η

∂x

∣∣∣∣
2
)
∂φ

∂z
− ∂φ̃

∂x
.
∂η

∂x
on z = η (x, t)

(2)

∂φ̃

∂t
= −gη − 1

2

∣∣∣∣∣
∂φ̃

∂x

∣∣∣∣∣

2

+
1

2

(
1 +

∣∣∣∣
∂η

∂x

∣∣∣∣
2
)(

∂φ

∂z

)2

on z = η (x, t)

(3)

• Bottom boundary condition (BBC):

∂φ

∂x

∂β

∂x
− ∂φ

∂z
= 0 on z = −h0 + β (x) (4)

To account for a bottom variation, an additional
potential is introduced. The total potential φtot solution
of the problem is expressed as:

φtot = φh0
+ φβ (5)

φh0 satisfies a Neumann condition on z = −h0, therefore
φh0

is solution of the problem at constant depth h0.
φβ allows the definition of the correct bottom boundary
condition (Eq.4) and satisfies a Dirichlet condition on
z = 0.

In 2D, the potentials are expanded on basis functions
taking into account the previous boundary conditions:

φh0 (x, z, t) =
∑

j

Aj (t)
cosh (kj (z + h0))

cosh (kjh0)
eikjx (6)
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φβ (x, z, t) =
∑

j

Bj (t)
sinh (kjz)

cosh (kjh0)
eikjx (7)

with kj = j 2π
Lx

and (Aj(t),Bj(t)) the modal amplitudes of
φh0 and φβ respectively.

High-Order-Spectral Method

The HOS model is a pseudo-spectral model initially
developed in [16, 5]. The potential is expressed as a
truncated power series of components φ(m) for m = 0
to M (M is the order of the HOS method). Then, the
potential evaluated at the free surface is expanded in a
Taylor series with respect to the mean water level z = 0.
Combining these two expansions gives a triangular set of
Dirichlet problems for the components that can be solved
by means of a spectral method (allowing the use of FFT’s
for efficient computations). One more equation is needed

to find the modal amplitudes A
(m)
j1

(t) and B
(m)
j1

(t) at each
order m.

These are given by the iterative method described
hereafter (Fig.2). Once they are computed, the vertical
velocity W at the free surface can be obtained from
another triangular system. The solution φtot is then
advanced in time as described in Fig.1, with W computed
as represented in Fig.2.

The bottom condition (Eq.4) reads:

M∑

m=1

∂φ
(m)
tot

∂x

∂β

∂x
−

M∑

m=1

∂φ
(m)
tot

∂z
= 0 on z = −h0 + β (x) (8)

By assuming that β << 1 we can write a Taylor
expansion with respect to the mean depth z = −h0 at the

order M. We also assume2 that O (β) ≡ O
(
∂β
∂x

)
≡ O (η)

and we keep only terms of order η(m). Thus we find the
equations presented in [10]:

m = 1 :
∂φ

(1)
tot

∂z
(x,−h0, t) = 0

m = 2..M :

∂φ
(m)
tot

∂z
(x,−h0, t) =

m−1∑

l=1

∂

∂x

[
βl

l!

∂l−1

∂zl−1

(
∂φtot

∂x

)(m−l)
]

z=−h0

(9)

Perturbation expansions are truncated at order M . This
new development Eq.(9) allows the computation of the

modal amplitudes B
(m)
j1

(t) at each order in function of the

A
(m)
j1

(t), and is independent of the position x, so FFT’s
can still be used, preserving the numerical efficiency of
original HOS scheme as seen in [8].

Validations

In [8], a validation case has already been presented to
assess the domain of applicability of our method. It
allows to check the convergence of the scheme on the
reconstruction of the vertical velocity with a wide variety
of wave conditions and non-negligible (but constant)
bottom variations. Here we present a test case to
demonstrate the accuracy and efficiency of the proposed

2If Taylor expansions in η and β converge, the equality on the
orders of magnitude is meaningless.

Figure 1: Temporal solution of the FSBC.

Figure 2: Use of the BBC in the temporal solution.

HOS model with a variable bathymetry. As an example
of a small bottom variation, and in order to satisfy the
conditions of the Taylor expansion (β << 1), the proposed
test case considers Bragg reflection from a sinusoidal
bottom patch.

Bragg reflection

If the class I Bragg condition is satisfied, the reflected
wave should be amplified as a result of resonant quadratic
interaction between the incident wave and the bottom
variation. For small incident waves and small bottom
slopes, reflection near Bragg resonances is well predicted
by multiple-scale linearized perturbation theory [12]. Here
we analyse non-linear effects. The conditions of the
experimental set-up [3] are used to compare with their
experiments.

x(m)

z(
m

)

-20 0 20 40
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-0.8

-0.6

L0

Figure 3: bottom topography with a patch of 10 sinusoidal
ripples of amplitude d = 0.1 and slope kbd = 0.31.

The bottom patch is defined as the variation around the
mean water depth h = h0 + β(x) by :

β(x) = d sin(kbx) for − L0 ≤ x ≤ L0 (10)

as depicted in Fig.3, with kb the bottom wavenumber.
The free surface is located at z = 0. The ripple slope74



is kbd = 0.31, the ripple amplitude is d = 0.1m and the
length of the patch is L0

λb
= 10 (i.e. a patch of 10 sinusoidal

ripples of wavelength λb = 2π
kb

). The incident wave is

at the linear resonance condition of k = kb
2 with a wave

steepness of ka = 0.05. In order to ensure periodicity
relaxation zones are used to impose the Rienecker and
Fenton solution at the beginning and at the end of the
domain.

We perform simulations with N
λ = 16 nodes per

wavelength and an orderM = 2 to obtain the steady-state.
This order of nonlinearity on the free-surface and on the
bottom variation is sufficient to obtain converged results,
because the Class I Bragg reflection is second order, as
explained in [10]. The local reflection coefficient is then
extracted using the method of Suh et al. [15].

The results appear in Fig.4 along with the experimental
measurements of [3] and the solution given by the linear
perturbation theory of [12]. It appears clearly that our
numerical results are very closed to both the linear theory
and the experiments. We will now focus on the next test
case with a higher bottom variation, to check the ability of
the proposed method is able to treat realistic bathymetry
profiles with non-negligible variations.
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Figure 4: Bragg reflection from a sinusoidal bottom ripple
patch over −5λb ≤ x ≤ 5λb. ka = 0.05 and kbd = 0.31.

Application: harmonic generation
over a submerged bar

Here we consider the transformation of non-linear regular
waves as they travel up and over a submerged bar. As
they propagate over the bar, they steepen and they
decompose into higher-frequency free waves, as shown in
the experiments [4, 11]. These higher harmonics produce
an irregular pattern behind the bar. This validation case
is particularly difficult because it requires the accurate
propagation of waves in both deep and shallow water.
Thus it is often used as a discriminating test case for non-
linear models of surface waves propagation over a variable
bottom [9, 1]. The bottom variation is defined by

β (x) =





0.05 (x− 6) for 6 ≤ x ≤ 12,
0.3 for 12 ≤ x ≤ 14,
0.3 − 0.1 (x− 14) for 14 ≤ x ≤ 17,
0 elsewhere,

and can be seen in Fig.5. It has been scaled with a factor
of two in comparison with Dingemans experiments [4].

Figure 5: Submerged bar (Dingemans experiments).

Regular waves are generated at the left side of the
domain thanks to a solution of Rienecker and Fenton
[13] of steepness ka = 0.0168 and relative water depth
kh = 0.6725. The period is fixed to 2.02s with an
amplitude of 0.01m.

The convergence and steady-state are reached with 40
nodes per wavelength and an HOS order M = 17. Indeed,
such a high-order is needed to represent all the non-
linearities induced by the bottom variation.

Time series of surface elevations.

A snapshot of the surface elevation (scaled by a factor of
3) is represented in Fig.6 and the time histories of the
surface elevations at various locations are shown in Fig.7.
The experimental data comes from the experiment of [11].

The comparison between our numerical results and the
experimental data is very good, and similar to the results
obtained with other numerical methods [9, 1]. Thus, both
free-surface non-linearities and bottom non-linearities are
correctly solved and we are confident in the accuracy of
the model even for large bottom variations.

Figure 6: Snapshot of the surface elevation at steady-state.

Harmonic analysis.

For a deeper comparison, an harmonic analysis of the
surface elevation is run as presented in [1]. Our results
are visible in Fig.8.

As expected, we can clearly observe the generation of
high-harmonics over the bar. Moreover, the comparison
of all harmonics with the measurements is good even
up to the fifth-harmonic. It is also very similar to the
numerical results presented in [1], particularly on the
slight discrepancies observed on the first harmonic. We
can notice that even if β

h0
= 75% over the submerged bar

(which represents a very large relative bottom variation),
the steepness is weak (ka = 0.017), and the bottom
variation does not take place on all the domain, so the
model is able to solve this problem accurately.75
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.

Conclusion

We have implemented a numerical method for the
simulation of non-linear free surface waves over variable
depth. It is based on a Taylor expansion of the bottom
boundary condition with respect to the mean water depth.

A validation case with a constant bottom variation
has already been presented in [8] to assess the domain
of applicability of our method. By a series of two
test cases, we have shown the accuracy of the method
for non-constant bottom variations. The first test case
reproduces Bragg reflection over small bottom variations
and shows results conformed to [10, 1, 9]. The last case
simulates highly and realistic varying bottom geometries.
It shows very good agreement with both numerical and
experimental data, and thus proves the ability of the
method to accurately compute high variations of the
bathymetry.

The required HOS order is very high for the harmonic
generation over a submerged bar, and the bottom and the
free-surface do not seem to require expansions with the
same order of non-linearity. Thus we will try to improve
the method by decoupling the orders of non-linearities

on the free-surface and on the bottom to enhance the
efficiency of our model. This has been presented with
the DNO method [9, 2], a formalism which exhibits a
formalism similar to the HOS method [14].
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• ship internal wave wakes at supercritical speed;
• strongly nonlinear interfacial model accounting for realistic ship geometries of draught
comparable to the average depth of the pycnocline;
• similarities and differences between two- and three-layer fluids;
• numerical wake-induced amplitudes, currents, strain rate, with comparison to field experi-
ments.

Background. There is a recent interest in internal wave wakes, generated by a ship moving
in a stratified sea, at supercritical speed (Daniel Bourgault, 2014, personal communication).
Watson et al. (1992) gives a summary of this research up to that date. Recent analyses and
calculations given in the IWWWFB-community are obtained applying pressure distributions
(Parau et al., 2007). Watson et al. (1992) analysed aspects of the ship generated internal
waves using data from a set of experiments, with three different ships, in Loch Linnie, Scotland
in 1989. They presented results for the wave wake amplitudes, wake-induced currents and
quantity such as the strain rate at the sea surface. While existing models, at that time,
basically assumed ships of very small draught, Watson et al. requested prediction tools
that could allow for a finite draught of the ship. Such calculations are performed in the
present account, with realistic ship models of draught comparable to the average depth of
the pycnocline (see figure 3a,b).

Nonlinear interfacial model. Let x = (x1, x2) denote horizontal coordinates and y be
vertical. y = 0 coincides with the interface at rest. A two-layer fluid has constant densities
ρ0 and ρ1 = ρ0 +∆ρ, where index 0 refers to the upper layer and index 1 to the lower. Layer
depths at rest are h0 and h1, respectively. Assuming incompressible and irrotational motion
in each of the layers, the fluid motion is governed by Laplacian potentials φ0 and φ1. The
position of the ship geometry moving in the upper fluid, with speed U along the x1-direction,
is determined by y = h0 + δ(x, t) where δ(x, t) determines the hull shape. The boundary
condition at the ship geometry is given by δt + WF = 0 where WF = U · ∇δ. The boundary
of the upper fluid is denoted by F and is represented by a rigid lid at positions not occupied
by the ship.

The interface, denoted by I, is determined by y = η(x, t). Values of the potentials
along I are introduced by φ0I(x, t) = φ0(x, y = η, t) and φ1I(x, t) = φ1(x, y = η, t) on I,
where indexes 0I and 1I indicate evaluation on the upper and lower side of the interface,
respectively. Difference and sum potentials along I are introduced, where

Ψ(x, t) = φ1I(x, t) − µφ0I(x, t) and Φ(x, t) = φ0I(x, t) + φ1I(x, t) at I, (1)

and µ = ρ0/ρ1. The interfacial motion and potential Ψ along I are integrated forward in
time using the kinematic and dynamic boundary conditions at the interface:

ηt = VI = WI , Ψt + g(1 − µ)η = NL2 at I, (2)
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where NL2 accounts for the full nonlinearity, WI = (∂φ0/∂n)
√

1 + |∇η|2 and VI = (∂φ1/∂n)√
1 + |∇η|2. Solution of the Laplace equation in each layer is obtained by use of Green’s

theorem. WI , VI and φ0F , where the latter denotes the potential along the upper boundary

F of fluid 0, including the ship surface, are expanded by WI = W
(1)
I + W

(2)
I + ..., VI =

V
(1)
I + V

(2)
I + ..., φ0F = φ

(1)
0F + φ

(2)
0F + ... In Grue (2015) it is shown that the quadratic

approximation, i.e. truncating after the leading two terms of the expansions, fully accounts
for the interfacial nonlinearity, for excursions η corresponding to the thinner layer depth.
This approximation is used here.

Two- and three-layer fluids. The dispersion relation for a two-layer fluid reads (ck1)
2 =

g(1 − µ)k1/[µ coth(k1h0) + coth(k1h1)], where k1 denotes wavenumber and c(k1) wave speed
(figure 1b). The dispersion relation for a three-layer fluid, where a pycnocline of thickness
γ separates an upper mixed layer from a lower mixed layer, reads K2

γ − k1[coth(k1H0) +
coth(k1H1)]Kγ cot(Kγγ)− k2

1 coth(k1H0) coth(k1H1) = 0, where K2
γ = N2

0 /c2 − k2
1 and N2

0 =
−(g/ρ)(∂ρ/∂y) denotes the buoyancy frequency, assumed to be constant in the three-layer
model, see figure 1a, where also symbols are defined. The limit k1 → 0 obtains the linear
long wave speed c0. The wave phase speed c(k1)/c0 and group velocity cg(k1)/c0 for the two-
and three-layer fluids show small differences for kh0 up to 0.7 (figure 1c).

Wave patterns and amplitudes. Ship geometries have a hull shape of δ = −b0[1 −
(x1/(l0/2))6 − (x2/(w0/2))6], where (l0, w0, b0) denotes (length,width,draught). Calculations
with l0/h0 = 14.7, w0/h0 = 4 and b0/h0 = 1.2 obtain the wave pattern for supercritical flow
at speed Fr = U/c0 = 8 (figure 2a). The pattern corresponds excellent to the patterns
obtained by a linear kinematics analysis, for two- and three-layer fluids (Keller and Munk,
1970). Nonlinear calculations of the wave trough amplitudes show a small leading trough.
Wave troughs number 2, 3, 4 and 5 have a common amplitude of ∼ 0.1h0, for a lateral
distance of x2 ∼ 100h0. The wave troughs follow power laws, i.e. ηmin = βx−α

2 (figure 2b).

Other wake properties. A model similar to one of the ships in Watson et al. (1992) has
a length of 38h0, width of 6.5h0 and draught of h0. A mid depth of the pycnocline, in the field
experiment, can be estimated to h0 = 3.06 m. Calculations show the nonlinear interfacial
depression and elevation below and right behind the ship (figure 3a,b), and the ship wake
(figure 3c). Watson et al. showed measurements, obtained at an off-track distance of 55h0, of
the cross-track current, u2, and the strain rate, ∂u2/∂x2, both at the sea surface, obtaining
u2/c0 up to about ∼ ±0.1, and (∂u2/∂x2)/(c0/h0) up to about ∼ ±0.05. The present
calculations are very similar (figure 3d-f). In the simulations, wave tanks of lengths/widths
of 300/300, 700/260, 500/400, have ∆x1/h0 ∼ 0.4 − 0.8 and ∆x2/h0 ∼ 0.3 − 0.4.
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Figure 1: a) Sketch of theoretical three-layer fluid. b) Two-layer fluid. c) Wave phase
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the respective density profiles. Two-layer configuration with h1/h0 = 18 (solid line) and
three-layer configuration with H1/H0 = 27.5, γ/H0 = 1 (dotted line).
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Figure 2: a) Nonlinear two-layer calculation of wake trough pattern (symbols); linear two-
layer kinematics model with Keller-Munk equations (black solid line); linear three-layer kine-
matics model with Keller-Munk equations (red solid line). b) Trough amplitudes: trough 1
(∗), trough 2 (•), trough 3 (square), trough 4 (×), trough 5 (+). Fr = 8. Ship model with
length 29.4h0, width 4h0, draught 1.2h0.
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Introduction 
 

The hydroelastic behavior of a flexible circular plate with a concentric hole floating on the free surface is considered. 
The plate has zero thickness and homogeneous characteristics (constant density, constant flexural rigidity). It is also 
assumed that the fluid is the prefect fluid and the flow has irrotational characteristic. Furthermore, the thin plate 
theory is adopted to express the plate deflection. The right-handed coordinate system is introduced with z = 0 the 
undisturbed free surface. The bottom is assumed to be horizontal at z = -h. The incident wave propagates along 
positive x-axis. The basic configuration is shown in Figure 1. 

 
 

Figure 1. Basic configuration 
 

Boundary condition for plate of zero thickness on the free surface 
 

In order to express the boundary condition on the plate-wave interaction region, the kinematic condition and 
dynamic condition have to be considered. To do this, the governing equation of thin plate deflection is used. The 
governing equation is given by 
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where ( , , )W x y t is the deflection, M is the mass of unit area, D is flexural rigidity, P is the external pressure 

and 0 denotes horizontal Laplace operator expressed as 
21 1
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 to fit with the circular plate. The 

dynamic condition on the interaction region is that the pressure is equal to hydrodynamic pressure comes from 
the Bernoulli’s equation. 
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The kinematic condition in this domain states that the normal velocity of the plate is equal to that of water particle. 
 

III III
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These conditions have two difficulties which are nonlinear and are applied at the unknown position z W . In 
order to transfer the boundary condition from the unknown position to its mean position z = 0, the classical way 
suggested by Stokes is introduced. For the small displacement assumption, we can expand the exact plate 
deflection to the mean position using the Taylor series expansions. 
We can write the dynamic condition: 
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The kinematic condition can be expressed as following: 
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This expression is written up to the second order with respect to and the notation ( )o  is used to represent the 

order higher than Ɛ while ( )O  denotes the order of Ɛ. 

Next step is to seek a solution,  and W, into a perturbation series with respect to wave steepness /  A  
where A is the wave amplitude and  is its length. 
 

  (1) 2 (2) 3       o  ,  2 (2) 3    W W W o  (6) 
 

For monochromatic incident waves, the time dependency can be separated by using the time periodic assumption 
at frequency . The first- and second order velocity potential have the forms. 
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The similar notations are used for the plate deformation W. 
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Because we focused on the high frequency phenomena, the over-bar expression for the steady parts of the second 
order is neglected in this study. 
After inserting these expression into kinematic condition and dynamic condition, we obtain the combined plate-
wave interaction boundary condition and plate deflection in frequency domain at corresponding orders. 
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  (9) 

where the mathematical operators (1)  and (2)  are defined as follows: 
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Solution methodology 
 

In order to solve the problem, the method of matched eigenfunction expansions is used. The eigenfunction expansion 
for the plate problem was introduced by Kim & Ertekin [2] and Malenica & Korobkin [4]. We divide the fluid domain 
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into three regions: an outer region defined by   R r , 0 2   , 0  h z , a middle region (plate-wave 

interaction) defined by  a r R , 0 2   , 0  h z  and an inner region defined by 0  r a , 0 2   ,
0  h z . To match the solutions, the continuity of the pressure and normal velocity are introduced at the common 

boundaries. 
Potential decomposition in the inner and the outer regions 

 

The total potential in the inner and outer regions (regions I and III in Figure 1) is divided into the incident and 
perturbation part. The incident potential, up to second order, is well known and can be written as follows: 
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where m  is equal to 1 for m = 0 and 2 for m > 0. 

The perturbation potential, at each order (j) is now decomposed into two parts ߮௉ு
ሺ௝ሻ

 and ߮௉ொ
ሺ௝ሻ which satisfy the 

homogeneous and non-homogeneous free surface boundary conditions respectively: 
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Since the potential I or III,( )j
PH  satisfies the homogeneous free surface boundary condition ( ( ) ( ) / 0     j j

PH PH z ) can be 

found in the form: 
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where the vertical eigenfunction is ( ) ( ) cosh ( ) / cosh j
n n nf z k z h k h  and the eigenvalues nk  are computed by 

using the dispersion relation, tanh  k kh (for the first order:  , second order: 4  ). The dispersion 
relation gives one real root 0k  and infinite number of imaginary roots nk . 

The perturbation potential I or III,( )j
PQ  is chosen to satisfy the homogeneous boundary condition at the vertical 

boundaries of the domains ( ( ) / 0  j
PQ r  at r = a or R) and the non-homogeneous free surface boundary 

condition ( ( ) ( ) ( )/     j j j
PQ PQ Pz Q ). The corresponding solution at the vertical boundaries can be expressed in 

the following form: 
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where the coefficients mnL , mnN  can be deduced by using the Green’s theorem as shown in [3]. 
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Potential decomposition in the plate region 
 

The potential in the plate region (region II in Figure 1) is also decomposed into two part ,( )II j
PH and ,( )II j

PQ where 

the potential ,( )II j
PH  satisfies the homogeneous plate-wave interaction boundary condition 

( (j) (j) ( ) / 0     j
PH PH z ) can be written in the following form: 
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where the vertical eigenfunction is ( ) ( ) cosh ( ) / cosh  j
n n nF z z h h  and the eigenvalues n  are the solution 

of the dispersion relation, 4(1 M/ D/ ( g) ) tanh         h ). This equation gives one real root ( 0 ), 
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infinite number of imaginary roots ( n ), and two complex roots ( 1 , 2 ). These two complex roots are related 

to each other as *
2 1    with asterisk denoting the complex conjugate. The complex roots are introduced by 

Evans & Davies [1]. 
Finally, the remaining part of the perturbation potential ,( )II j

PQ , which satisfies the homogeneous boundary 

condition ( ( ) / 0  j
PQ r at r=a, R) and the non-homogeneous boundary condition at the plate interface 

( (j) (j) ( ) /j II
PQ PQ Pz Q      ) can be expressed in the form: 
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where coefficients a
mnM , R

mnM  can be deduced by using the Green’s theorem with the following Green’s 

function: 
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Matching and the final linear system of equations for the unknown coefficients 
 

In order to get the unknown coefficients ( )j
mnA , ( )j

mnB , ( )j
mnC  and ( )j

mnD , we need to truncate the infinite series in the 

expressions for the potentials and after that apply the matching conditions at the vertical boundaries of the different 
domains: 
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Finally, in order to properly close the problem we need to apply the plate end boundary conditions. In the case of 
free ends these conditions should ensure that the bending moment and shear force are zero at the plate ends: 
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The numerical results for the first- and second order deflection of the plate will be presented at the Workshop. 
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• For beam-sea calculations a simplification of the Generalized Wagner formulation is presented.

• The asymptotic corner flow model for beam sea is different from the head sea model.

1 Background and motivation

Ships operating in steep sea states may encounter critical loads due to wave slamming. In order to
account for slamming loads in design, it is important to consider the frequency of occurrence for various
load levels. As a consequence it is paramount to establish fast solvers for assessing a large number of
impacts scenarios. The Generalized Wagner model first presented by Zhao et al. (1996) has previously
been validated as a practical method in this context. Various formulations of the Generalized Wagner
model has been discussed by Korobkin (2004). Based on full scale observations the largest slamming
loads often occur in bow quartering seas. Most theoretical studies in this field have been focused
on vertical impact of symmetric bodies. To some degree also for vertical impact of non-symmetric
objects. Recently Lauzon (2014) presented a desingularized boundary element method for dealing
with non-vertical impact velocity.

Towards impact simulation in oblique seas we will develop an efficient two-dimensional Generalized
Wagner model applicable for beam sea calculations. The method is based on the meshless method
presented by Helmers & Skeie (2013). In order to study important differences compared to the classical
vertical drop tests, pure sway velocity in calm water is considered. By superposition of harmonic
solutions this method can be combined with the theory of vertical impact models in order to handle
general impact velocities. In the present study we only consider the spatial problem.

The target of this development is to establish a method suitable to be included in time domain
seakeeping programs. Without loss of accuracy the theory is designed for exploiting preprocessor
capabilities for efficient time domain calculations. As a consequence the spatial flow field needs to be
accurately described by a very small number of parameters.

2 The spatial boundary value problem

Horizontal motion of a two-dimensional surface piercing body in calm water is considered. A Cartesian
coordinate system (y, z) is introduced. The origin is located at the keel and the y-axis is parallel with
the undisturbed free surface. The z-axis is pointing upwards. The body contour is defined by ηb(y).

z = ηb(y), ηb(0) = 0, ηb(−y) = ηb(y), 0 <
∂ηb
∂y
|y>0 <∞, |y| ≤ ymax (1)

The fluid flow is assumed ideal and described by the velocity potential φ. The horizontal body velocity
Vb is assumed large in the sense that gravity will not affect the flow. Adopted from Zhao et al. (1996)
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y

z

φ = 0c(t)

h(t)
ηb(y)

Vb

h(t = 0)

∇2φ = 0∇φ ≈ [φy, 0]

n

φ = C = 0
⇓

β

(a) The body velocity Vb is horizontal and the y-axis
is parallel to the undisturbed free surface. At time t
the intersection point between the body and the free
surface is located at y = c(t) and z = h(t). On y = 0
we assume that the vertical fluid velocity is negligi-
ble compared to the horizontal component. The local
deadrise angle at the intersection point is denoted β.

(b) The analytical flow field corresponding to the
boundary value problem (2)-(4) induced by unit sway
velocity of a wedge with β = 30◦. The field vectors
represent particle velocities and the curves are equipo-
tential lines. The lower half is the physical space.

Figure 1: The boundary value formulation. The analytical solution for a wedge β = 30◦.

the free surface flow is approximated by assuming a constant potential φ = 0 on the horizontal line
through the wave-body intersecting point as illustrated in figure 1a.

As a consequence of the impulsive nature of the flow and the pure horizontal body motion we will
assume that the vertical fluid velocity at y = 0 is negligible compared to the horizontal component.
The accuracy of this assumption is expected to be within the accuracy of neglecting horizontal fluid
velocities on the free surface. It follows that φ is constant along the z-axis. By considering the
assumption φ → 0 infinitely far away from the body we assume that φ = 0 on y = 0. The spatial
boundary value problem can be summarized as

∇2φ = 0, in the fluid domain (2)

∇φ · n = Vb · n, on z = ηb(y) ∧ y ≤ c (3)

φ = 0, on z = h ∧ y ≥ c, φ = 0, on y = 0 ∧ z ≤ 0, |∇φ| → 0, y2 + z2 →∞ (4)

where n is the unit surface normal pointing out of the fluid domain. The intersection point between
the body surface and the true free surface is denoted (y, z) = (c, h).

The meshless formulation (Helmers & Skeie 2013) is based on detailed knowledge of the flow
characteristics. As a consequence we first need to consider the asymptotic properties of the boundary
value problem (2)-(4).

Because of boundary conditions (4) it follows that the flow field far away from the body is repre-
sented by a quadrupole located at (y, z) = (0, h) with unknown strength C0.

φ(y, z + h) = Vb
C0yz

(y2 + z2)2
, y2 + z2 →∞ (5)

The decay rate of φ far away from the body is significant higher than for the vertical impact problem
which is described by a vertical dipole. In the far field of the sway problem we note that the vertical
fluid velocity is φz = C0/y

3 on the free surface.
The asymptotic flow close to the corners of the body is not evident for the sway problem. For the

vertical impact problem success has been demonstrated by (e.g. Zhao et al. (1996)) using the classical
corner flow formulation φ ∼ rσ1 where r is the asymptotic small distance between the corner and the
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field point. For the free surface intersection point the geometrical parameter σ1 is related to the local
deadrise angle β as σ1 = π/2

π−β .
However, for sway motion of a floating circle with center on the free surface it is straight forward

to derive a closed form expression for the global spatial potential. It is well known that the asymptotic
expansion of that solution close to the free surface contact point is φ ∼ r ln(r). The cylinder is wall
sided (σ1 = 1) at this location. Hence the model applied by Zhao et al. (1996) is not capable of
describing this actual corner flow.

In order to establish a relevant corner flow model valid for sway motion for all bodies we first
study the analytical solution of boundary value problem (2)-(4) in case of a wedge with deadrise β.
We apply the following conformal mapping relating the body surface to a unit circle

A

(
Z

c
− 1

)
=

∫ W

1

(
1 +

1

w2

)(
w2 + 1

w2 − 1

)−2ν

dw (6)

A =
2 sin(πν)√

π
Γ(1− ν)Γ(

1

2
+ ν) ∈ [0, 2], ν =

1

2σ1
− 1

2
∈ [0,

1

2
], σ1 =

π/2

π − β ∈ [
1

2
, 1] (7)

where the physical location Z = y+ i(h+ z) is mapped to the position W . It can then be shown that

φ(Z) = Im{
∞∑

n=1

bn
W 2n

}, bn =
4hVb cosβ

πA
· Iνn, h = c tanβ, i =

√
−1 (8)

Iνn =
1

n

∫ 2π

3π/2
cos θ(tan2 θ)ν sin 2nθ dθ = (−1)n

Γ
(

3
2 − ν

)
Γ(n+ ν)

Γ
(

3
2 + n

) Sn (9)

Sn = 3F2

(
(
1

2
− n, 1− n, 3

2
− ν), (

3

2
, 1− n− ν), 1

)
(10)

This flow field is plotted in figure 1b for β = 30◦. Γ(x) is the Euler Gamma function. For some deadrise
angles, β ∈ {0◦, 45◦, 90◦}, the summation in φ(Z) can be expressed by closed-form expressions. For
other deadrise angles the evaluation of the generalized hypergeometric functions 3F2 needs to be
carried out using asymptotic relations for high values of n.

The important thing to note in our context is that for all β we can establish closed-form expressions
for the asymptotic flow close to the corners derived from equation (8). At the free surface intersection
the flow is characterized by a polylogarithm function of order 2 + 2ν which close to the corner takes
the form of Fβ(r, α):

φ(Z)

hVb
= c1

( r
h

)σ1
sin(σ1α) + Fβ(r, α), Z = c+ ih+ r exp(iα), r → 0 (11)

Fβ(r, α) = tan(β)
(
− r
h

sinα+ c2

( r
h

)σ1
sin(σ1α)

)
(12)

c2 = 2 ζ(1 + 2ν)
sin(πν)

π

Γ(1 + ν)

Γ(1− ν)

(
2 cos(πν)√

π
Γ(1− ν)Γ(

3

2
+ ν)

)σ1
(13)

where ζ(x) is the Riemann zeta function. A premature conclusion would be to include the c2 term
into c1 and to neglect the only “body normal velocity” term tan(β) rh sinα as a higher order effect
(σ1 < 1). The practical consequences of the latter strategy is shown in figure 2. It should be noted
from our closed form expression for Fβ(r, α) that for wall sided bodies c2 = 1 and Fβ(r, α) = ∞ · 0.
However by series expansion of Fβ(r, α) it follows that

lim
β→90◦

Fβ(r, α) =
2

π

r

h

(
(1− ln 2) sinα− α cosα− ln(

r

h
) sinα

)
(14)

which reflect the r ln r asymptotic nature related to wall sided bodies. An important observation
from corner flow (11) is that there are no scaling factors related to Fβ(r, α). The first term inside
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(a) The classical corner flow model is only applicable for small
β in case of sway. For β = 80◦ the model is not adequate even
as close to the corner as r = 10−10L.
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(b) For all β the proposed corner flow model approximate the
flow excellent for the upper 1% of the wetted surface. For large
β the model describes the flow reasonable good for the upper
20% of the wetted surface.

Figure 2: The applicability range for the classical and proposed corner flow models along the body is presented (α = β−π).
At the distance r from the free surface corner relative to the wetted lenght L between the corner and the keel, the corner
flow model is applicable if the ratio between the true potential φ and the corner flow model is constant (flat curve). φ is
calculated by the analytical model given by equation (8). In combination with discrete boundary element methods the
corner flow model should at least be applicable for log10(r/L) ≈ −3 in order to avoid huge discretization cost.

Fβ(r, α) match exactly the local body boundary condition and should not be scaled even for non-
wedge bodies. For all other flow terms, at any expansion order, ∂φ/∂n = 0 on the body. For curved
bodies geometrical corrections of c2 can be exactly replaced by a corresponding adjustment of c1 in
equation (11). As a consequence we will keep the corner flow formulation (11) for general geometries.

At the keel the corner flow is more similar to the classical corner flow because the horizontal body
velocity is less strenuous on the local φ = 0 condition than at the free surface. A local expansion of
flow field (8) at the keel reveals

φ(Z)

hVb
= c3

( r
h

)σ2
sin
(
σ2

(
α+

π

2

))
+
r

h
cosα, σ2 =

π

π + 2β
, Z = r exp(iα), r → 0 (15)

3 Conclusion and Further Work

A simplified spatial model for sway motion has been presented. The analytical results are now being
implemented in the meshless Generalized Wagner formulation. A temporal model will follow.
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1 Introduction
Last year at the IWWWFB in Osaka Porter et al [1] discussed the phenomenon of cloaking. Among others results
for a stiff plate underneath the free surface was considered. I asked myself the question whether for a flexible plate
underneath the free surface the same phenomenon could be observed. In this presentation we extend the ’mode’ method
as derived for flexible plates at the free surface. It is well known, see for instance Hermans [2], that at certain frequencies
the transmission coefficient may have an absolute value equal to unity |T | = 1. We will check by means of numerical
calculations whether at such a point the phase shift equals zero, hence T = 1. In [2] a small phase shift is present at the
frequency where |T |= 1.
In this abstract we extend the existing ’mode’ method to the submerged flexible plate situation. We first consider a flexible
plate and then a fixed rigid plate.

2 Flexible plate
We consider the two-dimensional interaction of an incident wave with a Very Large Flexible Platform (VLFP) with zero
thickness located at finite depth y = y0. We want to make use of the Green’s theorem as we have done in the case where
the platform is at the free surface.
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Figure 1: configuration

To do so we start with a plate of finite thickness, 2d, as depicted in fig-
ure (1) and later take the limit d → 0. The advantage is that we can make
use of two different forms of the Green’s function for points above or un-
derneath the platform. The fluid is ideal, so we introduce the velocity po-
tential V(x, t) = ∇Φ(x, t), where V(x, t) is the fluid velocity vector. Hence
Φ(x, t)is a solution of the Laplace equation ∆Φ = 0 in the fluid, together
with the linearized kinematic condition, Φy = ṽt , and dynamic condition,
p/ρ =−Φt−gṽ, at the mean water surface y = 0, where ṽ(x, t) denotes the
free surface elevation, and ρ is the density of the water.

The linearized free surface condition outside the platform, y = 0 and x ∈ F , becomes:

∂2Φ
∂t2 +g

∂Φ
∂y

= 0. (1)

We assume that the velocity potential is a time-harmonic wave function, Φ(x, t) = φ(x) e−iωt . The potential of the
undisturbed incident wave is given by:

φinc(x) =
gζ∞

iω
cosh(k0(y+h))

cosh(k0h)
exp(ik0x) (2)

where ζ∞ is the wave height in the original coordinate system, ω the frequency, while the wave number k0 is the positive
real solution of the dispersion relation, k0 tanh(k0h) = K, for finite water depth.
A crucial step is the choice of the Green’s function. It is possible to derive the Green’s function G(x,y;ξ,η) by means of
a Fourier transform with respect to the x-coordinate. It has the form:

G−(x,y;ξ,η) =
∫

L ′
1
γ

K sinhγy+ γcoshγy
K coshγh− γsinhγh

coshγ(η+h) eiγ(x−ξ) dγ for y> η (3)

and

G+(x,y;ξ,η) =
∫

L ′
1
γ

K sinhγη+ γcoshγη
K coshγh− γsinhγh

coshγ(y+h) eiγ(x−ξ) dγ for y< η (4)
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The Green’s function obeys the free surface boundary condition. The expression for the total potential φ± becomes for
y> y0 +d and for y< y0−d resp.

2πφ±(x,y) = 2πφinc(x,y)−
∫ l

0

(
φ+(ξ,η)

∂G∓(x,y;ξ,η)
∂η

− ∂φ+(ξ,η)
∂η

G∓(x,y;ξ,η)
)∣∣∣∣

η=y0+d

−
(

φ−(ξ,η)
∂G∓(x,y;ξ,η)

∂η
− ∂φ−(ξ,η)

∂η
G∓(x,y;ξ,η)

)∣∣∣∣
η=y0−d

dξ.
(5)

where we ignored the contributions of the endpoints.
To describe the vertical deflection ṽ(x, t) of the platform, we apply the isotropic thin-plate theory and use the kinematic
and dynamic condition to arrive at the following equation for φ at y = y0 in the platform area x ∈ P :

{
D

∂4

∂x4 −µ
}

∂φ
∂y

= K(φ−−φ+), (6)

where we used following parameters: K = ω2

g , µ = mω2

ρg , D = D
ρg . Here m denotes the mass per length and D the flexural

rigidity.
To apply the mode expansion we have to expand the potentials φ± and the vertical velocity φy,and finally let d tend to
zero, so we may pursue with this formulation.
However if we take d = 0 and differentiate (5) with respect to y we obtain the same result more directly. At first a hyper-
singular equation does not look tractable. But it turns out that the equation of motion of the plate makes it possible to
expand the vertical velocity at y = y0 only.

2π
∂φ
∂y

= 2π
∂φinc(x,y)

∂y
+

1
K

∫ l

0

∣∣∣∣
{(

D
∂4

∂ξ4 −µ
)

∂φ
∂η

}
∂2G(x,y;ξ,η)

∂η∂y

∣∣∣∣
η=y0

dξ. (7)

where

∂2G(x,y;ξ,η)
∂η∂y

=
∫

L ′
γ

K coshγy+ γsinhγy
K coshγh− γsinhγh

sinhγ(η+h) eiγ(x−ξ) dγ (8)

We now introduce the expansions for the vertical velocity at the surface of the plate

dφ
dy

=
N+1

∑
n=0

an eiκnx +bn eiκn(l−x) (9)

We now can integrate with respect to ξ in (7) and let y tend to y0. We consider l =+∞ first and add some artificial damping
to make the integrals with respect to ξ converge and work out the integral for y> y0 and take y = y0 afterwards.

∫ ∞

0

{(
D

∂4

∂ξ4 −µ
)

∂φ
∂η

}
∂2G(x,y;ξ,η)

∂η∂y
dξ =

a
i
(Dκ4−µ)

∫

L ′
γ
(K coshγy+ γsinhγy)sinhγ(y0 +h)

(K coshγh− γsinhγh)(γ−κ)
eiγx dγ =

2πa(Dκ4−µ)


κ

K coshκy+κsinhκy
K coshκh−κsinhκh

sinhκ(y0 +h) eiκx +
N−1

∑
j=0

k j(K coshk jy+ k j sinhk jy)
d
dγ
(K coshγh− γsinhγh)|γ=k j

sinhk j(y0 +h)
k j−κ

eik jx


 .

(10)

If we take the coefficient of exp(iκx) in (7) equal to zero we arrive at the following dispersion relation for κ

κ(Dκ4−µ)sinhκ(y0 +h) =−K
κsinhκh−K coshκh

κsinhκy0 +K coshκy0
(11)

If we take y0 = 0 we recover the dispersion relation for the plate at the free surface.

κ(Dκ4−µ+1) tanhκh = K (12)

The terms with exp(ik jx) will give us a set of equations for the unknown coefficients An =
−an
iω and Bn =

−bn
iω determining

the deflection of the finite platform.

w(x) =
N+1

∑
n=0

An eiκnx +Bn eiκn(l−x) (13)
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We have 2N equations of the 2N +4 unknowns An and Bn:

N+1

∑
n=0

(Dκ4
n−µ)

[
An

κn− ki
− Bneiκnl

κn + ki

]
=−δ0i

sinhk0h
sinhk0(y0 +h)

(K2h−K− k2
0h)

Kk0

N+1

∑
n=0

(Dκ4
n−µ)

[
Aneiκnl

κn + ki
− Bn

κn− ki

]
= 0.

(14)

for i = 0, · · · ,N−1. The conditions at the endpoints of the platform d2
w

dx2 = d3
w

dx3 = 0 result in four equations.
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Figure 2: Deflection for different
values of submergence
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Figure 3: Deflection for different
values of water depth

In figure (2) some results are shown for
the deflection |w|/ζ∞ of the plate with wa-
ter depth h = 20 m. , l = 300 m. , D =
107 m. and λ0 = 2π/K = 60 m. for various
values of submergence y0. In figure (3) we
have chosen a fixed value of submergence
y0 = −5 m. and different values of water
depth.

If we take d = 0 in the expression for φ+ in (5) we obtain the reflection and transmission coefficients.

R =
Kk0 sinh(k0(y0 +h))

(K(1−Kh)+ k2
0h)sinh(k0h

N+1

∑
n=0

(
Dκ4

n−µ
)[ An

k0 +κn

(
ei(k0+κn)l−1

)
+

Bn

k0−κn

(
eik0l− eiκnl

)]
(15)

and

T =
Kk0 sinh(k0(y0 +h))

(K(1−Kh)+ k2
0h)sinh(k0h)

N+1

∑
n=0

(
Dκ4

n−µ
)[ An

k0−κn

(
e−i(k0−κn)l−1

)
+

Bn

k0 +κn

(
e−ik0l− eiκnl

)]
+1 (16)
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Figure 4: D = 107 m.
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Figure 5: D = 105 m.

In figure (4) and (5) the reflection and Trans-
mission coefficients are shown for two val-
ues of the flexural rigidity, D = 107 m. and
=105 m. , at water depth h = 20 m. and sub-
mergence of the plate y0 = −5 m. We study
the points where |T | = 1, it is more clear
where |R|= 0, in detail to see whether cloak-
ing occurs in these points. We first notice that
the relation |R|2 + |T |2 = 1 very accurately.

The computations show that in none of these points T = 1 exactly. In some points we find ℜT close to −1 and in the
other points where ℜT is close to +1 the value of ℑT 6= 0.

3 Fixed rigid plate
If we consider a fixed rigid plate at y = y0, thickness d = 0. We notice that in the case of D → ∞ we find from the
dispersion relation for the flexible plate (11) that either sinhσ(y0 + h) = 0 or κsinhκy0 +K coshκy0 = 0, so we expect
that we can use these realtions. To find proper relations for the modes we study the following hyper-singular equation
obtained by means of we differentiation of (5) with respect to y, and take y = y0.

2π
∂φinc(x,y)

∂y
=

∫ l

0

(
φ+(ξ,η)−φ−(ξ,η)

) ∂2G(x,y;ξ,η)
∂η∂y

dξ. (17)
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This is a hyper-singular integral equation for the potential jump along the plate. We can solve this equation by means of
the mode expansion method by introduction of:

φ+−φ− =
N−1

∑
n=0

(
an eiκnx + cn eiκn(l−x)

)
+

N−1

∑
n=0

(
bn eiσnx +dn eiσn(l−x)

)
. (18)

Using (10) it is easy to show that κn and σn are solutions of:

κsinhκy0 +K coshκy0 = 0, sinhσ(y0 +h) = 0. (19)

So the solution consists of a combination of the eigen-modes of the flow above and below the plate resp. as expected.
In [3] we studied the case of a rigid plate at the free surface, in that case only the the second condition of (19) played a
role.
For the 2N coefficients in (18) we obtain, for i = 0, · · · ,2N−1 the following set of equations

N−1

∑
n=0

[
an

κn− ki
− cneiκnl

κn + ki

]
+

N−1

∑
n=0

[
bn

σn− ki
− dneiσnl

σn + ki

]
=−δ0i

sinhk0h
sinhk0(y0 +h)

(K2h+K− k 2
0h)

Kk0

N−1

∑
n=0

[
aneiκnl

κn + ki
− cn

κn− ki

]
+

N−1

∑
n=0

[
bneiσnl

σn + ki
− dn

σn− ki

]
= 0.

(20)

The transmission and reflection coefficients are obtained accordingly.
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In a paper published in 1969 Mei
and Black [5] studied the interac-
tion of waves with fixed docks and
object on the bottom. The figure
shown is copied from that paper.
In the figure next to it the plate is
positioned at the same level as the
top surface of the submerged ob-
ject. The parameter H is the dis-
tance to the bottom.

4 Conclusions
We have extended the ’mode’method to the case of a flexible and fixed plate underneath the free surface. In contrast to
the free surface plate one uses the hyper-singular integral equation for the vertical velocity instead of the equation for
the potential function. The reflection coefficient computed by means of this method does not show frequencies where
cloaking occurs. In [6] it is descibed how to extend the method to the configurations described in [5].
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Highlights:

• Nonlinear time-domain solutions are obtained to
predict the energy extraction by roll motion of
the Salter cam in irregular waves, with the pivot
point being compliant.

• Results illustrate that a flexible mooring system
can extract more energy than that from a fixed-
shaft Salter cam.

1 Introduction

Mynett et al.(1979) investigated the performance of
Salter cam with a partly constrained cam shaft and
found that the shaft experiences a very large restrain-
ing force when it is fixed. This force can be reduced
only by partially constraining the shaft and adding
more degrees of freedom to the system. The flexible
system appeared to lead to a decrease in the energy-
extraction efficiency. Later, Greenhow (1981) calcu-
lated the energy-extraction efficiency of Salter’s cam
on a compliant shaft and found that increasing heave
compliance beyond a certain value could lead to an
increase of efficiency.

Parametric roll in beam seas had recently been iden-
tified in model experiments (Ikeda et al., 2005). The
large roll motion occurs in phase with heave, rather
than pitch when the heave natural frequency is twice
of the roll natural frequency. This brings up the ques-
tion to be addressed in this paper: whether or not an
appropriately adjusted heave resonance of the shaft
support can be beneficial to the rolling performance
of the Salter cam, thus allowing it to retain its distinc-
tive high extraction efficiency?

To answer the question, two types of support system
for mounting the Salter cam are examined and com-
pared (see Fig. 1). The one degree-of-freedom (DOF)
model has a fixed shaft, with no sway and heave mo-
tions. A 3-DOF system has a compliant shaft which
is moored by taut (or pre-tensioned) but elastic ca-
bles. For convenience, as shown in Fig. 1, the frontal
straight line of the original Salter shape is replaced by
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Figure 1: Smoothed Salter cam and mounting options.

an arc so as to reduce flow-separation losses from roll
motion. In this paper, the nonlinear time-domain solu-
tions are sought to predict the roll motion and energy
extraction from this mode in both regular and irregu-
lar waves with the presence of a power-take-off system
(PTO) and a taut-line mooring system. Numerical re-
sults reveal that there are practical potential of apply-
ing the Salter cam with mooring cables in deep water,
where fixed mounting would be unpractical.

2 Theoretical & Computational Model
The Free-Surface Random Vortex Method (FSRVM),
reviewed in Yeung (2002), is a Lagrangian-Eulerian
formulation for solving Navier-Stokes flows allowing
for free-surface motion. The solution is obtained by
decomposing the flow field into an irrotational compo-
nent and a vortical component. The irrotational com-
ponent of the flow is solved using a complex-variable
Cauchy integral method, based on the instantaneous
geometry of the computational domain and the vortic-
ity field at that instant. The vorticity field is solved
using a random vortex method for the diffusion ef-
fects and an “Order-N” multipole-accelerator interac-
tion algorithm for convection effects (Yeung and Vaid-
hyanathan, 1994).

Various stages of development and validations have
taken place to improve FSRVM to tackle the fully non-
linear problem and the current capabilities can model
forced or free-body motion (see Yeung and Cermelli,
1998; Jiang and Yeung, 2012). It was recently ex-
tended to accommodate a mooring system and irregu-
lar incident waves in the time domain to study the per-
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formance of wave-energy devices. More detailed in-
formation on the formulation of FSRVM can be found
in the original work of Liao (2000). Here, we will ex-
pand that work to include the modeling of the mooring
system and irregular incident waves.

2.1 Modeling of Irregular Waves
In the present study, the irregular waves are assumed
to be a superposition of multiple components of linear
waves: Eqn. (1)

⇣ =

NX

j

Aj sin(!jt � kjx + ✓j), (1)

where the component wave amplitude Aj =p
2S(!j) 4 ! is calculated from by using, say, the

Joint North Sea Wave Project (JONSWAP) spectrum.
✓j denotes a random phase and N represents the total
number of linear waves.

The irregular incident waves can be generated by
applying segments of external pressure on the free sur-
face with the following pressure distribution (Stoker,
1992):

p(x, t)=

NX

j

⇢⇢gAj

2
sin(!jt + ✓j) cos(

x � xc

2Lj
⇡), for |x � xc|6Lj

0, otherwise

(2)
where xc denotes the center of the pressure segment.
Lj is one quarter of the corresponding wavelength.

To test this method, we simulate the irregular waves
with a significant wave height Hs = 2.00cm and a
peak period Tp = 0.76s, for a laboratory value of
R = 8.40 cm, the reference value of the cam. Figure
2 shows the comparison between the JONSWAP spec-
tral density and the spectral density computed from
the irregular waves generated by FSRVM, using the
pressure-distribution method. The two wave spectra
are in good agreement.

2.2 Modeling of the Mooring System
A mooring system with four taut lines was devised to
restrain the translational motion with a pair of lines
emanating from each end of the finite width device, as
shown Fig. 3. We assume the cable line to be a pre-
tensioned massless rope, which behaves like a spring,
when its length changes. In the figure, points A and
B are the anchor locations which are respectively set
at (�10R,�10R) and (10R,�10R). O0 denotes the
initial position of the body origin and O the instanta-
neous body origin, which is denoted by (xb(t), yb(t)).
With the linear spring assumption, the mooring forces
can be expressed by:

F moor
x = �Ks[�1(xb � x1) + �2(xb � x2)] (3)

F moor
y = �Ks[�1(yb � y1) + �2(yb � y2)] (4)

where Ks is the elastic stiffness of the cable; the fac-

tors �i = 1 �
p

(x0�xi)2+(y0�yi)2p
(xb�xi)2+(yb�yi)2

, for i=1,2.

2.3 Effectiveness of FSRVM Modeling
Carmichael (1979) carried out an experimental study
to evaluate the performance of the Salter cam in reg-
ular waves. The performance characteristics of the
device were determined in a two-dimensional wave
channel. To evaluate the accuracy of FSRVM in simu-
lating the response of rolling cams, these experimental
results are chosen to be compared with our numerical
simulations with fluid viscosity present in the model.

The time-average power of the extractor between t1
and t2 is

Ẇ =
1

t2 � t1

Z t2

t1

Bg↵̇(t)2dt, (5)

where Bg represents the PTO damping. In this section,
the PTO power is averaged over the last five periods of
the response for a 15 period simulation. The power of
the two-dimensional regular waves is known to be:

Pw =
1

2
⇢gA2Vg, (6)

where Vg is the group velocity of the incident wave of
amplitude A. The extraction efficiency, representing
the ratio of usable energy to the incident-wave energy,
can be defined as: ⌘ = Ẇ/Pw.

In the experiments, the translational motions (sway
and heave) were constrained, and the generator damp-
ing was adjusted until the maximum efficiency was
achieved so that the performance was at optimum
damping. In our simulations, we also tuned the numer-
ical PTO damping and allowed the cam to roll only. A
comparison between the extraction efficiency from the
experiments and FSRVM simulations is presented in
Fig. 4. It is found that the efficiency predicted by the
numerical model closely matches that obtained from
the experiments. The prediction tool is effective.

3 Results

The center of rotation of the smoothed Salter cam (see
Fig. 1) is set on the calm water surface at t = 0, rather
than below the water surface. The mooring cables
are pretensioned in the 3-DOF model with the body
weight being 75% of the buoyancy at t = 0. The cen-
ter of gravity (x̄G, ȳG) is at (�0.33R, 0). With the
moment of inertia I33/(⇢R4) = 1.40, the roll reso-
nance frequency is 8.32 rad/s or non-dimensionally,
!̃roll ⌘ !roll

p
R/g = 0.77. The elastic stiffness of

the mooring cables is tuned to make the heave reso-
nance frequency !̃heave = 1.54, in order to satisfy the
criteria of parametric roll.

The performance of the smoothed Salter cam in reg-
ular waves and irregular waves, with a fixed shaft or a
moveable shaft, the latter held by the mooring system,
will be examined.
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3.1 Response in Regular Waves
In this sub-section, the 1-DOF and 3-DOF responses
of the smoothed Salter cam in regular waves are sim-
ulated and compared for a range of different wave fre-
quencies. All simulations are conducted with the inci-
dent waves of a wave height of 1.68 cm corresponding
to H/R = 0.20.

Figure 5 shows the roll response amplitude opera-
tor (RAO) relative to the wave slope ↵0/kA. From the
figure, it can be seen that the 1-DOF model performs
better than the 3-DOF model in the low-frequency
regime (!̃ < 0.64). However, in the rest of the re-
gion, the RAO is increased by the presence of sway
and heave motions, especially at higher frequencies.

In addition, it is found that the sway and heave
motions are excited with large motion in the higher
frequency region, as shown in Fig. 6. From the en-
ergy point of view, we consider that part of the high-
frequency wave energy is absorbed by the sway and
heave motions and converted into kinetic energy of
these modes, which in turn can be transferred into
roll motion because of the motion coupling effects.
Hence, the roll RAO of the 3-DOF model is larger
than the 1-DOF case at higher frequencies. This fact
indicates that the Salter cam with a moveable shaft in
irregular waves have the potential to perform better
than the fixed-shaft Salter cam.

3.2 Power Extraction in Irregular Waves
To quantify the motion coupling effects in irregular
waves, the performance of the 1-DOF and 3-DOF
smoothed Salter cams will be examined here.The sig-
nificant wave height of the irregular waves is chosen to
be Hs = 2.00 cm (Hs/R = 0.24) and its peak period
is Tp = 0.76 s (Hs/�p = 2.2%). The correspond-
ing wave spectral density has been shown in Fig. 2. It
is known that the PTO unit can absorb the maximum
amount of energy, if the PTO damping matches the
total hydrodynamic damping of the energy device. A
free roll decay test of the smoothed Salter cam was
conducted to obtain the hydrodynamic damping. The
non-dimensional hydrodynamic damping is found to
be �66/(!roll⇢R

4) = 0.81, where !roll denotes the
resonance frequency. Then, the non-dimensional PTO
damping Bg/(!roll⇢R

4) is set to match this value at
all time.

With the “optimal” PTO damping, we simulate the
free response of the rolling cam with a fixed shaft or a
moveable shaft for 200 peak periods. The statistics for
the time-domain responses from the two models are
given in Table 1. We find that the root-mean-square
(RMS) value of the roll motion of the 3-DOF model
is slightly larger than that of the 1-DOF model. Fig. 7

Table 1: Roll statistics in irregular waves (unit: deg).
Model Mean RMS Max. Min.
1-DOF -0.1803 3.3522 8.8533 -10.1998
3-DOF -0.2407 3.3949 8.2556 -9.6421

shows the roll spectral density computed from the roll
responses of these two models. It can be seen that the
spectral density curve of the 3-DOF model is higher
and broader than that of the 1-DOF model. These re-
sults reveal that kinetic energy is transferred from the
linear modes to the rotational mode, and the roll re-
sponse of the Salter cam could be increased by mount-
ing to a moveable shaft.

To investigate the power-extraction efficiency of
the smoothed Salter cam in irregular waves, the PTO
power is averaged over the last 150 periods of the
response by using Eqn. (5). The power of the two-
dimensional incident irregular waves is calculated by:
Pw = 1

2⇢g
PN

j=1 A2
jVg,j , where Vg,j is the group ve-

locity of the component of regular wave of ampli-
tude Aj . Then, the extraction efficiency can be cal-
culated by ⌘ = Ẇ/Pw. Based on the above equa-
tions, the extraction efficiency of the 1-DOF model
is 62.88%, and the efficiency of the 3-DOF model
is 67.58%. These results suggest that installing the
Salter cam in deep water with mooring cables of the
proper spring constant would not necessarily reduce
the energy-extraction efficiency. More importantly,
if the basic properties of the floater and the mooring
system are designed properly, the performance of the
wave-energy device can be enhanced.

Thus, we conclude that the criteria of parametric
roll can be applied to a Salter cam with a moveable
shaft so that it can retain the high energy extraction
efficiency as the fixed-shaft cam. In the talk, we will
also show how viscosity may not affect the results.
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Figure 2: Spectral density of the simulated irregular waves.

                                                                                       

 

 

 

 

                                                                                

 

 

                                                                                           

                ),( 11 yxA                                                      ),( 22 yxB   

 

 

 

 

 

 

 

 

 
2F

 
1F

 sK sK

moor
yF

moor
xF

),( bb yxO 
),( 00 yxO 

O
x

y

Figure 3: Mooring system of the 3DOF problem, utilizing
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Figure 6: Sway and heave response per unit incident-wave
amplitude obtained from the 3-DOF model.
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Highlights

• In the context of long duration sloshing model tests, it was investigated whether sloshing impacts selected
from long model tests can be exactly generated with only a short test which was proven to be the case.
In other words in order to regenerate a selected impact with any comfity, 15-60 s of relevant tank motions
would be sufficient and there is no need to run the complete test until the impact time,

• Regenerating the most relevant impacts with such short test durations enables to quickly perform many
repetitions and possibly gain more relevant statistics from samples of pressure peaks,

• Singularization enables a categorization of the impacts with their distinctive physical and statistical prop-
erties.

1 Introduction

As outlined by Gervaise et al. (2009) and Kuo et al. (2009), any sloshing assessment of LNG carrier membrane
tanks is based on long duration sloshing model tests, usually at scale 1:40, performed with accurate 6 degree
of freedom motion platforms. Clusters of pressure transducers are put on the most impacted areas of the tank
walls, recording at a high sampling frequency. Samples of pressure peaks are gathered from tests corresponding
to all the conditions that the ship will encounter during her life. Every model test is repeated several times in
order to enrich the corresponding statistical sample of pressure peaks. Despite many repetitions of every model
test the tails of the samples are often poor and statistical distributions (mostly Weibull) are fitted to data in
order to extrapolate and predict the extreme loads. In every gathered sample of pressure peaks found from
several repetitions of the same model test, peaks corresponding to different impact types (slosh, flip through,
and gas pocket) are mixed together. Also every model test at scale 1 : 40 corresponding to a 5 hour sea state
would take about 50 minutes to complete and having many repetitions would take a long time.

An alternative would be to be able to focus on single impacts and necessarily the most relevant ones with a less
time consuming method. One way to achieve this would be to first track down impacts of long sloshing model
tests from the knowledge of impact coincidence as explained by Karimi and Brosset (2014). It would be then
favorable not to spend a long time (in the order of a complete model test) to regenerate every selected single
impact. The objective of the study is to show that only short tank motions right before the desired impact time
are necessary to recreate the same exact impact conditions with the right statistical properties as obtained in
long model tests. It will be demonstrated that there is only a short effective memory (me) in terms of tank
motions, before the selected impact time that should be respected. A study based on 2D sloshing model tests
is presented in order to verify the feasibility of this impact singularization.

2 Test Setup

s The internal geometry of the utilized tank (made of PMMA) corresponded to a transverse slice of a LNG
carrier membrane tank at scale 1 : 40. The tank was placed on an accurate six degree-of-freedom motion
platform (hexapod) and filled at 20% of the tank height with water. The Ullage gas was air at atmospheric
pressure and ambient temperature. 60 PCB pressure sensors were arranged in a 15 × 4 regular array with a
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10 mm distance between the center of the sensors both horizontally and vertically. The array was placed on
the vertical side of the tank, covering the area impacted by the breaking waves during the tests. The sampling
frequency of the acquisition system was set at 40 kHz. Only sloshing events (impacts) for which one pressure
signal exceeded a threshold were recorded. A Phantom V7.2 high speed video camera was fixed to the tank
looking at the sensor array and recording at 4000 fps in order to capture the wave impacts. It was triggered
by pressure sensors when exceeding another threshold and was synchronized with the data acquisition. A semi
high speed video camera set at 96 fps was fixed to the platform in the plane of symmetry of the tank at the free
surface level, far enough from the transverse tank wall in order to capture continuously the entire free surface.

3 Approach

Irregular motions were imposed on the tank by the hexapod. The motions were downscaled to scale 1:40
according to Froude similarity from BEM calculations of ship motions for a 5 hour sea state with a zero crossing
period of Tz = 8 s and a significant wave height of Hs = 6m. Only the three degrees of freedom in the plane of
the tank (sway, heave and roll) were used. The duration of one test was 2966 s long including ramps at both
ends.
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Fig. 1: (a) The maximum pressure for the chosen impact as captured in 10 repetitions of long model tests (b)
It is assumed that only a short duration of tank motions immediately before the impact governs the fluid flow
at the impact time as if there is a short effective memory involved

10 repetitions of the same tank motions were performed. Based on the knowledge of impact coincidence as
introduced by Karimi and Brosset (2014), an impact was selected occurring at exactly t = 1670.4 s in all the
repetitions as shown in Fig. 1(a). Maximum impact pressures recorded at sensor level for the 10 impacts covered
a rather large range which specially included high pressures.

The wave shapes corresponding to 9 out of 10 of these repetitions were recorded as depicted in Fig. 2. There
were slight variations of the wave shape. The unique form of the crest made it distinctive. This impact made a
target for the verification.

3DOF motions right before the expected time of the chosen impact were applied on the tank with a range
of durations from 1 second to 120 seconds to be able to find the right effective memory. Fig. 3 shows the
shortened heave signals (for sway and roll similar procedure was used) to respect effective memories of 15, 30,
and 90 seconds. The motions continued for 1 second after the expected impact time. The extracted signals
were completed by 5 s and 1 s long cubic-splines respectively at the beginning and the end for smooth transition
to zero motion (continuous accelerations). In order to facilitate the comparison between the tests, a common
initial time convention t = 0 was taken at the nominal impact time.

4 Results

For very short motions, global flow did not have time to match the global flow obtained from long duration tests.
For durations of 15 seconds and more this matching was more obvious as depicted by Fig. 4 and continued until
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Pmax = 0.71 bar Pmax = 0.32 bar Pmax = 1.20 bar Pmax = 0.93 bar Pmax = 0.32 bar

Pmax = 0.74 bar Pmax = 1.75 bar Pmax = 0.41 bar Pmax = 0.40 bar

Fig. 2: The high-speed video recordings of the chosen impact captured in 9 out of 10 repetitions of long duration
model tests and the maximum induced pressures at sensor level
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Fig. 3: The heave signals cut assuming 15, 30, and 90 seconds of effective memory. The same procedure was
used to cut sway and roll signals.

the moment of the impact1.

(a) (b) (c)

Fig. 4: The global flow in the 2D tank, 2.4 seconds before the impact time with assumed effective memories of
(a) 15 seconds (b) 30 seconds (c) 90 seconds

At time t = 0 impacts were recorded as shown in Fig. 5 which geometrically looked very similar to the ones
obtained from long duration tests. The differences between impacts obtained with different durations exist as
was the case for impacts obtained from long tests and differences observed at the nominal impact time were
comparable with the initial variations observed during the ten repetitions of the complete tests.

Taking benefit of the short excitation duration for recreating a given impact condition, 3000 repetitions of the
same impact were created in GTT’s laboratory. An excitation with the assumed me = 30 s was used for each
test and a break time of one minute was applied in between every two repetitions. More repetitions could have

1Click on the link to watch the corresponding video or use the address: http://youtu.be/1ibUgIqTsBs. From the video, it is
clear how the global flows progressively match together especially for the top one which has just started.
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Pmax = 0.44 bar Pmax = 1.72 bar Pmax = 0.41 bar
(a) (b) (c)

Fig. 5: The impact geometry and maximum impact pressures obtained with assumed effective memories of (a)
15 seconds (b) 30 seconds (c) 90 seconds

been obtained considering a smaller excitation duration and no break between the tested conditions. Maximum
pressure obtained from the 3000 repetitions was 3.14 bar to be compared with a maximum of 2.06 bar measured
in all the impacts of the ten initial repetitions of the complete irregular test. Different sets of many repetitions
for excitations of different durations are intended to be performed soon in GTT in order to complete the study
and check whether the samples of pressure peaks are statistically equivalent or not.

5 Conclusions

For short 2D tank motions at scale 1 : 40 the global flow is able to match the global flow obtained from complete
long excitations as long as the duration is larger than 15 s. In that case the variations obtained on the wave shape
before the nominal impact for short durations are visually as small as the variations observed for repetitions of
the long duration test. The study still needs to be continued and in order not to bias any statistics, it should
be shown that the variability associated to the flow and finally to the pressure measurements remains similar
to the variability that can be obtained from long duration tests.

Singularization of sloshing impacts could lead to new ways to quickly build more relevant pressure statistics for
sloshing assessment as

• Instead of mixing measured pressure data from different impact types (a wide range of slosh, gas pocket,
and flip-through) during statistical post processing, focus can be made on the same types of impacts and
the statistical analysis would be more relevant,

• Instead of performing a limited number of long sloshing tests, thousands of repetitions for dedicated tests
on single impacts could be done in a much shorter time with focus on the most relevant impacts which
could save time and generate sounder statistical samples.
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Abstract

With a semi-analytical accurate computation method and
model experiment, a study is made on the phenomenon of
cloaking a floating cylinder by surrounding it with a finite
number of smaller circular cylinders uniformly spaced on
a circle concentric with the inner cylinder. It is shown
that when the optimization of the geometrical parameters
of surrounding cylinders is realized to minimize the total
scattered-wave energy, the wave drift force reduces to nearly
zero not only on the entire bodies but also on the inner cylin-
der and outer surrounding cylinders individually.

1. Introduction

Cloaking phenomenon is attracting attention recently in
wave-body interaction problems on the free surface. ‘Cloak-
ing’ refers to the condition that there is no wave scatter-
ing in the form of radial outgoing waves. Originally this
phenomenon was studied by Pendry et al. (2006) in elec-
tromagnetic fields. Newman (2013) has also analyzed the
phenomenon of cloaking a circular cylinder of finite draft by
surrounding it with an array of smaller cylinders. He has
shown numerically that the scattered-wave energy can be
reduced to substantially zero by optimizing the geometrical
parameters of the cylinders concerned and that the mean
drift force on the entire bodies becomes also very small.

The present paper is concerned with the same problem,
but care is paid on the accuracy of the solution by adopting
Kagemoto & Yue’s theory (1986) combined with a higher-
order boundary element method (HOBEM). By express-
ing the solution with the cylindrical coordinate system and
Graf’s addition theorem for Bessel functions, it is made pos-
sible to compute the wave drift force not only on the entire
bodies but also on each of the bodies in the array, only in
terms of the complex amplitude coefficients of scattered and
incident waves. Optimization of the geometrical parameters
of the cylinders is performed using the real-coded genetic
algorithm (RGA) such that the total scattered-wave energy
is minimized.

In order to confirm correctness of computed results, a
model experiment is also conducted for an optimized con-
figuration at the normalized wavenumber Kd0 = 1 (where
d0 is the draft of the central circular cylinder), measuring
the wave drift forces and also the spatial distribution of the
wave elevation. It is confirmed that when the cloaking phe-
nomenon occurs, the wave drift force becomes very small not
only on the entire bodies but also on the inner cylinder and
outer surrounding cylinders individually.

2. Theory for Computation

2.1 Velocity potential

We consider a number of vertical circular cylinders of fi-
nite draft (total number equal to M), specifically a central
cylinder (radius r0 and draft d0) is surrounded by smaller
N (= M − 1) cylinders of same size with radius r and draft
d which are uniformly spaced on a circle of radius R0, con-
centric with the inner cylinder.

To analyze multiple wave interactions among these float-
ing bodies, the linearized potential-flow problem is con-
sidered with coordinate systems shown in Fig. 1; where
in addition to the global coordinate system O-rθz (where
x = r cos θ and y = r sin θ) fixed at the central circular
cylinder, the local coordinate system Ok-rkθkz is consid-
ered, with its origin placed at the center of the k-th body.
The z-axis is positive vertically downward, and the plane of
z = 0 is placed on the undisturbed free surface.

Let us consider the diffraction problem with the velocity
potential expressed in the form

Φ(P ; t) = Re
[

gζa

iω

{
φI(P ) + φS(P )

}
eiωt

]
. (1)

Here P = (r, θ, z) denotes a field point in the fluid; g is
the gravitational acceleration; ζa and ω are the amplitude
and circular frequency of an incident wave, respectively; Re
means the real part to be taken.

The velocity potential of incident wave φI(P ), propagat-
ing in the direction with incident angle β relative to the pos-
itive x-axis, can be expressed in the cylindrical coordinate

z

z

z

y

x

O LkO

Lk`

kOα k`α

k`α

yk

y`

xk

x`

Ok

O`

Fig. 1 Coordinate system and notations.
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system as follows:

φI(P ) =

∞∑

m=−∞
αm Z0(z) Jm(k0r) e−imθ (2)

where
αm = eim(β−π/2), Z0(z) =

cosh k0(z − h)

cosh k0h
(3)

k0 tanh k0h =
ω2

g
≡ K (4)

with the fluid depth assumed constant and denoted as h.
The velocity potential φS(P ) in (1) is the scattering po-

tential due to body disturbance. Since there are M bodies
in the present analysis, it can be written as follows:

φS(P ) =

M∑

ℓ=1

φℓ
S(P ) ≃

M∑

ℓ=1

∞∑

n=−∞
Aℓ

nZ0(z)H(2)
m (k0rℓ) e−inθℓ

=

∞∑

m=−∞
Am Z0(z) H(2)

m (k0r) e−imθ (5)

where
Am =

M∑

ℓ=1

∞∑

n=−∞
Aℓ

n Jn−m(k0Lℓ0) e−i(n−m)αℓ0 (6)

Evanescent wave components are ignored in (5) for brevity,
and the complex amplitude of the scattered progressive
wave around the ℓ-th body is denoted as Aℓ

n, which is
computed accurately with higher-order boundary element
method (HOBEM) for computing the diffraction character-
istics of elementary bodies and the wave-interaction theory
of Kagemoto & Yue (1986). Here Jm(k0r) and H

(2)
m (k0r)

denote the first kind of Bessel function of order m and the
second kind of Hankel function of order m, respectively.
The complex amplitude Am in the global coordinate system,
given by (6), is obtained through the coordinate transforma-
tion (see Fig. 1 for notations) and associated Graf’s addition
theorem for Bessel functions.

To summarize the above, the total velocity potential valid
at a distance outside of all bodies can be given as the sum
of (2) and (5) in the form

ϕ(P ) ≡ φI(P ) + φS(P )

=

∞∑

m=−∞

[
αmJm(k0r) + AmH(2)

m (k0r)
]
Z0(z) e−imθ (7)

For computing the wave drift force on each body, say on
the ℓ-th body, we need an expression of the velocity poten-
tial valid around the ℓ-th body, in which the incident wave
consists of not only the wave expressed by (2) coming from
the outside but also disturbance waves due to other bodies.
Thus it can be written with the ℓ-th local coordinate system
in the form

ϕℓ(P ) ≡ φℓ
I(P ) + φℓ

S(P )

=

∞∑

m=−∞

[
αℓ

mJm(k0rℓ) + Aℓ
mH(2)

m (k0rℓ)
]
Z0(z) e−imθℓ (8)

where
αℓ

m = αm e−ik0(xoℓ cos β+yoℓ sin β)

+

M∑

k=1
k ̸=ℓ

∞∑

n=−∞
Ak

n H
(2)
n−m(k0Lkℓ) e−i(n−m)αkℓ (9)

and the second line in (9) is given with the coordinate trans-
formation and associated Graf’s addition theorem for Bessel
functions.

2.2 Wave drift force and scattered-wave energy

According to the far-field method, the wave drift force can
be computed from quadratic products of the total velocity
potential valid at a distance from the body concerned. When
the velocity potential is expressed with the cylindrical coor-
dinate system, like (7) or (8), the integrals with respect to θ
and z appearing in the formula by the far-field method can
be analytically performed at a certain appropriate distance
of r (where evanescent waves can be practically neglected),
with the Wronskian relations for Bessel functions applied.
After this kind of analytical integrations using (7), the cal-
culation formula for the wave drift force on the entire bodies
is given in the following complex form:

F x − iF y

1
2
ρgζ2

ad0

=
i

C0Kd0

∞∑

m=−∞

[
2AmA∗

m+1

+αmA∗
m+1 + α∗

m+1Am

]
, (10)

where C0 =
k0

K + (k2
0 − K2)h

. (11)

In the same way using (8), the wave drift force on the
ℓ-th body can be computed from

F
ℓ
x − iF

ℓ
y

1
2
ρgζ2

ad0

=
i

C0Kd0

∞∑

m=−∞

[
2Aℓ

mAℓ∗
m+1

+αℓ
mAℓ∗

m+1 + αℓ∗
m+1Aℓ

m

]
. (12)

Here the asterisk in superscript stands for the complex con-
jugate. It should be noted that hydrodynamic interactions
among all bodies are exactly taken into account by includ-
ing evanescent-wave effects in computing the complex am-
plitude of scattered waves, because Kagemoto & Yue’s wave-
interaction theory combined with HOBEM is adopted in the
present theory.

Minimizing the scattered-wave energy may be used as an
objective function in optimization of the parameters of outer
surrounding circular cylinders. The scattered-wave energy
can be computed with the same procedure as that used for
computing the wave drift force. In the diffraction problem,
the result can be expressed as

ES

ρgζ2
a

ω
k0

=
1

KC0

∞∑

m=−∞

∣∣Am

∣∣2 . (13)

3. Numerical Results

First, the real-coded genetic algorithm (RGA) was applied
so as to minimize the total scattered-wave energy of all bod-
ies, to be computed by (13), at the normalized wavenumber
K = 1. (All parameters with length scale are nondimension-
alized with the draft of central circular cylinder d0.) Com-
puted parameters of outer circular cylinders (r, d, R0) are
shown in Table 1; where ES/ES0 denotes the energy ratio,
with ES0 being the energy of scattered wave by the central
cylinder alone.

Figure 2 shows the contour map of scattered-wave am-
plitude at K = 1 for the case of surrounding 8 bodies
(N = 8, M = N + 1 = 9). It can be seen that no scat-
tered waves exist outside of the entire bodies and almost all
scattered waves are trapped between the central and sur-
rounding bodies even for the case of N = 8.
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Table 1 Optimized parameters of outer cylinders to mini-
mize the total scattered-wave energy.

N r d R0 ES/ES0

4 0.2931 0.3509 2.2156 0.2948

8 0.2929 0.4834 2.2000 0.0254

16 0.1960 0.4871 2.1483 0.0199

32 0.1311 0.4506 2.1051 0.0127
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Fig. 2 Contour map of scattered-wave amplitude at K =
1.0 for the case of N = 8 shown in Table 1.
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Fig. 3 Wave drift forces on the entire structure of N = 8
configuration and separate components acting on
the inner cylinder and outer surrounding cylinders.
The broken line is the force on the inner cylinder
alone (N = 0).

The wave drift force is associated with the scattered wave,
as observed by (10) and (11). However, it is not obvi-
ous whether the wave drift force becomes zero, when the
scattered-wave energy of (13) is zero. Computed results for
the wave drift force are shown in Fig. 3 for the case of N = 8.
We can see at K = 1 that not only the force on the en-
tire bodies (indicated by solid line) but also the individual
components acting on the inner and outer bodies are also

almost zero. This is because the scattered-wave pattern,
shown in Fig. 2, looks symmetric with respect to the y-axis
penetrating the center of inner cylinder and orthogonal to
the direction of incident-wave propagation.

4. Experimental Confirmation

A model experiment has been conducted, corresponding to
the numerical computations for the case of surrounding 8
circular cylinders. A photo of the model set in the wave basin
is shown in Fig. 4, where the radius (r0) and draft (d0) of the
central circular cylinder were selected as r0 =0.134m and
d0 =0.240m. By referring to computed results at K = 1,
the parameters of outer circular cylinders are selected as
shown in Table 2.

Fig. 4 Experimental model set in a wave basin.

Table 2 Parameters of outer circular cylinders used in the
model experiment.

Radius r 0.070 m (r/d0 = 0.292)

Draft d 0.120 m (d/d0 = 0.500)

Distance R0 0.515 m (R0/d0 = 2.146)

It should be noted that the length ratios shown in Table 2
are slightly different from corresponding normalized values
in Table 1 for N = 8, on account of practical limitation in
selecting materials for circular cylinders.

Although the wave elevation was measured at a number
of different points, the results are shown only for the wave
drift force acting on the central cylinder and also on each
of outer surrounding cylinders (4 bodies due to symmetry).

x

Incident Wave

0.268 m

0.140 m

0.515 m

No.1

No.2No.3

No.4

Fig. 5 Arrangement and numbering of outer cylinders.
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Fig. 6 Wave drift forces on each of outer cylinders (No. 1 through No. 4).
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Fig. 7 Wave drift forces on outer cylinders, inner cylinder, and all cylinders.

The outer cylinders are numbered with No. 1 through No. 4
from the downwave side, as depicted in Fig. 5.

We can see in Fig. 6 relatively good agreement between
computed and measured results, and at the cloaking fre-
quency of K = 1 the value of No. 4 cylinder becomes neg-
ative, whereas the corresponding value of No. 1 cylinder is
positive with almost the same magnitude. In fact, summing
up all values acting on the outer surrounding bodies, we can
obtain the result shown in Fig. 7, from which we can see that
the wave drift forces on both the inner cylinder and outer
surrounding cylinders are almost zero at K = 1.

5. Conclusions

Using a semi-analytical method with higher accuracy, the
occurrence of cloaking in the surface-wave problem was con-
firmed for an array of smaller cylinders which surround the
inner cylinder of finite draft. It was demonstrated that when
the cloaking is realized, the wave drift force becomes practi-
cally zero both on the inner and outer cylinders individually.
The wave pattern around the bodies was also computed and

a relationship between the wave pattern and zero drift force
at the cloaking frequency was noted.

Furthermore, a model experiment was conducted to con-
firm correctness of computed results, measuring hydrody-
namic forces and the spatial distribution of the wave ele-
vation around the bodies. Measured results for the wave
elevation and their comparison with computed results will
be presented at the Workshop.
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The present study is motivated by hydrodynamics of high-speed vessels and aircraft ditching on
the water surface, where the wetted part of the hull is streamlined and the hull is elongated in
the direction of the motion. Hydrodynamic loads over the wetted part of the elongated hull can
be estimated by using the 2D+T approximation [1]. In this approximation, the three-dimensional
nonlinear stationary problem is reduced to a two-dimensional transient problem of water entry and
exit. This two-dimensional problem can be linearized if both the draft of the body and the deadrise
angles of the body cross sections are small. For the stationary three-dimensional problem of a smooth
body moving at a constant speed along the water surface, it is convenient to introduce a vertical plane
perpendicular to the direction of the body motion and consider the unsteady two-dimensional flow in
this plane caused by the body passing through the plane. The intersection of the body surface with
this control plane provides a two-dimensional contour which changes its shape in time and interacts
with the water surface. For a three-dimensional body with smooth surface the penetration stage ends
when the two-dimensional contour stops expanding. During the next stage, which is referred below
as the exit stage, the contour contracts and exits from the water. The entry stage was investigated
in [2] by the modified Logvinovich model [3]. It was found that the theoretical results are very close
to the CFD results obtained by numerical simulations of the Navier- Stokes equations (see [4-6] for
details of the simulations). However, the theoretical results from [2] for the exit stage were not as
good as for entry stage. During the exit stage, the von Karman model was used in [2]. Recently a
linearized exit model was developed in [7]. The exit model is formulated in terms of the linearized
pressure with the condition that the speed of the contact points is proportional to the local speed of
the flow. This model does not account for the shape of the body but still corresponds quite well to
the CFD results from [4]. The model was developed further in [8] to account for a varying in time
acceleration of the body. The bodies in [7] and [8] were rigid and only vertical motions were allowed.
The two-dimensional problem of a body whose shape varies in time was studied in [2] for an expanding
and contracting circular cylinder. The numerical and theoretical forces were very close to each other
during the expansion (entry) stage but rather different during the contraction (exit) stage.

In the present paper, we apply the exit model from [7] to the bodies of varying shapes together
with corrections accounting for the shape of the body (see [2]) and nonlinear effects. The entry stage
is considered below within the original Wagner theory of water impact. It is known (see [2]) that
the MLM provides better prediction of the hydrodynamic loads during the entry but here we are
concentrated on the negative loads during the exit stage. In the next sections, we provide the solution
of the linearized exit model for a body of varying shape, introduce the correction terms and compare
the theoretical forces with the CFD results from [2]. Then we apply the model to the problem of
an ellipsoid which moves horizontally at a fixed penetration depth and compare the distributions of
the sectional forces and pressures with the CFD results. Finally we summarize our findings and draw
conclusions.
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Exit model for a body shape of which varies in time
The linearized exit model [7] for a body with a shape that is described by the equation y = yb(x, t),

is formulated in terms of the acceleration potential ϕt(x, y, t):
∇2ϕt = 0 (y < 0), ϕt = 0 (y = 0, |x| > c(t)),

∂ϕt/∂y = yb,tt(x, t) (y = 0, |x| < c(t)), ϕt → 0 (x2 + y2 →∞), (1)

where y = 0 corresponds to the level at which the problem is linearized, the function yb(x, t) is given
and the function c(t) is calculated by using the condition that the velocity of the contact points c′(t)
is proportional to the local velocity of the flow at these points

dc/dt = γϕx[c(t), 0, t], c(0) = c0, (2)

where c0 is the solution of the equation yb(c0, 0) = 0. The coefficient γ is equal to two in the present
analysis as in all previous calculations (see [7,8]). The pressure is given by the linearized Bernoulli
equation p(x, y, t) = −ρϕt(x, y, t), where ρ is the water density, and the hydrodynamic force FL(t) is
given by (the subscript L stand for the linearized exit model)

FL(t) =

c(t)∫

−c(t)

p(x, 0, t) dx. (3)

The solution of the boundary problem (1) with the acceleration potential being continuous at the
contact points x = ±c(t), y = 0 is given by

ϕxt(x, 0, t) =
1

π
√
c2 − x2

p.v.

c(t)∫

−c(t)

yb,tt(ξ, t)

√
c2 − ξ2
ξ − x dξ, ϕx(x, 0, t) =

t∫

0

ϕxt(x, 0, τ) dτ. (4)

Equations (3) and (4) yield the formula for the hydrodynamic force in term of the functions c(t) and
yb,tt(x, t)

FL(t) = −2ρc2(t)

π/2∫

0

yb,tt(c sin θ, t) cos2 θ dθ. (5)

Equations (2) and (4) provide the equation for the function c(t)

dc

dt
=
γ

π

t∫

0

( c(τ)∫

−c(τ)

yb,tt(ξ, τ)
√
c2(τ)− ξ2

ξ − c(t) dξ

)
dτ√

c2(τ)− c2(t)
. (6)

To transform equation (6) to a form suitable for numerical integration, we introduce a function

H(t) =
2

π

c(t)∫

0

yb,tt(ξ, t)√
c2(t)− ξ2

dξ,

which plays a role of an averaged acceleration of the body. Then we introduce new unknown functions
σ(t) by c2(t) = c20(1− σ(t)) and f(σ) by

H(t) = f(σ)
dc2(t)

dt
= −c20f(σ)

dσ

dt
(7)

(see [7] for details). Then equation (6) can be written as

H
(
σ, t(σ)

)
= 2γc30(1− σ)f(σ)

σ∫

0

f(σ)√
σ − αR

(
σ, α, t(α)

)
dα, (8)

H
(
σ, t(σ)

)
=

2

π

π/2∫

0

yb,tt

(
c0
√

1− σ sin θ, t(σ)
)
dθ, R

(
σ, α, t(α)

)
= 1− 2(σ − α)

L
(
σ, α, t(α)

)

H
(
α, t(α)

) ,

L
(
σ, α, t(α)

)
=

π/2∫

0

yb,tt

(
c0
√

1− α sin θ, t(α)
)
− yb,tt

(
c0
√

1− σ sin θ, t(σ)
)

(1− α) sin2 θ − (1− σ)
dθ.

For parabolic shapes with time-dependent curvature we have

yb(x, t) = B(t)x2 + h(t), H(σ, t) =
1

2
B′′(t)c20(1− σ) + h′′(t), L(σ, α, t) =

π

2
c20B

′′(t). (9)
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Equations (7) and (8) serve to determine the functions f(σ) and t(σ), where 0 ≤ σ < 1. Equations
(7) and (8) are solved numerically by the generalized version of the algorithm from [8]. Note that the
hydrodynamic force (5) and the size of the wetted area predicted by (8) depend on the acceleration
of the body but not on its shape within the linearized exit model. In order to account for the shape
of the body and, at least partly, for the nonlinear terms in the Bernoulli equation, we use the ideas
from the modified Logvinovich model [3], where the pressure distribution along the wetted part of the
entering water contour is given by

p(x, yb(x, t), t) = −ρ
(
φt − φxyb,tyb,x/(1 + y2b,x) + (φ2x − y2b,t)/(2(1 + y2b,x))

)
.

In this formula, we neglect φx, yb,x and approximate

φt(x, t) ≈ ϕt(x, 0, t) + +vpty(x, 0, t)(yb(x, t)− yb(c, t)) = ϕt(x, 0, t) + yb,tt(x, t)(yb(x, t)− yb(c, t)).
The term yb(c, t), the splash-up height, indicates that the problem (1) is obtained by the linearization
on the splash-up level as in the generalized Wagner model. In the parabolic approximation (9), the
corrected pressure is given by

p(x, yb(x, t), t) = −ρφt + ρ(x2B′′ + h′′)(c2 − x2)B(t) + ρ(B′x2 + h′)2/2, (10)

where ϕt(x, 0, t) is given by Wagner theory at the entry stage and by the linearized exit model at the
exit stage. Correspondingly the force is decomposed as

F (t) = FL(t) + Fb(t), (11)

where FL(t) is given by the linearized models of entry and exit and the corrections term Fb(t) is ob-
tained by integration of the second and third terms in (11) over the wetted interval, −c(t) < x < c(t),
both during the entry and exit stages.

Numerical results
The introduced model is applied to the water entry and exit of an expanding and contracting

circular cylinder. This problem was studied numerically and by using the MLM during the expansion
stage and von Karman model during the contraction stage in [2]. The forces calculated numerically
and by the MLM during the expansion stage are very closed to each other, but the numerical and
theoretical predictions of the forces during the contraction stage are rather different. Here we are
concentrated on the contraction stage describing the expansion stage by the simplified model (10),
(11), where the cylinder was approximated by the parabolic contour (9). The conditions of calculations
are the same as in [2]. The non-dimensional forces for different ratios k = Rmax/R0, where Rmax is
the maximum radius of the cylinder and R0 is its initial radius, are presented in Fig. 1 as functions of
the non-dimensional time t∗, where F ∗ = Ft20/(4ρR

3
0(k − 1)2), t∗ = t/t0 and t0 is the duration of the

impact stage. Here line 1 corresponds to F ∗L(t∗) without any corrections of the linearized model, line
2 shows the total force F ∗(t∗) by (10) and (11), line 3 is for the total force F ∗(t∗) but the linearization
is performed at the equilibrium water level y = 0, and line 4 is for the CFD resulting force from [2].
Star stands for non-dimensional variables. It is seen that the present model provides the force closest
to the CFD results. Calculations were also performed for the actual shape of the cylinder without the
parabolic approximation to demonstrate the accuracy of the approximation (9).

Fig. 1 Non-dimensional forces acting on the expanding/contracting circular cylinder as functions of the

non-dimensional time for different values of the parameters k.

107



Finally we apply the developed model to a three-dimensional steady problem of a rigid ellipsoid

(x− Ut)2/a2 + y2/b2 + (z − h)2/c2 = 1

with semi-axes a, b and c, which is slightly submerged at c− h and moves along the water surface in
the x-direction with constant speed V within the 2D+T approximation. The hydrodynamic loads are
determined for each section of the body by using the Wagner theory if the section penetrates water,
and by the linearized exit model if the section exits from the water. The control plane is introduced
at x = a. The forces are calculated for sections of the body

z = zb(y, t) = h− c
√
τ(2− τ)− y2/b2, τ = Ut/a,

which are approximated by parabolic shapes (9). The distributions of the pressure at y = 0 and the
sectional forces are shown in Fig. 2 together with CFD results obtained within the Navier-Stokes three-
dimensional model without gravity and surface tension. Calculations were performed for a = 10m,
b = c = 1m and V = 50m/s. The present linearized model with corrections (10) and (11) over-predicts
the loads for the sections in entry but well corresponds to the CFD predictions for the sections in
exit. The loads for the sections in entry can be potentially improved by using the MLM and a local
three-dimensional model close to the jet overturning region.

Fig. 2 The hydrodynamic sectional force (on the left) and the pressure at y = 0 (on the right) as functions

of the longitudinal coordinate x. The correspondences of the lines are the same as in Fig. 1 (see the text).
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Experimental description of long time evolution of Akhmediev breathers

O. Kimmoun1,2, A. Chabchoub3, H. Branger2, H.C. Hsu4, Y.Y. Chen4, C. Kharif2, M.S. Li4.

1 Introduction

Deep water waves in the ocean and wave propagation in optical fibers can be described by the nonlinear
Schrödinger (NLS) equation. One class of solutions of this equation is called breather and corresponds to the
evolution of solitary waves on finite amplitude background. Due to nonlinear interaction between the solitary
waves and the background, the solitons are pulsating. A fundamental analytical solution of these breathers is
the Peregrine soliton, which was first presented by Peregrine [1]. The Peregrine soliton is a localized solution
in both time and space, and is a limiting case of Akhmediev breathers [2]. For ideal conditions, Peregrine or
Akhmediev breathers exhibit only one growth and return cycle. More realistic studies have shown that this
behavior is not generally observed and a more complex evolution is observed [3]. In order to verify this complex
behavior for water wave, experiments have been conducted in the ”mid-size observation Flume” at the Tainan
Hydraulics Laboratory (THL) of National ChengKung University, Taiwan. This flume permits to observe the
long time evolution of Akhmediev breather.

2 Theoretical preliminaries

The NLS equation describes the evolution in space and time of weakly nonlinear wave trains of amplitude
A(x, t) in various media [4]. In finite water depth h it can be derived by applying the method of multiple scales
[5, 6] and is given by:

−i
(
∂A(x, t)

∂t
+ cg

∂A(x, t)

∂x

)
+ α

∂2A(x, t)

∂x2
+ β|A(x, t)|2A(x, t) = 0

with 



α = −1
2
∂2ω
∂k2

β =
ω k2

16 sinh4(kh)

(
cosh(4kh) + 8− 2 tanh2(kh)

)

− ω

2 sinh2(2kh)

(2ω cosh2(kh) + kcg)2

gh− c2g
with ω2 = gk tanh(kh) and cg = ∂ω

∂k . Using rescaling variables:

X = x− cg t T = −α t and q(X,T ) =

√
±β
2α

A(X,T )

When kh > 1.363, then αβ > 0, and a sign + takes place in the square root. Then the NLS equation becomes:

i qT + qXX + 2 |q|2 q = 0

In this case, a regular wave train is unstable and the Benjamin-Feir instability grows exponentially. The free
surface elevation is given by:

η(x, t) = <
(
A(x, t) . ei (kx−ωt)

)

An exact first-order solution of this NLS equation is given by Akhmediev [7]

q(X,T ) = −
(

1 +
2(1− 2a) cosh(2bT ) + ib sinh(2bT )√

2a cos(ωmodX)− cosh(2bT )

)
e2iT
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2Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France
3Swinburne University of Technology, John St, Hawthorn, Australia
4Tainan Hydraulics Laboratory, National Cheng Kung University, Taiwan

109



with b =
√

8a(1− 2a) and ωmod = 2
√

1− 2a and with a a parameter related to the period of the wave envelope.
An example of q(X,T ) for a = 0.45 is displayed in Fig.1(Left) and an example of the free surface in front of
the wave-maker η(x, t) for x = −70m is displayed in Fig.1(Right).

Figure 1: (Left): Akhmediev breather for a = 0.45, Space-time representation of the envelope q(X,T ), (Right): wave
elevation η(x, t) for x = −70m in front of the wave-maker for T = 1s, a0k = 0.12 and a = 0.45

3 Experimental setup

Experiments have been conducted at the Tainan Hydraulics Laboratory (THL) of National ChengKung Uni-
versity, Taiwan, in the so-called ”mid-size observation flume”. This facility is 200m long and 2m wide. The
water depth was set to 1.35m. At one end, the tank is equipped with a piston wave-maker and at the other
end with an absorbing beach made with rocks. In order to measure wave elevation, 60 capacitance-type wave
gauges were used with a sample rate of 100Hz. The first one was located at 2.1m from the wave-maker and the
last one at 176.1m. The spatial distribution of the wave gauges is presented in Fig.2.

Figure 2: Distribution of the 60 wave gauges along the wavetank

3.1 A weakly nonlinear case

Among all the cases performed during this experiment, a typical case with a small steepness is chosen. In
Fig.3(Left), the time evolution of the free surface and the envelope at different wave gauges is displayed. This
case corresponds to T = 1s, ak = 0.07 and a = 0.45. In this representation, the x-axis is shifted according to
the group velocity in order to have the maxima at the same location. For cases where the steepness is relatively
small, the amplitude of the envelope increases and decreases after a maximum is reached, in this case at a
distance from the wave-maker equal to 70m. It is noteworthy that the maximum of the envelope is always
located at the same place whatever the distance from the wave-maker. In order to estimate the repeatability
of the tests, the space evolution of the maximum of the amplitude of the envelope along the tank for three
similar wave conditions is displayed in Fig.3(Right). The good agreement between the three curves shows that
repeatability is achieved. In the next section, the repeatability for a more nonlinear case (see Fig.5(Left)) is also
displayed and shows the same agreement. In Fig.4(Left), the space-time evolution of the envelope is displayed.
This figure shows that the evolution of the envelope is regular all along the wave tank. As it can be noticed
in Fig.3(Right), for distance to the wave-maker larger than 120m, a second maximum appears just before the
main one. This feature is explained in the next section for more nonlinear cases. Another important issue
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Figure 3: T = 1s, a0k = 0.07 and a = 0.45. (Left): Time evolution of the free surface and the envelope for different
wave gauges. (Right): Space evolution of the maximum of the normalized amplitude of the envelope

Figure 4: T = 1s, a0k = 0.07 and a = 0.45. (Left): Time-space evolution of the normalized amplitude of the envelope.
(Right): Spectra of the wave elevations for different wave gauges. Values are expressed in (cm/Hz)

concerns the spectral content of the wave train. In Fig.4(Right), spectra for different wave gauges along the
wave tank are displayed. For the wave gauge near the wave-maker, the central peak is dominant with sidebands
present on either side of the peak. As the wave train evolves, the central peak decreases up to a minimum and
increases again. At the same time, the spectral content of the sidebands increases.

3.2 Highly nonlinear case

While the behavior of the different quantities is relatively simple in the weakly nonlinear case, it becomes
more complex when the steepness increases. The considered case corresponds to the same wave period and
Akhmediev parameter but for a steepness ak = 0.12. In Fig.5(Left) the space evolution of the maximum of the
envelope is displayed for three similar tests. Firstly, even for higher values of the steepness, the repeatability
is still very good. Secondly, when the steepness increases, we can observed three stages in the evolution: an
increasing phase up to a maximum reached at 70m, a decreasing phase up to a minimum reached at 110m
and a new increasing phase. In Fig.5(Right) the time evolution of the wave elevation for different wave gauges
is presented. As in the previous example, over almost one hundred meters, before the minimum is reached,
the maximum is located at the same time. But during the second increasing stage, we can observe that
instead of one maximum, two maxima appear at either side of the previous one. This splitting can be observed
more easily on the three dimensional representation displayed in Fig.6(Left). This phenomenon has been
observed before experimentally for fiber optics by Hammani et al. (2011)[8] and Erkintalo et al. (2011)[9] and
corresponds to high-order modulational instability. In these previous experiments, the two subpulses are of
the same magnitude. In the present case, the first one with respect to the time is higher than the second one.

As we have presented for the weakly nonlinear case, the spectra for different wave gauges are presented in
Fig.6(Right). As in the weakly nonlinear case, the peak at the carrier frequency decreases down to a minimum
and increases again. At the same time the frequency contents of the sidebands increase.
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Figure 5: T = 1s, a0k = 0.12 and a = 0.45. (Left): Space evolution of the maximum of the normalized amplitude of the
envelope. (Right): Time evolution of the free surface and the envelope for different wave gauges

Figure 6: T = 1s, a0k = 0.12 and a = 0.45. (Left): Time-space evolution of the normalized amplitude of the envelope.
(Right): Spectra of the wave elevations for different wave gauges. Values are expressed in (cm/Hz).
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Non-linear problem on unsteady free surface flow forced by submerged cylinder

Vasily K. Kostikov1,2, Nikolay I. Makarenko1,2,
1Lavrentyev Institute of Hydrodynamics, 2 Novosibirsk State University, Novosibirsk, Russia
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A fully nonlinear problem on unsteady water waves generated by submerged circular cylinder is considered
semi-analytically. Main purpose is to evaluate impact of non-linearity acting at early stage of non-stationary
wave motion when the cylinder accelerates impulsively near the free surface. Effect of non-linearity was
originally studied by Tuck [1] who used the Wehausen scheme [2] by constructing power expansion on
radius of the cylinder for the solution which describes stationary wave train past horizontally moving
body. We apply here analytical method developed by Ovsyannikov [3] for a class of initial boundary value
problems on unsteady free surface flows. By this way, the mathematical formulation reduces to an integral-
differential system of equations for the functions defining the free surface shape and the normal and tangential
components of fluid velocity. This method was extended by Makarenko [4] to the problem on unsteady water
waves forced by circular cylinder, as well as the problem on elliptic cylinder moving under free surface [5]
or under ice cover [6] was considered. Small-time solution expansions were obtained systematically starting
from the papers by Tyvand & Miloh [7, 8] devoted to the case of unsteady motion of a circular cylinder. We
revisit here this problem in order to accent the role of non-linearity in the mechanism of formation of finite
amplitude surface waves.

Statement of the problem

The plane irrotational flow of a heavy inviscid deep fluid is considered in the coordinate system Oxy with
a vertical y–axis. The circular cylinder of nondimensional radius r centered at (xcyl(t), ycyl(t)) moves totally
submerged in the deep fluid with free surface y = η(x, t), having the equillibrium level y = 0. Dimensionless
variables use the initial depth of submergence h as the length scale, characteristic speed of cylinder u0 as
the velocity scale, ρu2

0 as the pressure scale and h/u0 as the time scale. The Euler equations for the fluid
velocity u = (U, V ) and pressure p are





Ut + UUx + V Uy + px = 0,

Vt + UVx + V Vy + py = −λ,
Ux + Vy = 0, Uy − Vx = 0.

(1)

Here λ = gh/u2
0 is the square of the inverse Froude number. The fully non-linear kinematic and dynamic

free-surface boundary conditions
ηt + Uηx = V, p = 0, (y = η(x, t)), (2)

together with the exact rigid body surface condition

(u− ucyl) · n = 0, (x− xcyl(t))2 + (y − ycyl(t))2 = r2 (3)

are employed. Here n is the unit normal to the cross-section of the cylinder. We suppose that the fluid is at
rest at infinity (U, V → 0, η → 0, |x| → ∞) and initial velocity field satisfies compatibility conditions,
i.e. it is potential and irrotational.

We reduce equations (1)–(3) to an equivalent system of boundary integral-differential equations which
are one-dimensional with respect to spatial variables. Let u = U + ηxV and v = V − ηxU be tangential and
normal fluid velocitites at the free surface y = η(x, t). Excluding the pressure p from momentum equations
(1) we obtain under conditions (2) an evolution system for η, u, v

ηt = v, ut +
1

2

∂

∂x

(
u2 − 2ηxuv − v2

1 + η2
x

)
+ ληx = 0. (4)

Differential equations (4) are complemented by the integral equation which follows from the representation
of complex velocity F = U − iV using the boundary integrals on the free surface only

2πiF (z, t) =

∫

Γ

F (ζ, t)dζ

ζ − z +
r2

(z − zcyl)2
∫

Γ

F (ζ, t)dζ

ζ − z∗
+

γ

z − zcyl
+

2πir2z′cyl
(z − zcyl)2

. (5)
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Here z∗ = zcyl + r2/z is the inversion image of z = x + iy with respect to the circle centered at the point
zcyl(t) = xcyl(t)+ iycyl(t). The constant γ is the velocity circulation around the cylinder. Combining real and
imaginary parts of the formula (5) with z = x+ iη(x, t) taken on the free surface gives the real-valued form
of boundary integral equation as follows:

πv(x)+v.p.

∞∫

−∞

(Af (x, s)+r
2Ar(x, s))v(s)ds = v.p.

+∞∫

−∞

(Bf (x, s)+r
2Br(x, s))u(s)ds+vcurl(x)+vdip(x), (6)

where the kernels of integral operators are given by

Af + iBf =
i[1 + iη′(x)]

x− s+ i[η(x)− η(s)] , Ar + iBr =
i[1− iη′(x)]

[x− iη(x)][r2 − (x− iη(x))(s− iη(s))] .

The functions vcurl and vdip are the normal velocities induced at the free surface by vortex and dipole:

vcurl(x) = γRe
[
log(x+ iη(x)− zcyl(t))

]
x
, vdip(x) = Re

[
2iz′cyl(t)

x+ iη(x)− zcyl(t)

]

x

.

The time variable t was omitted in (6) because it appears in this integral equation only as a parameter. It
should be noted that the kernels Af and Bf correspond to the problem on free waves in deep water without
cylinder. The terms Ar and Br describe the interaction between the cylinder and free surface.

Small-time asymptotic solution

We consider the unsteady flow which starts from the rest and is caused by the motion of the circular cylinder
along the trajectory zcyl(t) = −i+ eiθt2. The angle θ of the motion direction relative to the horizon remains
constant. We look for a solution in the form of power series

η(x, t) = t2η2(x) + t3η4(x) + . . . , u(x, t) = t3u3(x) + t4u4(x) + . . . , v(x, t) = tv1(x) + t2v2(x) + . . .

It is easy to see that the coefficients ηn for n ≥ 1 and un for n ≥ 3 may be evaluated via vn by recursive
formulas following from equations (4)

ηn+1 =
1

n+ 1
vn, u3 =

1

6
(v2

1 − λv1)x, u4 =
1

4
(v1v2)x −

1

12
λv2x, u5 =

1

10
(2v1v3 + v2

2)x −
1

20
λv3x. (7)

Using the expansion of free surface elevation η one can determine the power series for integral operators

Af = t2A
(2)
f +t3A

(3)
f +. . . , Bf = B

(0)
f +t2B

(2)
f +. . . , Ar = A(0)

r +t2A(2)
r +t3A(3)

r +. . . , Br = B(0)
r +t2B(2)

r +. . .

The operators B(0)
f and A(0)

r are important for the solution construction. First of them is the Hilbert transform
H = B(0)

Hu(x) = v.p.

+∞∫

−∞

u(s)ds

x− s , A(0)
r v(x) =

1

π

+∞∫

−∞

(1− r2p(x))q′(x) + (r2q(x)− s)p′(x)
(1− r2p(x))2 + (r2q(x)− s)2 v(s)ds

and the operator A(0)
r is nonlinear with respect to the Poisson kernels

p(x) =
1

1 + x2
, q(x) =

x

1 + x2
.

The integral equation (6) for the normal velocity v leads to a set of equations for coefficients vn (n ≥ 1)

πvn(x) + r2

+∞∫

−∞

A(0)
r (x, s)vn(s)ds = ϕn(x) (n = 1, 2, ...), (8)

where the functions ϕn can be evaluated via the coefficients v1, v2, . . . , vn−1 by the formulas

ϕ1 = v
(1)
dip, ϕ2 = 0, ϕ3 = v

(3)
dip +Hu3 + r2

(
B(0)
r u3 −A(2)

r v1

)
−A(2)

f v1.

Here v(n)
dip are the coefficients of small-time expansion for normal velocity vdip generated by dipole.
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Thus nonlinearity realizes in two different ways if the solution expansion is constructed. Firstly, nonlinear
terms arise from the integral operators depending linearly on the coefficients un which are nonlinear with
respect to v1, v2, . . . , vn−1 due to the recursive formulas (7). In addition, nonlinearity is also presented by
the kernels of integral operators depending on the coefficients ηn. The Table 1 illustrates the leading order
terms of integral equation (8) collected by the powers of the time variable t and the cylinder radius r.

Table 1. Coefficients in the expansion of the functions ϕn from equations (8).

t2 t4 . . .

r2 v
(1)
dip v

(3)
dip, Hu3 . . .

r4 A
(0)
r v1 A

(0)
r v3, B

(0)
r u3, A

(2)
f v1 . . .

. . . . . . . . . . . .

Analytic solution of the equation (8) can be constructed explicitly by using the Neumann series of
integral operator A(0)

r . It is important here that the leading-order coefficient v1 results as linear combination
of the Poisson kernels p(x), q(x) and their derivatives p′(x), q′(x). Subsequently, calculation of higher order
coefficients vn involves nonlinear combinations of derivatives p(k)(x) and q(k)(x) with k = 1, . . . , n. This
version of multi-pole expansion procedure can be simplified essentially by using special identities such as
follows:

p′(x)q′(x) = − 1

12
p′′′(x), p′2(x) =

1

4
p(x) +

1

4
q′(x) +

1

12
q′′′(x), q′2(x) =

1

4
p(x) +

1

4
q′(x)− 1

12
q′′′(x), . . .

The main difficulty appears by evaluation of integral terms like A(2)
f v1 that can be rewritten as follows:

A
(2)
f v1(x) = v.p.

1

π

+∞∫

−∞

η2(x)− η2(s)

(x− s)2 v1(s)ds− η′2(x) v.p.
1

π

+∞∫

−∞

v1(s)ds

x− s . (9)

As will readily be observed the first integral in the equation (9) is a commutator of the Hilbert transform H
with some differential operator. To be exact:

1

π

+∞∫

−∞

η2(x)− η2(s)

(x− s)2 v1(s)ds = η2Hv1x −H(η2v1)x.

Finally combining all the terms of integral equation (8) we obtain under recursive formulas (7) the power
expansion for the leading-order solution coefficients as follows:

η2(x) = 2
(
r2 − r4

) (
q′(x) sin θ − p′(x) cos θ

)
+O(r6), (10)

η4(x) = r2
(
p′′(x) cos 2θ − q′′(x) sin 2θ

)
+
λ(r2 − r4)

6

(
p′′(x) sin θ + q′′(x) cos θ

)
+

+
r4

9

(
p′′′′(x) cos 2θ − q′′′′(x) sin 2θ

)
+
r4

3

(
p′′(x)− q′(x)

)
+O(r6).

Calculations and visualization of the flow

Non-linear theory contribute to the analytical solution (10) by the terms of the order O(r4), so the correction
to linear theory becomes essential at the time scales when the cylinder approaches the free surface closely.
The Fig. 2 shows that constructed solution gives the correction not only in the elevation of the free surface
but also in its formation rate. In addition, asymptotic solution (10) allows one to calculate velocity field
in the whole fluid domain. Subsequent flow can be constructed effectively by the representation of complex
velocity (5), this solution has the form

F (z, t) = −2r2

(
eiθ

t

(z − i)2 + 2e2iθ t3

(z − i)3
)
++2r2

(
eiθ

t

(z + i)2
+ 2e2iθ t3

(z + i)3

)
+

+ 2r4

(
eiθ

t

(z − i)2 + 2e2iθ t3

(z − i)5
)
+
r4

2

(
e−iθ

t

(z + i)2
+ ie−2iθ t3

(z + i)2
+ 2

t3

(z + i)3

)
+O(r6). (11)
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Fig 1: The shape of free surface at t = 0.7 (r = 0.5, λ = 5)
predicted by the non-linear approximation (10) (solid line) and
by the linear approximation [4] (dashed line).
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Fig 2: Free surface elevation at x = 0

(r = 0.5, λ = 5) predicted by the non-
linear approximation (10) (solid line) and by
the linear approximation [4] (dashed line).

Fig 3: Velocity field around the
cylinder of radius r = 0.5 at the
time t = 0.7 (λ = 10) moving in
an infinite fluid (a) and downwards
under the free surface (b).
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From relation (11) we see that in the leading order as r → 0 the flow is determined by the two poles
located at the points z = ±i symetrically with respect to undisturbed free surface y = 0. The effect of
self-induced dipole that takes into account non-linear effects appears only when cylinder moves close to the
free surface.

In this paper the nonlinear problem of free surface flow in the presence of a submerged circular cylinder has
been studied analytically. The leading-order solution with the accuracy O(r4) was constucted in explicit form.
The effect of non-linearity was clarified for the case of circular cylinder moving with constant acceleration
from the rest.
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We study the coupled time-harmonic motion of an axisymmetric moonpool (toroidal, surface-piercing body)
floating freely in infinitely deep water bounded above by a free surface. The surface tension is neglected and
the water motion is assumed to be irrotational. The motion of both water and body is of small amplitude
near equilibrium which allows us to apply the linearized model proposed by John [2]. We use it in the
form of a coupled spectral problem; its two- and three-dimensional versions were developed in [4] and [7],
respectively.

In the framework of this model, two theorems proved in [7] guarantee the absence of trapped modes in
the presence of a single body freely floating in water of constant finite depth; it is either totally submerged
or surface piercing, but the free surface is assumed to be connected in the latter case. On the other hand,
single bodies and structures consisting of multiple bodies [either motionless or heaving] were constructed in
[8] and [9] so that they trap axisymmetric wave modes in water of infinite depth. A characteristic feature
of these bodies and structures, all of which have axisymmetric immersed parts and float freely, is that they
divide the free surface into at least two connected components.

In the present note, our aim is to find frequency intervals within which no axisymmetric modes exist
that are trapped by a freely floating moonpool provided its geometry satisfies the assumptions used in [5] to
guarantee the absence of modes trapped by the same moonpool being fixed. The frequency intervals obtained
here only partly coincide with those in [5] because an extra condition is due to the equation of body’s motion.

1 Statement of the problem

We take the Cartesian coordinates (x,y) [x= (x1,x2)] so that the y-axis is directed upwards and the x-plane
coincides with the mean free surface. It divides B̂ — an axisymmetric toroidal domain occupied by a surface-
piercing body in its equilibrium position — into two non-empty parts and B = B̂∩�3

− denotes the submerged
part [�3

− = {(x,y) : x ∈ �2, y < 0}]. Furthermore, W = �3
− \B is the water domain, S = ∂ B̂∩�3

− is the
wetted surface of the moonpool and n denotes the unit normal pointing to the exterior of W . Finally, the free
surface F = ∂W \S is the union F0∪F∞; its circular part F0 = {0 6 |x|< b,y = 0} is separated from infinity
by the annulus D = B̂∩∂�3

− of finite width and F∞ is the infinite part of the free surface outside of D.
In the general linearised setting (see [2]), the time-dependent motion is described by the following first-

order variables: the real-valued velocity potential Φ(x,y; t) and the vector q(t) ∈ �6, characterising the
motion of the body’s centre of mass about its rest position

(
x(0),y(0)

)
. The horizontal and vertical displace-

ments are q1, q2 and q4, respectively, whereas q3 and q5, q6 are the angles of rotation about the axes that go
through the centre of mass and are parallel to the y and x1, x2 axes, respectively.

We do not formulate the problem for Φ and q (see [7] for its condensed form), but assume that the motion
is time-harmonic with the radian frequency ω > 0, in which case

(
Φ(x,y, t),q(t)

)
= Re

{
e−iωt

(
ϕ(x,y),χ

)}
.

Then the bounded complex-valued function ϕ and χ ∈ �6 must satisfy the following problem:

∇2ϕ = 0 in W ; ∂yϕ−νϕ = 0 on F ; ∂nϕ =−iωnTD0χ on S ; (1)

ω2Eχ=−iω
∫

S
ϕDT

0nds + gKχ ;
∫

W∩{|x|=a}

∣∣∂|x|ϕ− iνϕ
∣∣2 ds = o(1) as a→ ∞. (2)

Here ω is the spectral parameter [ν = ω2/g for the sake of brevity], which is sought together with the
eigenvector (ϕ,χ); also the following notation is used: ∇ = (∂x1

,∂x2
,∂y) is the spatial gradient, g is the

acceleration due to gravity acting in the direction opposite to the y-axis, T is the symbol of matrix trans-

position; D0 =D
(
x−x(0),y− y(0)

)
is an auxiliary 3× 6 matrix, where D(x,y) =

[
1 0 x2 0 0 −y
0 1 −x1 0 y 0
0 0 0 1 −x2 x1

]
. In

the equation of body’s motion [the first condition (2)], the 6× 6 matrices E and K are defined as follows:
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E = ρ−1
0
∫

B̂ ρ(x,y)DT
0 (x,y)D0(x,y)dxdy, where ρ(x,y) > 0 is the distribution of density within the body

and ρ0 > 0 is the constant density of water;

K =

(
O3 O3
O3 K ′

)
, where K ′ =




ID ID
2 −ID

1
ID
2 ID

22 + IB
y −ID

12
−ID

1 −ID
12 ID

11 + IB
y


 , ID =

∫

D
dx, IB

y =
∫

B

(
y− y(0)

)
dxdy,

ID
i =

∫

D

(
xi− x(0)

i

)
dx, ID

i j =
∫

D

(
xi− x(0)

i

)(
x j− x(0)

j

)
dx, i, j = 1,2, and O3 is the 3×3 null matrix.

The elements of the mass-inertia matrix E are various moments of the whole body B̂ and this matrix is
symmetric and positive definite; the symmetric matrixK is related to buoyancy (see [2, 7]).

Along with relations (1) and (2), the following subsidiary conditions must hold [they concern the equi-

librium position of the floating body and its stability]: • ρ−1
0

∫

B̂
ρ(x,y)dxdy =

∫

B
dxdy [Archimedes’ law];

•
∫

B

(
xi−x(0)

i

)
dxdy = 0, i = 1,2 [the center of buoyancy lies on the same vertical line as the centre of mass];

•K ′ is a positive definite matrix which implies that the body’s equilibrium position is stable, [2, § 2.4].

2 Definition of a trapped mode

First we list some properties of ϕ under the assumption that B̂ is an axisymmetric freely floating moonpool
with x(0)

1 = x(0)
2 = 0. The boundedness of ϕ implies that ∇ϕ decays as y→−∞, whereas the radiation condi-

tion [the second condition (2)] guarantees that ϕ describes outgoing waves at infinity (see [3]). In the same
way as in [7], one proves the following assertion about the energy of (ϕ,χ) satisfying problem (1) and (2):
The first component ϕ belongs to the space H1(W ) and

∫
F |ϕ|2 dx< ∞, that is, the kinetic and potential en-

ergy of the water motion is finite. The following equality expresses the equipartition of energy of the coupled
motion ∫

W
|∇ϕ|2 dxdy + ω2χTEχ= ν

∫

F
|ϕ|2 dx+ gχTKχ. (3)

Definition. Let the conditions concerning the equilibrium position of the moonpool B̂ hold, then a non-trivial
pair (ϕ,χ) belonging to H1(W )×�6 is called a trapped mode provided relations (1) and the first relation (2)
are satisfied for some value of ω; the latter is called a trapping frequency.

Since ϕ ∈ H1(W ) relations (1) must be understood as the integral identity∫

W
∇ϕ∇ψ dxdy = ν

∫

F
ϕ ψ dx− iω

∫

S
ψnTD0χds, (4)

which involves only the first-order derivatives of ϕ ; here ψ is an arbitrary smooth function having a compact
support in W .

Below we restrict our considerations to axisymmetrc trapped modes, that is,χ= (0,0,0,H,0,0), whereas
ϕ = ϕ(|x|,y). We recall that several examples of geometries of bodies [and also of multi-body structures]
that trap modes with H = 0 [B̂ is motionless] and H , 0 [B̂ is heaving] were constructed in [8] and [9],
respectively.

3 Conditions guaranteeing the absence of axisymmetric trapped modes

We recall that a body satisfies John’s condition [3] if no point of its wetted surface lies on vertical lines going
through the free surface (see Fig. 1 in [5], illustrating the case of an axisymmetric moonpool). This condition
is essential for proving the following assertion about the absence of axisymmetric trapped modes.

Let an axisymmetric freely floating moonpool satisfy John’s condition. If (ϕ ,χ)∈H1(W )×�6 is an axisym-
metric solution of problem that consists of the first relation (2) and identity (4), then this solution vanishes
identically provided the following two conditions are fulfilled:

(i) the inequalities j0,m 6 νb 6 j1,m hold for some m = 1,2, . . . , where j0,m ( j1,m) is the m-th zero of the
Bessel function J0 (J1, respectively);

(ii) ω2 > λ∗, where λ∗ > 0 is the largest λ such that det(λE−gK) = 0.

What follows outlines main points of the proof. As in the case of a fixed moonpool (see [5]), we assume
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that there exists a non-trivial ϕ and define the following function which was originally introduced by John
[3] under the assumption that F0 = /0:

w(|x|) =
∫ 0

−∞
ϕ(|x|,y)eνy dy . (5)

Then the Laplace equation and the free surface boundary condition [the first and second relations (1)] imply
that

wx1x1 + wx2x2 + ν2w = 0 in F = F0∪F∞. (6)

Since ϕ decays at infinity, this gives that w≡ 0 in F∞ (see [3], p. 78), a consequence of which is the inequality

ν
∫

F∞

|ϕ|2 dx 6
1
2

∫

W∞

|∂yϕ |2 dxdy 6
1
2

∫

W∞

|∇ϕ|2 dxdy. (7)

Furthermore, (6) yields that w(|x|) = CJ0(ν |x|) in F0 because ϕ is non-singular on |x| = 0; here C is,
generally speaking, a non-zero constant. Thus, we get that the following equalities are valid for |x|< b:

CJ0(ν |x|) =
∫ 0

−∞
ϕ(|x|,y)eνy dy , νCJ1(ν |x|) =−

∫ 0

−∞
ϕ|x|(|x|,y)eνy dy ,

ϕ(|x|,0) = νCJ0(ω2|x|)−
∫ 0

−∞
ϕy(|x|,y)eνy dy.

Here the second and third equalities follow from the first one by virtue of differentiation and integration
by parts, respectively. After some manipulations with inequalities obtained by squaring these relations and
applying the Schwarz inequality to the integrals (see [5], pp. 570–572), one arrives at the inequality

ν
∫

F0

|ϕ|2 dx 6
∫

W0

|∇ϕ|2 dxdy (8)

under the assumption that νb satisfies condition (i). From this inequality and (7) we get that

ν
∫

F
|ϕ|2 dx<

∫

W
|∇ϕ|2 dxdy. (9)

Then the equipartition of energy [equality (3)] gives

ω2χTEχ−gχTKχ< 0, (10)
which is incompatible with (ii) unless χ vanishes, but this is impossible because then (9) contradicts (3) for
a non-trivial ϕ . Hence the problem under consideration has only a trivial axisymmetric solution.

4 Discussion

• If the free surface F is connected and N > 1 bodies float freely each satisfying John’s condition, then
condition (i) is unnecessary for obtaining inequality (9). However, condition (ii) must hold for each body
and λ∗ in this case is equal to the largest λ j, where the latter is the largest λ such that det(λE j−gK j) = 0,
j = 1, . . . ,N.

• If a moonpool is fixed, then the uniqueness follows directly from inequality (9) because it contradicts (3)
since the latter does not contain the two terms depending on χ.

• In the case when W is bounded below by a horizontal bottom {y = −d} with d > max{−y : (x,y) ∈ S},
the uniqueness theorem similar to that obtained in § 3 for deep water is also true, but the non-dimensional
parameter νb in condition (i) must be changed to k0b, where k0 is the unique positive root of k0 tanhk0d = ν .
In the proof, one has to use w(|x|) =

∫ 0
−d ϕ(|x|,y) coshk0ydy instead of (5) when deriving inequalities (7)

and (8) for the axisymmetric mode ϕ .

• The above theorem can be improved by allowing the submerged part B of a moonpool to be bulbous on
the side directed to infinity. Namely, let B lies outside the cylinder {|x| = b} and within the cone whose
generator going through the waterline S∩F∞ forms an angle less than 38◦ with the negative y-axis. Then the
inequality

ν
∫

F∞

|ϕ|2 dx 6
∫

W∞

|∇ϕ |2 dxdy

holds as is shown in [10]; here W∞ is the part of �3
− lying outside the cone described above. Combing the

last inequality [instead of (7)] and (8) [a consequence of condition (i)], one obtains the theorem for a bulbous
axisymmetric moonpool. Below we explain why condition (i) which plays a key role in our considerations
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is incompatible with a moonpool’s geometry bulbous on the side directed to W0.

• A result similar to the above theorem is true for an azimuthal mode of the form ϕn(|x|,y)cosnθ , where
θ is the polar angle in the x-plane and n = 1,2, . . . , in which case condition (i) must be changed to the
following one. The inequalities jn,m 6 νb 6 j′n,m hold for some m = 1,2, . . . ; here jn,m ( j′n,m) is the m-th zero
of the Bessel function Jn (J′n, respectively). According to formulae 9.5.12 and 9.5.13 in [1] [they give the
asymptotics of these zeroes as m→ ∞], the intervals in νb, for which there are no trapped modes with any
azimuthal number, are asymptotically of length π/2.

• For values of b, belonging to a certain interval adjacent to j1,m/ν and located on the left of it, there
exist freely floating moonpools both heaving and motionless [the latter can be also treated as fixed] trapping
axisymmetric modes and enclosing the circular free surface of radius b. When m = 1 such values of b lie
between |x̊| ∈ (0, j1,1/ν) and j1,1/ν as follows from Proposition 5 (c) in [8]; here |x̊| stands for the unique
positive zero of the trace ψ(ν |x|,0) of the stream function that has its singularity at ( j1,1,0). If the singularity
is at ( j1,m,0), then the behaviour of the left end of the interval occupied by values νb corresponding to
trapping moonpools is as follows: it tends to j0,m as m goes to infinity. Hence, the intervals in which trapped
modes exist are also asymptotically of length π/2.

• Results similar to those in § 3 are valid for the properly formulated two-dimensional problem. Let a pair
of infinitely long surface-piercing cylinders have a vertical cross-section symmetric about the y-axis (see
Fig. 4.7 in [6]). In this case, it is natural to consider symmetric and antisymmetric modes of waves as is
shown in [6], § 4.2.2, for fixed cylinders. Indeed, conditions guaranteeing the absence of trapped modes
of each type are given there. It occurs that the same results are valid when the cylinders have symmetric
density distributions and float freely. In particular, for the parameter νb [here 2b is the spacing between the
cylinders] there are segments, where antisymmetric and symmetric modes are absent and these segments are
interlacing. However, the additional restriction which is unnecessary for fixed cylinders must be imposed
when cylinders are freely floating; it says that frequencies must be sufficiently large [cf. condition (ii)]. It is
also worth mentioning that if νb = πm/2 and m> 0 is sufficiently large, then there are no trapped modes at
all in deep water.

5 Conjecture

Given the proof of a theorem guaranteeing the uniqueness of a solution to the linearised problem about time-
harmonic water waves in the presence of a fixed obstacle, then this proof admits amendments transforming
it into the proof of an analogous theorem for the same obstacle floating freely with additional restrictions on
the non-trapping frequencies [they must be sufficiently large; see condition (ii) above] and, in some cases,
on body’s geometry and on the type of non-trapping modes.
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Highlights: 

 A semi-analytic approach for the simulation of parametric roll motions is proposed from the investigation on the 

characteristics of metacentric height (GM) variation and the relationship between GM and the restoring lever (GZ) 

in waves. 

 To validate the accuracy and efficiency of the present method, the computational results are compared with those 

obtained by the direct simulation based on an impulse response function (IRF) method. 

 The stochastic properties of parametric roll in irregular waves are discussed, considering the uncertainties due to the 

computational parameters such as time-window and the phases of wave components. 

 

1. Introduction 

Parametric roll motion in head sea is a rapidly increasing large-amplitude motion induced by the variations of 

restoring forces over several wave periods. Due to the nonlinear change in transverse stability, there is a difficulty in 

quantifying the amplitude of parametric roll. Also, this phenomenon in irregular waves is a non-ergodic and non-

Gaussian process, which leads to the large number of realizations to obtain the stable probabilistic qualities. Therefore, 

an efficient and accurate scheme which can consider the nonlinearities in parametric roll is required for the practical 

application. 

In a time-domain numerical computation, the nonlinear restoring lever in waves can be considered in a more accurate 

manner for the quantitative calculation. Shin et al. (2004) applied the Rankine panel method to develop the 

susceptibility criteria for parametric roll motions of large container ships while Spanos and Papanikolaou (2007) used 

IRF method to analyze the phenomenon of fishing vessels in regular waves. However, large computational costs are 

incurred for many realizations and for many sea states in wave scatter diagram. On the other hand, Bulian (2004) and 

Umeda et al. (2004) derived the simplified analytical approaches for prediction of amplitude of parametric roll by 

applying their own modellings for the nonlinearities in the variations in GZ. Since then, led by the International 

Maritime Organization (IMO), various models such as Belenky’s, Umeda’s, and Song’s methods (IMO, 2010, 2011, 

2012) have been developed to establish dynamic stability criteria and operational guidance, but the accuracies of these 

conventional methods are still concern. 

In this study, a semi-analytical approach to simulate the parametric roll motion of a large container ship in head sea 

conditions is proposed. The accuracy and efficiency of the present approach are validated by the comparison with the 

results obtained by the IRF method in respect of the occurrence and amplitude of parametric roll in regular and irregular 

waves. Also, the probabilistic qualities of the parametric rolling in irregular waves as obtained from the both a semi-

analytical and numerical approach are compared considering the sensitivities and uncertainties of to the computation 

parameters. 

 

2. Semi-analytic approach 

Based on the assumption that the coupling effects from roll motion to vertical motions are neglected, the 1.5 degree 

of freedom (DOF) equation of roll motion in head seas can be written as follows: 

   44 44 4 4 3 4 5, , , 0rollM A b GZ               (1) 

where M44, A44, and ∆ are the rolling moment of inertia, the roll- added moment of inertia, and the displacement, 

respectively. In Eq. (1), the damping force acting on roll motion is modelled by an equivalent linear damping to for an 

easy implementation. Also, the restoring lever, GZ in the equation depends on the actual wetted surface considering 

vertical and roll motions of ship relative to the wave elevation. Because large computation costs are incurred for the 

direct integration of the external pressure up to wave surfaces in time domain, the simplified and efficient modelling for 

the time-varying restring force is required. 

 

2.1. Approximation of GM 

Containerships which have the large bow and overhang transom show a large variation in the water plane area 

according to the change in the draft at the fore and after body. The resulting variations of GM in waves can be 

approximated by the mean value and harmonic components, such that: 
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             0 0 1

1

, , , , cos , , cosstill i still

i

GM A t GM GM A GM A i t GM GM A GM A t      




         (2) 

where GMstill indicates the GM in still water, and GM0 and GMi are the difference between the mean and GMstill, and the 

i-th harmonic component, respectively. The time history of GM is calculated at the actual water plane area considering 

vertical motions obtained by the IRF method. According to Eq. (2), the transfer functions of GM0 and GM1 are 

computed by applying the Fourier transform to the time histories of GM in regular waves as shown in Fig. 1. The higher 

order harmonic components are assumed to be negligible since these values are relatively small and are not directly 

related with the mechanism of occurrence of parametric roll. 

In this study, GM0 which represents the static stability performance is regarded as being a second order quantity with 

respect to the wave amplitude based on the assumption that the second order effects on the mean value are dominant. 

On the other hand, GM1 which is the amplitude of variation is a linear component as proven by Dunwoody (1989). It 

can be seen that these hypotheses are valid by the fact that the normalized transfer functions computed for different 

wave amplitudes show good correspondences between each other. Therefore, the variations of GM in random seas can 

be approximated under the “assumption of superposition”, such that: 

       2 2 2
0 0 0

2
0 / / /0 0

1

, 2 2

N

s p i iGM A GM A GM A
i

GM H T A RAO RAO S d S d    
 



         (3) 

     
11 /

1

, , cos

N

s p i GM A i i i

i

GM H T t A RAO t  


         (4) 

where RAOGM0/A2 and RAOGM1/A are the transfer functions of GM0 and GM1, respectively. Sη and SGM0/A2 indicate the 

spectrum of the wave and normalized GM0, respectively. 

 

2.2. Approximation of GZ 

The variation in GZ is proportional to the variation in GM at small heel angles while the variation shows 

nonlinearities from the body geometry due to the small change in the wetted surface at large heel angles. Therefore, the 

GZ in waves is expressed by the GMstill, GM in waves, and the “GZ factor function”, f(ξ4) as follows:  

   
 

 4 4 4, .
still

still
still

GM t GM
GZ t GZ f

GM
  


        (5) 

The accuracy of quantitative prediction is closely relevant to how to model the higher order term in the GZ factor 

function to consider the nonlinearities at large heel angles. Eq. (6) denotes the present modeling which is a modified 

form of the Song’s method (IMO, 2012), such that: 

   
 

 
4

4 4 1
4,max

sin
sin

sin
stillf GM






 



 
  
 
 

       (6) 

where ξ4,max indicates the x-intercept of the GZ curve in still water. In the current method, α is adopted to represent the 

order of the higher-order term. 

The proposed GZ factor function is compared with that from the “direct calculation” which is based on the 

instantaneous hydrostatically computed maximum and minimum GZ curves in waves as shown in Fig. 2. For an 

appropriate value of α, the present function shows good agreement with that of the direct calculation in overall heel 

angles. It should be noted that the validated values are different according to the type of ships (for the 6500 TEU 

containership, α=2.0-3.0, for the MARIN model 8004-2, α=5.0-7.0), which means that α depends on the geometry of 

ship, especially at fore and after body. 

 

3. Parametric roll in regular waves 

The equation of roll motion in a regular wave can be solved by using the time integration such as the 4th-order Runge-

Kutta method. In the integration, the disturbance of roll motion induced by gusts or currents is modelled by an 

impulsive roll angle (3-10 degrees) at a certain instant. After parametric roll arises, the roll motion does not diverge, and 

is bounded with the quasi-steady state amplitude owing to the damping force and the decreases of GZ in waves at large 

heel angles.  

Fig. 3 shows the comparison of the quasi-steady state amplitudes obtained by the present method and the IRF method 

which is based on the hydrodynamic coefficients of the strip theory and the weakly nonlinear approach. The 

discrepancies with regard to the amplitudes and occurrences of parametric roll come from the difference between the 

calculation methods for the hydrodynamic forces and the errors in the approximation of variations in GZ at large heel 

angels. For the validated value of α, however, the similar solutions are produced by the semi-analytical and the 

numerical method. 
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4. Parametric roll in irregular waves 

The solutions of equation of roll motion in random seas exhibit the stochastic nature such as non-Gaussianities and 

non-ergodicities because of the nonlinear restoring term which can be regarded as a random process. In the solutions, 

there exist strong uncertainties and sensitivities with respect to the length of time window, the method of discretization 

for the wave spectrum. Therefore, the stochastic analysis instead of the deterministic calculation is required to 

investigate the statistical properties of parametric roll in irregular waves. 

The test condition is the “Run 307004” case (Tp=14.4 sec, Hs=5.25 m) from the benchmark study conducted by the 

ITTC specialist committee on stability in waves (Reed, 2011). The randomly discretized 80 wave components for a 

wave spectrum are given, and the 20 sets of wave phases are distributed to represent the wave train of the experiment in 

the study. For these wave conditions, it was proved that parametric roll occurs easily. In the both applications of the 

semi-analytical and numerical approach, the same impulsive angle is imposed, and the damping coefficient is set based 

on the roll decay test of the study. Also, α of the present method is in the range of 2.0-3.0 according to the validation for 

the model ship, the MARIN model 8004-2. 

For all 20 realizations in which the 2500-sec simulations are conducted, the variances of parametric roll motions and 

their 95% confidence bands are computed as shown in Fig. 4. The IRF method shows the more scattered variances 

along with larger bands. This phenomenon indicates that the results of numerical approach are more sensitive to the 

phases of wave components than those of the semi-analytic approach because the higher-order components in nonlinear 

restoring forces and Froude-Krylov forces are taken into account based on weakly nonlinear approach. On the other 

hand, the simplified variations of GM in the present method lead to the more consistent results for different set of wave 

phases. If the value of α, which denotes how large the variations of restoring forces in waves increases, the variations 

and the uncertainties becomes large owing to the stronger nonlinearities in the equation of roll motion. 

Fig. 5 shows the cumulative density functions (CDFs) of parametric roll motions for different time windows. Even 

for the 86400-sec simulation, the numerical method exhibits still diverged CDFs (the absence of the “practical 

ergodicities”) while the semi-analytical method show the converged functions which has the similar form with the 

Rayleigh distribution. For larger value of α, the differences from the Rayleigh distribution increase with the stronger 

non-Gaussianities, as expected. Despite the more accurate considerations for the nonlinear restoring forces in the 

numerical computation, in conclusion, the present method can be a more rational way because the converged statistical 

properties can obtained much more efficiently. 
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Fig. 1 Time history of GM in a regular wave and its approximation, ω(L/g)
1/2

=2.11 (left), Transfer functions of GM 

(right): 6500 TEU containership, V (forward speed)=5 knots 
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(a)  6500 TEU containership, ω(L/g)
1/2

=2.11         (b) MARIN model 8004-2, ω(L/g)
1/2

=2.27 

Fig, 2 GZ factor functions: A/L=0.010, V=5 knots 

 

(a)  6500 TEU containership                     (b) MARIN model 8004-2 

Fig, 3 Quasi-steady state amplitude of parametric roll motion: A/L=0.010, V=5 knots 

  

 

Fig. 4 Variances of parametric roll with 95% confidence bands: Run 307004 (Reed, 2011), 2500 sec 

 

Fig. 5 Cumulative density functions: Run 307004 (Reed, 2011), IRF method (left), Present, α=2.5 (right) 
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Highlights 
• Novel implementation of state-of-the-art incompressible SPH with Froude-Krylov forcing to determine 

3D loads on cylinders in breaking wave conditions, and with good experimental agreement. 
• Determination of the asymmetric wave profile likely to exert maximum loading during wave breaking. 

 
1  Introduction 

Studies of wave forces on cylinders is a fundamental problem in fluid mechanics and is of particular interest in 
offshore and coastal engineering given the many structures with semi-submerged cylindrical supports. Interest 
has been renewed in recent years with the increased deployment of offshore wind turbines in ever challenging 
offshore environments and high sea-states. The prediction of forces exerted on these wind turbine columns is 
key to designing and deploying structures with maximal functionality and survivability. Breaking waves are 
likely, and, despite being the subject of sustained research for seven decades, there is still debate over the loads 
and forces exerted due to wave breaking. In this paper, we present the novel numerical approach of using state-
of-the-art incompressible SPH with Froude-Krylov forcing to determine 3D loads on cylinders due to 2D plane 
incident waves - both breaking and non-breaking. The effectiveness of this approach is demonstrated through 
thorough comparisons with recent experimental work on breaking and non-breaking regular [5] and focused 
waves [2, 7]. The applicability of this approach is remarkable, and it benefits from relatively low computational 
cost and ease of implementation. Following validation, the method is also used to gain insight into the maximum 
forces exerted due to wave breaking, and considers at what point in the breaking process maximum loading 
occurs. 

2  Model and Numerical Method 

2.1  The Problem Set-Up and Governing Equations 

A two dimensional numerical wave basin of length L and maximum water depth, D, is constructed with a piston 
wave paddle positioned at the left hand side of the domain, centred at x=0. A cylinder of diameter dc is centred 

at a distance xc from the origin. To enable breaking in the regular wave studies, as in the experiments of [5], a 

2.5% gradient ramp is inserted such that the local water depth at the cylinder is then Dloc. The governing 

equations of a low viscosity Newtonian fluid are to be solved: namely, the conservation of momentum, 

du
dt =− 

1
ϱ∇p+ν∇2u+f,

and the conservation of mass, 

 

∇⋅u=

The symbols u, p, ϱ, ν, and f denote the fluid velocity, pressure, density, constant kinematic viscosity, and 
constant gravity body force, respectively.  

0 

2.2  Incompressible Smoothed Particle Hydrodynamics 

The Lagrangian particle method, incompressible SPH (ISPH) is used to solve the governing equations [4]. In 
SPH a variable A at a point r is approximated by a convolution product of the variable A with a smoothing 
kernel function ωh(|r−r'|), with a smoothing length h, and is written as 

A(r)≈ ⌡⌠
Ω

 A(r')ωh(|r−r'|) dr',  
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where Ω is the supporting domain. When discretised over surrounding Lagrangian fluid particles the 
interpolation can be written as 

A(ri)≈ ∑
j

 VjA(rj)ωh(rij),  

where Vj is the particle volume, rij is a distance vector between particle i and j. Incompressibility is imposed 

through a projection method, which provides a pressure Poisson equation from which the pressure is obtained 
[4].  
 

2.3  Wave Generation and Froude-Krylov Forcing 

A piston-type wavemaker is used to generate all waves, with its motion prescribed using linear wave theory. In 
the case of focused waves, a JONSWAP spectrum provides the amplitude distribution. In both the experimental 
studies of interest, the Keulegan-Carpenter numbers are moderate to small and the Reynolds numbers are large, 
meaning that inertial forces dominate the wave-cylinder interaction. Horizontal forces on the cylinder are 
calculated using the Froude-Krylov approximation, with an added mass multiplier based on uniform potential 
flow: 

Fx=−2 ⌡⌠
C

 pnx dS. 

3  Results 

3.1  Regular Wave Loading 

The first wave type to be considered and compared with experiment is that of a plane regular wave incident on a 
cylinder placed on a slope. The slope has a gradient of 2.5% and the cylinder (diameter 0.2m) is positioned at 
xc=10m. A water depth at the cylinder of Dloc=0.4m is considered here. The test case considers a regular wave 

of period T=1.6 s interacting with the cylinder for a range of (local) wave heights. Figure 1 presents the 
horizontal forces on the cylinder due to experiments of [5] (circles), ISPH (joined black squares), and semi-
analytical results (thick black line) from non-linear stream function theory for periodic water waves used in 
combination with the Morison equation (calculated using the SAWW software [1]). For all wave heights, the 
ISPH results lie centrally within the experimental measurements recorded by [5], and begin to deviate 
significantly from SAWW predictions for wave heights above 0.15m. Indeed, for heights above approximately 
0.15m, the waves begin to break.  

  

Figure 1: Comparison with experimental results [5] (circles) for loading on cylinder due to regular waves on a 
slope. Black squares are ISPH, and the thick black line denotes predictions from SAWW. 
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3.2  Focused Wave Loading 

The second type of wave-cylinder interaction considered is that due to focused wave groups as in the 
experimental study detailed in [7, 2]. There is no slope in this case, as breaking waves may be formed by the 
focusing of the wave group into an unstable wave form at the front of the cylinder. The numerical wave tank is 
taken to be of length L=12m and still water depth D=0.505m (as in the experiment). The cylinder (diameter 
0.25m) is centred at xc=7.52m. 

The focused wave case considered is that which results in a plunging breaker with jet impact direct on the 
cylinder (H=0.22m, f=0.82Hz). Figure 2a shows the breaking wave (with pressure contours) at time t≈11.8s. 
Quite remarkably, subsequent force measurements up to and including the plunging jet impact at t≈11.8s are 
well predicted by the FK modelling (Fig. 2b). At later times agreement worsens, but this is to be expected as full 
cylinder interaction would be required for accurate modelling after such an impact. It seems that in this case a 
consideration of the undisturbed flow field alone is sufficient to get reasonable agreement in the total loading on 
the cylinder - including at jet impact. 

  

   (a)      (b) 

Figure 2: (a) Wave profile and pressure contours at select times near the focal point at the cylinder. (b) 
Comparison between experimental and numerical results for the total horizontal force on the cylinder for a 
focused wave case. The dashed lines denote experimental measurements, the black line is ISPH. 

For this case, the cylinder position is moved incrementally about the original experimental position xc=7.52m, 

in order to vary the form of the breaking wave at impact. For each cylinder location, the local wave height at the 
cylinder is determined and input into the SAWW program to determine the loading at that wave height for the 
equivalent fully non-linear but symmetric (non-breaking) wave profile. Figure 3a plots the maximum horizontal 
force determined from ISPH and SAWW against various cylinder positions. There is clearly an amplification 
region (6.5≲x≲7.5m) as highlighted approximately by the arrow, that produces an increased load for ISPH 
resulting purely from asymmetry in the impacting wave crest. From Figure 3a the globally maximum force 
occurs at a cylinder location xc=7.22m, which corresponds to an impact as displayed in Figure 3b, where the 

wave is at the point of overturning and the wave front vertical. This supports the numerical study of [3], and the 
experimental findings of [6], where maximum forces were observed with impact at the point of overturning 
when newly-formed jets remain horizontal. 
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   (a)      (b) 

Figure 3: (a) Maximum predicted loads on the cylinder at various cylinder locations. (b) The wave profile that 
exerts the largest load on the cylinder during the breaking process as determined through ISPH predictions. 
Contours denote the horizontal velocity values. 

4  Conclusions 

This paper presents a novel and efficient numerical approach to the calculation of three dimensional loads on 
cylinders due to breaking and non-breaking waves. Fully non-linear wave profiles and dynamics are determined 
accurately using a state-of-the-art incompressible SPH method. Forces on the cylinder are then determined from 
the undisturbed flow field using the Froude-Krylov force with theoretical added mass for a uniform flow. Two 
wave types are studied (regular and focused) and thorough comparisons are made with experimental data [5, 7]. 
The Froude-Krylov approximation with theoretical added mass is remarkably accurate, and is able to predict 
loads on cylinders due to waves in various stages of breaking. The numerical simulations remain two 
dimensional and of moderate resolution, meaning that computations are comparatively fast.  
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1. INTRODUCTION

A thin elastic plate floating on an inviscid fluid
is an ideal model for the very large floating structure
in offshore engineering [1] and the homogeneous ice
sheet in the polar region [2]. A fundamental problem
for this model is the flexural response due to a moving
concentrated load [3–7], in which the Euler–Bernoulli
plate was commonly employed. Recently, the effect of
compression of the plate on the hydroelastic dynam-
ics were considered [8]. A general model the effect
of lateral stress is presented here for the elastic plate
floating on an infinitely deep fluid. A special case of
this model is capillary–gravity waves on an inertial
surface. The wave response and the wave resistance
are analytically investigated for steadily moving, sud-
denly starting and suddenly stopping concentrated
loads on the surface of the floating plate. For the pur-
pose of analytical study, two-dimensional problems
are considered.

2. GENERAL MATHEMATICAL
FORMULATION

We consider an inviscid, incompressible and ho-
mogeneous fluid of infinite depth, being covered by
a thin elastic plate of infinite extent. As a start-
ing point for the analytical study, a two-dimensional
problem is addressed here. The Cartesian coordinates
oxz are chosen in such a way that the z axis points
vertically upwards. The fluid occupies the domain
(−∞ < x < ∞, − ∞ < z 6 0) with z = 0 being
the undisturbed plate–fluid interface. Under the as-
sumption that the motion is irrotational, the velocity
potential ϕ(x, z, t) for the fluid satisfies the Laplace
equation ∇2ϕ = 0. For an infinitely deep fluid, we
have ∂ϕ/∂z = 0 as z → −∞.

Let ζ(x, t) represent the vertical plate deflection
subjected to a downward external load −Pext(x, t).
It is assumed that the wave amplitudes generated are

∗This research was sponsored by the National Basic Re-
search Program of China under Grant No. 2014CB046203,
the Natural Science Foundation of Shanghai under Grant No.
14ZR1416200, and the National Natural Science Foundation of
China under Grant No. 11472166.
†dqlu@shu.edu.cn

small in comparison with the wavelengths. Thus the
linearized boundary conditions will be applied on the
plate–fluid interface (z = 0). The kinematic bound-
ary condition on z = 0 reads ∂ζ/∂t = ∂ϕ/∂z, which
implies that there is no cavitation between the plate
and the fluid and the fluid particles once on the inter-
face will always remain there. The dynamic boundary
condition on z = 0 reads

D∇4ζ + Q∇2ζ + M
∂2ζ

∂t2
= −ρ

(
∂ϕ

∂t
+ gζ

)
− Pext,

(1)

where the flexural rigidity of the plate D is deter-
mined by Young’s modulus E, Poisson’s ratio ν and
the plate thickness d as D = Ed3/12(1 − ν2); Q is re-
lated to the lateral stress of the plate (with compres-
sion at Q > 0 and stretch at Q < 0) [8]; M = ρed; ρe

and ρ denote the densities of the plate and the fluid,
respectively; and g is the acceleration due to gravity.

Obviously, Eq. (1) indicates the balance among
the elastic, inertial, hydrodynamic forces and the
downward external load. Equation (1) is a general
linear model for a floating elastic plate. In partic-
ular, as D = 0 and Q = −T , Eq. (1) is for the
capillary–gravity waves on an inertial (M ̸= 0) or
a free (M = 0) surface, where T with T > 0 is the
coefficient of the surface tension.

To have a formal solution, we introduce the

Fourier transforms as {ϕ̃(α, z, t), ζ̃(α, t), P̃ext(α, t)} =∫∞
−∞{ϕ(x, z, t), ζ(x, t), Pext(x, t)} exp(−iαx)dx. Upon

some mathematical derivation, we obtain, for z = 0,

∂2ζ̃

∂t2
+ ω2ζ̂ = − P̂extk

ρ(1 + σk)
, (2)

where

ω2 =
gk(Γk4 − Λk2 + 1)

1 + σk
, (3)

Γ = D/ρg, Λ = Q/ρg, σ = M/ρ, (4)

and k = |α| is the wave number.
Equation (3) is the dispersion relation between

the frequency ω(k) and the wave number k for the
flexural–gravity wave motion on the elastic plate
floating on the inviscid fluid of infinite depth. Three
parameters, Γ, Λ and σ, are associated with the ef-
fects of flexural rigidity, lateral stress and the inertia
of the thin plate. For the capillary–gravity waves on
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an inertial (σ ̸= 0) or a free (σ = 0) surface, the cor-
responding dispersion relation follows from Eq. (3) by
setting Γ = 0 and Λ = −τ , where τ = T/ρg > 0.

3. STEADILY TRANSLATING LOADS

Let ex be the unit vector along the positive x-
axis. We consider a concentrated load steadily mov-
ing with a constant velocity −Uex and a constant
magnitude of strength P0, namely Pext = P0δ(x−x0),
where δ(·) is the Dirac delta function and x0 = −Ut
is the source point namely the location of the con-
centrated load. In this case the right-hand side of
Eq. (2) reads −P0k exp(iαUt)/[ρ(1+σk)]. Neglecting
the transient effect, we have the particular solution of

Eq. (2) with Pext = P0δ(x − x0), denoted by ζ̃S(α, t),
for the ultimately steady-state plate deflection as fol-
lows

ζ̃(α, t) = ζ̃S(α, t) = − P0

ρ∆
exp(iαUt), (5)

where

∆(k) = k(1 + σk)(c2 − U2), (6)

and c(k) = ω/k is the phase speed.
By the inverse Fourier transform for Eq. (5),

the steady plate deflection, denoted by ζS, due to
a steadily translating load is given by

ζS(X, U) = − P0

2πρ

∫ ∞

−∞

exp(iαX)

∆
dα, (7)

where X = x − x0 = x + Ut. Taking X as a new
coordinate, one can see from Eq. (7) that the wave
is time-independent, which can be seen as a system
of steady waves in a reference frame steadily moving
with the load. It is noted that the denominator of the
integrand in Eq. (7) is an even function with respect
to α since k = |α|. To have an explicit expression for
the plate deflection, the Jordan lemma will be used.
The contribution to the integral comes from the pole
of the integrand, namely the roots of the equation

c2 − U2 = 0. (8)

One can find that there is a minimal phase speed
cmin for the flexural–gravity waves in the floating
plate with a given d. cmin is usually referred to as
the critical speed of the moving load. The critical
wave number kcr at which the minimal phase speed
occurs satisfies

dc

dk
=

1

k
(cg − c) = 0, (9)

where cg(k) = dω/dk is the group speed of the wave
generated. Equation (9) implies cg = c = cmin at
k = kcr. For k < kcr, cg < c while for k > kcr, cg > c.

The nature of the real roots of Eq. (8) depends
crucially on the relation between U and cmin. As U <

cmin, Eq. (8) has no real roots. As U = cmin, Eq. (8)
has one real root kcr. As U > cmin, Eq. (8) has two
real roots, denoted by k1 and k2 with k1 < kcr < k2.

As U < cmin, the plate deflection profile can be
numerically calculated by the fast Fourier transform
[4]. According to Schulkes and Sneyd [4], there is no
wave propagation. As U < cmin the deflection profile
is similar to a static one. As U > cmin, it is noted
that the poles of the integrand ±k1 and ±k2 lie on
the real α axis, which is due to the use of potential
theory for an inviscid fluid. For the viscous fluid, the
poles are automatically off from the axis since the
viscosity coefficient appears in the imaginary part,
as shown by Lu and Chwang [9]. To perform the α
integration for the wave motion in an inviscid fluid,
an artificial viscosity is necessary to move the poles
off the axis. According to Lighthill’s method [10],
the artificial viscosity, denoted by ϵ with ϵ > 0, can
be introduced as α = α0 − iϵ/(cg − U), where α0 =
±k1, ±k2 is the original pole. For α0 = k1 < kcr,
we have cg < c = U . For α0 = k2 > kcr, we have
cg > c = U . Therefore, with the aid of the artificial
viscosity, ±k1 and ±k2 are moved into the upper and
lower half α-plane, respectively.

According to the Jordan lemma, infinite semi-
circles in the upper and lower half α-planes are chosen
for X > 0 and X < 0, respectively. Thus the wave
profile for U > cmin is given by

ζS(X,U) =

{
ζS
1 , (X > 0),

ζS
2 , (X < 0),

(10)

where ζS
j = 2(−1)j+1P0 sin(kjX)H(U − cmin)/ρ∆′

j ,
∆′

j = d∆(kj)/dk, and H(·) is the Heaviside step
function. k1 is the wave number of the long gravity-
dominated wave trailing the moving object (x0 < x),
while k2 is the wave number of the short elasticity-
dominated (capillarity-dominated) wave leading the
moving object (x < x0). This theoretical perdition
is in agreement with the experimental observatories
conducted by Squire et al. [5]

According to the formula of wave resistance
given by Kim and Webster [11], the wave resistance
R = RSex for a moving load can be given by

RS(U) =

∫ ∞

−∞
Pext

∂ζ

∂x
dx =

1

2π

∫ ∞

−∞
iαP̃ ∗

extζ̃dα, (11)

where P̃ ∗
ext(α, t) is the conjugate function of

P̃ext(α, t). It follows from Eq. (5) that the steady-
state wave resistance reads

RS(U) = − P 2
0

2πρ

∫ ∞

−∞

iα

∆
dα. (12)

By the residue theorem developed by Lighthill [10]
for the dispersive waves, the far-field wave resistance
for V > cmin can be analytically given by

RS(U) =
2P 2

0

ρ

2∑

j=1

kj

∆′
j

H(U − cmin). (13)
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4. SUDDENLY STARTING LOADS

We assume that the concentrated load suddenly
starts from rest at t = 0 and then moves with a con-
stant velocity −Uex, then we have Pext = P0δ(x −
x0)H(t). The initial conditions for Eq. (2) read

ζ̃|t=0 = 0,
∂ζ̃

∂t
|t=0 = 0. (14)

The solution for Eq. (2) with Pext = P0δ(x − x0)H(t)
and (14) can readily be given by

ζ̃(α, t) = ζ̃S(α, t) + ζ̃T(α, t), (15)

where

ζ̃T(α, t) =
P0

ρ∆

[
cos(ωt) +

iαU

ω
sin(ωt)

]
, (16)

and ζ̃S(α, t) is given by Eq. (5). One can see that

ζ̃S(α, t) and ζ̃T(α, t) are the steady-state and tran-
sient responses due to a suddenly starting load, re-
spectively.

The analysis on ζ̂S(α, t) follows Section 3. Equa-
tion (16) can be rewritten as

ζ̃T(α, t) = A exp(iαUt)
∑

±

exp(∓iΩ±t)

Ω±
, (17)

where A(k) = P0/2ρ(1 + σk)c and Ω±(α) = ω ± αU.
The transient plate deflection, denoted by ζT, due to
a suddenly starting load is given by

ζT =
1

2π

∑

±

∫ ∞

−∞
A exp(iαX)

exp(∓iΩ±t)

Ω±
dα. (18)

Equation (18) with large t will be performed by means
of the method of stationary phase. Ω− with α > 0
and Ω+ with α < 0 have the same stationary points,
which make the main contribution to the integral for
ζT. Equation (18) can be rewritten as

ζT =
2∑

n=1

∫ ∞

0

A

Ω
exp

[
(−1)n+1i(kX + Ωt)

]
dk, (19)

where Ω(k) = ω − kU . The stationary point of Ω(k)
is determined by

dΩ

dk
= cg − U = 0. (20)

There exists a minimal group velocity cgmin. The
nature of the real roots of Eq. (20) depends crucially
on the relation between U and cgmin. Equation (20)
has no roots for U < cgmin, one real root (denoted by
κgm) for U = cgmin, and two real roots (denoted by
κ1 and κ2) for U > cg. Obviously, κ1 < κgm < κ2.

5. SUDDENLY STOPPING LOADS

We consider a concentrated load steadily moving
with a constant velocity −Uex and a constant mag-
nitude of strength P0 for t < 0. The load suddenly
stops at t = 0 and keeps at rest for t > 0. The gov-
erning equation is Eq. (2) with P̂ext = 0. The initial
values at t = 0 for the plate defection and the velocity
are taken as those for the steady-state solution. The
initial conditions are given by

{
ζ̃|t=0,

∂ζ̃

∂t
|t=0

}
= − P0

ρ∆

{
1, iαU

}
. (21)

The corresponding solution reads ζ̃ = −ζ̃T(α, t),

where ζ̃T(α, t) is given in Eq. (16). It should be noted

that ζ̃ = −ζ̃T(α, t) is similar to the transient part due
to a suddenly starting load.

6. DISCUSSION

6.1. Flexural–gravity waves

In this Subsection, we consider the flexural–
gravity waves on an elastic surface with Γ > 0 and
Λ ̸= 0. The general case with σ ̸= 0 is discussed at
first. Then the special case with σ = 0 is of interest
since the inertial effect of the thin plate can be ne-
glected in comparison with the effects of the elastic
force and lateral stress of the plate and with the fluid
inertia. This assumption is justified since the wave-
length of the plate deflection is usually much large
than the plate thickness [3].

From the dispersion relation of the flexural–
gravity waves on an elastic surface, some remarkable
characteristics can be found due to the presence of lat-
eral stress (Λ ̸= 0). As Q = Qmax = 2

√
Dρg (namely

Λ = 2
√

Γ), we have cmin = 0 at k = kp0 = (ρg/D)1/4.
Therefore Q < Qmax is a necessary condition for the
wave propagation. Close examination on cg shows
that there exists a critical value of Q (denoted by
Qg0) at which cgmin = 0, and cg > 0 holds if and only
if Q < Qg0. As Qg0 < Q < Qc0, we have cg < 0 and
c > 0. As σ ̸= 0, the values of Qg0 and the wave num-
ber kg0 at which cg = 0 holds satisfy quintic equations
which can be solved numerically. As σ = 0, we have
the analytical expressions Qg0 = 2

√
5Dρg/3 (namely

Λ = 2
√

5Γ/3) and kg0 = (ρg/25D)1/4.
As σ ̸= 0, the solutions for kcr and κgm, which

satisfy respectively dc/dk = 0 and dcg/dk = 0, can
be obtained numerically. As σ = 0, exactly analytical
solutions for kcr and κgm can be given as

kcr =

(√
F +

√
12 + F

6
√

Γ

)1/2

, (22)

κgm =

(√
E1 − √

D1 + 11
√

F

30
√

Γ

)1/2

, (23)
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where F = Λ2/Γ, E1 = 363F − D1 − 90(10 + F ) +

8(900 − 209F )
√

F/D1, D1 = 15C1 + 121F − 30(10 +

F ) + 15(80 − 24F + F 2)/C1, C1 = (8
√

B1 + 1600 −
272F − 36F 2 + F 3)1/3, and B1 = (4 − F )2(2000 +
600F−19F 2). Accordingly, the analytical expressions
for the minimal phase and group speeds are given by
cmin = c(kcr) and cgmin = cg(κgm), respectively.

As σ ̸= 0, we have, for the steady-state flexural–
gravity wave elevation and wave resistance,

∆′
j = g(4Γk3

j − 2L2kj − L), (24)

where L2 = Λ + σL and L = U2/g. The exact solu-
tions for the wave numbers k1 and k2 of the steady-
state response can be given by

kj =

√
K2

2
+

(−1)j

2

√
−K2 +

2L√
K2Γ

+
2L2

Γ
, (25)

where K2 = [l2/21/3 + 21/3(12Γ + L2
2)/l2 + 2L2]/3Γ,

l2 = [L6 +
√

L2
6 − 4(12Γ + L2

2)
3]1/3, L6 = 27L2Γ +

72L2Γ − 2L3
2. As σ = 0, the solutions for ∆′

j and kj

can readily be obtained from Eqs. (24) and (25) by
setting σ = 0.

As σ ̸= 0 or σ = 0, the solutions for the wave
numbers κ1 and κ2 of the transient flexural–gravity
waves can be calculated numerically.

6.2. Capillary–gravity waves

Another special case with Γ = 0 and Λ = −τ <
0 corresponds to the capillary–gravity waves on an
inertial (σ ̸= 0) or a free (σ = 0) surface. There is
a maximal phase and group speeds for the capillary–
gravity waves on an inertial surface, namely

lim
k→+∞

c = lim
k→+∞

cg =
√

gτ/σ. (26)

The analytical solutions for kcr and κgm are

given as

kcr =
1√
τ

[
√

C +
√

C + 1], (27)

κgm =

√
D2

2
+

1

2

√
2D2 − 3C2 +

E2

4
√

D2

− σ

B2
, (28)

where E2 = 32σ(1/B2τ − 2σ2/B2 + 3)/B2
2 , D2 =

4(σ2/B2 − 1)/B2 + C2, C2 = 4(C + 1)2/3/B2, B2 =
τ(4C + 3), and C = σ2/τ .

For the the steady-state capillary–gravity wave
elevation and wave resistance, we have

∆′
j = g[2(τ − σL)kj − L], (29)

where kj = [L + (−1)j
√

L2 − 4τ + 4σL]/2(τ − σL).
As σ ̸= 0, the solutions for the wave numbers κ1

and κ2 of the transient capillary–gravity waves can be
calculated numerically. For σ = 0, the exact solution
for κj is

κj =

√
C3

2
+

L

9τ
+

(−1)j

2

√
D3

4
√

C3

+
4L2

27τ2
− 4

3τ
− C3,

where D3 = 4(L2−9τ)/27τ2, C3 = 4(34/3B2
3+L2B3−

9B3τ−35/3L2τ+38/3τ2)/81B3τ
2, and B3 = {9L2τ2+

Lτ [3τ(L4 + 18L2τ − 27τ2)]1/2 − 9τ3}1/3.

7. CONCLUSIONS

Analytical solutions are explicitly derived for the
wave response and the wave resistance due to steadily
moving, suddenly starting and suddenly stopping
concentrated loads on the surface of the floating plate,
taking the effects of lateral stress into consideration.
It is found that there is a critical value for the com-
pression effect, at which the phase speed of flexural–
gravity waves is zero.
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Highlights:
In this work we have deduced an infinite system of quadratic equations with respect to the Stokes coefficients which

define the periodic progressive waves in water of finite depth. The system has a compact form and has been derived
by means of a new variational equation for steady periodic flows above a level bottom. By solving the system we have
constructed an analytical ten-termed expansion in the amplitude for the wave resistance of a two-dimensional body that
creates the waves. The coefficients of the expansion depend only on the mean depth of the waves. The obtained expansion
has been compared with Kelvin’s one-termed formula and with an accurate numerical solution.

1 Introduction
In the scientific literature there is a considerable num-
ber of works devoted to finding the Stokes coefficient
which define the periodic progressive waves in water of
finite depth. The first computer algorithm has been de-
veloped by Schwartz (1974). As in the initial work by
Stokes (1880), Schwartz has used the boundary condition
of constant pressure at the free surface and obtained a cu-
bic system of equations with respect to the Stokes coeffi-
cients. Longuet-Higgins (1978) has demonstrated that af-
ter some transformations the cubic system can be reduced
to a quadratic one. In this work we have derives a simple
variational equation for steady periodic flows above a level
bottom which is especially convenient for studying steady
periodic gravity waves in water of finite depth. The equa-
tion leads to a very compact system of quadratic equations
with respect to the Stokes coefficients. We have developed
an effective algorithm of computing the coefficients in the
form of a series in powers of the wave amplitude. The
exact formula for the wave resistance Rw derived in Mak-
lakov & Petrov (2014) allows us to deduce new analytical
formulae for Rw.

2 Variational equations for steady
periodic flows and gravity waves

Consider a steady flow of an ideal fluid bounded by a
λ-periodic line lz from above and by a horizontal bottom
y = 0 from below. Under the λ-periodicity we understand
the property z = x+ iy ∈ lz ⇒ z + λ ∈ lz . The complex
potential of the flow w = ϕ + iψ satisfies the following
boundary conditions

Imw = ψ = Q for z ∈ lz,
Imw = ψ = 0 for y = 0,

(1)

where Q is the volume flux. In the flow domain the com-
plex conjugate velocity dw/dz is a λ-periodic function,

but the complex potential w(z) increases by an increment
C (by a circulation) on every period:

w(z + λ) − w(z) = C.

For a fixed upper boundary lz the flow is defined
uniquely by specifying either the volume flux Q, in this
case the increment of the potential C should be found in
solving, or by specifying C to determine Q.

In the flow domain consider one period, shown in
Fig. 1(a). Let s be the arc abscissa of the line lz , reckoned
from a certain point L.

Proposition. Consider a steady λ-periodic flow bounded
from above by the line lz with the velocity distribution v(s)
on lz . Assume that the flow flux is Q and the circulation
is C. Let the boundary lz be varied by shifting each of its
points on the distance δn(s) in the direction of the normal
in so manner that the new line l∗z be also λ-periodic. Let
for the new λ-periodic flow, bounded from above by the
line l∗z , the flux and circulation be Q + δQ and C + δC,
respectively (fig. 1a). Then the following variational equa-
tion holds

∫

LS

v2(s)δn(s)ds = CδQ−QδC, (2)

where the curve LS is any period of the line lz .

The prove of the proposition is based on the Cauchy
theorem for analytic functions.

Consider a system of periodic gravity waves in the
wave-fixed reference frame in which the flow is steady.
Then the parameter of periodicity λ is the wavelength. Let
the density of the fluid be ρ. As in Longuet-Higgins (1975)
we non-dimensionalize all wave parameters by choosing
λ/(2π),

√
gλ/(2π) and ρ as the scales for length, veloc-

ity and density, respectively. In what follows all physi-
cal quantities will be dimensionless with accordance to
the chosen scales. Now the dimensionless wavelength
is 2π, in the boundary conditions (1) and in the varia-
tional equation (2) the parameters Q and C are scaled by√
gλ3/(2π)3.
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For the periodic wave problem we should add to the
boundary conditions (1) the Bernoulli equation on the un-
known free surface lz: v2

2 +y = R, where R is the dimen-
sionless Bernoulli constant (total head).

It is easy to demonstrate that for any λ–periodic line
and any differentiable function P (y) the following varia-
tional equation holds

δ

∫

LS

P (y)dx =

∫

LS

P ′(y)δn(s)ds, (3)

where LS is one period of the line.
Consider now one wave period located between neigh-

boring wave crests (Fig. 1 a). On the free surface the
boundary condition v2 = 2R − 2y is satisfied. Let us
vary the free-surface by a function δn(s). Then by virtue
of (3)

∫

LS

v2(s)δn(s)ds =

∫

LS

(2R− 2y)δn(s)ds

= δ

∫

LS

(2Ry − y2)dx = 2πδM [η],

(4)

where the functional

M [η] = 2R d−D2

depends only on the shape of the free surface with the
equation y = η(x), d and D are the mean and root-mean-
square depths, respectively:

d =
1

2π

∫ x+2π

x

η(x)dx, D2 =
1

2π

∫ x+2π

x

η2(x)dx.

It follows from (2) that

2π δM [η] = CδQ−QδC = C2δ

(
Q

C

)
. (5)

For the wave period the domain of the complex poten-
tial w = φ+ iψ is a rectangle, shown in Fig. 1 b. We map
conformally this rectangle onto an annulus (see Fig. 1 c)
with an outer radius of unity and inner radius of

r0 = exp

(
−2πQ

C

)
. (6)

A usual assumption (see e.g. Longuet-Higgins, 1975;
Cokelet, 1977) in the theory of nonlinear periodic waves is
that in the bottom-fixed reference frame the waves propa-
gate with the velocity ca, equal to the average fluid veloc-
ity at any horizontal level completely within the fluid in
the wave-fixed reference frame (in steady flow). That is
ca = C

2π . Now the equation (5) can be rewritten as

δM [η] = −c2a
δr0
r0
, (7)

which is just the variational equation for steady periodic
waves.

3 System of quadratic equations for
the Stokes coefficients

We shall seek the conformal mapping of the annulus
(Fig. 1 c) in the parametric ζ-plain onto the flow domain
of the one wave period in the form

z(ζ) = 2π + i log ζ + iy0 + i
∞∑

n=1

yn

(
ζn − r2n

0

ζn

)
. (8)

The representation (8), being a variant of the Stokes
method (see Stokes, 1880), is often used in the nonlinear
wave theory (see e.g. Schwartz, 1974). By virtue of sym-
metry the Stokes coefficients yn (n = 0, 1, 2 . . . ) are real.
Because on the bottom Im z = 0, we find from (8) that
y0 = − log r0. The parametric equations of the free sur-
face are

xs(γ) = 2π − γ −
∞∑

n=1

αn sinnγ,

ys(γ) = − log r0 +
∞∑

n=1

βn cosnγ,

(9)

where αn = 1+r2n
0 , βn = 1−r2n

0 , γ is a polar angle in the
ζ-plane. After some algebra it is possible to demonstrate
that

M = (R+log r0) Λ− 1

2
(Λ1 +Λ2)− log2 r0 −2R log r0,

where

Λ =
∞∑

n=1

nβ2ny
2
n, Λ1 =

∞∑

n=1

β2
ny

2
n,

Λ2 =
∞∑

k=2

yk

k−1∑

n=1

γk−n,n yn yk−n,

(10)

γm,n = mβnβ2m+n + nβmβm+2n.

Now in the variational equation (7) the left-hand side is
a function of the Stokes coefficients yn (n = 1, 2, 3, . . . )
and the parameter r0. Differentiating M with respect to
yn at fixed r0, we come to the following infinite system of
quadratic equations:

(nβ2nK − β2
n) yn =

1

2

n−1∑

n=1

γn−m,m yn−m ym

+
∞∑

m=1

γm,n ym+nym, n = 1, 2, 3, . . . ,

(11)

where
K = 2(R+ log r0). (12)

After finding yn at a fixed r0 we are able to calculate

c2a = −r0
∂M

∂r0
= K − Λ +

r

2

(
∂Λ1

∂r0
+
∂Λ2

∂r0
−K

∂Λ

∂r0

)
.

(13)
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We shall seek the coefficients yn and the parameter K
in the form of expansions in powers of the wave ampli-
tude a = (hc − ht)/2, where hc and ht are the heights
of the wave crests and troughs, respectively. The coeffi-
cients of these expansions are functions of the parameter
ε = exp(−2d). Let the highest power of a in these expan-
sions be N , where N is an odd number. Then

K =

(N−1)/2∑

k=0

κ2na
2n + O(aN+1), (14)

yi =

[(N−i)/2]∑

n=0

ai,2na
i+2n + o(aN ), i = 1, 2, . . . , N,

(15)
and because the parameters a and ε are given we should
add to the system (11) two more equations

a =

(N+1)/2∑

n=1

β2n−1y2n−1, r20 = ε exp

(
N∑

n=1

nβ2ny
2
n

)
.

The first equation follows from the second equation in (9),
the latter one follows from the identity

d = Λ/2 − log r0. (16)

We have developed an effective algorithm of finding the
coefficients κ2n, ai,2n. The algorithm can be easily pro-
grammed (for example, by the MATHEMATICA package)
and allows one to use exact arithmetics and symbolic com-
putations. After determination the coefficients by making
use of (13) one can calculate

c2a =

(N−1)/2∑

n=0

c2na
2n + O(aN+1), (17)

where c2n are functions of the parameter ε.

4 Analytical formulae for the wave
resistance

Consider a two-dimensional body that moves horizontally
from right to left at constant speed c in a channel of finite
depth h. Assume that in the body frame of reference the
flow is steady. Then the wave train generated by the body
also moves from right to left with the same velocity c. In
the body frame of reference we have far upstream a uni-
form stream with velocity c and far downstream the train
of steady periodic waves (Fig. 2).

Due to the generation of waves the body experiences a
resistance, which we denote by Rw. Maklakov & Petrov
(2014) have deduced an exact analytical formula for Rw:

R = 3V +
1

2
(∆d)2 + (c2 − d)∆d, (18)

where V is the mean potential energy of the wave:

V =
1

4π

∫ x+2π

x

[η(x)−d]2dx =
1

4

(
−Λ2

2
+ Λ1 + Λ2

)
,

(19)

and ∆d = h − d is the defect of levels (the difference
between the undisturbed level far upstream and the mean
level far downstream).

Let us assume that the mean depth d and amplitude a
of the waves are known. By means of equations (10), (15),
(19) it is easy to derive an expansion for the mean poten-
tial energy V . Now to determine Rw by equation (18) one
needs to find the defect of levels ∆d and the speed of the
body c. Because the flux Q and the Bernoulli constant R
far upstream and far downstream of the body are equal we
can write

c(d+ ∆d) = Q, c2 + 2∆d = 2(R− d).

From equations (6), (12), (16) we deduce that Q = ca(d−
Λ/2), 2(R−d) = K−Λ. This allows us to derive a cubic
equation with respect to ∆d:

(K − Λ − 2∆d)(∆d+ d)2 = c2a (d− Λ/2)
2
.

In this equation the parameters Λ, c2a and K are expressed
by ε and a by formulae (10), (14), (15) and (17). The so-
lution is represented as an expansion in even powers of a
up to the terms of order aN−1. After finding ∆d we deter-
mine c2 = K − Λ − 2∆d. Inserting the found ∆d and c2

in (18), we get the wave resistance in the form

Rw = R2a
2+R4a

4+R6a
6+· · ·+RN−1a

N−1+O(aN+1),
(20)

where the coefficients R2k depends on ε = exp(−2d).
The first coefficient R2 = 1

4

(
1 − 2d

sinh 2d

)
coincides with

that at a2 obtained by Kelvin (1887).
The computations of the wave resistance by the Stokes

method have been carried out at N = 21, i. e with the
asymptotic accuracy up to the terms of a20, and all ten
coefficients R2k have been found analytically. But an ana-
lytical representation of the coefficient R6 is already very
cumbersome. For the coefficient R4 we have

R4 = R40 +R41d+R42d
2,

R40 =
11 cosh 2d+ cosh 4d+ 2 cosh 6d− 5

128 sinh5 d (d cosh d− sinh d)
,

R41 =
10 cosh 2d − 118 cosh 4d − 14 cosh 6d − 3 cosh 8d − 19

1024 sinh6 d cosh d (d cosh d − sinh d)
,

R42 =
−7 cosh 2d+ 10 cosh 4d+ cosh 6d+ 5

128 sinh7 d (d cosh d− sinh d)
.

Comparison of the wave resistance obtained by analyt-
ical formulae and by the accurate numerical method of the
paper by Maklakov (2002) is presented on the graphs of
Fig. 3.

The work was supported by the Russian Science Foun-
dation, project No 14-19-01633.
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Figure 1: (a) One period. (b) Domain of the complex potential w = φ+ iψ. (c) Parametric ζ-plane.

d

Figure 2: Scheme of the steady flow
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Figure 3: Comparison of accurate numerical results with analytical formulae at the depths d
2π = 0.15 (1), 0.2 (2), 0.25 (3)

∞ (4): solid lines, the waves have been computed by the method of the paper by Maklakov (2002); dashed lines, n = 1
(Kelvin’s one-termed formula), dashed lines with long dashes, n = 2; dot-and-dash lines, n = 5; dotted lines, n = 10,
where n is the number of terms in (20).
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Highlights
• Convergence of the expansion formulae for problems of gravity wave-interaction with floating flexible structure are

demonstrated using Green’s function approach in both the cases of finite and infinite water depth.
• In the present approach, the Green’s function for the differential operator associated with the wave-structure in-

teraction problems is integrated over the complex plane to derive the spectral representation. This approach is
independent of whether the spectrum for the differential operator is discrete or continuous.

1. Introduction
In recent decades, emphasis is given to the dynamic analysis of large class of problems in the field of hydroelasticity and
hydroacoustics involve higher order conditions on a wavy boundary. Apart from the development of expansion formulae
and associated mode-coupling relations as in Manam et al. [1], emphasis is given to study the convergence of the various
infinite series and integrals (see Evans & Porter [2]). Lawrie [3], [4] proved the point-wise convergence of a class of
problems associated with Helmholtz equation satisfying higher order boundary conditions arising in hydroacoustics in
two and three dimensions. Later, Mondal et al. [5] demonstrated the convergence of the expansion formulae in case of
infinite depth for a class of wave-structure interaction problems associated with Laplace equation satisfying higher order
boundary conditions in the broad field of hydroelasticity. In the present study, convergence of the expansion formulae
for wave-structure interaction problems arising in hydroelasticity are demonstrated in both the cases of finite and infinite
water depth. In the present approach, the Green’s functions for the differential operator associated with the wave-structure
interaction problems along the water depth is integrated over the complex plane to derive the spectral representation. This
approach is independent of water depth.

2. Mathematical formulation
Under the assumption of the linearized theory of water waves, the wave-structure interaction problem is formulated in
a two-dimensional channel in both the cases of water of finite and infinite depth. The physical problem is studied in
the Cartesian co-ordinate system with x axis being in the horizontal direction and y-axis being positive in the vertically
downward direction. Assuming that a flexible plate acting under the action of uniform compression being infinitely
extended along the positive direction of x-axis, is floating on the mean free surface. Thus, the fluid domain occupies the
region 0 < x < ∞ and 0 < y < h in case of finite water depth (0 < x < ∞ and 0 < y < ∞ in case of infinite
water depth). The fluid is assumed to be incompressible, inviscid with the fluid motion being irrotational and simple
harmonic in time with angular frequency ω. Thus, there exists a velocity potential Φ(x, y, t) of the form Φ(x, y, t) =
Re{φ(x, y)e−iωt} with Re being the real part. Hence, in the fluid region, the spatial velocity potential φ(x, y) satisfies
the Laplace equation

∇2φ = 0, (1)

along with the linearized plate covered boundary condition on the mean free surface

(D∂yyyyy −Q∂yyy + ∂y +K)φ = 0, on y = 0, (2)

with D, Q, K being known positive constants as in Manam et al.[1], and the bottom boundary condition

φy = 0 on y = h in case of finite water depth,

φ, |φy| → 0 on y →∞ in case of infinite water depth.

}
(3)

The spatial velocity potentials φ satisfying Eq.(1) along with the boundary conditions in Eqs.(2) - (3) are expressed as
(see Manam et al. [1])

φ(x, y) =

IV∑

n=0,I

An(x)ψn(y) +

∞∑

n=1

An(x)ψn(y), in case of finite water depth (4)
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φ(x, y) =

IV∑

n=0,I

An(x)ψn(y) +
2

π

∫ ∞

0

A(k, x)M(k, y)

T 2 +K2
dk, in case of infinite water depth (5)

where An(x) and A(k, x) are of the forms An(x) = Aneiknx and A(k, x) = A(k)e−kx and are given by

An(x) =
1

Dn

[ ∫ h

0

φ(x, y)ψn(y)dy − Q

K
φy(x, 0)ψny(0) +

D

K

{
φy(x, 0)ψnyyy(0) + ψny(0)φyyy(x, 0)

}]
, (6)

A(k, x) =
1

Dn

[ ∫ ∞

0

φ(x, y)M(k, y)dy− Q
K
φy(x, 0)My(k, 0)+

D

K

{
φy(x, 0)Myyy(k, 0)+My(k, 0)φyyy(x, 0)

}]
, (7)

with h = ∞ in case of infinite water depth and Dn = G′(k)ψy(0)/{2knK}, M(k, y) = T cos ky − K sin ky with
T = (Dk5 −Qk3 + k). In Eqs. (4) - (5), the eigenfunctions ψn(y)s are given by

ψn(y) =





cosh kn(h− y)

cosh knh
, 0 < y < h, n = 0, I, II, III, IV, 1, ..., (for finite water depth),

ekny, 0 < y <∞, n = 0, I, II, III, IV, (for infinite water depth),
(8)

with kns satisfying the dispersion relation
G(k) = 0, (9)

where G(k) = K − (Dk4 − Qk2 + 1)k tanh kh for finite water depth and G(k) = K − (Dk4 − Qk2 + 1)k for
infinite water depth. We assume that the dispersion relation in Eq. (9) has one real positive roots k = k0, two complex
conjugate pairs of the form kI , kII(= k̄I) and kIII , kIV (= ¯kIII) and infinitely many imaginary roots of the form ±ikn
for n = 1, 2, ..., whilst no imaginary root exists for infinite water depth. Further, the eigenfunctions ψn(y)s in Eq. (8)
satisfy the orthogonal mode-coupling relation (as in Manam et al. [1])

〈ψm(y), ψn(y)〉 =

∫ h

0

ψm(y)ψn(y)dy −
{Q
K
ψmyψny +

D

K
(ψmyψnyyy + ψmyyyψny)

}∣∣∣
y=0

= Dnδmn, (10)

with δmn being the Kroneckar delta, Dn being the same as in Eqs. (6)-(7) and h =∞ in case of infinite water depth.

2.1. Characteristics of the eigenfunctions in case of finite water depth

In order to understand various characteristics of the eigenfunctions ψn(y), consider the boundary value problem

ψyy − k2ψ = 0, for 0 < y < h, (11)

subject to the boundary conditions as in Eqs. (2) - (3) in terms of ψ. It can be easily observed that ψn(y) as in Eq. (8)
satisfies the boundary value problem defined in Eqs. (2), (3) and (11). Next, the Green’s function G(y, y0; k) associated
with the boundary value problem in ψ(y), where y is the field point and y0 is the source point, is derived followed by
various characteristics of the eigenfunctions which are expressed in terms of certain lemmas.

Lemma 1 The Green’s function G(y, y0; k), satisfying

Gyy − k2G = δ(y − y0), for 0 < y, y0 < h, (12)

subject to the conditions in Eqs. (2) - (3) with the continuity and jump conditions in water of finite depth,

G
∣∣
y=y0+

−G
∣∣
y=y0−

= 0 and Gy
∣∣
y=y0+

−Gy
∣∣
y=y0−

= 1 at y = y0 (13)

is given by

G =




{cosh ky(Dk5 −Qk3 + k) +K sinh ky} cosh k(h− y0)/{kG(k)}, 0 < y < y0,

{cosh ky0(Dk5 −Qk3 + k) +K sinh ky0} cosh k(h− y)/{kG(k)}, y0 < y < h.
(14)

Lemma 2 The eigenfunctions ψn(y) in water of finite depth have the following spectral representation

δ(y − y0) =
∞∑

n=0,I,II,1

Ynψn(y)ψn(y0), 0 < y, y0 < h, (15)

where δ(y) is the Dirac delta function and Yn is given by Yn = −(sinh 2knh)/(2Dn).
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Proof: Proceeding in a similar manner as in Friedman [6], it can be proved that

lim
R→∞

1

πi

∮
G(y, y0; k)kdk = −δ(y − y0), (16)

where G(y, y0, k) is the Green’s function as in Eq. (14), R being the radius of a closed semi-circular contour of large
radius in the upper half of the complex k−plane. Thus, to prove the Lemma, it is necessary to evaluate the contour integral
as R → ∞. It may be noted that k = 0 is neither a pole nor a branch point of G(y, y0; k). Further, it is found that the
poles of the integrand G(y, y0; k) in Eq. (16) are the simple zeros of the relation as in Eq. (9), with one of these zeros
k0 being on the real axis, kn, n = I, II, III, IV , are four complex roots lie on in four quadrants and the other infinity
number of zeros ±kn, kn > 0, n = 1, 2, 3, ..., being on the imaginary axis. For the sake of boundedness of the Green’s
function, kIII and kIV have been neglected. The path of integration of the closed contour is deformed onto a semicircular
arc (Γ ) of large radius R(→∞) on upper half plane, the line segments [−R, k0 − ε] , a semi circle (γε) from −ε to ε and
the line segment [k0 + ε, R] which contains all the poles in the upper half plane. Now

1

πi

∮
G(y, y0; k)kdk =

1

πi

∮
kdk

{
G1(y, y0; k)H(y0 − y) +G2(y, y0; k)H(y − y0)

}
, (17)

where G1 (for y < y0) and G2 (for y > y0) are the Green’s functions given in Eq. (14) with H(y) being the Heaviside
step function. Now using Jordan’s lemma and applying Cauchy residue theorem one can find

1

πi

∮
G1(y, y0; k)H(y0 − y)kdk = −

∞∑

n=0,I,II,1

Ynψn(y)ψn(y0)H(y0 − y), (18)

with Yn = −(sinh 2knh)/(2Dn). Proceeding in a similar manner, it can be proved that

1

πi

∮
G2(y, y0; k)H(y − y0)kdk = −

∞∑

n=0,I,II,1

Ynψn(y)ψn(y0)H(y − y0), for y0 < y. (19)

Thus, Eqs. (17) - (19) yields

1

πi

∮
G(y, y0; k)kdk = −

∞∑

n=0,I,II,1

Ynψn(y)ψn(y0)
{
H(y0 − y) +H(y − y0)

}
. (20)

Eliminating the integral in Eqs. (16) and (20), the spectral representation given in Eq. (15) is obtained. �
It may be noted that Lawrie [3]) derived similar spectral representations for the eigenfunctions associated with acoustic
wave structure interaction problems following a different approach.

2.2. Characteristics of the eigenfunctions in case of infinite water depth

In this subsection, the spectral representation of the eigenfunctions and the associated results of convergence for the
velocity potential is discussed in the case of infinite water depth using a similar approach as discussed in case of finite
water depth in the previous Section.

Lemma 3 The Green’s function G(y, y0; k) satisfying

Gyy + k2G = δ(y − y0), for 0 < y, y0 <∞, (21)

subject to the boundary conditions in Eqs. (2) - (3) and the continuity and jump conditions as in Eq. (13) in case of infinite
water depth, is given by

G =

{
M(k, y)/{kG(ik)}e−iky0 , 0 < y < y0,

M(k, y0)/{kG(ik)}e−iky, y0 < y <∞,
(22)

where M(k, y) is same as in Eq. (5).

Lemma 4 The eigenfunctions ψn(y) and M(k, y) defined in Eqs. (8) and (5) have the following spectral representation

δ(y − y0) =
II∑

n=0,I

Znψn(y)ψn(y0) +
2

π

∫ ∞

0

M(k, y)M(k, y0)

T 2 +K2
dk, (23)

with Zn = −1/(2Dn) and Dn being the same as in Eqs. (6)-(7).
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Proof: As discussed in case of finite water depth in Eq. (16), in case of infinite water depth

1

πi

∮
G(y, y0; k)kdk = −δ(y − y0), (24)

where G(y, y0, k) is the Green’s function as in Eq. (22) and the integration to be performed in the complex k− plane as
in Eq. (16). In this case, since G has a branch point singularity at k = 0, a branch cut is introduced in the complex plane
along the positive real axis and the closed contour is chosen as a large circle not crossing the branch cut as in Friedman
[6]. Using the fact that the poles of the integrand G(y, y0; k) are the simple zeros of the relation as in Eq. (9), with one
of these zeros k0 being on the real axis and kn, n = I, II , the two complex roots contributing to the boundedness of the
Green’s function. Thus, using complex function theory and proceeding in a similar manner as in Lemma 2, it can be easily
derived that

1

πi

∮
G(y, y0; k)kdk = −Znψn(y)ψn(y0)− 1

πi

∫ ∞

0

[{
G1(k)−G1(−k)

}
H(y0 − y)

+
{
G2(k)−G2(−k)

}
H(y − y0)

]
kdk,

(25)

where G1 (for y < y0) and G2 (for y > y0) are the Green’s functions given in Eq. (22) with H(y) being the Heaviside
function as in Lemma 2. Now substituting G1 and G2 one can find that

1

πi

∮
G(y, y0; k)kdk = −

II∑

n=0,I

Znψn(y)ψn(y0)− 2

π

∫ ∞

0

M(k, y)M(k, y0)dk

T 2 +K2
. (26)

Now, eliminating the integral in Eqs. (24) and (26), the spectral representation given in Eq. (23) is obtained. �
It may be noted that the relation in Eq. (23) was derived in Mondal et al. [5] using a different approach.

Theorem 1 Given the coefficients An(x) and A(k, x) in Eqs. (6) and (7) where the velocity potential φ(x, y) satisfies the
Laplace equation as in Eq. (1) along with the boundary conditions in Eqs. (2) - (3), the sums

S(x, y) =





II∑

n=0,I

An(x)ψn(y) +

∞∑

n=1

An(x)ψn(y), in case of finite water depth,

II∑

n=0,I

An(x)ψn(y) +
2

π

∫ ∞

0

A(k, x)M(k, y)

T 2 +K2
dk, in case of infinite water depth

(27)

converge to φ(x, y) in water of finite and infinite depth, as appropriate.

Proof: Using the spectral representation of the eigenfunctions as in Eqs. (15) and (23), the expression for the unknowns
An(x) and A(k, x) and the orthogonal mode-coupling relation defined in Eq. (10), it can be easily shown that S(x, y)
converges to φ(x, y) in finite and infinite water depth. �
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Highlights:

• Foldy-type methods are developed to study the title
problem with equally spaced cylinders around a ring.

• Explicit solutions are obtained by exploiting the cir-
culant structure implied by the special geometry.

1. Introduction

It is 25 years since the publication of “Linton & Evans”
[1] on “The interaction of waves with arrays of vertical
circular cylinders”; it is their most cited joint work.
The paper describes an exact method in which sep-
aration of variables and addition theorems are com-
bined, leading to an infinite system of linear algebraic
equations. The method itself is much older, and goes
back to a paper by Závǐska from 1913. It has been
used in many contexts, and extended in many direc-
tions; for discussion and many references, see [2, Chap-
ter 4]. Apart from using the basic method for water-
wave problems, Linton & Evans [1] also showed that
the computation of the pressure near, or on, any one
cylinder could be simplified considerably.

In this paper, we are interested in the scattering of
an incident plane wave by N identical vertical circular
cylinders arranged in a particular way: in a horizontal
plane (plan view), there are N circles (radius a) with
their centres located on, and equally spaced around, a
larger circle (radius b). We call this geometrical con-
figuration a ring or a cage.

Of course, the Linton–Evans method can be, and
has been, applied to scattering by a ring of cylinders.
See, for example, [3, 4, 5]. However, we are especially
interested when N is large, so that we have many small
circles around the ring with small gaps between them.

Intuitively, we expect that, in the limit (when there
are no gaps), we should approach the solution for scat-
tering by a single large cylinder (with cross-section of
radius b). Can this be shown, and, if so, how fast is
the limit achieved?

The problem we have described is reminiscent of
a problem in electrostatics, a Faraday cage. Thus, a
metal enclosure protects its inhabitants from external
electrical discharges, as first demonstrated by Michael
Faraday in 1836. If the metal has small holes or gaps,
protection is no longer perfect.

In a recent paper [6], we gave an analysis of such
problems, for both electrostatics (Laplace’s equation)

and acoustics (Helmholtz equation); the latter is of
most relevance here. The cylinders comprising the
wires in the cage were assumed to be small, both ge-
ometrically (a � b) and acoustically (ka � 1, where
2π/k is the incident wavelength). For the scattering
itself, we used a much simplified version of Linton–
Evans, one in which the scattering by each circular
cylinder is represented by a single term (proportional
to H0(kr), see below) instead of the usual infinite
separation-of-variables series. This leads to Foldy’s
method [7], [2, §8.3], which takes account of all the mul-
tiple scattering effects. The result is an N ×N linear
algebraic system. This reduction works for N scatter-
ers at more-or-less arbitrary locations. However, for
a ring of equally-spaced identical scatterers, the ma-
trix occurring has a special structure: it is a circulant
matrix. This means that it can be inverted explicitly,
using a discrete Fourier transform, and then the be-
haviour of the solution as N grows can be analysed. It
turns out that the expected limit is achieved but the
limit is approached slowly, as N−1 logN .

So far, we have not mentioned the boundary con-
dition on each cylinder. The exact Linton–Evans ap-
proach can accommodate any choice, such as a Dirich-
let condition (pressure or potential specified, “sound-
soft” in acoustics) or a Neumann condition (normal
velocity specified, “sound-hard” in acoustics). In the
context of water waves, the usual case is the Neumann
condition, as imposed in [1].

For the simplified Foldy-type analysis described
above, the underlying assumption is that each cylin-
der scatters isotropically : note the presence of H0(kr)
with no dependence on the polar angle. This is entirely
appropriate for Dirichlet problems because we know
that small (ka � 1) sound-soft circles really do scat-
ter like a monopole. On the other hand, sound-hard
circles do not scatter isotropically: both monopole and
dipole contributions are equally important and must
be retained. The dipole gives a directional dependence
to the waves scattered by one circle, and this must be
incorporated into the calculation of the multiply scat-
tered waves when there are N circles.

2. Basic formulation

A plane wave is incident upon N vertical cylinders in
water of depthH. As usual, we factor out the depth de-
pendence and write the velocity potential for the scat-
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tered waves as

Re{u(x, y) cosh k(H − z) e−iωt}

where z = 0 is the free surface, z = H is the flat bottom
and k is the positive real solution of ω2 = gk tanh kH.
Denote the cross-section of the jth cylinder in the xy-
plane by Cj ; it is centred at rj . Then u satisfies (∇2 +
k2)u = 0 outside all the Cj , together with a radiation
condition and a boundary condition on each Cj .

3. Basic Foldy approach

Foldy’s method starts by assuming isotropic scattering.
This means that, near Cj , the scattered field at r is
approximated by

AjG(r − rj),

where Aj is an unknown amplitude, G(r) = H0(k|r|) is

the free-space Green’s function and Hn(w) ≡ H
(1)
n (w)

is a Hankel function. The total field is represented as

u(r) = uinc(r) +
N∑

j=1

AjG(r − rj), (1)

where we will take uinc(r) = uinc(x, y) = eikx.
The field incident on Cn in the presence of all the

other scatterers is

un(r) ≡ u(r)−AnG(r − rn)

= uinc(r) +

N∑

j=1
j 6=n

AjG(r − rj). (2)

This “incident” field is scattered by Cn. We character-
ize this process by

An = gun(rn). (3)

This makes the strength of the scattered wave from Cn,
An, proportional to the field acting on it, un(rn). The
parameter g (Foldy’s “scattering coefficient”) can be
chosen as g = −[J0(ka)]/[H0(ka)], where Jn is a Bessel
function and each Cj has radius a; if the scatterers were
different, we would have written gn in (3).

Finally, evaluating (2) at rn gives, after using (3),

1

g
An = uinc(rn) +

N∑

j=1
j 6=n

Aj G(rn − rj), (4)

for n = 1, 2, . . . , N . This is a linear N ×N system for
Aj . Then the total field is given by (1).

4. Application to a ring of soft cylinders

Here, we summarise the results from [6]. There are
N small sound-soft circles arranged so that their cen-
tres (at rj) are equally spaced around a larger circle of

radius b, centred at the origin. Let h = 2π/N be the
angular spacing between adjacent scatterers. Then, us-
ing plane polar coordinates, r and θ, rj is at r = b,
θ = θj = jh. The distance between the jth and nth
scatterers is

|rn − rj | = 2b | sin ([n− j]π/N)| . (5)

Then the N ×N Foldy system (4) simplifies to

N∑

j=1

Kn−jAj = fn, n = 1, 2, . . . , N, (6)

where fn = −uinc(rn), K0 = −g−1,

Kj = H0(2kb | sin (jπ/N)|), j 6= 0 mod N (7)

and Kj is N -periodic: Kj+mN = Kj , m = ±1,±2, . . ..
Richmond [8] and Wilson [9] gave numerical solu-

tions of (6). Much later, Vescovo [10] noticed that
the system matrix in (6) is a circulant matrix, which
means that (6) can be solved explicitly using the dis-
crete Fourier transform. Thus, let $ = e2πi/N . Multi-
ply (6) by $mn, sum over n and use the N -periodicity
of Kn. This gives

Ãm = f̃m/K̃m, (8)

where

Ãm =
N∑

j=1

Aj$
mj , An =

1

N

N∑

j=1

Ãj$
−nj , (9)

f̃m =
N∑

j=1

fj$
mj , K̃m =

N∑

j=1

Kj$
mj . (10)

Finally, invert the discrete Fourier transform of {Aj},
{Ãm}, using the second of (9).

Having determined An, we can calculate the field
everywhere, using (1). In addition, we can investigate
analytically what happens as N grows.

Thus, for uinc = eikx, we obtain

f̃m = −
N∑

j=1

eikb cos jh eimjh.

Write this formula (suggestively) as

f̃m
N

= h
N∑

j=1

f(jh) with f(θ) = − 1

2π
eikb cos θeimθ.

We recognise the sum. It is what we would have ob-
tained if we had used the repeated trapezium rule to

compute
∫ 2π

0
f(θ) dθ, noting that f is 2π-periodic. As

f is also very smooth, we know that the convergence is
exponentially fast. Hence, evaluating the integral gives

N−1f̃m ∼ −imJm(kb) as N →∞. (11)
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This rapid convergence is encouraging, but the be-
haviour of K̃m is quite different. From (7) and (10),

K̃m = −1

g
+
N−1∑

j=1

v(jh), (12)

where
v(θ) = eimθH0(2kb | sin (θ/2)|)

is 2π-periodic but has log singularities at θ = 0 and θ =
2π. The sum in (12) looks like the trapezoidal rule in
which the endpoint contributions have been “ignored”;
the properties of such sums have been analysed by Sidi
[11]. Using his results, we find that

1

N
K̃m ∼ −

1

Ng
+

1

2π

∫ 2π

0

v(θ) dθ +
2i

πN
logN

as N →∞. The integral can be evaluated. Eventually,
after combining with (8) and (11), we find that

Ãn = −in/Hn(kb)+O(N−1 logN) as N →∞. (13)

The leading approximation can be used to confirm
our expectations. For example, the far-field pattern
of the ring approaches that for scattering by a sound-
soft circle of radius b [2, eqn (4.10)], but this limit is
approached very slowly. Similarly, the total field at the
origin is O(N−1 logN) as N →∞.

4. Extended Foldy approach

Rigid (sound-hard) scatterers always induce a dipole
field. Foldy’s method can be generalized to cover these
situations [2, §8.3.3]. Thus, suppose that, near the jth
scatterer, the scattered field is given by

AjG(r − rj) + qj · g(r − rj), (14)

where Aj is an amplitude, qj is a vector,

g(r) = −1

k
gradG(r) = − r̂

k

d

dr
G(r) = r̂H1(kr),

with r̂ = r/r and r = |r|. Each component of g is an
outgoing solution of the Helmholtz equation.

The first term in (14) is a source at rj ; the strength
of the source (given by Aj) is unknown. The second
term is a dipole at rj ; the direction and strength of
the dipole (given by qj) are unknown. The basic Foldy
method assumes that qj ≡ 0. We remark that the
approximation (14) was used successfully in [12, Ap-
pendix A] for scattering by an infinite grating of sound-
hard circular cylinders.

For more detail, define polar coordinates Rj and Θj

at rj , r = rj + Rj (̂ı cos Θj + ̂ sin Θj), where ı̂ and ̂
are unit vectors in the x and y directions, respectively.
Then (14) becomes

AjH0(kRj) + {(qj · ı̂) cos Θj + (qj · ̂) sin Θj}H1(kRj).

Next, we represent the total field as

u(r) = uinc(r)+

N∑

j=1

{AjG(r−rj)+qj ·g(r−rj)}. (15)

The field incident on Cn in the presence of all the
other scatterers is

un(r) ≡ u(r)−AnG(r − rn)− qn · g(r − rn) (16)

= uinc(r) +
N∑

j=1
j 6=n

{AjG(r − rj) + qj · g(r − rj)}.

This “incident” field is scattered by Cn. We character-
ize this process by

An = gun(rn) and qn = Qvn(rn),

where
vn(r) = k−1gradun. (17)

The quantity g is a scalar whereas Q is a 2× 2 matrix.
Thus, An is proportional to the value of the exciting
field at rn, whereas vn is related to the gradient of the
exciting field at rn.

Low-frequency asymptotics for scattering by one
sound-hard circle lead to good choices for g and Q.
Thus

g = − J
′
0(ka)

H ′0(ka)
∼ π

4i
(ka)2, Q = −2gI,

where I is the 2× 2 identity matrix.
Evaluating (16) at rn gives

1

g
An = uinc(rn)+

N∑

j=1
j 6=n

{AjG(Rnj)+qj ·g(Rnj)}, (18)

where Rnj = rn − rj . Also, from (16) and (17),

vn(r) = vinc(r) (19)

+
N∑

j=1
j 6=n

{−Aj g(r − rj) + k−1grad [qj · g(r − rj)]},

where vinc(r) = k−1graduinc. Direct calculation gives

(kRnj)
−1H1(kRnj) qj − R̂nj(qj · R̂nj)H2(kRnj)

for k−1grad [qj · g(r − rj)] at r = rn, where Rnj =

|Rnj | and R̂nj = Rnj/Rnj . Hence, evaluating (19)
at rn, we obtain

Q−1qn = vinc(rn) +
N∑

j=1
j 6=n

{
H1(kRnj)

kRnj
qj

− R̂nj(qj · R̂nj)H2(kRnj)−Ajg(Rnj)

}
. (20)

Equations (18) and (20) hold for n = 1, 2, . . . , N . They
give a system of linear algebraic equations for An and
the two components of qn. For N scatterers, there are
3N equations for the 3N scalar unknowns.
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5. Application to a ring of hard cylinders

We define the geometry as in §3. It is convenient to
write qj in terms of its radial and tangential compo-

nents with respect to the ring. Let θ̂j = ̂ cos θj−̂ı sin θj
be a unit tangent vector, so that r̂j · θ̂j = 0. Write

qj = Bj r̂j + Cj θ̂j ,

so that the 3N unknowns are Aj , Bj and Cj , j =
1, 2, . . . , N . We have

b−1qj ·Rnj = (Bj r̂j + Cj θ̂j) · (r̂n − r̂j)
= −(2b2)−1R2

njBj + Cj sin θnj ,

where we have used (5) and we have defined

θnj = θn − θj = (n− j)h.
Hence

qj · R̂nj = −(2b)−1RnjBj + bR−1nj Cj sin θnj .

This will be used in (18) and (20). We will also form

the inner product of (20) with r̂n and with −θ̂n. Thus,
we require

r̂n · qj = Bj cos θnj + Cj sin θnj ,

θ̂n · qj = −Bj sin θnj + Cj cos θnj ,

r̂n · R̂nj = (2b)−1Rnj ,

θ̂n · R̂nj = bR−1nj sin θnj .

Assembling all the pieces, we obtain the system

N∑

j=1

Kn−jxj = fn, n = 1, 2, . . . , N, (21)

where xj = (Aj , Bj , Cj)
T ,

fj = (−uinc(rn), −r̂n · vinc(rn), θ̂n · vinc(rn))T

and Kj is a symmetric 3× 3 matrix. In detail,

K0 = KN =



−g−1 0 0

0 (2g)−1 0
0 0 −(2g)−1




and, for j 6= 0 mod N ,

Kj =




K11 K12 K13

K12 K22 K23

K13 K23 K33


 ,

with entries as follows:

K11 = H0, K12 = −(2b)−1RjH1,

K13 = bR−1j H1 sin θj ,

K22 =
H1

kRj
cos θj +H2

R2
j

4b2
,

K23 =
H1

kRj
sin θj −

1

2
H2 sin θj ,

K33 = − H1

kRj
cos θj +H2

b2

R2
j

sin2 θj .

All the Hankel functions have argument kRj with
Rj = 2b| sin (jπ/N)|. Evidently, Kj is N -periodic:
Kj+mN = Kj , m = ±1,±2, . . ..

The system (21) gives 3N equations for 3N un-
knowns. Application of the discrete Fourier transform
breaks the system into N 3×3 systems, one for each xj .

6. Discussion

This is a work in progress. The current intention is to
develop the approach outlined in §5 so as to analyse
the effects of letting N grow. One question is: how
well does a ring of small vertical cylinders shield the
interior of the ring? We hope to present results in this
direction at the Workshop.
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Highlights:

• The diagonal coefficients in the added mass matrix, for a single two-dimensional structure which
satisfies the John condition in water of infinite depth, are proven to be non-negative.

• The heave added mass coefficient for a symmetric pair of structures, which individually satisfy
the John condition but move as a single structure, is shown to be non-negative in the range
(2n − 1)π ≤ Ks ≤ 2nπ. The corresponding sway coefficient is shown to be non-negative when
2nπ ≤ Ks ≤ (2n + 1)π. Here n is an integer, K is the infinite-depth wave number and s is the
length of the free surface between the structures.

1 Introduction

A structure is forced to make small oscillations in water of infinite depth in a single mode of motion.
The coefficient of proportionality in the part of the complex-valued hydrodynamic force on the structure
that is proportional to minus its acceleration, is a diagonal term in the added mass matrix. Numerical
calculations show that this coefficient is positive at all frequencies for many structures. However, if the
structure is shallowly-submerged, it may be negative in some frequency ranges [1, 2]. Negative added
mass also occurs when one or more elements of the structure enclose a portion of the free surface, for
example a pair of surface-piercing cylinders in two dimensions [3, 4, 5].

Falnes [6] showed that the diagonal coefficients in the added mass matrix are proportional to the
difference in the time averaged kinetic and potential energies of the relevant fluid motion. A similar
argument to that employed in [7] is used here to show that the potential energy is less than or equal to
the kinetic energy for a single two-dimensional structure which satisfies the John condition and oscillates
in a single mode of motion. So the diagonal coefficients in the added mass matrix are non-negative for
such a structure at all frequencies. The work is extended to find frequency ranges in which the added mass
coefficients for a symmetric pair of such structures are non-negative, using the method in [8]. The ranges
for non-negative symmetric and antisymmetric added mass coefficients are shown to be complementary.
Numerical calculations for two semi-circular cylinders show that the frequencies at which negative added
mass occurs are consistent with these results.

2 Formulation

-M M

x

z

a-a

DD D

FF +

+-

-

B

B

Figure 1: A single structure which satisfies the John condition
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A two-dimensional, surface-piercing structure makes small amplitude oscillations at angular frequency ω,
in water of infinite depth. In its equilibrium position, the structure is assumed to intersect the mean free
surface at two points only (±a, 0), as illustrated in Figure 1, and to be such that a vertical line drawn
down through the fluid from each point on the mean free surface does not intersect the structure. John [9]
showed that the linear, unforced frequency domain potential for such a body is zero and so the structure
is said to satisfy the John condition.

If the component of the velocity of the structure in the pth mode of motion is given by Re[vpe
−iωt]

then the corresponding velocity potential is Re[vpφp(x, z)e
−iωt], where φp is harmonic and satisfies

∂φp
∂n

= np on the structure, (1)

where np is the pth component of the unit inward normal. The linearised free surface condition is

Kφp −
∂φp
∂z

= 0 on z = 0, x < −a, x > a, K = ω2/g. (2)

There is no motion at large depths and only outward propagating waves as x→ ±∞.

3 The sign of the added mass coefficient for a single structure

An application of the divergence theorem to φp∇φp + φp∇φp in the fluid yields the relationship between
the non-dimensional diagonal coefficient in the added mass matrix µpp and the difference between the
time-averaged kinetic and potential energies derived in [6], namely

µpp = Re

[
1

A0

∫

B
φp np dS

]
=

1

A0
lim

M→∞

[∫

D−∪D+∪DB

|∇φp|2 dV −K
∫

F−∪F+

|φp|2 dx

]
, (3)

where A0 is the cross-sectional area of the structure. Green’s theorem is applied to φp and eiK(x−s)+Kz

in the region x ≥ s > a. Both functions represent outgoing waves at infinity and so the only contribution
comes from the line x = s and yields

∫ 0

−∞

[
∂φp
∂x

eKz − iKφpe
Kz

]

x=s

dz = 0. (4)

The second term in (4) is integrated by parts and then the equation is rearranged to give

φp(s, 0) =

∫ 0

−∞

[
∂φp
∂z
− i

∂φp
∂x

]

x=s

eKz dz. (5)

Now ∣∣∣∣
∂φp
∂z
− i

∂φp
∂x

∣∣∣∣
2

= 2

(∣∣∣∣
∂φp
∂z

∣∣∣∣
2

+

∣∣∣∣
∂φp
∂x

∣∣∣∣
2
)
−
∣∣∣∣
∂φp
∂z

+ i
∂φp
∂x

∣∣∣∣
2

≤ 2 |∇φp|2 , (6)

so an application of the Cauchy-Schwarz inequality to (5) and then integration over F+ yields

K

∫

F+

|φp(x, 0)|2 dx ≤
∫

D+

|∇φp|2 dV. (7)

A similar analysis in x < −a produces the same inequality but with F+ and D+ replaced by F− and D−.
Both inequalities are substituted into (3) to give

µpp = Re

[
1

A0

∫

B
φp np dS

]
≥ 1

A0

∫

DB

|∇φp|2 dV ≥ 0. (8)

Thus the diagonal terms in the added mass matrix are non-negative for a single structure which satisfies
the John condition.
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4 The sign of the added mass coefficient for two structures
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- D DB B
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B B

Figure 2: Two structures which individually satisfy the John condition

The analysis used in §3 is performed for two structures which individually satisfy the John condition but
move as a single structure and yields

µpp = Re

[
1

A0

∫

B
φp np dS

]
≥ 1

A0

[∫

Di

|∇φp|2 dV −K
∫

Fi

|φp|2 dx

]
, (9)

where Fi represents the free surface between the structures and Di the fluid region below. It remains to
determine where the right-hand side of (9) is non-negative. On Fi the function wp is defined as in [8] by

wp(x) =

∫ 0

−∞
φp(x, z)e

Kz dz. (10)

The operator d2/dx2 is applied to (10) and yields d2wp/dx
2 + K2wp = 0. If the system of structures is

symmetric, the heave potential φ3 is symmetric in x, and so

w3(x) = B3 cosKx =

∫ 0

−∞
φ3(x, z)e

Kz dz, x ∈ Fi, (11)

where B3 is a complex constant. Integration by parts in (11) followed by applications of the Cauchy and
Schwarz inequalities yields an inequality which is integrated over Fi to give

K

∫

Fi

|φ3(x, 0)|2 dx ≤ K2|B3|2 [2K(b− a) + sin 2K(b− a)] +

∫

Di

∣∣∣∣
∂φ3
∂z

∣∣∣∣
2

dV. (12)

Differentiation of (11) with respect to x and an application of the Cauchy-Schwarz inequality followed by
integration over Fi yields

K2|B3|2 [2K(b− a)− sin 2K(b− a)] ≤
∫

Di

∣∣∣∣
∂φ3
∂x

∣∣∣∣
2

dV. (13)

A combination of (12) and (13) gives

K

∫

Fi

|φ3(x, 0)|2 dx ≤ 2K2|B3|2 sin 2K(b− a) +

∫

Di

|∇φ3|2 dV ≤
∫

Di

|∇φ3|2 dV (14)

if sin 2K(b− a) ≤ 0, that is if (2n− 1)π ≤ 2K(b− a) ≤ 2nπ, where n is a positive integer. Substitution
of (14) into (9) shows that the heave added mass is non-negative in this range. The sway potential φ1 is
antisymmetric in x and so w1(x) = B1 sinKx and a similar analysis gives

K

∫

Fi

|φ1(x, 0)|2 dx ≤ −2K2|B1|2 sin 2K(b− a) +

∫

Di

|∇φ1|2 dV ≤
∫

Di

|∇φ1|2 dV (15)

if sin 2K(b−a) ≥ 0, that is if 2nπ ≤ 2K(b−a) ≤ (2n+1)π, where n is a non-negative integer. Substitution
of (15) into (9) shows that the sway added mass is non-negative in this range.
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Numerical calculations of the heave and sway added mass coefficients, µ33 and µ11, are presented in
Figure 3 for a pair of surface-piercing, semi-circular cylinders for which b = 2a. The shaded area represents
the frequency ranges in which µ11 must be non-negative and the complementary frequency ranges are
where µ33 must be non-negative. It should be noted that µ11 and µ33 are not negative everywhere outside
these intervals and work is currently in progress to use the wide-spacing approximation to find ranges of
frequencies at which negative values of µ11 and µ33 occur.
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Figure 3: The heave −−−−− and sway −−− added mass for 2 semi-circular cylinders, b = 2a
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Numerical and experimental modelling

of cylindrical tuned liquid dampers
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I. Introduction
So-called Tuned Liquid Dampers (TLDs) are gaining interest as devices to mitigate the resonant response of
slender buildings under wind or earthquake excitation. Some TLDs are of sloshing type, consisting in tanks
partly filled with water, with the natural frequency of their first sloshing mode adjusted to the resonant frequency
of the structure. Energy dissipation is enhanced by perforated screens. The two-dimensional case of rectangular
TLDs has been extensively investigated numerically and experimentally — e.g. see Warnitchai & Pinkaew
(1998), Tait (2008), Faltinsen et al. (2011), Crowley & Porter (2012) or Molin & Remy (2013).

Figure 1: Considered geometries: circular screen (left) or along a diameter (right).

In the case of axisymmetric buildings such as airport or wind towers TLDs should preferably be axisymmetric
as well. Ghaemmaghami et al. (2012) have proposed an annular TLD with two horizontal solid baffles at the
outer wall. Here we consider cylindrical tanks with vertical perforated screens, either radial or circular, or a
combination of both. There are two basic cases: one circular screen or one screen along a diameter, perpen-
dicular to the direction of forced motion (Fig. 1). We have investigated both cases through numerical and
experimental modelling.

II. Numerical models
The theoretical frame closely follows Molin & Remy (2013): potential flow theory is assumed with the free
surface equations linearized. With the velocity potential written as

Φ(R, θ, z, t) = Aω ℜ
{
φ(R, θ, z) e−i ωt

}
(1)

where (R, θ, z) are cylindrical coordinates from the bottom of the tank, A is the surge motion amplitude and ω
the frequency, the boundary value problem writes

∆φ = 0 0 ≤ R ≤ b 0 ≤ z ≤ h (2)

g φz − ω2 φ = 0 z = h (3)

φz = 0 z = 0 (4)

φR = cos θ R = b (5)

(b the radius of the tank and h the filling height of water).
At the porous screen a quadratic discharge law is assumed (Molin, 2011):

P− − P+ = ρ
1 − τ

2µ τ2
Vr |Vr|, (6)

with P− −P+ the pressure drop, τ the porosity or open-area ratio, µ a discharge coefficient, and Vr the relative
velocity of the flow with respect to the screen.
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II.1 Circular screen
The velocity potential is written as

φ1 = cos θ

{
φNS + B0

J1(k0R)

k0 J ′
1(k0a)

cosh k0z

cosh k0h
+

∞∑

n=1

Bn
I1(knR)

kn I ′
1(kna)

cos knz

}
(7)

in the inner sub-domain (0 ≤ R ≤ a), and

φ2 = cos θ

{
φNS + B0

Y ′
1(k0b) J1(k0R) − J ′

1(k0b) Y1(k0R)

k0 (Y ′
1(k0b) J ′

1(k0a) − J ′
1(k0b) Y ′

1(k0a))

cosh k0z

cosh k0h

+

∞∑

n=1

Bn
I ′
1(knb) K1(knR) − K ′

1(knb) I1(knR)

kn (I ′
1(knb) K ′

1(kna) − K ′
1(knb) I ′

1(kna))
cos knz

}
(8)

in the annular sub-domain (a ≤ R ≤ b). In these equations k0, kn are the roots of the dispersion equation
ω2 = g k0 tanh k0h = −g kn tan knh and φNS stands for the solution in the absence of screen:

φNS = A0
J1(k0R)

k0 J ′
1(k0b)

cosh k0z

cosh k0h
+

∞∑

n=1

An
I1(knR)

kn I ′
1(knb)

cos knz (9)

with A0 = 2 sinh 2k0h/(2 k0h + sinh 2k0h), An = 4 sin knh/(2 knh + sin 2 knh).
Only the discharge equation (6) remains to be verified. The relative flow velocity at the screen is

Vr(z, θ, t) = A ω cos θ ℜ
{[

(α0 + B0)
cosh k0z

cosh k0h
+

∑

n

(αn + Bn) cos knz

]
e−i ωt

}
(10)

with α0 = A0 (J ′
1(k0a)/J ′

1(k0b) − 1), αn = An (I ′
1(kna)/I ′

1(knb) − 1), while the pressure drop is

P1 − P2 = Aρ ω2 cos θ ℜ
{

i

[
β0 B0

cosh k0z

cosh k0h
+

∑

n

βn Bn cos knz

]
e−i ωt

}
(11)

and the βi coefficients have complicated expressions not reproduced here.
The following derivations closely follow Molin & Remy (2013) with Lorentz linearization being applied both

to the time and angular coordinate dependencies:

ℜ
{
f e−i ωt

} ∣∣ℜ
{
f e−i ωt

}∣∣ ≃ 8

3π
∥f∥ ℜ

{
f e−i ωt

}
cos θ | cos θ| ≃ 8

3 π
cos θ

II.1 Screen along a diameter
In the case of a solid wall, Bauer (1963) has proposed a solution written as the solid motion plus a combination

of natural modes, that is eigen-functions satisfying an homogeneous Neumann condition at the vertical walls.
In the case of a porous wall it turns out to be more handy to use eigen-functions satisfying the linearized free
surface condition, alike in the circular case.

That is, in the sub-domains 1⃝ and 2⃝ of Fig. 1 the velocity potential φi is written as

φ1,2 =
∞∑

m=0

cos 2mθ

{
±Am0

J2m(k0R)

k0 J ′
2m(k0b)

cosh k0z

cosh k0h
±

∞∑

n=1

Amn
I2m(knR)

kn I ′
2m(knb)

cos knz

}

+
∞∑

m=0

cos(2m + 1)θ

{
Bm0

J2m+1(k0R)

k0 J ′
2m+1(k0b)

cosh k0z

cosh k0h
+

∞∑

n=1

Bmn
I2m+1(knR)

kn I ′
2m+1(knb)

cos knz

}
(12)

In this equation ± means + in sub-domain 1⃝ and − in sub-domain 2⃝. When the screen is solid the Bmn

coefficients are zero identically. When there is no screen the Amn and Bmn coefficients are zero except for the
B0n which are identical with the An in (9).

There remains to verify the no flow condition at the outer wall and the discharge equation at the porous
screen. From the development

cos(2m + 1)θ = ±αm0 ±
∞∑

n=1

αmn cos 2nθ 0 ≤ θ ≤ π (13)
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where, again, ± means + in subdomain 1⃝ and − in subdomain 2⃝, and

αm0 =
2

π

(−1)m

2m + 1
αmn =

4

π

(−1)m+n (2m + 1)

(2m + 1)2 − 4n2
(14)

the no-flow condition at the outer wall results in

Amn +
∞∑

p=0

αpm Bpn = α0m B0nNS m,n = 0,∞ (15)

where B0nNS is the No Screen case solution (9). Equivalently, in vector form:

−→
A = AB · −→

B +
−→
RA (16)

where
−→
A = (A01, A02, . . . , A0N , A11, . . . , AMN ),

−→
B = (B01, B02, . . . , B0N , B11, . . . , BMN ) and M , N are the

truncation orders of the m and n series. There remains to verify the discharge equation at the screen which
takes the form

∞∑

m=0

(−1)m

{
Am0

J2m(k0R)

k0 J ′
2m(k0b)

cosh k0z

cosh k0h
+

∞∑

n=1

Amn
I2m(knR)

kn I ′
2m(knb)

cos knz

}

= i F (R, z)

[ ∞∑

m=0

(2m+1) (−1)m

{
Bm0

J2m+1(k0R)

k0 J ′
2m+1(k0b)

cosh k0z

cosh k0h
+

∞∑

n=1

Bmn
I2m+1(knR)

kn I ′
2m+1(knb)

cos knz

}
−R

]
(17)

with

F (R, z) =
2

3π

1 − τ

µτ2

A

R2
×

∥∥∥∥∥∥

∞∑

m=0

(2m + 1) (−1)m



Bm0

J2m+1(k0R)

k0 J ′
2m+1(k0b)

cosh k0z

cosh k0h
+

∞∑

n=1

Bmn
I2m+1(knR)

kn I ′
2m+1(knb)

cos knz



 − R

∥∥∥∥∥∥

Alike in the two-dimensional case an iterative procedure is devised where F (R, z) is given from the previous two
steps. Both sides of equation (17) are first multiplied by cosh k0z/ cosh k0h (then cos knz) and integrated in z
from 0 to h. Then they are multiplied by J2p(k0R)/(k0 J ′

2p(k0b)) (then I2p(knR)/ (kn I ′
2p(knb))) and integrated

in R from 0 to b. In this way one gets the vectorial equation

MA · −→
A

(j)
= i M

(j)
B · −→

B
(j)

+ i
−→
R

(j)

C (18)

Combination with (16) yields a linear system in
−→
B . In the implementation numerical convergence problems

were encountered associated with the evanescent components. In the numerical results shown further down in
this paper, related to relatively shallow depth cases, the evanescent modes are just neglected.

III. Experiments
Experiments were carried out with the Hexapode bench of Centrale Marseille. The internal diameter of the

tank was 0.97 m, the circular screen diameter 0.5 m. In the circular case the screen porosity was 23 %, in the
diameter case it was 18 %. The screens had the same thickness, 2 mm, and circular openings with a diameter
of 4 mm. Tests were done at 15 cm, 25 cm and 35 cm filling heights. Here we show results at a depth of 25 cm.

The range of frequencies was from 2 through 12 rad/s. When there is no screen, the first natural frequencies
(below 12 rad/s) of the sloshing modes are 5.25 rad/s and 10.34 rad/s. With a solid circular screen they are
8.29 rad/s for the inner sub-domain and 4.02 rad/s and 11.67 rad/s for the annular sub-domain. With a solid
diameter, they are 7.53 rad/s, 8.64 rad/s, 10.33 rad/s, 11.64 rad/s, 11.90 rad/s.

In the computations the discharge coefficient µ was taken equal to 0.5.
In the circular case, Fig. 2 shows the experimental and numerical added mass (left) and damping (right)

coefficients, for different amplitudes of motion.
In the perforated diameter case, Fig. 3 shows the numerical and experimental added mass coefficients, while

Fig. 4 shows the damping coefficients.
Good agreement is generally observed between the experimental and numerical hydrodynamic coefficients.
More results, with other screen arrangements, will be shown at the workshop.
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Figure 2: Circular screen. Added mass (left) and damping (right) coefficients.
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1 Introduction

The possibility of using submerged structures to focus waves is of special interest for wave-energy
converters. Mehlum and Stamnes used a ‘wave lens’ in a large outdoor experimental facility (cf. [1]

and references therein). Subsequent analyses have been made by Murashige & Kinoshita [2], Teigen [3],
Griffiths & Porter [4], and others. Most of this work is motivated by the concept of optical refraction,

at least as a first approximation, which implies that the structure is large relative to the wavelength λ.
The lens described in [1] is a transverse array of small elements extending over a width of 33λ, with

amplification factors of 3-4 at the focal point. Slender-body approximations are used in [2] to achieve
amplification factors of 5 with a width of 16λ. Submerged plates with simple planforms and smaller

dimensions are used in [3], with amplification factors of 2. Bathymetry with an elliptical plateau is
considered in [4], with horizontal dimensions on the order of 10λ and amplification factors of 4-4.5.

(The amplification factor is defined here as the maximum value of the free-surface elevation, for an
incident wave of unit amplitude.) For the configurations in [3] and [4] the point of maximum elevation
is in the shallow region above the plate or plateau.

For practical applications it is desirable to reduce the size of the structure. In the present work
submerged horizontal plates are considered with dimensions comparable to the wavelength. Instead of

assuming a simple geometrical shape, the planform is represented by a Fourier series with optimized
coefficients to maximize the amplification factor. The computational approach combines the multi-

variate optimization code PRAXIS with the radiation/diffraction code WAMIT, as in [5]. Planforms
are found with amplification factors between 5 and 15 at one wavenumber. Other planforms are found

which maximize the average amplitude over a range of wavenumbers. As in [3] and [4] the point of
maximum amplitude is in the shallow region above the plate. This may be an important restriction for

wave-energy converters, since the power may be substantially less than for a plane progressive wave
with the same amplitude.

2 Formulation

Plane waves of unit amplitude and wavenumber K propagate in the +x-direction toward a submerged

horizontal plate of zero thickness. The fluid depth is infinite and linear potential theory is assumed.
The plate is stationary, and occupies the space 0 ≤ r ≤ R(θ) in the plane z = −d, where d is the

depth below the undisturbed free surface and (r, θ) are polar coordinates with x = r cos θ, y = r sin θ.
The coordinates and wavenumber are nondimensional. Symmetry is assumed about y = 0, and the

outer radius R is represented by the Fourier series

R(θ) =
N

∑

n=0

cn cosnθ. (1)

The free surface is defined as z = Re
[

ζ(x, y)eiωt
]

, where ω is the wave frequency and K = ω2/g.
The amplification factor A is defined as the maximum value of |ζ(x, y)| over the domain of the free
surface. The coefficients cn are determined by optimization, with the objective to maximize A. The

‘half-length’ a = R(0) is fixed to constrain the size of the plate, with the value a = 2. Except where
noted the wavenumber K = 1 is used for the optimizations.
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Figure 1: Planforms of the plates defined by the Fourier series (1) with N = 2, 4, 8, 12 and d = 0.25.
The diameter of the dashed circles is equal to the wavelength 2π of the incident waves, which propagate

from left to right. The maximum amplitude A occurs at the points shown by filled black circles.

3 Results

Figure 1 shows the planforms of optimized plates for the depth d = 0.25, with the upper limit N of

the Fourier series equal to 2,4,8,12. Only the Fourier coefficients of even order are used in the upper
row, to represent plates which are symmetrical about x = 0. In the lower row all N +1 coefficients are

included to allow for non-symmetry. The parameter A increases with increasing N , but at a relatively
slow rate. Allowing for non-symmetry introduces interesting details in the planform, but does not
increase the maximum amplitude substantially.

The diameter of the dashed circles in Figure 1 is equal to the wavelength of the incident waves in
deep water. Accounting for the finite depth above the plates reduces the wavelength by about one

half. Thus the planforms in Figure 1 have maximum dimensions which are approximately equal to
one deep-water wavelength, or two wavelengths for waves of the same frequency in depth d.

Figure 2 shows the planforms of symmetrical plates with N = 8, for different values of the depth d.
The Fourier coefficients for these plates are listed in Table 1. The planform with d = 0.25 differs from

the corresponding plate in Figure 1, due to the different initial conditions used for each optimization.
This is an example of local convergence of the optimizations, which are not unique, and other planforms

may exist with larger values of A. (Another planform was found for d = 0.15 with A = 19.02, but
with twice the width of the plate shown here.)

Figure 2: Planforms of symmetrical plates defined by the Fourier series (1) with N = 8 and depths d
as shown.
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Figure 3: Free-surface elevation |ζ| as a function of the position x along the centerline of the plates
shown in Figure 2, for different values of the wavenumber K. Note that the vertical scales are different.

The free-surface elevations |ζ(x, 0)| above the plates in Figure 2 are plotted in Figure 3, for different
values of the wavenumber K. The solid curves correspond to the wavenumber K = 1 used for the

optimizations. For other values of K the amplification factors are reduced substantially.
Figure 4 shows planforms which are optimized for a range of wavenumbers. Here the average of the

amplitudes at seven uniformly-spaced wavenumbers K = 0.7(0.1)1.3 is used, instead of the amplitude
at K = 1, and Ā is defined as the maximum value of this average at all the field points x. The Fourier

coefficients are listed in Table 2. The corresponding elevations of the free surface are shown in Figure 5.
In these cases the maximum amplitudes occur at longer wavelengths (K < 1). These planforms are

smaller and the free-surface elevations are more uniform with respect to the wavenumber K, but the
maximum amplitudes are much less than for the plates in Figure 2.

Figure 4: Planforms of the symmetric plates optimized for the range of wavenumbers 0.7 ≤ K ≤ 1.3.

The diameter of the dashed circles is equal to the wavelength at K = 1.

Figure 5: Free-surface elevation |ζ| as a function of the position x along the centerline of the plates

shown in Figure 4, for different values of the wavenumber K. The vertical arrows show the points x
where the averaged amplitude has its maximum value Ā.
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4 Conclusions

Submerged horizontal plates are found with planforms which maximize the local amplitude of the free-
surface elevation. These plates are relatively compact, with horizontal dimensions comparable to the

wavelength. Amplification factors between 5 and 15 are achieved at the wavenumber K = 1 used for
the optimizations, but these factors are reduced substantially at other wavenumbers. An alternative

set of plates are optimized for the range of wavenumbers 0.7 ≤ K ≤ 1.3, with their average amplitude
factors Ā between 3.5 and 5.4. Some reduction of the amplitude is expected for oblique waves, but
this may be less important in a typical spectrum compared to the effect of different frequencies and

corresponding wavenumbers.
For applications to wave-energy converters it should be noted that the point of maximum amplifi-

cation is above the plate, where the elevation of the free surface is affected by three-dimensional effects
and by reflection at the edge of the plate. Thus the relation between the amplitude of free-surface

elevation and the power is more complicated than for a plane progressive wave and the available power
may be much less than would be implied by a simple analysis based on the maximum amplitude. An

interesting possible extension of the present work would be to combine a simple point absorber with
a submerged plate and optimize both to maximize the power output.

Viscous and nonlinear effects are obvious issues. Separation may be mitigated by using finite
thickness with a rounded edge. Nonlinear effects are important if the amplitude is comparable to the
depth of the plate. Notwithstanding these practical issues, it is surprising that such large amplification

factors can be achieved simply by optimizing the planform, when the dimensions are comparable to
the wavelength.
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d A c0 c2 c4 c6 c8

0.15 14.94 2.5609 -0.0570 -0.2119 -0.4854 0.1934

0.20 10.46 2.9254 -0.1069 -0.3614 -0.5967 0.1397
0.25 7.18 3.2355 -0.0508 -0.3449 -0.8274 -0.0123

0.30 5.19 3.4775 -0.0179 -0.3254 -0.9663 -0.1679

Table 1: Fourier coefficients of the plates shown in Figure 2.

d Ā c0 c2 c4 c6 c8

0.15 5.43 1.7807 -0.2641 0.2219 0.5128 -0.2514

0.20 4.67 1.9693 -0.3242 0.2058 0.5221 -0.3730
0.25 4.02 2.0953 -0.3441 0.1998 0.4515 -0.4025

0.30 3.51 2.2020 -0.3514 0.1833 0.3869 -0.4207

Table 2: Fourier coefficients of the plates shown in Figure 4.
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initial bubble centre, one has atmP P gh   , where 

atmP  is the atmospheric pressure. lP  is the local fluid 

pressure on the surface, one has l gP P     when 

considering the surface tension, where    is the surface 
tension coefficient,   is the local surface curvature, 

and bgP P  on the bubble surface, or atmgP P  on the 

free surface.   
It is assumed that the gas inside the bubble satisfies an 

isentropic law. Thus the pressure bP  inside the bubble 

is related to the volume V through the following 
equation (Lamb, 1975): 

0 0( )/bP P V V  ,                       (4) 

where 0P   and 0V   are respectively the initial gas 

pressure and volume when the bubble is generated,    is 
the ratio of specific heat of gas. This state equation is 
applicable up to the moment of bubble breaking up, after 
which the bubble pressure is just taken as the 
atmospheric pressure b atmP P . 

Just before the rupture of the bubble, when the water 
layer between the bubble surface and the free surface 
becomes very thin, the element sizes used must be 
comparable to the thickness of the liquid layer. However, 
the element size cannot be reduced continuously 
indefinitely, which is one of the main reasons for the 
difficulty in analysing the micro details of extremely thin 
water layer. One way forward is to assume the water 
layer will break up when this is sufficiently thin (Ni et al., 
2013). Here it is assumed that when the smallest distance 
between the nodes on the bubble surface and on the free 
surface is less than a critical value 1cs , the bubble will 

open up at this point at the next time step. Also the 
bubble surface near this point with its distance to the free 
surface is smaller than another critical distance 

2 1c cs s    will open up. In this way 1cs  will decide 

the moment of bubble bursting and 2cs  will decide the 

size of the bubble surface being opened up. 

 
(a) Before bubble breaking (b) After bubble breaking 

Fig. 2 Sketch of numerical procedure for a bubble 
bursting through the free surface 

For the axisymmetric case considered here, it is 
observed during the simulation that the node on the 
bubble with the shortest distance to the free surface is its 
top point, as shown in Fig.2. The distance between the 
nodes on the bubble surface and on the free surface with 

0x   is firstly defined as 1s . When 1 1cs s   , the 

water layer is regarded to be sufficiently thin and the 
bubble will burst in the next time step. To decide the size 
of the opening, we define a line l through point M

 
on 

the bubble surface along its normal direction. The line 
intersects with the free surface at M  , which is located 
in the element with nodes N and N+1. Variables such as 
velocity potential on M   are obtained by interpolation 
from nodes N and N+1. When the distance between 
points M and M  2 2cs s    the water layer will be 

just cut there in the next time step, as shown in Fig.2(b). 
After the bubble is opened up, the point of intersection 
between the bubble surface and free surface is marked as 
H, whose location and velocity potential are taken as the 
average of those at points M  and M  .  

In the subsequent calculation, care must be taken at 
the intersection point H, because the normal derivatives 

1n  and 2n  from the both sides of the sharp corner of 

H are different. When calculating the corresponding 
coefficient in the matrix at the intersection, the integral 
can be split into two parts: one from the integration over 
the left side surface and the other from the right side 
surface. However, there exists one more unknown in this 
case, and one extra condition needs to be found before 
solving the matrix equation.  

Fig. 3 Numerical treatment on the sharp corner 
This is provided from a numerical scheme shown in 

Fig.3. Assume the angle between the two segments at the 
sharp corner is  . Bisect the angle   by using a line k. 
Draw a line m perpendicular to k with the intersection 
point I, whose distance to point H is ds  which is quite 

small, and line m will intersect the two segments at aI  

and bI  respectively. Assume the potentials at these 

points are a  and b  respectively. One can get the 

derivative ( ) ( ) /
b aI I b a bas     , where bas  is the 

distance between the points aI  and bI . The weighted 

average of projections along the line m of normal 
derivatives 1n  and 2n , as well as tangential 

derivatives 1  and 2  should be equal to ( )b aI I . 

This gives a link between 1n  and 2n , which can be 

used an extra condition for the matrix equation. Then the 
total velocity ( ,r z  ) at H can be obtained by the 

weighted average of those on the two sides of the corner, 
which is used to update the potential and the free surface 
shape. The calculation is then allowed to continue.  
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Fig.5 The time-history of the vertical coordinate and 
velocity of point A 

Fig. 4 provides the pressure contours and velocity 
vectors near the bubble and free surface as well as the 
evolution of the bubble and free surface and Fig.5 gives 
the variation of the vertical coordinate and the velocity of 
point A, which is the lowest point initially on the bubble 
surface as shown in Fig.1. Initially the gradient of the 
pressure at the top of the bubble is higher than that at the 
bottom of the bubble because of the difference in the 
hydrostatic pressure. Thus the induced radial velocity at 
the top of the bubble is larger due to a larger initial 
acceleration, as shown in Fig.4(a). As the bubble expands, 
its top moves towards the free surface, while its bottom 
or point A moves downwards as shown in Fig.5. The 
pressure inside the bubble then reduces gradually. 
Fig.4(b) presents the surfaces right before bubble 

bursting and it is found that at this time step / 1.01
b atm

P P  . 

The water layer is removed in the next time step, and the 
bubble is opened up as shown in Fig.4(c). After this 

moment t  0.652, the pressure at point A becomes atm
P . 

This creates a larger local pressure gradient shown in 
Fig.4(c), which leads to a larger acceleration, as shown in 
Fig.5. Due to momentum point A still goes downwards. 
It continues until it reaches the first bottom at t  2.584. 
Due to the large hydrostatic pressure at lower position, 
point A then moves up with rapidly rising velocity. The 
velocity reaches a peak and then it slows down and 
becomes zero at t  17.063 when point A reaches its 
first peak, as shown in Fig.5. A large hump of the free 
surface around point A is formed, as shown in Fig.4(e), 
and much of the kinetic energy of fluid is converted into 
the potential energy. It can also be seen in Fig.4(e) that 
the hydrodynamic pressure inside the hump is almost 

atm
P . This means that gradient of the pressure is near zero. 

From the momentum equation, one can infer that the 
vertical acceleration of the fluid particle is –g. This 
coincides well with what has been observed in Fig.5, in 
which there is a section with a constant acceleration –g 
during 6.84 26.66t  . The elevated free surface is 
pulled down by the gravity as the time progresses. Point 
A reaches the bottom second time at t  31.629 as 
shown in Fig.5. Fig.4(g) gives the surface shape at this 
moment. The location of point A is not as low as that of 

the previous trough. The deformation of the free surface 
becomes evident over a larger area, which indicates 
disturbance or generated wave is propagating outwards. 
Almost right after point A reaches the second trough, the 
surrounding water starts rushing towards the centre, 
leading to a higher pressure gradient at point A, as shown 
in the local magnification in Fig.4(h). The acceleration at 
point A becomes extremely large, shown by the nearly 
vertical velocity curve in Fig.5. It leads to a much larger 
velocity peak of 4.34 at t  34.677 before it slows 
down. Consequently, point A reaches a much higher peak. 
However, this is followed only by those points near point 
A or those slightly away from the centre. As a result a 
long and thin jet is formed at t  48.993, as shown in 
Fig.4(i). Then the jet column will be pulled down by the 
gravity and point A will continue to oscillate but with 
gradually reduced peaks as the disturbance propagates 
outwards in the form of the surface wave. 
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Highlights:

• A novel solution method for the diffraction and radi-
ation of waves by a fully submerged flap is presented.

• Insight is given into the effects on performance seen
as a result of fully submerging the device.

1. Introduction

The abundance of energy available in ocean waves has
long been of interest as a potentially significant source
of renewable energy, numerous devices having been
conceived over the years with the intent of convert-
ing it into a usable form. However, difficulties arise in
engineering devices which are both efficient and able
to survive the harsh marine environment. One of the
devices which has recently emerged as a promising can-
didate for large scale commercial success in the UK is
the Oyster device, a buoyant flap-type device under de-
velopment by Aquamarine Power LTD1. Although en-
gineering development challenges remain this has been
successfully demonstrated in terms of numerical mod-
elling, laboratory testing and in full-scale deployment.
Thus, interest has turned to mathematically modelling
devices of this type with a significant contribution hav-
ing been made by Renzi & Dias (2013).

With the issue of survivability firmly in mind, the
purpose of the present paper is to investigate the im-
pact on the performance characteristics of such devices
when they are fully submerged and thus sheltered from
the most extreme conditions which are seen in the sur-
face region. To that end a novel semi-analytic solution
method is developed.

2. Formulation

Cartesian coordinates have been chosen with the ori-
gin at the mean free surface level and z pointing ver-
tically upwards. The fluid has density ρ and is of
constant, finite depth h. The hydrodynamic model
assumes the flap to be infinitely thin and buoyant
so that when at rest it occupies the vertical plane
{x = 0,−a < y < a,−h < z < −h+ b}, where b < h.
It is hinged along a horizontal axis (x, z) = (0,−h+ c),
which is denoted in figure 1 by P . Above its pivot the
flap is free to move and below it is held fixed and ver-
tical. The fluid is incompressible and inviscid, the flow

1http://www.aquamarinepower.com/

2H
z

x

c

h
b

P

Θ(t)

Side view

y

x

a

−aβ

2π/k

Plan view

Figure 1: Side and plan views of the flap converter
used in the hydrodynamic model.

is irrotational and the flap oscillations are assumed to
be of small amplitude. A standard linearised theory of
water waves is used.

Small amplitude plane waves of radian frequency ω
are incident from x < 0, making an anti-clockwise an-
gle β ∈ (−π/2, π/2) with the positive x-direction.

After removing the harmonic time-dependence, the
velocity potential is decomposed as

φ (x, y, z) = AφS (x, y, z) + ΩφR (x, y, z) (1)

where Ω is the complex angular velocity, A =
igH/2ωψ0 (0) ensures an incident wave height H and
ψ0 is a normalised depth eigenfunction which will be
defined later. Here φS and φR are associated with the
scattered and radiated wave fields respectively. They
satisfy

52φS,R = 0 (2)

in the fluid,

φS,Rz − ω2

g
φS,R = 0 (3)

on z = 0, and

φSz = 0 and φRz = 0 (4)

on z = −h. Further, we have

φSx
(
0±, z

)
= 0 and φRx

(
0±, z

)
= u (z) (5)

for −a < y < a and −h < z < −h+ b, where

u (z) =

{
0, z ∈ [−h,−h+ c] ∪ [−h+ b, 0]

z + h− c, z ∈ [−h+ c,−h+ b].

(6)
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The incident wave is given by

φI (x, y, z) = eik(x cos β−y sin β)ψ0 (z) (7)

where k satisfies ω2 = gk tanh kh and ψ0 (z) is a nor-
malised depth eigenfunction defined by

ψ0 (z) = N
−1/2
0 cosh k (z + h) , (8)

with N0 =
1

2
(1 + sinh (2kh)/(2kh)). The potentials

φR and φD ≡ φS−φI describe outgoing waves at large
distances from the flap.

In the frequency domain, the equation of motion of
the flap is

−iωIΩ = − iC
ω

Ω + Fw + Fe (9)

where I denotes the moment of inertia and C the
restoring moment, quantities determined by the phys-
ical properties of the flap. Fw is the time-independent
wave torque and is written as

Fw = AFS + ΩFR (10)

where

FS,R = −iωρ
∫ a

−a

∫ 0

−h
PS,R(y, z)u(z) dz dy (11)

and

PS,R(y, z) = φS,R
(
0+, y, z

)
− φS,R

(
0−, y, z

)
(12)

is the pressure difference across x = 0. Further decom-
position of the radiation force FR yields

Fw = AFS + (iωA− B) Ω (13)

where the real quantities A(ω) and B(ω) are the added
mass and radiation damping coefficients. Finally, we
decide the mechanism for power take-off should take
the form of a linear damping force and write

Fe = −λΩ (14)

where λ is assumed to be a real constant so that the
power and velocity are in phase. It may then be shown
(see Evans & Porter (2012) for example) that the cap-
ture factor can be written as

l̂ = l̂max
2B

B + |Z|

(
1− (λ− |Z|)2

|λ+ Z|2

)
(15)

where

l̂max =
1

2a

|AFS |2
8BWinc

(16)

is the maximum capture factor, achieved through op-
timal tuning (λ = |Z|) at resonance (|Z| = B), Winc is
the power per unit width of incident wave and

Z = B − iω
(
A+ I − 1

ω2
C

)
. (17)

Further, the optimal capture factor is given by

l̂opt =
2B

B + |Z| l̂max (18)

and is achieved through optimal tuning.
Thus, in order to study the performance of the device

we must first determine the hydrodynamic coefficients
A and B along with the exciting force FS . These de-
pend on the solution of the hydrodynamic problems for
φS and φR and that is where our attention turns now.

3. Solution of the hydrodynamic prob-
lems

3.1 The scattering problem

The scattering problem deals with the diffraction of
the incident wave when the flap is held fixed vertically.
We consider the potential φD ≡ φS − φI associated
with the diffracted waves. By antisymmetry we have
φD(x, y, z) = −φD(−x, y, z) and so we only need the
solution in x > 0. We define the Fourier transform of
φD(x, y, z) by

φ
D

(x, l, z) =

∫ ∞

−∞
φD(x, y, z)e−ily dy. (19)

Then, taking Fourier transforms with respect to y of
the governing Laplace equation (2) gives

(
52
xz − l2

)
φ
D

= 0. (20)

The most general solution of (20) which also satisfies
(3) and (4) with the correct outgoing wave behaviour
is

φ
D

(x, z) =

∞∑

r=0

Br(l)e
−λrxψr (z) (21)

where Br(l) are unknown coefficients,

ψr (z) = N−1/2
r coskr (z + h) , (22)

Nr =
1

2
(1 + sin(2krh)/(2krh)) and kr are the positive

roots of ω2 = −gkrtankrh for r = 1, 2, .... This is con-
sistent with the definition of ψ0(z) if we let k0 = −ik
and the functions ψr(z) for r = 0, 1, 2, ... form a com-
plete set of normalised depth eigenfunctions. Further,

λr(l, kr) =





(
k2
r + l2

)1/2
, for r = 1, 2, ...(

l2 − k2
)1/2

, for r = 0 and |l| ≥ k
−i
(
k2 − l2

)1/2
, for r = 0 and |l| < k

where the choice of branch for λ0 ensures the radiation
condition is satisfied.

We formulate the problem in terms of the unknown
pressure difference across the flap, defined in (12). Tak-
ing Fourier transforms and using the orthogonality of
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the depth eigenfunctions we gain the following equa-
tions for the unknown coefficients

Br(l) =
1

2h

∫ −h+b

−h
P
S

(l, z′)ψr(z
′)dz′

≡ 1

2h

∫ −h+b

−h

∫ a

−a
PS(y′, z′)ψr(z

′)e−ily
′
dy′ dz′

(23)

for r = 0, 1, 2, ....
Invoking the inverse Fourier transform of (21) results

in an integral representation for φD(x, y, z)

φD(x, y, z) =
1

2π

∫ ∞

−∞

∞∑

r=0

Br(l) e
−λrxψr (z) eily dl

(24)

where Br(l) for r = 0, 1, 2, ... are expressed in terms of
PS(y′, z′) in (23). Applying the condition on the flap,

∂φD

∂x
(0±, y, z) = −∂φ

I

∂x
(0±, y, z) (25)

for −a < y < a and −h < z < −h+b, then results in an
integral equation for PS(y, z). This may not be solved
analytically, instead we employ a Galerkin expansion
method. We incorporate the known square-root end-
point behaviour through the approximation

PS(y, z) '
2N+1∑

n=0

P∑

p=0

αnpwn(y)τp(z) (26)

where

wn(y) =
einπ/2

a(n+ 1)

√
a2 − y2Un

(y
a

)
(27)

and

τp(z) =
2eipπ

πb(2p+ 1)

√
b2 − (z + h)2U2p

(
z + h

b

)
(28)

and Un(cos θ) = sin((n + 1)θ)/ sin θ are Chebyshev
polynomials of the second kind. Substituting for
PS(y′, z′) in the integral equation, multiplying through
by −(1/π)w∗m(y)τq(z) and integrating over −a < y <
a, −h < z < −h + b results in the following system of
linear equations

2N+1∑

n=0

P∑

p=0

αnpMnpmq = Dm(β)Gq0 (29)

for m = 0, ..., 2N + 1 and q = 0, ..., P , where

Mnpmq =
∞∑

r=0

GprGqrK
(r)
nm (30)

with

K(r)
nm =

1

4

∫ ∞

−∞

λr(l, kr)

l2
Jn+1(al)Jm+1(al) dl (31)

and

Gpr =

{
N
−1/2
r J2p+1(krb)/krh for r ≥ 1

(−1)pN
−1/2
0 I2p+1(kb)/kh for r = 0

(32)

and

Dm(β) =

{
−icotβJm+1(ka sinβ) if β 6= 0

− 1
2 ikaδm0 if β = 0.

(33)

The integrals which determine K
(r)
nm vanish when n+m

is odd, a rendundancy which allows us to reduce our
consideration to elements for which n + m is even. In
order to ensure rapid convergence we use an integral re-
sult involving products of Bessel functions (Gradshteyn
& Ryzhik (1981) §6.538(2)) to gain an integrand which

decays like O
(

(ka)
2
/l4
)

. Ultimately (29) then reduces

to a coupled pair of systems which may be solved for
the unknown expansion coefficients αnp.

The exciting torque on the flap may be expressed in
terms of the Galerkin expansion coefficients as

FS =
1

2
iωρah2π

P∑

p=0

α0pĝp (34)

where

ĝp = −
∫ 0

−h
τp(z)u(z)dz, (35)

an integral which may be expressed in closed form.

3.2 The radiation problem

Applying the same solution method to the radiation
problem, this time making the approximation

PR(y, z) ' ah
2N+1∑

n=0

P∑

p=0

βnpwn(y)τp(z) (36)

for the unknown pressure difference across the flap, re-
sults in the following system of linear equations

2N+1∑

n=0

P∑

p=0

βnpMnpmq = Emĝq (37)

for m = 0, ..., 2N + 1 and q = 0, ..., P . Here Mnpmq is
defined identically to before,

Em =
1

2
δm0 (38)

and ĝq is given in (35).
More rapid convergence of the integrals defining

K
(r)
nm may be achieved as before. Ultimately, having

solved for the unknown expansion coefficients βnp, we
find that the radiation torque is given by

FR = −1

2
iωρa2h3π

P∑

p=0

β0pĝp. (39)
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Figure 2: Capture factors plotted as a function of wave period T (s) for flaps of various lengths and heights in
water of fixed depth h = 12m. The hinge height is fixed at c = 0.2h and the power take-off at λ = 8. The rows
show results for b/h = 0.9, 0.8 and 0.6 respectively, moving down the page, whilst the columns show results for

a/h = 0.5, 1.0 and 2.0, from left to right. The dotted, dashed and solid curves show l̂, l̂opt and l̂max respectively.

4. Results

Figure 2 shows the actual, optimum and maximum
capture factors for a range of flap lengths and pro-
portions of the depth taken up by the device. The
results appear to be best when b/h = 0.9 and the
top of the flap is nearest to the surface. The theo-
retical maximum, which forms an upper bound, is at
its highest when a/h = 0.5 and the flap is short. How-
ever, this also corresponds to a narrower resonant peak
than that seen for longer devices. Whilst an improve-
ment in the actual capture factors over those plotted
may be achieved through optimal tuning, this unfor-
tunate combination of characteristics leads to a nar-
row peak and actual capture factors being limited to
a mean value of about 0.3. By comparison, when op-
timally configured, the results for a surface piercing
device are close to 0.7 for a broad range of periods
(Noad & Porter, 2015). It is not obvious that such a
deterioration in performance should be seen as a result
of complete submersion. Indeed, high capture factors
are maintained for some devices and this is the case for
the fully submerged device of Crowley, Porter & Evans
(2014) for example.
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Introduction
For offshore and naval applications, the wave forces acting on slender parts of the bodies can be described
by the Morison equation, which expresses the overall force in terms of a nonlinear drag force and a linear
inertia force that define an additional damping and added mass.

In frequency domain, the drag term of the Morison force needs to be linearized. In case of irregular waves,
Borgman [1] linearized the wave drag force in the Morison Equation using the random Gaussian process
assumption for the wave velocity. This linearized form was developed for a fixed vertical cylinder under the
action of a unidirectional wave.

However, for seakeeping and mooring analysis, the vectorial Morison equation is used to evaluate the wave
force on slender bodies in multi-directional flows. Therefore, this linearized form needs to be modified since
it does not obey vector operation rules.

The purpose of this paper is to present a new linearization method for the multi-directional flow. A compar-
ison between the new and the classical linearization will be presented against the time domain simulation in
the case of cylinder.

Morison equation and limitations of the existing linearization
In unidirectional wave flow, the Morison load on a fixed circular cylinder (per unit length), without current,
is given by:

fMorison � p1� CmqρS 9u�
1

2
CdρD |u|u (1)

Where D stands for the cylinder diameter and S its section, Cd the drag coefficient, Cm the inertia coefficient
and u the wave field velocity projected on the perpendicular plane to the principal axis element. If the
cylinder is in motion x, the velocity is replaced by the relative-velocity projected on the same plane:

fMorison � p1� CmqρS 9u� CmρS:x�
1

2
CdρD |u� 9x| pu� 9xq (2)

The drag fd and the inertia fi loads can be written as:

fi � p1� CmqρS 9u� CmρS:x (3)

fd �
1

2
CdρD |u� 9x| pu� 9xq (4)

In the vectorial case, the Morison equation involves only the two velocity components along the plane normal
to the axis of the element. Therefore, for the cylinder local coordinate system pO, x, y, zq such as pOzq the
element axis, the Morison equation can be written as:

fMorison � p1� CmqρS

�

9ux

9uy

�

� CmρS

�

:x
:y

�

�

1

2
CdρD

b

pux � 9xq
2
� puy � 9yq

2

�

ux � 9x
uy � 9y

�

(5)

In irregular waves and without current, u is a zero mean Gaussian random process. With the same assump-
tions as above, Borgman showed that the autocorrelation function Rfdfd

of the drag force, can be written
simply in terms of the wave velocity autocorrelation function Ruu ([2] and [1]):

Rfdfd
pτq � p

1

2
CdρDq2Ruup0q

2Gprq (6)

Where:

r �
Ruupτq

Ruup0q
(7)

Gprq �
1

π

�

p4r2
� 2qarsinpprq � 6r

a

1� r2
	

(8)
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With the first order linearization of the function Gprq (because 0 ¤ r ¤ 1), it is possible to write:

Rfdfd
pτq � p

1

2
CdρDq2Ruup0q

2 8

π
r (9)

The Energy spectral density is then calculated, using the Fourier transform of the above equation:

Sfdfd
pfq � p

1

2
CdρDq2

8

π
σ2

uSuupfq (10)

Finally, the linearized force is given by:

fd �
1

2
ρCdD




8

π
σuu (11)

Where σu is the standard deviation of the wave velocity. In the case where the cylinder is in motion, we
suppose that the relative-velocity is also a zero mean random Gaussian process so we can write:

fd �
1

2
CdρD




8

π
σu� 9xpu� 9xq (12)

In the vectorial case, this method faces two problems:

1. A common linearization constant cannot be calculated for the two components of the Morison drag
force.

2. The characteristics of water particle velocity (orbital velocity for example) cannot be modeled efficiently
without considering the correlation between between the 2 directional velocities.

One way to solve the first problem is to linearize each component of the drag force separately by considering
a unidirectional flow following each wave velocity direction:

ÝÑ

fd �

�

fx

fy

�

�

1

2
CdρD




8

π

�

σux 0
0 σuy

� �

ux

uy

�

(13)

However, this method will underestimate the drag force since in its original form (Eq.5), the velocity norm
depends on the two other velocity components and will be always higher than the norm of one component.
Thus, a more complete model needs to be developed for an accurate linearization form.

Analytical model
We consider a fixed cylinder in 3D random wave flow. The cylinder is not supposed to be necessarily vertical
since we will work on its local coordinate system p

ÝÑe1 ,ÝÑe2 ,ÝÑn q with ÝÑn the cylinder’s vector axis. We will be
limited in our study to a two-dimensional case since the Morison equation depend on the projected wave
velocity as mentioned previously. Thus, the drag force and the wave velocity can be written in the local
coordinate system p

ÝÑe1 ,ÝÑe2 ,ÝÑn q as:

ÝÑu �

�

u1

u2

�

,
ÝÑ

fd �

�

f1

f2

�

(14)

Extending the Borgman’s linearization to a two-dimensional case seems to be difficult for the reason that the
autocorrelation function of each force component is complicated to determine analytically (need to calculate
multiple integrals of 4 variables: u1ptq, u2ptq, u1pt� τq and u2pt� τq). For simplification, a classic random
Gaussian vector model will be used for ÝÑu so its probability density function can be defined as:

ppu1, u2q �
1

2πσ1σ2

a

1� ρ12
2
exp

�

�

u1
2

σ1
2 �

u1
2

σ1
2 �

2u1u2ρ12

σ1σ2

2p1� ρ2
12q

�

(15)

Where σ1 and σ2 are respectively the standard deviations of the two zero mean random Gaussian variables

u1 and u2 and ρ12 �
covpu1,u2q

σ1σ2
the correlation coefficient. The idea of this linearization is based on the energy

dissipation of the Morison drag force which will be calculated for the exact and the linearized formulations.
The linearization coefficient must provide the same energy dissipation for each model.

Mathematically, we define the energy dissipation as the expected value   . ¡ of the drag force mechanical
power

ÝÑ

fd.ÝÑu . For the linear model, we can write:
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ÝÑ

fL �
1

2
CdρDKÝÑu � KDKÝÑu (16)

So the dissipated energy EL is calculated by:

EL � 
ÝÑ

fL.ÝÑu ¡� KDK   u2
1 � u2

2 ¡� KDK
�

σ2
1 � σ2

2

�

(17)

For the exact model, we can write:

E � 

ÝÑ

fd.ÝÑu ¡� KD  

�

u2
1 � u2

2

�

}

ÝÑu } ¡� KD  

�

u2
1 � u2

2

�

3
2
¡ (18)

Using the expected value mathematical definition:

E �

KD

2πσ1σ2

a

1� ρ12
2

¼

R2

�

u2
1 � u2

2

�

3
2 exp

�

�

u1
2

σ1
2 �

u1
2

σ1
2 �

2u1u2ρ12

σ1σ2

2p1� ρ2
12q

�

du1du2 (19)

With the polar transformation: u1 � rcospθqσ1 and u2 � rsinpθqσ2, the previous double integral can be
simplified in a single elliptic integral:

E �

3KD

2
?

2π

» 2π

0

�

pσ1cospθqq
2
� pσ2sinpθqq

2
	

3
2

a

1� ρ12sinp2θq
dθ (20)

By considering E � EL, we obtain:

K �

3

2
?

2π

» 2π

0

�

pacospθqq2 � pp1� aqsinpθqq2
	

3
2

a

1� ρ12sinp2θq
dθ

b

σ2
1 � σ2

2 (21)

Where:

a �
σ2

1

σ2
1 � σ2

2

(22)

Finally, the linearized force is given by:

ÝÑ

fL �
3KD

2
?

2π

» 2π

0

�

pacospθqq
2
� pp1� aqsinpθqq

2
	

3
2

a

1� ρ12sinp2θq
dθ

b

σ2
1 � σ2

2
ÝÑu (23)

As the result shows, the linearization coefficient is expressed as a function of two non-dimensional parameters.
Using this two-parameter model, we fulfill requirements imposed by the two problems mentioned in the
previous section:

• The parameter a represents the two-dimensional aspect of the flow (problem 1).

• The parameter ρ12 expresses the correlation relation between the two velocity components u1 and u2

and therefore the wave field characteristics: linear, orbital, ... (problem 2).

For verification, in the case of a unidirectional wave field following ÝÑe1 direction (a � 1 and ρ12 � 0), we
have:

K �

3

2
?

2π

» 2π

0

|cospθq|
3
dθ σ1 �




8

π
σ1 (24)

We obtain the Borgman linearization constant in the unidirectional case.

For a 3D wave field, with a structure containing several Morison elements, each element is discretized on
Gauss integration points. The relative velocity of each integration point is projected in the local coordinate
system of the element. Next, K and

ÝÑ

fL are calculated in the local coordinate system then expressed in the
global system coordinate and summed.

Simulation results and discussion
In order to test this linearization, the Morison drag force is calculated in irregular waves for a fixed cylinder
in time and frequency domains. Cylinder dimensions are (R � 1m x H � 3m) and Cd � 0.7. As a wave
model, a JONSWAP spectrum is used with the parameters Hs � 1.0m, Tp � 12.0s and γ � 1.0. The water
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depth is infinite. The wave time signal has been generated for 3 hours using a linear reconstruction of the
wave spectrum with a random phase for each frequency component. The power spectral density (PSD) of
each signal has been calculated in order to obtain the drag force RAOs.

To show the difference between the two linearizations (scalar and vectorial) in different configurations, the
force is calculated for the vertical and the horizontal position of the cylinder (linear and orbital wave fields)
for two headings β � 00 (head) and β � 450 (diagonal). The axis of cylinder is pOzq in the vertical case and
pOxq in the horizontal case. The wave heading is defined by the angle between the propagation direction
and the positive direction of the axis pOxq.

The figures bellow give the RAOs of the drag force components. As the results show, the frequency domain
solution seems to underestimate the drag force, due to the linearization effect. In addition, for β � 00,
the projected wave field is unidirectional so the two linearizations give the same results (figure 1 for the
horizontal and vertical case and are in agreement with the time domain solution (green plot).
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Figure 1: β � 00

However, for the diagonal heading β � 450 (figure 2), since the drag force will depend on more than one
velocity direction (pOxq and pOyq in the vertical case and pOzq and pOyq in the horizontal case), the vectorial
linearization (pink plot) is more accurate and the scalar linearization (brown plot) underestimates the drag
force especially for the horizontal case which corresponds to the circular wave filed.
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Figure 2: β � 450
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Introduction

When multiple vessels or floating bodies are in
a close proximity, the large resonant elevations
of free surface occur in the gap. Most of the
linear seakeeping programs currently used by the
industry, for example, those solving the body
interaction problem in the frequency domain,
over-predict free surface elevations between vessels
and hence the low-frequency loadings on the hull.
This can cause problems in the design of the
fenders, hawsers and loading arms and lead to
unsafe operations.

Many researchers have made contributions
to overcome this problem. Huijsmans et al.
(2001) developed a lid technique to suppress the
unrealistic values of low-frequency forces and wave
elevations. In their work, the free surface in the
gap is replaced by a flexible plate. A generalized
mode technique was used by Newman (2003) to
model the free surface. Chen (2005) proposed a
linear dissipation term to modify the free-surface
equation.

These methods however require to input the
artificial damping factors. Efforts have made to
determine the damping factors. For example, Pauw
et al. (2007) compared the experimental data and
numerical results for two side-by-side LNG carriers
in head seas. The numerical results were based on
a panel method code using a flexible damping lid
in the gap region. Various gap widths were used
in an attempt to obtain rationale for predicting
suitable damping factors. No unique value for
the damping factor was found to cover all the

measured cases. Molin et al. (2009) used a set of
massless plates in the gap between two fixed barges
and a quadratic damping force was applied to the
plates. The numerical results were compared to the
model tests of two rectangular barges in irregular
waves. A drag coefficient of 0.5 for determining
the quadratic damping force led to good agreement
with experimental data.

Since these potential-flow based methods are
inadequate to give reasonable predictions without
providing the experimental data beforehand, it is
desirable to determine the damping contribution
due to viscous flow based on CFD methods.

This paper presents the preliminary numerical
and experimental studies of wave elevations
between two bodies in close proximity with an
objective to quantify the contribution of viscosity.
Model tests were carried out to two identical
box-like bodies with round corner in waves.
Motions of the bodies and wave elevations in
the gap between the two bodies were measured.
CFD methods solving RANS equations, based
on OpenFoam and Star-CCM+, were applied to
simulate the hydrodynamic interaction of the two
bodies in head seas. A panel-free method based
seakeeping program, MAPS0, was also used for the
prediction of motions and wave elevations. The
computed motions and wave elevations by CFD
and MAPS0 were compared with experimental
data and the solutions by the potential-flow code,
WAMIT.
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Numerical Methods

A frequency-domain program, MAPS0, a sub-suite
of Motion Analysis Program Suite (MAPS), was
used to compute the motions and wave elevations
in the gap between the two bodies. MAPS is based
on the panel-free method (Qiu et al., 2006) and
includes programs for both frequency-domain and
time-domain analysis based on the potential-flow
theory. The CFD computations are based on
OpenFoam and Star-CCM+.

Experimental Tests

Model tests were carried out at the towing tank of
the Ocean Engineering Research Center (OERC)
at Memorial University to measure the motions of
two bodies and the wave elevations for a variety of
wave headings and frequencies. The tank is 60 m
long, 4.5 m wide and 3 m deep.

Two identical 1:60 box-like simplified FPSO
models, as shown in Fig. 1, were used, which
have round bilges. Each model was restrained in
the tank by two soft mooring lines which allow for
body motions in six degrees of freedom but prevent
excessive drift motions. The body motions were
measured by a Qualisys system and wave elevations
at three locations in the gap were measured by wave
probes. Note that model tests were also carried out
for a single body.

Figure 1: Two bodies in head seas

The particulars of the model-scale ships are
listed in Table 1. In this phase, model tests were
conducted in regular waves. The frequencies of

waves are from 3.92 rad/s to 7.16 rad/s, which is
corresponding to 0.51 rad/s to 0.92 rad/s in full
scale. The wave steepness was 1/30.

Table 1: Model Particulars

Model 1 Model 2

Length(m) 1.997 1.998
Breadth(m) 0.397 0.397
Depth(m) 0.301 0.300
Draught(m) 0.103 0.104

∆(kg) 76.6 76.6
KG(m) 0.131 0.124
Rxx(m) 0.135 0.125
Ryy(m) 0.535 0.502
GMT (m) 0.054 0.053

Table 2: Gaps and Locations of Wave Probes

Unit Model Scale

Wave Heading degree 180
Gap Width 1 m 0.40
Gap Width 2 m 0.45
Gap Width 3 m 0.55
Wave Probe 1 m (0,0,0)
Wave Probe 2 m (0.5,0,0)
Wave Probe 3 m (-0.5,0,0)

Numerical Results

To quantify the viscous effect on the free
surface elevation in the gap between two bodies,
computations were performed for head seas
using Star-CCM+, OpenFoam, MAPS0 and the
low-order frequency-domain program WAMIT.
The numerical results were then compared with
the experimental data. Three gaps, 0.4m, 0.45m
and 0.55m in model scale, were investigated. The
full-scale results are presented below.

Figures 2 to 4 present the comparison of
predicted wave elevations with experimental data
at wave probe 1 for the three gaps, respectively.
The predictions by MAPS0 and WAMIT, which
are both based on the potential-flow theory, agree
very well and are in good agreement with the
experimental results at low frequency band. It
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is also observed that there are less oscillations in
the predicted elevations by MAPS0 than those by
WAMIT. At the resonant frequencies, both MAPS0
and WAMIT over-predicted the wave elevations.

The predicted heave and pitch motions by
MAPS0 and WAMIT for body 1 are presented in
Figs. 5 to 8 for the two gaps (0.40m and 0.45m).
They are in good agreement with the experimental
data. The predicted heaves by MAPS0 are slight
better than those by WAMIT.

Figure 9 presents the effect of gap width on the
predicted wave elevations. It can be seen that
the resonant wave elevation decreases with the gap
width increases.
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Figure 2: Wave elevation at location 1, gap=0.40m
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Figure 3: Wave elevation at location 1, gap=0.45m
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Figure 4: Wave elevation at location 1, gap=0.55m
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Figure 5: Heave of body 1, gap=0.40m
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Figure 6: Pitch of body 1, gap=0.40m
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Figure 7: Heave of body 1, gap=0.45m
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Figure 8: Pitch of body 1, gap=0.45m
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Figure 9: Wave elevations at location 1 for three
gaps

Concluding Remarks

Experimental and numerical studies were carried
out to investigate the hydrodynamic interaction of
two side-by-side bodies in waves. Potential-flow
programs based on the the panel-free method and
the panel method and the CFD methods were used
to compute motions of bodies and wave elevations
in the gap between two bodies. The computational
results were compared with experimental data. It is
anticipated that the CFD results will be presented
and the viscous effect will be discussed at the
Workshop.
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Long-period waves and current variations in a port due to a passing 

vessel 
 

Jo Pinkster, PMH bv  and Arne van der Hout , Deltares 

 

Highlights 

Comparisons are made between the results of measurements of ship-induced long waves and current variations in a port and 

results of computations. The computations are based on a combination of potential flow calculations using the double-body 

assumption to determine  the initial forcing due to the sailing ship and linear 3-d diffraction computations  are used to 

determine the response of the port structure and a moored vessel to the forcing.  In the process FFT methods are used to 

transform time-domain forcing to frequency-domain input for diffraction computations .RAOs generated by  the 3d-

diffraction are transformed to transient time-domain results which are directly comparable with measured data. Comparisons 

of  wave elevations and currents are given for three  port  configurations.    

 

Introduction 

In this contribution results of model tests and computations on ship-induced long waves and current velocities will be 

presented. The model test program was part of the Joint Industry Project (JIP) ROPES, acronym for Research On Passing 

Effects of Ships. The objective of the ROPES JIP  was to increase insight in the factors influencing forces on ships moored 

in ports caused by passing vessels. A review of this project may be found in Ref. (1). The objective of  a part of the scale 

model tests carried out  by Deltares was to investigate and to better understand the hydrodynamic forces on a moored ship 

due to a passing ship, especially related to  the influence of (complex) harbour geometries. In complex harbour geometries, a 

large passing vessel will generate long waves consisting of so-called 'draw-down'  which travel with the passing vessel and 

transient long period oscillatory waves in the form of standing waves or seiches. Such effects may also be of influence on 

the forces on moored vessels.The objective of the model tests carried out by Deltares was to produce a high-quality dataset, 

which included the effects of currents and the influence of harbour geometries on mooring forces , transient long waves and 

current effects.  

The following sections describe  briefly the model test set-up and  the measurement set-up with respect to wave elevations 

and currents induced by a passing vessel. The results of the measurements are compared with the results of computations 

based on potential flow including free surface effects. The forces on the moored vessel are not treated. 

 

 Set-up of the model tests 

The model tests  were carried out in the Atlantic Basin at Deltares. An overview of these tests excluding comparisons with 

computed results is given in Ref. (2). The basin has a total length of  74.7 m which included , among others ,a dissipative 

beach at both ends.  The effective length of the test section is 43.9 m with a width of 8.7 m.  For the model tests , the basin 

was fitted with a towing carriage to which the a model of a Post-Panamax container vessel was connected. The vessel was 

captive in the surge, sway, roll and yaw directions while it was able to squat and trim freely. The model scale amounted  to 

1: 100.Several lay-outs of a straight channel with a width of 270 m with different basins to one side of the channel  were 

modeled. The water depth in the channel and the basins  amounted to 18 m full scale. 

 

The vessels 

The main dimensions of the passing Post-Panamax and the moored Panamax vessels are given below: 

  

 

 

 

 

 

 

Measurement equipment 

A total of five  capacitance type Wave Height Measurement (WHM) gauges were used to measure surface elevation at 

different positions in the basin.  The measurement positions of the WHM gauges for each layout are indicated in the figures 

of the layouts. The WHM01 gauge was placed at the reference position x, y = (0 m, 12 m) for all tests. 

            Units    Post-Panamax    Panamax 

   Lpp       m     331.5 2  255.0 

   Beam     m 4    42.9 3    32.26 

   Draft     m 1    14.5 1    12.0 

   Displacement     m
3 

   127037 5   58660 
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The other WHM gauges were placed at strategic positions throughout the basin. In general, one gauge was placed in ahead , 

one aft, and one next to the mid ship position of the moored ship. In the test with a side basin, also two WHM gauges were 

placed in the corners of the basin to detect standing waves, since this is where the largest standing wave amplitudes are 

expected. In the tests of  Layout 1 (straight channel), one wave gauge (WHM05) was placed outside the measurement 

channel on the other side of the channel wall. This was done to check the amount of wave penetration underneath or between 

the concrete building blocks of the channel wall (unwanted leakage).  

The horizontal velocity components of the water was measured using five Electro Magnetic Velocity probes (EMS).  A 

sample rate of 30 Hz was used. During the measurements, the signal was filtered by the data-acquisition software using a 

moving average filter with a window of 0.1 s (model scale). The measurement positions of the EMS probes for each  layout 

are specified in the accompanying figures. EMS probes measure the flow velocity at a certain vertical position in the water 

column. In almost all cases the probes measured the flow velocity at a depth of 7 m under the water surface, which is 

approximately at half draught of the passing vessel. Only in Layout 1, EMS04 was positioned to measure at a water depth of 

z=-12 m, to check the variation of flow velocity over the draught of the passing vessel. 

 

Test program 

In this contribution some results of wave elevations and current velocities is shown for three  port layouts. For all three cases 

the passing speed of the Post-Panamax vessel corresponded with 10.4 kn and the centerline of the vessel was 107 m from the 

bank nearest the side-basin. In the model tests  the passing vessel started from X= +3000 m and slowly accelerated up to the 

required speed in order to minimize additional transient waves due to the start-up. Measurements were carried out with the 

vessel at a constant speed. At the end of the run the vessel was decelerated and stopped at about X= -1000m. The  vessel was 

at 10.4 kn for the  part of the channel shown in the layouts.  In the computations a similar procedure was followed regarding 

the speed of the vessel.  

  

Computations 

The computational procedure was similar to that described in Ref. (3). The computations are based on potential flow which 

are solved using zero-order panel methods. The procedure is carried out in four phases : firstly the time-dependent flow due 

to the passing vessel is solved assuming double-body flow i.e. no free-surface effects. At each time-step the strengths of the 

sources on the passing vesssel are solved based on the near-field assumption i.e. both vessels and the fairway are modeled 

and included in the solution process. Secondly , the thus derived time-dependent source strengths on the passing vessel are 

used to compute the time-dependent velocity and pressure disturbances at the fairway boundaries and the moored vessel i.e. 

'undisturbed' velocity components and pressure due only to the sources on the passing vessel. These time-dependent 

disturbances are transformed to frequency-domain vectors (FFT) which form the input to the third phase which consists of 

solving a zero-speed frequency-domain 3-d diffraction problem involving the fairway and the moored vessel but which 

excludes the passing vessel. Based on the frequency-domain solutions, RAOs of fluid velocity components , wave elevations 

and forces on the moored vessel are computed. Finally, the RAOs are transformed to transient time-domain results using 

Inverse FFT methods.  These records are directly comparable with the measured time-records of velocity components and 

wave elevation.   

In a previous IWWWFB workshop Ref. (4) some preliminary comparisons of results of measurements and computations of 

wave elevations were shown for a simple rectangular barge entering a restriction in a straight canal. In the contribution we 

are presenting new data  for  more realistic hull forms and port geometries and a more detailed flow analyses. 

 

Results 
In fig. 1 through fig. 6 the layout and comparisons of computed and measured results for three selected cases are shown. All 

data are for full scale. Computed results are given in red. 

The results for Layout 1 show a lack of oscillatory waves and current variations compared to the results for Layout 2 which 

clearly shows strong seiching in the side basin. Layout 7 shows slightly more seiche effects than  Layout 1 but clearly 

significantly less than Layout 2.  Small, short secondary waves  are discernable  in the measured wave records only.  
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                                    Figure 1  Laout 1 ;  Straight channel. Width 270 m, waterdepth 18.0 m 

                         

                       Figure 2  Results for Layout 1. Wave elevations left, X- and Y- Current velocity components right. 

              

                               Figure 3  Layout  2 ; Narrow basin at right-angle to channel axis. Water depth in basin 18 m. 
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                    Figure 4  Results for Layout 2. Wave elevations left, X- and Y-  Current velocity components right. 

            

                                   Figure 5  Layout 7 ; Basin at an angle to the channel axis. Water depth in basin 18 m. 

  

                          Figure 6  Result for Layout 7. Wave elevations left,  X- and Y- Current velocity components right. 
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1 Introduction

In this paper we derive new forms of the mild-
slope equation (MSE) for water waves in a
weakly compressible fluid on a slowly varying
bathymetry, with surface and bottom distur-
bances. The MSE is a powerful tool to model the
refraction-diffraction dynamics of water waves
propagating on a variable bathymetry [1]. Tra-
ditionally, mild-slope models are derived by as-
suming that the wave steepness is small, the fluid
is inviscid and incompressible and the motion
is irrotational. Furthermore, no disturbances
are normally considered both on the free surface
and at the bottom of the fluid domain [2]. In
this paper we shall find new expressions of the
MSE by relaxing the incompressibility hypothe-
sis and considering both surface and bottom dis-
turbances. We shall name the set of new formu-
lae as the extended acoustic-gravity mild-slope
equations (EAG-MSE). Such a system of equa-
tions can be implemented in numerical models
for the early detection of coastal flooding based
on the hydro-acoustic precursors of surface grav-
ity waves (see [3]–[5]).

∗New address: Department of Mathematical Sciences,
Loughborough University, Loughborough, Leics, LE11
3TU, UK.

2 Mathematical model

Let us consider the motion of a slightly compress-
ible fluid on a variable bathymetry with surface
and bottom disturbances. The wave field is de-
scribed by the wave equation

∇2Φ + Φzz =
1

c2
Φtt (1)

in the fluid domain, together with the kinematic-
dynamic boundary condition on the free surface
(see [5])

Φtt + gΦz = −P (x, y, t)

ρ0
, z = 0, (2)

and the no-flux condition at the bottom

Φz +∇h · ∇Φ = −ht, z = −h(x, y, t), (3)

as in [1]. Here, Φ(x, y, z, t) is the velocity po-
tential, ∇ is the horizontal gradient, P (x, y, t)
is a prescribed surface pressure disturbance,
h(x, y, t) denotes the seafloor, g is the accelera-
tion due to gravity, ρ0 is the density of the undis-
turbed fluid, c is the (assumed constant) speed
of sound in water. A reference system O(x, y, z)
is set such that (x, y) lie on the horizontal plane
and z is the vertical coordinate originating from
the undisturbed water plane, positive upwards;
t is time. Physically, P represents the action of
an atmospheric pressure front, which is respon-
sible for the generation of storm surges, while
h(x, y, t) is a seafloor deformation which gener-
ates tsunamis [1]. Initially we shall retain both

1
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disturbances and derive a generalised form of the
EAG-MSE. Then we shall find particularised ex-
pressions of our novel equation for each distur-
bance. Following [4], let us expand the velocity
potential in a Galerkin series

Φ(x, y, z, t) =
∞∑

n=0

ψn(x, y, t) fn(z, h(x, y, t)),

(4)
where the ψn(x, y, t) are unknown functions and
the fn(z, h) are the solutions of the homogeneous
boundary-value problem with the local and in-
stantaneous water depth h(x, y, t) (see [1]):

fn(z, h(x, y, t)) =
coshβn(z + h)

coshβnh
. (5)

In the latter, the βn = βn(h(x, y, t)) solve

β0 : ω2 = gβ0 tanhβ0h (6)

βn = iβ̄n : ω2 = −gβ̄n tan β̄nh, (7)

where the mathematical problem is formulated
for a generic single frequency ω of the forcing
spectrum [4]. The solution for the complete spec-
trum is easily obtained by simple Fourier super-
imposition of the single spectral components ([4],
[1]). Physically, n = 0 represents the propagat-
ing gravity mode, while n > 0 represents propa-
gating and evanescent hydro-acoustic modes [3].
Let us now introduce the inner product

〈f(x, y, z, t), g(x, y, z, t)〉

=

∫ 0

−h
f(x, y, z, t) g(x, y, z, t) dz, (8)

so that 〈fn, fm〉=0 if n 6= m. We shall also ex-
pand the surface and bottom disturbances ac-
cordingly, i.e.

P (x, y, t) =
∞∑

n=0

Pn(x, y, t) fn(x, y, z, t), (9)

h(x, y, t) =
∞∑

n=0

hn(x, y, t) fn(x, y, z, t) (10)

respectively, where

Pn(x, y, t) =
〈P, fn〉
〈fn, fn〉

(11)

and

hn(x, y, t) =
〈h, fn〉
〈fn, fn〉

. (12)

Following [2] (Section 7.2.3.3), first calculate

〈
fm, ∇2Φ + Φzz −

1

c2
Φtt

〉
= 0, (13)

from Eq.(1), with m = 0, 1, . . . Then substitute
the expansion (4) into (13) to get

∞∑

n=0

[
∇2ψn 〈fm, fn〉+ 2∇ψn · 〈fm,∇fn〉

+ψn

〈
fm,∇2fn

〉
+ ψn 〈fm, fnzz〉

− 1

c2
(ψntt 〈fm, fn〉+ 2ψnt 〈fm, fnt〉

+ ψn 〈fm, fntt〉)] = 0, (14)

for the governing equation. Similarly, substitut-
ing (4) into (2) and (3), one gets

∞∑

n=0

ψnfmfnz = −1

g

∞∑

n=0

(ψnttfmfn

+2ψntfmfnt + ψnfmfntt)

− 1

ρ0g

∞∑

n=0

(Pntfmfn + Pnfmfnt) , z = 0

(15)

and

∞∑

n=0

ψnfmfnz = −
∞∑

n=0

(ψnfm∇fn · ∇h

+ ∇ψn · ∇h fmfn + hntfmfn+

+ hnfmfnt) , z = −h (16)

for the boundary conditions, respectively. Fur-
ther application of the Green integral formula

〈fm, fnzz〉 = −〈fmz , fnz〉+ [fmfnz ]z=0
z=−h (17)

and usage of (15)–(16), together with the prop-
erties

fnt = fnh
ht, fntt = fnhh

(ht)
2 + fnh

htt

and

(fnh
)z=0 = (fnhh

)z=0 = 0,

transforms (14) into the sought system of expres-
sions:

+∞∑

n=0

[
amn∇2ψn + bnm · ∇ψn

2
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+

(
cmn −

ω2

g

)
ψn −

1

g
ψntt

]

=
1

c2

∞∑

n=0

(amn ψntt + dmn ψnt

+ emn ψn) +
1

ρ0g

+∞∑

n=0

Pnt

−
+∞∑

n=0

[gmn hnt + lmn hn] , m ∈ N, (18)

after lengthy algebraic simplifications. In Eq.
(18),

amn = 〈fm, fn〉 ,
bmn = 2 〈fm,∇fn〉+ (fm fn)z=−h ∇h,
cmn = −〈fmz , fnz〉+

〈
fm,∇2fn

〉

+ (fm∇fn)z=−h · ∇h+
ω2

g
,

dmn = 2 〈fm, fnh
〉 ht,

emn = 〈fm, fnhh
〉h2t + 〈fm, fnh

〉htt,
gmn = (fm fn)z=−h
lmn = (fm fnh

)z=−h ht,

All the above terms depend on x, y, t via the fn
and h (see Eq.5). Expression (18) is the novel
EAG-MSE for waves in a weakly compressible
fluid generated by surface pressure disturbances
and seafloor deformations. It represents both
gravity (n = 0) and hydro-acoustic (n > 0)
waves of given frequency ω [4, 5]. Note that in
the limit c → ∞, assuming P = ht = 0 and
steady-state harmonic oscillations of frequency
ω, (18) fully corresponds to Massel’s MSE (see
equation 16 in [2]).

3 The adiabatic approximation

The adiabatic hypothesis is a frequent approxi-
mation undertaken in the modelling of acoustic-
gravity waves. Within such an approximation,
one neglects the cross-coupling terms in the gov-
erning equations, not allowing the normal modes
to interact among themselves. This framework
allows for much quicker computations, usually
without significant loss of accuracy [6]. Assum-
ing that each mode propagates without interact-
ing with the others, the EAG-MSE (18) simpli-

fies into

ann∇2ψn + bnn · ∇ψn +
(
cnn − ω2/g

)
ψn

−1

g
ψntt =

1

c2
(annψntt + dnnψnt + ennψn)

+
1

ρ0g
Pnt − gnnhnt − lnnhn, n = 0, 1, . . . (19)

which we name the adiabatic acoustic-gravity
mild-slope equation (AAG-MSE).

3.1 AAG-MSE for tsunamis (Sam-
marco et al.’s MSEWC)

Let us consider the case P = 0, h = h(x, y, t).
For a geophysical flow over a large area with a
slowly varying bottom, such as a tsunami, the
dependence of fn on h can be safely neglected,
so that fn = fn(z) (see [4]) and

dnn = enn = lnn = 0. (20)

Furthermore, for a slowly varying depth, the
higher-order terms

∇2fn = O
(
∇2h

)
, ∇fn · ∇h = O

(
|∇h|2

)
,

can be neglected too, so that

cnn = β2nann. (21)

Finally note that

ann∇2ψn = ∇ · (ann∇ψn)−∇ann · ∇φn, (22)

where

∇ann = annh
∇h =

∂

∂h

∫ 0

−h
f2n dz∇h = bnn

(23)
as an application of the Leibniz integral rule.
Substituting (20)–(23) into (19), the latter yields
finally

ψntt

(
Cn

c2
+

1

g

)
−∇ · (Cn∇ψn)

+

(
ω2

g
− β2nCn

)
ψn = Dn ht. (24)

In Eq. (24),

Cn = ann =
2βnh+ sinh(2βnh)

4βn cosh2(βnh)
, (25)

Dn =
〈gnn, fn〉
〈fn, fn〉

=
4 tanh(βnh)

2βnh+ sinh(2βnh)
. (26)

3
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Expression (24) is the MSE for weakly com-
pressible fluids (MSEWC) found by Sammarco
et al. [4]. The latter allows to model the hydro-
acoustic waves travelling fast ahead of an incom-
ing tsunami generated by a seafloor movement.
Such hydro-acoustic waves leave a distinctive sig-
nature on the bottom pressure that can be used
for the early detection of tsunamis [3, 4].

3.2 AAG-MSE for storm surges

We shall now consider the case of a fixed
bathymetry h = h(x, y) and a surface pressure
distribution P (x, t). In such a case, dnn = enn =
lnn = 0. Therefore, using again (23), expression
(19) simplifies to

ψntt

(
Cn

c2
+

1

g

)
−∇ · (Cn∇ψn)

+

(
ω2

g
− β2nCn

)
ψn = −Bn

ρ0g
Pt, (27)

where

Bn =
2 sinh(2βnh)

2βnh+ sinh(2βnh)
. (28)

Expression (27) allows to model the hydro-
acoustic precursors of storm waves over a vari-
able 3D bathymetry.

4 Numerical computations

Numerical computations of the MSEWC have al-
ready been performed in [4], where equation (24)
has been solved for constant and mild-slope do-
main configurations. Numerical analysis of the
AAG-MSE for storm waves (27) is currently be-
ing performed for a travelling pressure perturba-
tion. Preliminary results will be presented at the
workshop.

The numerical model solves the partial differ-
ential equation by means of the Finite Element
Method. The three dimensional domain is
discretised into tetrahedral elements, whose
minimum element size is set to be at least
1/10 of the simulated wave length, in order to
correctly reproduce the wave field. Neumann
type boundary conditions are applied at the
boundaries of the domain. Since the mathemat-
ical problem is hyperbolic, it is solved by means
of a time-marching numerical scheme. For the

efficiency of the time-stepping algorithm, it is
important to assemble the time independent
matrices only once. We use the generalised-α
method, which is a one-step implicit method
for solving the transient problem. Frequency
bands of defined width are selected to discretise
the forcing spectrum and to solve a set of
equations, as (27), each one calculated using the
carrier frequency of the selected band. Then a
broad frequency spectrum can be simulated by
superimposing the results. The numerical solu-
tion is obtained using the software COMSOL
Multiphysics.

The work of E.R. is funded by the AXA Re-
search Fund. F.D. is supported by the ERC-
2011-AdG 290562-MULTIWAVE.
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Highlights

• Simulations obtained for water waves over rough seabed and waves in rough in vacuo plate.

• Attenuation rates of effective and individual wave fields extracted, compared and found to differ.

1 Introduction

Ocean surface waves attenuate with distance trav-
elled into the sea-ice covered ocean (Meylan et
al., 2014). This is reminiscent of the wave lo-
calisation phenomenon, which occurs in many
branches of wave science. For an incident wave
train propagating into a rough (randomly disor-
dered) medium, wave localisation refers to expo-
nential attenuation (on average) of the wave train
in the rough medium. (Alternative theories have
also been proposed to explain wave attenuation in
the ice-covered ocean, e.g. the viscous ice model
of Keller, 1998.)

Wave propagation in the ice-covered ocean
is conventionally modelled using linear potential-
flow theory for the water and thin-plate theory for
the ice cover. Bennetts & Peter (2012) conducted
a preliminary investigation of wave localisation in
the ice-covered ocean due to ice roughness. They
modelled the roughness as variations in stiffness
and mass of the ice, which are known up to a
characteristic length and a root-mean-square am-
plitude. They extended the multiple-scale method
of Mei & Hancock (2003) and Mei et al. (2005) for
free-surface waves over a rough seabed to derive a
semi-analytic expression for the attenuation rate.

The multiple-scale method is based on the ef-
fective wave field, i.e. the mean wave field with re-
spect to realisations of the random medium. Ben-
netts et al. (2015) showed individual wave fields
attenuate far slower than the effective wave field
for the rough seabed problem, using large ensem-
bles of numerical solutions for randomly generated
realisations of the bed profile.

Here, we extend the study of Bennetts et al.
(2015) to problems involving thin plates, with the
aim of establishing if effective media theory is

valid to study wave propagation in the ice-covered
ocean. We begin by summarising the methods
and results of Bennetts et al. (2015) for a rough
seabed in intermediate depth. Then, we apply the
method to a rough thin plate in vacuo. In both
cases, we compare the mean attenuation rates of
individual wave fields to the attenuation rates of
corresponding effective wave fields.

2 Free-surface/rough-bed problem

Let spatial locations in a long transect of the ocean
be defined by the Cartesian coordinate system
(x, z). Horizontal locations are defined by the co-
ordinate x. Vertical locations are defined by the
coordinate z. The vertical coordinate points up-
wards and has its origin set to coincide with the
equilibrium position of the ocean surface.

Consider a monochromatic wave propagating
in the positive x-direction. The wave amplitude
is assumed to be sufficiently small with respect to
the wavelength, λ, that linear theory is applica-
ble. In open water, the wavenumber, k = 2π/λ, is
related to the angular frequency, ω, via the disper-
sion relation k tanh(kh) = K, where K = ω2/g,
h denotes the fluid depth and g ≈ 9.81 m s−2 de-
notes acceleration due to gravity.

Consider a seabed that fluctuates about z =
−h̄, where h̄ is an intermediate depth, i.e. kh̄ =
O(1). The fluctuations have a known character-
istic length, l, and root-mean-square amplitude,
ε, which is also referred to as the roughness am-
plitude. We assume ε � 1 for consistency with
the multiple-scale method although this is not
required for a numerical scheme. The function
z = −h(x), where h(x) = h̄− εp(x) and p = O(1),
is used to denote the location of the bed.

Under the usual assumptions of linear, time-
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harmonic wave theory, the velocity field of water
particles in the ocean is defined as the gradient
of Re{(g/iω)φ(x, z)e−iωt}. The (complex-valued)
velocity potential, φ, satisfies Laplace’s equation
in the undisturbed fluid domain, i.e.

∂2
xφ+ ∂2

zφ = 0 (−h < z < 0). (1a)

An impermeability condition is applied on the
seabed, i.e.

∂zφ+ h′(∂xφ) = 0 on z = −h(x). (1b)

The velocity potential is coupled to the wave el-
evation, denoted z = Re{η(x)e−iωt}, via free-
surface conditions applied at the equilibrium
ocean surface. The free-surface conditions are

φ = η and ∂zφ = Kη on z = 0, (1c)

which are combined into the single condition
∂zφ = Kφ (z = 0) for the velocity potential.

Consider the problem in which the roughness
extends over a long, finite interval x ∈ (0, L).
The bed is otherwise flat and extends to infin-
ity in both positive and negative horizontal di-
rections. A unit-amplitude incident wave is pre-
scribed at x → −∞. The incident wave is de-
fined by the velocity potential φ = eikxw(z), where
w(z) = cosh{k(z+h)}/ cosh(kh). We seek the re-
sulting wave elevation in the interval containing
the rough bed.

Let the rough bed profile, h(x) (0 < x < L),
be approximated by a piece-wise constant func-
tion on M sub-intervals — the so-called step ap-
proximation — and let (−∞, 0) and (L,∞) be the
0th and (M + 1)th sub-intervals, respectively. We
denote the value of the function in the mth sub-
interval as hm, and set it to be equal to the value
of the continuous bed profile at the mid-point.

In the mth sub-interval, we have

φ(x, z) =
(
ameikmx + bme−ikmx

)
wm(z), (2)

where km is the wavenumber for depth hm and wm
is the corresponding vertical mode. The quanti-
ties am and bm are the wave amplitudes. Incident
wave forcing from x→ −∞ only is set via a0 = 1
and bM+1 = 0.

Wave fields in adjacent sub-intervals are re-
lated to one another at the interface between
the sub-intervals via continuity conditions, which
are enforced in a weak sense. An iterative al-
gorithm is used to calculate the amplitudes am
(m = 1, . . . ,M + 1) and bm (m = 0, . . . ,M). Ben-
netts and Squire (2009) give full details of the al-
gorithm. The wave elevation, η, is subsequently
recovered via the first component of equation (1c).

Wave elevations are calculated for a large en-
semble of randomly generated realisations of the
bed profile. The bed profiles share the same am-
plitude, ε, and characteristic length, l. The rela-
tionship between the ensemble of bed profiles is
expressed via the autocorrelation condition

〈p(x)p(x− ξ)〉 = q(|ξ|), (3)

where 〈·〉 denotes the ensemble average of the in-
cluded quantity with respect to realisations. We
prescribe the Gaussian autocorrelation function
q(ξ) = e−ξ

2/l2 , noting Mei & Hancock (2003)
showed an exponential autocorrelation function
gives almost identical results. The characteristic
length, l, is hence referred to as the correlation
length from here on.

Two measures of the exponential attenuation
rate are obtained from the ensemble of wave el-
evations. First, an attenuation rate, Q

(rs)
eff , is ex-

tracted from the effective wave elevation, 〈η〉. The
attenuation rate, in this case, is defined via

|〈η〉|∝∼ e−Q
(rs)
eff x (0 < x < L). (4)

It is calculated using a least-squares minimisation

routine. Second, an attenuation rate, Q
(rs)
ind , is cal-

culated as the ensemble average of attenuation
rates of individual wave elevations. The atten-
uation rate is defined as Q

(rs)
ind = 〈Qi〉, where Qi is

the attenuation rate extracted from the individual
wave elevation η = ηi, i.e.

|ηi| ∝∼ e−Qix (0 < x < L). (5)

We generate individual realisations of p using
a harmonic random process of the form

p(x) =

√
2

N

N∑

n=1

cos (fnx+ gn) (N � 1). (6)

The frequencies fn and phases gn (n = 1, . . . , N)
are independently chosen and identically dis-
tributed random variables. The standard devi-
ation of the bed profile, with respect to realisa-
tions, at all spatial locations x is normalised to
unity. We prescribe probability density functions
for frequencies fn and phases gn (n = 1, . . . , N) to
satisfy the Gaussian autocorrelation condition (3).
The phases are selected from a uniform distribu-
tion over the interval [0, 2π). The frequencies are
selected from a Gaussian distribution with zero
mean and standard deviation equal to

√
2/l.

Fig. 1 shows example individual wave eleva-
tions and corresponding effective wave elevations,
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Fig. 2: Attenuation of individual (×) and effective (◦) wave elevations, for k̄ε = 10−2 (left), 10−1 (middle) and

2× 10−1 (right). Multiple-scale approximation is shown for comparison (—).
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Fig. 1: Example individual wave elevations (grey)
and corresponding effective wave elevations (black), for
k̄ε = 10−2 and k̄l = 0.9 (left) and 5 (right).

for a non-dimensional roughness amplitude k̄ε =
10−2, and correlation lengths k̄l = 0.9 and 5. The
wavenumber k̄ corresponds to the mean depth h̄,
and the intermediate water depth k̄h̄ = 1 is set.

The smaller correlation length is chosen to
produce visible (although weak) attenuation of
the individual wave elevation. The corresponding
effective wave elevation attenuates slightly more
rapidly than the individual wave elevation.

The largest correlation length is chosen to pro-
duce maximal attenuation of the effective wave
elevation. The corresponding individual elevation
does not attenuate (on the scale shown). Atten-
uation of the effective elevation is, therefore, not
related to the individual elevations.

Fig. 2 shows attenuation rates predicted by the
numerical simulations, scaled by (k̄ε)2, as func-
tions of non-dimensional correlation length, for
non-dimensional roughness amplitudes k̄ε = 10−2,
10−1 and 2 × 10−1. The multiple-scale approxi-
mation (Bennetts et al., 2015) is also shown for
comparison.

Attenuation rates of the individual wave ele-
vations have qualitative and quantitative proper-
ties markedly different from those of the effective
wave elevations. The qualitative behaviour of the
attenuation rate of individual wave elevations is
intuitive. The attenuation rate is approximately
zero (on the linear scale shown) for the small-
est non-dimensional correlation length considered,
k̄l = 0.1. In this regime the random bed fluctua-
tions are too rapid to be seen by the waves (ho-

mogenisation limit). The attenuation rate is also
approximately zero for correlation lengths greater
than two. The roughness in this regime is too
mild to modulate the waves. The attenuation rate
is only non-zero for correlation lengths between
these two regimes, where the roughness is long
enough to be seen by the waves and short enough
to modulate the waves.

Attenuation of the effective wave elevation is
therefore not indicative of attenuation of individ-
ual wave elevations for the regime studied. Al-
though the rough seabed forces a random compo-
nent of the individual wave elevations, the indi-
vidual wave elevations do not attenuate. We de-
duce that the dominant source of attenuation of
the effective wave elevation is wave cancellation,
i.e. decoherence.

3 In vacuo plate problem

Next, we consider an infinitely long rough thin
plate in vacuo. The problem is one-dimensional
in the horizontal coordinate x. The spatial part
u(x) of the plate deflection Re{u(x)e−iωt} satisfies
the thin plate equation

β∂4
xu− γω2u = 0 (−∞ < x <∞), (7)

where β is the constant plate stiffness and γ(x) is
its varying mass.

With the same step approximation as in the
rough-bed problem, the deflection in the mth sub-
interval can be expressed as

u(x) = a(0)
m eiκmx + a(1)

m e−κmx

+ b(0)
m e−iκmx + b(1)

m eκmx, (8)

where the wavenumber κm is κ(x) = (ω2γ(x)/β)
1
4 ,

evaluated at the midpoint of the mth sub-interval.

The wave amplitudes a
(0)
m and b

(0)
m correspond

to right- and left-travelling waves, respectively,

whereas a
(1)
m and b

(1)
m correspond to the evanescent

waves, which decay to the right and left, respec-
tively.
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Fig. 4: As in Fig. 2 but for in vacuo plate problem.
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Fig. 3: As in Fig. 1 but for in vacuo plate problem.

The wavenumber is written as κ(x) = κ̄ −
εp(x), where κ̄ is its mean. The fluctuation p is
as defined in Section 2.

As for the rough-bed problem, the extent of
the plate roughness is restricted to the long finite
interval x ∈ (0, L). Outside of this interval, the
wavenumber is constant. A unit amplitude wave
is incident from x→ −∞.

Wave fields in adjacent sub-intervals are cou-
pled via continuity conditions of displacement,
displacement velocity, bending moment and shear
stress. An extended version of the iterative algo-
rithm is used to calculate the step approximation
for a given realisation of the varying wavenum-

ber, i.e. to calculate the amplitudes a
(0)
m , a

(1)
m

(m = 1, . . . ,M + 1) and b
(0)
m , b

(1)
m (m = 0, . . . ,M).

Again, solutions are calculated for large en-
sembles of different realisations of the varying
wavenumber, which share a common correlation
length and roughness amplitude. Then, attenua-

tion rates Q
(rs)
eff and Q

(rs)
ind , defined in analogy to

the rough bed problem, are extracted.
Figures 3 and 4 show the results for the in

vacuo plate, in analogy to figures 1 and 2 for the
rough bed, respectively. As can be seen, the be-
haviour is very similar and the analogous conclu-
sions are drawn.

4 Summary and discussion

Numerical results were used to show that, for
small-amplitude roughness, individual wave eleva-
tions attenuate at a far slower rate than the effec-
tive wave elevation for ocean waves travelling over
a rough seabed in intermediate depth and also for

waves in a thin plate in vacuo. In particular, in
most cases attenuation rates of individual wave el-
evations are too small for wave localisation to be
realised.

It was found that the effective wave elevation
attenuates due to wave cancellation in the averag-
ing process. The attenuated wave energy is trans-
ferred to the random components of the individual
wave fields. Use of the effective wave elevation,
therefore, results in misleading predictions of at-
tenuation, and, hence, localisation.
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Inertia forces on conductor arrays in a jacket model in regular waves 
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 A wave phase-based force decomposition allows inertia and drag forces to be separated, we focus here on the 

inertia force on conductor arrays (closely spaced vertical cylinders). 

 The measured inertia force coefficient of the 1
st
 harmonic force component is very close to 2 for waves both with 

and without current. For waves without current, the coefficient of the 2
nd

 harmonic force is within 10% of 5/4, the 

corresponding term in the FNV model. For waves with current, the coefficient of the 2
nd

 harmonic force increases 

noticeably as the current increases.  

 The effect of conductor spacing is investigated numerically. For the jacket end-on, even when the closest 

conductors touch, the change in effective 𝐶𝑀 ~ –5%. In contrast for broadside where the spacing is effectively 

closer, the change is ~ +45%.  

1. Introduction 

The hydrodynamic loading on space-frame offshore structures has been re-visited recently by Taylor et al. (2013) and 

Santo et al. (2014) because of the growing interest in the oil industry in the re-assessment of ageing offshore 

infrastructure. For space-frame structures, the Morison equation has been used universally for design; this describes 

the total hydrodynamic force as a sum of drag and inertia forces (Morison et al. 1950). Typically the most extreme 

fluid-loading regime is dominated by drag; hence the study of Taylor et al. (2013) was focused on the behaviour of the 

drag term. For regular waves with in-line current, the drag term has been shown to be overestimated by the Morison 

equation because of the occurrence of additional blockage which further reduces the mean flow on the structure. This 

additional flow reduction is in addition to the standard industry practice of including a simple current blockage factor 

as documented in API (American Petroleum Institute 2000).  

Here we report observations on what we assume are the linear and nonlinear potential flow (inertia) forces in recent 

experiments on a jacket model. We compare the force coefficients for the first three frequency harmonics of the 

measured force (those components out of phase with the wave crests) with the FNV-force equation from Faltinsen et 

al. (1995), see also Malenica & Molin (1995), for the total horizontal load on vertical cylinders. This allows us to 

investigate the contribution of the linear and non-linear components of the total inertia force. Previous experimental 

studies have been carried out by Chaplin et al. (1997) and others to look at the force on a single or a few vertical 

cylinders. Here, we also look at the force on arrays of cylinders representing conductors, examining the interaction 

effects on the linear inertia term on arrays of cylinders for different wave directions.  

2. Experimental set up & data analysis 

A series of experiments were conducted in the towing tank in the Kelvin Hydrodynamics Laboratory of Strathclyde 

University, Glasgow, as an extension of previous work to verify the improved fluid loading recipe on a scaled jacket 

model, as well as to formulate an appropriate current blockage recipe for irregular waves. A 1:80 jacket model was 

constructed from stainless steel (figure 1 shows the model); this resembles a typical second generation North Sea 

jacket 4-leg structure. The jacket was hung below the carriage, such that the still-water submerged height of the jacket 

was 1.45 m. The carriage was moved at constant speed along the tank to simulate uniform current, and the model was 

exposed to regular waves of various wave heights with a fixed wave period of 1.4 sec on a water depth of 2.1 m. The 

jacket was mounted in such a way that the total horizontal reaction due to the hydrodynamic load was measured 

directly by a force transducer. A wave gauge was mounted on the carriage between the jacket model and the side of 

the tank to provide phase information of the undisturbed incoming waves. A combination of 5 different heights of 

regular wave and 3 towing speeds (current) were tested. 

The jacket model is tapered when viewed end-on and rectangular broadside (see figure 1 for the plan view). Also 

shown are the conductor support frames and the arrangement of the conductor arrays (vertical closely spaced uniform 

cylinders). The conductor support frames, made of square hollow members instead of cylindrical members, were 

supported on the horizontal bracings at end-on instead of extending from the jacket legs (as commonly found in actual 

offshore jackets) to ease the fabrication process. The conductors in the jacket model were designed to be removed 
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easily from the carriage so a combination of cases with and without conductors for the same wave loading direction is 

possible. For hydrodynamic loading in the broadside direction, there are rows of four conductor tubes side-by-side 

orthogonal to the flow direction. In contrast, for end-on direction, there are rows of only two conductor tubes. 

Interaction effects are expected in the inertia forces of broadside and end-on, both with conductors. In total, three 

configurations of the jacket model were tested: broadside with conductors, end-on with conductors, and end-on 

without conductors. No cases of broadside without conductors were tested. 

 

 

 

 

 

 

 

 

 

Figure 1: (Left) 3D view of the jacket model and (Right) plan view of the model showing the arrangement of 

conductor arrays. 

The total measured forces were decomposed into a sum of drag and inertia forces following the decomposition 

method outlined in Santo et al. (2014). The phase information of the wave is required, and the key assumption made is 

force symmetry around the wave crest/horizontal velocity peak. The total force was extracted after the starting 

transients when the force is periodic in time, and phase-averaged (cycle-by-cycle) over a record of 10 – 20 wave 

cycles before the decomposition. That part of the total force in-phase with the wave velocity is assumed to be drag, the 

remainder that is out of phase is assumed to arise from potential flow load components, with the linear part (in both 

frequency and wave amplitude) being the Morison inertia term. Figure 2 (left) shows a plot of the decomposition for 

0.24 m regular waves in the end-on direction with no current. The drag force will be compared with the new blockage 

theory (Taylor et al. 2013) elsewhere. Here, we focus on the inertia force and its harmonics (Fig. 2 top right). 

3. Inertia force on conductor arrays in end-on 

To investigate the experimentally measured inertia force, we chose to look at the measured inertia force on the 

conductor arrays only, by subtracting the inertia force on the model without conductors for waves end-on from the 

inertia force for the same model tested with conductors. Thus, the effects of legs, braces, and other cylindrical 

members that are non-orthogonal to the flow as well as square hollow members which have different 𝐶𝑀 values 

should be removed. This will allow a cleaner investigation: all the conductor tubes run vertically the full height of the 

jacket, forming an array of uniform, closely spaced cylinders of diameter 1.6 cm. 

We fit the measured inertia forces using the MATLAB curve fitting toolbox. The phase of the wave is obtained from 

the wave gauge signal, so the phases of both drag and inertia terms are known. We take a -90° phase shift for the 

harmonic term of the inertia force relative to the wave crest and obtain force coefficients of the 1
st
 up to 3

rd
 harmonic 

terms in frequency. We compare the force fits with those of the nonlinear potential flow FNV force on a single 

uniform vertical surface-piercing cylinder (Faltinsen et al. 1995): with  𝜂 = 𝐴 𝑐𝑜𝑠 𝜔𝑡 as the linear part of the wave 

profile, the FNV force is 𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎/𝜋𝑟2 = −2𝜌𝑔𝐴 𝑠𝑖𝑛𝜔𝑡 − 5/4𝜌𝑔𝐴2𝑘 𝑠𝑖𝑛2𝜔𝑡 − 2𝜌𝑔𝐴3𝑘2 𝑠𝑖𝑛3𝜔𝑡, where 𝑟 is the 

cylinder radius and the other symbols have their usual meanings. The FNV force model assumes the linear inertia 

coefficient 𝐶𝑀 = 2 and contains force coefficients of 1.25 and 2 for the 2
nd

 and 3
rd

 harmonic terms, respectively.  

For waves with no current, the mean value of force coefficients on the conductor array are 2.08 (1
st
 harmonic), 1.35 

(2
nd

 harmonic) and 6.02 (3
rd

 harmonic). The first two harmonics agree reasonably well with the predictions from the 

FNV model, the 3
rd

 harmonic term differs considerably but the signal is small and noisy. We also believe that there 

may be some small phase leakage across from the drag term for the 3rd frequency harmonic.  In calculating the force 

coefficients, the effect of finite water depth was taken into account (a 5% correction to deep water kinematics 

assumption). Figure 2 (right) shows the forces on the conductor arrays for 0.24 m regular waves with no current. 

End-on 

Broadside 
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Figure 2: Plot of total force decomposition (upper left) and inertia force decomposition (upper right), both for 

0.24 m regular waves with no current.  The bottom figure shows the surface elevation. 

The current is simulated by towing the jacket model along the tank, so the wave kinematics are unaffected by 

the current, but the encounter rate of the model with the waves changes. Hence, in a moving frame of reference 

(moving with jacket), the wave horizontal velocity can be written as: 𝑈𝑊𝑎𝑣𝑒  ~𝜔𝐴 cos [(𝜔 + 𝑈𝐶𝑘)𝑡 − 𝑘𝑥]. 

Therefore, the linear inertia term contains the encounter frequency due to current: 𝜕𝑈𝑊𝑎𝑣𝑒/𝜕𝑡~ − 𝜔(𝜔 +

𝑈𝐶𝑘)𝐴 sin [(𝜔 + 𝑈𝐶𝑘)𝑡 − 𝑘𝑥] and as a result, the total linear contribution in the inertia force with  𝐶𝑀 = 2 can 

be expressed as ~(2 ∙ 𝜕𝑈𝑊𝑎𝑣𝑒/𝜕𝑡 + 𝑈𝐶  𝜕𝑈𝑊𝑎𝑣𝑒/𝜕𝑥). When integrated over the height of the model to mean sea 

level, this yields a factor of −2 (1 +
𝑈𝐶

2𝐶∅
) ×, where 𝐶∅ = 𝜔/𝑘 is the phase speed of the wave. The additional 

term (𝑈𝐶/2𝐶∅) arises from the current contribution to the 1
st
 harmonic term. We assume that the rest of the 

FNV-model is unaltered. Clearly for the case with current, the 2
nd

 order term in wave amplitude could be 

expected to be generalised to have current × wave terms contributing to the 1
st
 harmonic component. The 3

rd
 

order term for waves with no current would be expected to produce 1
st
 and 2

nd
 harmonic contributions with the 

current present. Unfortunately we know of no extension of the FNV-model to account for the effect of current 

on the 2
nd

 and higher harmonic terms. 

Figure 3 shows the values of the force coefficients for all cases with and without current. For the 1
st
 harmonic 

term (left), the measured 𝐶𝑀 values are all close to the theoretical 𝐶𝑀 = 2 (solid line). For the coefficient of the 

2
nd

 harmonic term (right), with the theoretical FNV value of 5/4 (solid line), the experimental mean of 1.35 (for 

no current – dashed black line) is quite close. As the current speed is increased the 2nd order coefficients also 

increase, from 1.35 to 1.92 (for 0.14 m/s current – red line) and 2.18 (for 0.28 m/s current – blue line). We 

suspect the increase is associated to the current but have no model to account for it.  

4. Interactions within   

conductor arrays 

The effect of conductor arrays in 

regular waves is known to induce 

(wake) shielding, which can be 

captured with a reduced drag 

coefficient in the Morison 

equation, and either the full 

current blockage model from 

Taylor et al. (2013) or the API 

standard (figure C.3.2-4) can be 

used to account for such an 

effect. The effect on the inertia 

term however, is less clear.  

Figure 3: Plot of force coefficient 

variations with wave height and 

current speed. 
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From the measured inertia forces, we obtain 𝐶𝑀 of about 2.0 for the conductor array in the end-on orientation, 

suggesting that the experimental evidence is compatible with potential flow theory prediction. What about the 

same structure in the broadside orientation? Would the arrangement of the conductor tubes end-on vs. broadside 

matter in terms of 𝐶𝑀? We have no experimental data as yet, but a simple potential flow model (Walker & 

Eatock Taylor 2005), based on Linton & Evans (1990) analysis of multiple cylinders, was used to examine this.  

For the arrangement of conductor arrays we have for the jacket model, the smallest spacing (centre to centre) to 

diameter ratio of conductor tubes (𝑆/𝐷) is 1.7 for both end-on and broadside directions. From the potential flow 

model, the net effective 𝐶𝑀 for end-on is 0.96× the undisturbed 𝐶𝑀, for broadside is 1.07×. The 

increase/decrease in 𝐶𝑀 is associated with the interaction effects of neighbouring cylinders. For broadside, there 

are four rows of four cylinders, while for end-on there are only rows of two cylinders. Whilst for the 

experimental configuration there are only small perturbations away from the undisturbed values, it is interesting 

to ask how much closer would the conductor tubes have to be to produce large changes in 𝐶𝑀? 

Figure 4 shows the variation of force coefficients for end-on and broadside. The 𝑆/𝐷 ratio was adjusted by 

increasing/decreasing the diameter of the conductor tubes while keeping their centres fixed, with 𝑆/𝐷 = 1 being 

the limit when the closest conductors touch. The interaction effect for waves end-on is small; the force 

coefficient decreases as 𝑆/𝐷 reduces up to the point when the two conductors at the first two and last two rows 

in the end-on direction are about to touch. The interaction effect is larger in the broadside direction, where the 

increase in 𝐶𝑀 is now up to 45% in the limit when the conductors in the rows of four cylinders are touching. 

Whilst closely-spaced conductor arrays are known to reduce 

the drag term in the Morison equation due to blockage, in 

contrast the linear inertia term could increase, depending on 

the arrangement of the conductor arrays. Any increase in the 

inertia term is obviously relevant to fatigue prediction. 

Figure 4: Plot of force coefficients versus 𝑆/𝐷 for end-on 

and broadside. 
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Highlights
• the eigenfreqencies of the sloshing modes of a two fluid layer system are computed,
• the convergence of a desingularized technique is commented,
• the variations of the eigenfrequencies with the density ratio are detailed.

1) Introduction

Determining the natural frequencies of the sloshing modes in a two-dimensional tank is a well-known
problem in potential theory (see Ibrahim, 2005, or Faltinsen and Timokha, 2009, among recent textbooks
on that topic). In practice the computational effort reduces to the determination of eigenvalues of a
matrix. A first (and non sophisticated) approach consists in formulating a classical integral equation
where singularities are distributed all over the fluid boundaries, including the tank walls and the free
surface itself. On the former surface, a homogeneous Neumann condition is prescribed whereas on the
latter surface a Fourier condition is prescribed. Then the matrix follows from the discretization of the
surface integrals into panels. An improvement is to use harmonic solutions which implicitely account for
the wall boundary condition. Faltinsen and Timokha (2010, 2012, 2014) deal with the case of the circular
tank or prismatic tank in that way, since they need an analytic continuation above the linearized free
surface. This is obviously required when the fully nonlinear free surface flow problem is solved. This is
why the technique initially proposed by Tuck (1998) is appealing. A conformal mapping turns the domain
bounded by the tank walls into a half space and a desingularized technique provides a simple expression
of the velocity potential. The computational effort then focuses on the free surface description only. That
combination has proved to be very effective and robust even for more complicated tank geometries than
a simple rectangular tank (see Scolan, 2010). The same technique can be used to deal with a two fluid
layer system in a closed tank with a more or less complicated boundaries (see Scolan et al, 2014).

This technique and other analytical approaches are detailed in the next developments in order to
determine the frequencies of the sloshing modes of a two fluid layer system in a closed tank. First a
numerical analysis is performed for a rectangular tank to assess the convergence criteria in terms of the
number of singularities and the desingularizing distance. Then the technique proposed by McIver (1989)
is applied to a two fluid layer system in a circular tank.

2) Eigenfrequency in a rectangular tank by MFS

Much work has been done for a single phase flow neglecting the gas above the free surface, considered
as vacuum. However in most practical situations there is a gas above the liquid. From the analysis of Lord
Rayleigh (1883) in potential theory, the dispersion relation of wave travelling at the interface of two non
miscible fluids in an unbounded fluid domain, is well-known. This dispersion relation reads ω2 = gkAt

where ω is the circular frequency, k the wavenumber, g the acceleration of gravity and At = (1−r)/(1+r)
is the Atwood number with r being the ratio of densities. If the two fluid layers are contained in a closed
tank, the two fluid domains must be perfectly symmetric with respect to the interface so that the nth

eigenfrequency ωn(r) varies as

ωn(r) =

√
1 − r

1 + r
ωn(0) (1)

When the geometry is rectangular (with length L and liquid depth h), then ω2
n(0) = nπg

L tanh nπh
L , the

proof for (1) is straigtforward. For an arbitrary domain with the interface as a plane of symmetry, it is
easy to show that both the velocity potentials and their normal derivative along the interface are equal
but opposite in sign; then the identity (1) follows.
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In previous works it has been shown that Method of Fundamental Solutions (also known as Desingu-
larized Methods) is effective in simulating nonlinear free surface motions (see Mrabet et al, 2014). The
main reasons are this method does not require regridding or smoothing during the time marching scheme.
Conformal mapping is an essential aspect of the present technique. As a matter of fact, by turning the
physical computational domain into a simpler domain, as a half space for example, the impermeability
condition on the tank walls is easily accounted for. To this end the following conformal mappings

w = − cos
πz

L
, w = cos

π

L
(z − ihroof ) (2)

are used for a rectangular tank as described below

hroofgΩ

fΩ hf

hg

S

Ly

O x

These two independent transformations ”flatten” the two vertical walls of the rectangular tank. In
practice, the velocity potentials attached to each phase are written as a finite summation of Rankine
sources placed at some distance from the actual interface. The number of sources is denoted N and
δL/(N − 1) is the desingularizing distance. When the density ratio is zero, it is shown that the relative
error on the nth eigenfrequency varies like

En = Ane−πδL N−n
N−1 (3)

The same result holds when the density ratio is non zero but the analysis of convergence follows from
numerical analysis. The figures below illustrate that result for r = 0.5. It shows the decreasing error as
a function of δ for the first and tenth modes. On these curves the theoretical error follows from (3).
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Christiansen (1976) and Pozrikidis (2000) arrived at the same conclusion: the farther the singularities,
the better the convergence. However that (non intuitive) result is rather paradoxical. As a matter of
fact, when using the same numerical technique but for solving the nonlinear free surface equations, it is
shown that the desingularizing distance must be adapted to a small enough value in order to fulfill the
criteria of mass and energy conservation (see Scolan, 2010).

2) Eigenfrequencies in a circular tank

We consider a circular tank with radius c filled with two fluids which are not miscible, say Ωg and Ωf

the corresponding fluid domains as shown in figure below.

Ω f

Ωg

c

h

+e−e

y

x
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The indices f and g refer to the liquid and gas respectively. The density ratio of the two fluids is
r = ρg/ρf . The filling height is h measured from the bottom (south pole). The dimension of the interface

is defined by e =
√

c2 − (h − c)2. The analysis by McIver (1989) provides us with the conformal mapping
x+ iy = ih− e tanh (ζ/2) with ζ = α + iβ, which turns the physical domain (inner circle) into an infinite
strip β ∈ [−π,+π] and α ∈] − ∞,+∞[. The surface of the circle is described by β = Cste: β = βf (such
that cos βf = c−h

c ) is the image of the circular arc bounding Ωf and β = βg (such that cos βg = h−c
c )

is the image of the circular arc bounding Ωg. It is worth noting that the two angles βf and βg are not
independent, they are opposite in sign and verify the identity βf − βg = π.

Following McIver (1989), the general solutions which verify both Laplace equation and impermeability
conditions on the wall, read

φj(α, β, βj) =

∫ ∞

0
Aj(τ) cosh τ(β − βj)

{
sin τα
cos τα

}
dτ, j = f or g (4)

where cos and sin yield the symmetric and antisymmetric modes respectively. These solutions are such
that the pressure and the normal velicity at the interface are continuous, yielding the following integral
equation for the function B,

(1 − r)B(τ ′) = λ

∫ ∞

0
B(τ)K(τ, τ ′)dτ, τ ′ ≥ 0, λ =

eω2

g
(5)

B(τ) = Af (τ)
√

τf(τ) sinh τβf cosh τβf , f(τ) = 1 − r
tanh τβf

tanh τβg
(6)

K(τ, τ ′) =

[
τ − τ ′

sinh(τ − τ ′)π
∓ τ + τ ′

sinh(τ + τ ′)π

]√
f(τ)f(τ ′)

ττ ′ tanh τβf tanh τ ′βf
(7)

where ± depends on sin / cos in equation (4), namely the antisymmetric or symmetric modes. Numeri-
cally, the integral in (5) is discretised by using a Gauss quadrature formula. To this end, Legendre type
sounds better than Laguerre type; after the appropriate change of variable has been done. The next
figure shows the variation of the eigenfrequency λ(r)/At with the filling ratio h/c for the first nine modes.
The density ratio varies in the range (0, 0.2, 0.5, 0.9).
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When the tank is half filled, equation (1) is perfectly valid. Otherwise, that equation is a rough approxi-
mation. It is worth noting that for low filling ratio the frequencies increase with increasing density ratio.
This variation is reversed at high filling ratio.
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4) Conclusions

The sloshing modes in a tank are rarely computed by accounting for the two fluid system i.e. non
miscible fluids in a closed tank (see La Rocca et al, 2002, 2005). This problem is addressed here by
using different approaches. For a rectangular tank, some numerical aspects and convergence criteria of
the desingularized technique are detailed. For a circular tank, the quasi-analytical approach proposed by
McIver is extended to a two layer system.
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nonlinear dynamics of the interface between two non miscible fluids in a closed tank. 15th Int. Work-
shop on Trends in Numerical and Physical Modelling for Industrial Multiphase Flows, Cargèse, Corsica,
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1. INTRODUCTION 

Liquid/structure or liquid/liquid impact is widely 

observed in nature. Examples include wave impact on 

marine structures and coastline, droplet impact or 

waterfalls on solid floor, a solid body passing through 

a liquid surface. While high speed liquid impacts can 

cause structural damage or failure and many other 

adverse effects, these processes are also used in 

applications such as 3-D printing technology, cool jet-

cutting and cleaning of metals, coating and painting.   

In many water impact studies, the bodies are 

treated as rigid and impermeable. However, in many 

other fluid/solid impact processes, the body surface 

may be non rigid or permeable. There may be surface 

erosion or other types of material removal that changes 

the body shape during impacts, such as liquid drop 

impacting a soil or granular materials [1], metal cutting 

through jets [2,3], surface penetration through shaped 

charges [4,5], and cavitation erosion by high-speed jets 

generated during collapse of vapour bubbles [6,7]. In 

maritime engineering, liquid may penetrate through a 

perforated or porous surface, and typical examples can 

be found in [8 – 11]. 

In this study we consider the two dimensional self 

similar velocity potential flow problem for impact 

between a liquid wedge and a permeable or/and 

erodible body [12]. Integral hodograph method [13] is 

used. It enables the original partial differential equation 

with the nonlinear boundary conditions on the 

unknown free surface to be converted into a system of 

intergro-differential equations along straight lines in 

the parameter plane. The method has been successfully 

used in variety of impact problems [12 - 14]. However, 

the application of the method to the present problem 

has some new difficulties. On the impermeable solid 

surface, the normal velocity is prescribed, while on the 

free surface the pressure is provide. On the permeable 

body surface or the moving wetted surface caused by 

erosion, neither of these functions is known in advance 

explicitly. Instead the boundary condition is written in 

terms of a relationship between the pressure and the 

normal component of the velocity trough the body 

surface. This leads to a new singularity on the 

mathematical formulation. Further in the case of an 

erodible body, the wetted surface of the solid deforms 

and body material moves away, and its shape into the 

body is determined by the local speed of erosion or 

melting. The formulation of the problem includes an 

additional equation through a law relating the speed of 

erosion with other flow parameters, which gives the 

means to determine the unknown shape of the interface.  

Various case studies are considered. The first one 

is porous body, for which a linear relationship between 

the pressure and normal velocity through non 

deforming body boundary is employed. The second 

case is a perforated body, for which the quadratic 

relationship between the pressure and the normal 

velocity trough the non deforming body surface is used. 

These two cases are related to the problems in coastal 

and offshore engineering [8, 9, 15] where the 

porous/perforated bodies are used to reduce the 

hydrodynamic impact loading on a structure. The third 

case considered here is associate with jet-cutting or 

penetration of the shaped charge, in which the solid 

material is removed by the hydrodynamic pressure and 

shear stress.  There are some previous studies related to 

this case, in particular, that done by Pool [5], which are 

based on a further development of the classical 

Birkhoff-problem of steady impinging jets.  
   

2. FORMULATION OF THE PROBLEM  

We consider the impact problem between a liquid 

wedge of half-angle   and a permeable and/or 

erodible body. A sketch of the problem and the 

definitions of the geometric parameters are shown in 

Fig. 1a. The flow is self similar and will be studied in 

the frame of reference with its origin attached to the 

stagnation point A which may move during the erosion 

of the body surface.  

The liquid wedge has uniform velocity at infinity, 

which is indicated as V in figure 1a and it is relative to 

point A. The symbol 
niv  in the figure is the normal 

velocity of surface OA, which is zero at point A, as the 

origin of the coordinate system is fixed there. Within 
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this surface, AD is the wetted surface of the body after 

erosion and forms an angle / 2A   with the y-axis 

at point A. The symbol npv  in the figure is the velocity 

due to the body surface permeability.  Thus, the total 

normal component of the velocity of the liquid along 

OA can be expressed as 
n ni npv v v  , in which 0npv   

on the free surface OD.   

For a constant impact velocity of the liquid wedge, 

the time-dependent problem in the physical complex 

plane Z X iY   can be written in the stationary 

similarity plane z x iy   in terms of the self-similar 

variables / ( )x X Vt , / ( )y Y Vt  where t is the time. 

The complex velocity potential ( , )W Z t   for the self-

similar flow can be written as 

 

 2 2( , ) ( ) ( , ) ( , )W Z t V tw z V t x y i x y    .      (1) 

The problem is to determine the function ( )w z  which 

conformally maps the similarity plane z  onto the 

complex-velocity potential region w . We choose the 

first quadrant of the   plane in figure 1b as the 

parameter region to derive expressions for the 

nondimensional complex velocity, /dw dz , and for 

the derivative of the complex potential, /dw d , both 

as functions of the variable  . Once these functions 

are found, the velocity field and the relation between 

the parameter region and the physical flow region can 

be determined as follows: 

)(
dz

dw
ivv yx  ,  







0

)0()( d
dz

dw

d

dw
zz .  (2) 

The boundary-value problems for the complex 

velocity function, /dw dz , and for the derivative of the 

complex potential, /dw d , can be formulated in the 

parameter plane. Then, applying the integral formulae [13] 

determining an analytical function from its modulus and 

argument, and from its argument on the boundary of the 

first quadrant, respectively, we obtain the following 

expression for the complex velocity and for the derivative 

of the complex potential [16] 
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Figure 1. Sketch of the problem for impact between a liquid 

wedge (dotted line at the time of impact) and an 

erodible/permeable wall: (a) similarity plane and (b) 

parameter plane.  
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where K is a real scale factor, 
0 0( )v v    is the velocity 

magnitude at point O , 1( ) tan ( / )n sv v    is the angle 

between the velocity vector and the free surface, and 
1( ) tan ( / )n sv v    is the angle between the velocity 

vector and the interface.  

The functions ( )v   and ( )   are determined from 

dynamic and kinematic boundary conditions. In 

contrast to the impact between the liquid and 

impermeable/ no eroding solid wedges [14], the 

functions ( )   and  ( )   now become unknown on AD, 

as well as OD. According to the definitions, these 

functions can be found if the normal component of the 

velocity, n ni npv v v   on the body surface is known. 
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The normal component of the velocity, 
niv , determines 

by the shape of the interface, i.e. Im( )i

niv ze  , where

z  is complex conjugate coordinate and  is the slope 

to the interface. The normal component of the velocity 

due to the permeable interface, 
npv , depends on the 

pressure on the body. For porous or/and permeable 

surfaces, the following equations were proposed in [9, 

10]  

0np pv c , 
0np pv c ,        (5) 

where 
pc  is the pressure coefficient, 

0 and 
0   are 

the non-dimensional coefficients characterizing the 

porosity and perforation of the thin wall, respectively. 

The method of successive approximations is used 

to solve the total system of integral equations through  

the iteration procedure.  

 

3.    NUMERICAL RESULTS  

Results for the angles of the liquid and solid wedges 

45A     are shown in figure 2. For the 

impermeable surface in case (a), the pressure decreases 

almost linearly from the wedge apex to the root of the 

tip jet, while in case (b) the pressure decreases more 

mildly and then faster near the root of the tip jet. This 

is caused by larger pressure reduction near the apex of 

the wedge due to the larger flowrate into the wedge 

side there.  

 
              a)            b) 
Figure 2. Streamline patterns, free surfaces (solid lines), and 

the pressure distribution for the liquid and solid wedges  

45A   and 45   , increment in the stream function 

0.1  ,  and (a)
0 =0 and  (b) 

0 =1.0. 

 

For the part AD of the interface, the body surface 

erosion considered in the present study is assumed to 

be due to an extremely high normal or/and shear 

stresses during impact by liquid. This behaviour occurs 

when the stress has exceeded the yield stress of the 

material. The problem of flow/structure interaction of 

eroding bodies has some analogy to the classical Stefan 

problem for bodies undergoing melting, dissolution, or 

other similar processes of phase change. The choice of 

an appropriate model of erosion significantly depends 

on a particular problem and the cause of the erosion. 

For the present impact problem, the local normal 

velocity *V  of the eroding surface is assumed to be 

linearly related to the pressure P and the shear stress  . 

In non-dimensional form the constitute equation of 

erosion takes the form  

* 2

p p sv K c K v   ,      (6) 

where 
sv  is dimensionless tangential component of the 

velocity, pK  and K  are the material-dependent 

constants. In physical reality, the erosion of the body 

surface is due to both the pressure and the shear stress, 

as shown in Eq. (6). However, if 0K   and 0pK 

in Eq. (6), it gives 
* 0v   at point D, since 

pc at point 

D equals to zero. Thus, we introduce a minimal 

velocity 
*

minv . When the 
*v  obtained from Eq.(6) is 

smaller than 
*

minv , we set 
* *

minv v  . The obtained 

results are shown in figure 3. More results will be 

provided in the workshop and can be found in 

Semenov and Wu [12] (submitted for publication). 

.  

          (a)     (b)    
Figure 3. Impact between a liquid wedge of half-angle 

10    and an initially flat solid wall with 
* 0.6Av  , (a) 

* *

min / Av v =0.9, (b) 
* *

min / Av v =0.7. The lower dashed region 

corresponds to the restriction 
* *

min( )v s v  along the interface. 
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4. CONCLUSIONS 

The present  work gives an extended summary to the 

work of Semenov & Wu [12] submitted for publication. 

Its calculations confirmed the expected reduction of the 

hydrodynamic pressure on a porous or perforated 

wedge.  

For an eroding wall, the interface between the 

liquid and the body is assumed to change according to 

the constitute law relating the rate of erosion and the 

normal pressure. The result shows that in this case the 

erosion shapes the cavity in such way to provide nearly 

constant pressure on most part of the cavity surface. 

The cavity shape is composed of an arc of a near circle, 

where the pressure is almost constant, and an almost 

straight line where the restriction * *

min ( )v v s   is 

applied.  
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1 Introduction 

The paper presents a study on the different power take-

off (PTO) dampers (linear and nonlinear) and their 

optimizations for maximising wave energy conversions 

on a point absorber wave energy converter.  

To simplify the problem, a bottom-fixed point absorber 

and the single heave motion is considered for power 

conversion and analysis. For such a system, theoretical 

work has been widely carried out in optimising the 

damping levels in maximising wave power conversion 

if the power take-off is linear and under the assumption 

of the linear hydrodynamics of wave energy conversion. 

It has been shown that the relevant optimised damping 

can be easily obtained analytically in regular waves [1, 

2]. However, when it comes to the nonlinear power 

take-off, the problem becomes more complicated, and 

much less research work has been conducted and 

optimised for nonlinear power take-offs. 

It has been wondered, however, whether the nonlinear 

power take-offs are better than the linear ones, because 

some claims have been made that the nonlinear power 

take-offs can convert more power than those of linear 

power take-offs. Though there is limited evidence for 

the claims, it is not evident whether it is coincident or 

not. For instance, if these PTOs are not optimised, then 

the comparison among the different PTO damping 

coefficients may be meaningless and even unfair in 

some cases. In this research work, the power 

conversions from the linear and nonlinear PTOs will be 

conducted appropriately. More importantly, the 

comparisons will be made for the optimised damping 

coefficients for both linear and nonlinear PTO damping 

coefficients so that the maximum power conversions 

from different PTOs are comparable.  

From the study, it is shown that the averaged power 

conversion from the optimised linear damper and 

nonlinear dampers can be very similar. The maximum 

power conversion using the nonlinear PTOs may be 

marginally higher than that of the optimised linear PTO, 

both in regular waves and in irregular waves. That is, 

the maximised power conversion using a nonlinear PTO 

may exceed theoretical maximum from the linear 

analysis, but it must be noted that the exceedance is 

only marginal.  

One difference in optimizing the linear and nonlinear 

PTOs is that the optimised nonlinear damping 

coefficient is both wave period and height dependent, 

whilst the optimised linear damping coefficient is only 

wave period dependent. 

2 Dynamic equations 

Figure 1 shows a schematic drawing of the wave energy 

converter. Under the wave excitation, the buoy is 

supposed to move up and down (heave motion). When a 

PTO is applied to connect the buoy and the fixed 

reference (for example, the seabed), the heave motion 

of the buoy can drive the PTO to convert the 

mechanical power into useful energy. The generic 

dynamic equation can be expressed as 

  
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(1) 

where M is the mass of the device; A33 the added mass 

at infinite frequency for heave motion; K33 the impulse 

function; C33 the restoring coefficient; F3 the excitation; 

Fpto the power take-off (PTO) force due to the power 

conversion; x3 the heave motion; v3 the heave velocity 

(
33 xv  ). All parameters in eq. (1) except Fpto can be 

assessed using the boundary element method for 

potential flow theory (in this case, WAMIT), in which 

the hydrodynamics of the float has been taken as a 

linear dynamic system, thus a frequency domain can be 

conducted, and the relevant time-dependent parameters 

can be also easily obtained using a Fourier transform.  

 

 
Figure 1   Seabed referenced point absorber 
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If nonlinear effects are considered, for instance, a 

nonlinear power take-off, they are only external forces, 

rather than the hydrodynamic forces. When we consider 

the wave energy conversion, the wave heights may be 

medium, hence the nonlinear hydrodynamic effects may 

not be evident. Hence in this research, linear 

hydrodynamics is assumed. Under the assumption of 

the linear hydrodynamics, the dynamic equation (1) is 

correct whilst the PTO force can be considered to be 

nonlinear or even piecewise type, like in latching 

control (see Sheng et al. [3]). Overall, this convention 

will be applied throughout this research. 

For a linear PTO, a pure damper PTO can be simply 

expressed as a linear relation between the PTO force 

and the motion velocity as 

)()( 30 tvbtFpto   (2) 

where b0 is the constant damping coefficient of the PTO, 

and v3 the velocity of the device in heave (i.e., 33 xv  ). 

For the nonlinear PTOs, we will examine different 

types of PTO. The first type is inspired by the nonlinear 

air turbine, for example, the impulse turbine (see Falcao 

et al.[4]), in which the PTO force can be expressed as a 

nonlinear function of the velocity as,  

 )()()( 3

2

31 tvsigntvbtFpto   (3) 

where b1 is the nonlinear damping coefficient, and the 

PTO force is proportional to the velocity squared, |*| 

means an absolute value. 

The second type of nonlinear PTO is inspired by the 

relation of the newly invented bi-radical turbine (see 

Falcao et al. [5]), in which the PTO force can be 

expressed as 

 )()()( 332 tvsigntvbtFpto   (4) 

where b2 is the nonlinear damping coefficient, and the 

PTO force is proportional to the velocity square root. 

 

Once the dynamic equation (1) is solved, the power 

conversion is simply calculated as 

)(*)()( 3 tvtFtP pto  (5) 

the corresponding average power is given by 


T

dttP
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(6) 

where T is the time interval for calculating the average 

power. 

3 Results and analysis 

3.1 Power conversion in regular waves 

Figure 2 shows the averaged power conversions using 

linear and nonlinear PTOs in the regular waves of a 

height H=2m and a period Tw=8s. In the calculations, 

time-domain simulations and averaged power 

conversion have been conducted using the procedure 

shown in the previous section. It can be seen that the 

linear PTO has an averaged power conversion close to 

(never larger than) the theoretical maximum in the 

frequency domain analysis, i.e., 40.77 kW. Using the 

optimized damping coefficient, the linear PTO could 

extract the maximal power close to the theoretical 

maximum. It can be seen that away from the optimised 

damping coefficient, the captured power is decreased 

when the damping coefficient is either increased or 

decreased (‘solid line’ in Figure 2). When the nonlinear 

PTOs are considered in the forms of Eqs. (3) and (4), 

the maximised power conversions can be slightly larger 

than that of the linear PTO. 

 

 
Figure 2 Damping level for regular waves (H=2m and 

Tw=8s) 

The optimised damping coefficients are b0=271.14 

kN*s/m, b1=596.5 kN*s2/m2 and b2=189.8 kN*s1/2/m1/2 

for the respective linear and nonlinear PTOs. It must be 

noted that the optimised nonlinear PTO coefficients 

given above are based on both the specific wave height 

H=2m and period, Tw=8s, whilst for the linear PTO, the 

optimised damping coefficient is only decided by the 

wave period. 

Figure 3 to Figure 6 show the time series of the 

simulations in the specific regular wave. It can be seen 

that the motions for different optimised PTOs are very 

similar, only small differences can be discerned in the 

peaks and troughs (Figure 3). Relatively, the velocities 

of the heave motions for different PTOs are quite 

different in amplitude (Figure 4).  

The PTO forces are very close again in the magnitudes, 

and no large difference can be seen (Figure 5), whilst as 

a combination of the PTO force and the velocity, the 

power conversions are quite different in peaks. It must 

be noticed that though the difference in peaks in the 

power conversion, their average power conversions are 

very similar, 40.77kW, 41.92kW and 42.01kW for b0, 

b1 and b2 respectively. The nonlinear PTO could exceed 

the maximal power conversion given by the linear PTO 

by 2.82% and 3.04% respectively.  

For a reference, the ratio of the maximal power over the 

average power is 2.284 for the nonlinear PTO (b2), 

1.806 for the nonlinear PTO (b1), compared to the case 

with a linear PTO, which is a constant of 2 (Figure 6).  
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Figure 3   Motion (H=2m &Tw=8s) 

 
Figure 4  Velocity (H=2m & Tw=8s) 

 
Figure 5  PTO force (H=2m & Tw=8s) 

 
Figure 6  Power conversion (H=2m & Tw=8s) 

3.2 Power conversion in irregular waves 

Figure 7 shows the averaged power conversions using 

linear and nonlinear PTOs in the irregular wave of a 

significant height Hs=2m and a peak period Tp=8s (for a 

Bretschneider spectrum). From the calculations, it can 

be seen that the linear PTO has a maximal averaged 

power conversion for the optimised damping coefficient 

based on the wave energy period, Te=6.86s, that is, 

b0=210.77 kN*s/m in this case. The corresponding 

maximal power conversion for the linear PTO is 17.76 

kW. Away from the optimised damping coefficient, the 

captured power decreases whenever the damping 

coefficient is either increased or decreased (‘solid line’ 

in Figure 7). When the nonlinear PTOs are used, the 

maximised power conversions can be slightly larger 

than that of the linear PTO.  

Based on the simulations, the optimised damping 

coefficients for the irregular waves are b0=210.77 

kN*s/m, b1=505.5 kN*s2/m2 and b2=132.79 kN*s1/2/m1/2 

for the respective linear and nonlinear PTOs. And all 

optimised linear and nonlinear PTO coefficients given 

above are based on the wave condition of a significant 

height Hs=2m and a peak period, Tp=8s. 

 
Figure 7 Damping level for irregular waves (Hs=2m & 

Tp=8s) 

Figure 8 to Figure 11 show the time series of the 

simulations for the specific irregular waves. It can be 

seen that the motions in different optimised PTOs are 

very similar, though some differences can be seen in the 

peaks and troughs (Figure 8). Similarly, the velocities 

of the heave motions for different PTOs are different, 

again in peaks and troughs (Figure 9). 

Figure 10 shows the differences of the PTO forces in 

the magnitudes (Figure 10).  

Though the power conversions in time series are quite 

different in peaks, but the averaged power conversion 

are very similar, 17.76 kW, 18.05kW and 17.98 kW 

respectively. The nonlinear PTOs may increase power 

output by 1.63 % and 1.24% for b1 and b2 respectively. 

Again, a very small increase of the power conversion 

can be only possible using the optimized nonlinear 

PTOs. For this particular case, the ratio of the maximal 

power over the average power is 10.09 with the 

nonlinear PTO (b2), 9.12 with the nonlinear PTO (b1), 

compared to the linear PTO, which is 10.29 (Figure 11). 

These statistic values are based on the simulations for 

about 150 wave cycles.  

 
Figure 8   Motion (Hs=2m & Tp=8s) 

 
Figure 9  Velocity (Hs=2m & Tp=8s) 

 
Figure 10  PTO force (Hs=2m & Tp=8s) 
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Figure 11  Power conversion (Hs=2m & Tp=8s) 

3.3 Maximised power conversion in irregular 

waves 

Figure 12 shows the maximised power conversions for 

different significant wave heights in irregular waves 

(peak period Tp=8s). It can be seen that if the damping 

coefficients are optimised, the linear and nonlinear 

PTOs can extract very similar maximised powers from 

waves. The maximised power conversions are generally 

proportional to the wave height squared with slightly 

different coefficients for each PTO. From Figure 13, it 

is interesting to note that for the linear PTO, for the 

specific wave period, Tp=8s, the optimised damping 

coefficient is a constant, regardless of the wave heights. 

But for the nonlinear PTOs, the optimised damping 

coefficients are both wave period and height dependent. 

To reach optimised power conversions for different 

wave heights, the optimised damping coefficient b1 

decreases with the increase of the wave height, whilst 

the optimised damping coefficient b2 increases with the 

increase of the wave height. 

 

Figure 12 Optimised damping levels with the wave height 

in irregular waves (Tp=8s) 

 

Figure 13 Power conversion with the optimised damping 

levels for irregular waves (Tp=8s) 

4 Conclusions 

In this investigation, some comparisons have been made 

for the linear and nonlinear PTOs in converting wave 

power into useful energy in which the nonlinear power 

take-offs are inspired by the practical PTOs. From the 

investigation, the following conclusions can be drawn: 

- For maximising power conversion for the linear and 

nonlinear PTOs, the damping coefficients must be 

optimised. Under the optimised damping coefficients 

(b0, b1 and b2), the averaged power conversions are 

very similar for the linear and nonlinear PTO dampers. 

The nonlinear PTOs may extract the maximised 

power more than that of the linear PTO, by 2-4% in 

regular waves, and 1-2% in irregular waves, 

respectively. 

- For linear PTOs, the optimisation of the damping 

coefficient is only based on the wave period in regular 

waves and in irregular waves, regardless of the wave 

height. For the nonlinear PTOs, the optimised 

damping coefficients are based both on the wave 

period and wave height. For a specific wave period, 

the optimised damping coefficient decreases with the 

increase of the wave height for the nonlinear PTO (b1), 

and the nonlinear PTO (b2) has an opposite trend with 

regard to the nonlinear PTO (b1).  
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Highlights

· Experimental validation of a mathematical model of wave-induced flexural motion of a thin floating plate.

· First model of wave overwash of an ice floe, which is validated by laboratory measurements.

Introduction

Mathematical models of ocean surface waves travel-
ling through the sea ice covered ocean and impacting
the ice cover have been developed for over 40 years
now. The kernel of the models is a model of water
waves interacting with a solitary ice floe. The ice
floe is conventionally modelled as thin floating elas-
tic plate. Water motions are conventionally modelled
using potential flow theory.

Moreover, linear motions are assumed. However,
as the floe has a small freeboard, incident waves of
modest amplitudes are easily able to overwash the
floe (run over its upper surface). The presence of
overwash violates the assumption that motions are
small perturbations from the equilibrium, which un-
dergirds linear theory.

The impact of overwash on the motions of the
floe and the surrounding wave field have not been
investigated previously. More fundamentally, few at-
tempts have been made to validate the linear thin-
plate/potential-flow model.

In one notable exception, Montiel et al. (2013a,b)
conducted a series of laboratory wave tank experi-
ments to study the flexural motion of a floating thin
plastic disk, as a model ice floe. They showed the lin-
ear model was able to predict the motions accurately.
However, they attached a barrier to the edge of the
model floe to prevent overwash in the experiments.
Subsequently, their results provide no information on
the impacts of overwash.

Results of a new series of wave tank experiments
are reported here. In the experiments, no edge bar-
rier was used and the incident waves were able to
overwash the floe. The experimental measurements
are used to show the linear model is able to predict
the motions of the floe accurately, and, hence, that
overwash does not significantly affect floe motions
for the chosen parameter range.

This finding is used as the basis of a mathemat-
ical model of a wave overwashing an ice floe. The
model is validated by measurements of the overwash
depth recorded during the experiments. The model-
data comparison shows generally very pleasing agree-
ment and indicates the limit of validity of the model.

Experimental model

Experimental models of water waves interacting with
an ice floe were implemented at the Mitchell Hy-
drodynamics Laboratory, University of Melbourne,
Australia, and the Coastal Ocean and Sediment
Transport (coast) laboratories, Plymouth Univer-
sity, U.K. The models investigated one- and two-
dimensional wave motions, respectively. The latter
model is described here, and a selection of corre-
sponding results is presented.

A thin plastic plate was installed in the coast
wave basin, as a model ice floe, on water of depth
H = 0.5 m. The floe was loosely moored. Two differ-
ent plastics, with distinct material properties, were
used. First, a relatively dense and rigid polypropy-
lene plastic, with a manufacturer specified density
of ρpl = 905 kg m−3 and Young’s modulus E =
1600 MPa. Second, a relatively light and compliant
polyvinyl chloride (pvc) plastic with density ρpl =
500 kg m−3 and Young’s modulus E = 500 MPa.
Both plastics were provided with thicknesses D =
5 mm and 10 mm, and 20 mm and 40 mm (polypropy-
lene) and 19 mm (pvc). The plates were cut into
squares with side lengths 2L = 1 m.

A series of tests were conducted in which the
model floes were set in motion by regular incident
waves. The motions were recorded stereoscopically
by the Qualysis motion tracking system. Wave peri-
ods T = 0.6 s, 0.8 s and 1 s were used for the incident
waves. The corresponding wavelengths are 0.56 m,
1 m and 1.51 m, respectively, i.e. approximately half
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the floe length, equal to the floe length and 1.5 times
the floe length. Four incident wave steepnesses were
tested: ka = 0.04, 0.08, 0.1 and 0.15, where k and
a denote the incident wave number and amplitude,
respectively.

Figure 1: Photos of mild and severe overwash.

A small gauge was deployed in the middle of the
upper surface of the floe to measure the depth of
overwashed fluid. Overwash occurred in approxi-
mately 60% of the cases tested. The polypropylene
floes, which have a relatively small freeboard, expe-
rienced the strongest overwash.

Figure 1 shows photos of overwash occurring in
the tests. The left-hand panel shows mild overwash
occurring for a 10 mm thick pvc floe and a 1 s pe-
riod incident wave with steepness 0.15. A bore wave
is visible in the shallow overwash. Bores are typ-
ical when overwash occurs. The right-hand panel
shows severe overwash occurring for a 10 mm thick
polypropylene floe and a 1 s period incident wave
with steepness 0.15. In this case bore waves trav-
elling up and down the plate have collided and, sub-
sequently, caused breaking.

For each test conducted, the recorded flexural
motions of the floe are converted into a spectral rep-
resentation via a decomposition into the floe’s nat-
ural modes of vibration. Thus, let ηm(t) denote
the vertical displacement of the mth marker. Af-
ter the initial transients have passed, the signal is
approximately periodic in time at the angular fre-
quency of the incident wave, ω. Therefore, a com-
plex amplitude Am is calculated such that ηm(t) ≈
Re {Ame−iωt}, using least-squares minimization.

Horizontal locations on the surface of the floe are
define by a Cartesian coordinate system (x, y). The
origin of the coordinate system is the geometric cen-
ter of the floe. The x coordinate points in the direc-
tion of the incident wave.

The floe’s orthonormal natural modes of vibra-
tion are denoted wj(x), where x = (x, y). Following
Kirchoff-Love thin-plate theory the modes satisfy the
governing equation

∆2wj = λ4
jwj ,

where λj are eigenvalues, plus free-edge conditions.
They are calculated using the finite element method
outlined by Meylan (2002).

The complex amplitudes Am are projected onto
a finite-dimensional space spanned by the dominant

natural modes of vibration, i.e.

Am ≈
∑

j∈Λ

ξex
j wj(xm)

where xm denotes the location of the mth marker.
The set Λ = {1, 2, 5, 6, 7, 9, 11} contains indices of the
modes used for computations. Only motions sym-
metric with respect to the direction of the incident
wave are considered. The first two modes represent
the rigid body motions of the floe: heave and pitch,
respectively. The final five modes represent the pri-
mary flexural motions. The weights ξex

j are obtained
via a least squares minimization routine.
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Figure 2: Motion of floe markers (left), and corre-
sponding four dominant flexural modes (right).

Figure 2 shows an example decomposition of the
floe motion into the natural modes. The example is
for a 5 mm thick polypropylene floe, and a 0.8 s pe-
riod incident wave with steepness 0.1. The left-hand
panel shows the recorded vertical displacements of
the markers over a short time interval. The right-
hand panels show the corresponding four dominant
weighted flexural modes.

Linear mathematical model

Following potential flow theory and assuming time-
harmonic conditions, the water’s velocity field is de-
fined by the gradient of the scalar velocity potential
Re {φ(x, y, z)e−iωt}. Locations in the water are de-
fined by the Cartesian coordinate system (x, y, z),
where x = (x, y) defines horizontal locations and z is
the vertical coordinate. The time-independent com-
ponent of the velocity potential, φ, satisfies Laplace’s
equation throughout the water domain, i.e.

∆φ = 0 for x ∈ R2 and −H < z < 0, (1a)

and a zero normal flow bed condition

φz = 0 for x ∈ R2 and z = −H. (1b)

On the linearised water surface away from the floe,
the potential satisfies the free-surface condition

φz =
ω2

g
φ for x /∈ Ω and z = 0. (1c)

On the linearised interface between the water surface
and the underside of the floe, the potential is coupled
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to the floe motion via kinematic and dynamic condi-
tions, respectively

φz = −iω

∞∑

j=1

ξma
j wj and (1d)

iω

g
φ =

∞∑

j=1

(
1 + βλ4

j

)
ξma
j wj − ω2γ

∞∑

j=1

ξma
j wj , (1e)

Here, γ = ρplD/ρg is the scaled mass of the floe
and β = ED3/{12(1 − ν2)ρg} is the scaled flexural
rigidity, where ν = 0.4 (polypropylene floes) and 0.3
(pvc) are typical values of Poisson’s ratio.

The velocity potential is expanded as

φ = φI + φD − iω
∞∑

j=1

ξma
j φR

j (2)

where φI is the incident wave potential with ampli-
tude a. The sum of the incident wave and diffraction
potentials, φI + φD, is the solution of the problem in
which the floe is held in place, i.e. equations (1a–d)
with ξma

j = 0 (j = 1, 2, . . . ). The radiation poten-

tials, φR
j (j = 1, 2, . . . ) are solutions of the problems

in which the floe oscillates in one of its degrees of
freedom with unit amplitude, i.e. equations (1a–d)
with ξma

i = δij (i = 1, 2, . . . ). The diffraction and ra-
diation potentials are calculated by using a Green’s
function to convert the boundary value problems to
integral equations, which are solved numerically via
a constant panel method (Meylan, 2002).

A linear system for the modal weights, ξma
j , is ob-

tained by applying the dynamic coupling condition
(1e) to the expanded velocity potential (2) and tak-
ing inner-products with respect to the subset of the
modes defined by Λ. The system is expressed is

(
K + C− ω2M− ω2A(ω)− iωB(ω)

)
ξma = f(ω).

Here K, C and M are the stiffness, hydrostatic-
restoring and mass matrices:

K = dβλ4
jc, M = γI and C = I,

where d. . . c denotes a diagonal matrix and I is the
identity matrix. The real matrices A and B are
known as the added-mass and damping matrices, re-
spectively, and are defined element-wise by

ω2Aij + iωBij =
ω2

g

∫∫

Ω
φR
j (x, 0)wi(x) dx.

The forcing vector, f , is defined by

fj =
iω

g

∫∫

Ω

(
φI(x, 0) + φD(x, 0)

)
wj(x) dx.

The system is solved for the modal weights, which
are contained in the vector ξma.

Results

Figure 3 shows linear-model predictions of the mag-
nitudes of the dominant modes and values calcu-
lated from the experimental data. The magnitudes
of the modal amplitudes are scaled with respect to
the incident amplitude, a. Results shown are for the
polypropylene floes, which experience stronger over-
wash. The corresponding results for the pvc floes
are consistent.

The experimental data indicate the floe’s motion
is, essentially, linear, i.e. the modal weights scale
with the incident amplitude. Small discrepancies
are notable for certain cases, for example, the 1 s
period, 0.08 steepness incident waves for a 10 mm
thick polypropylene floe. However, no consistent de-
pendence is evident in those cases, and experimental
errors are a probable cause of the discrepancies.
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Figure 3: Comparisons of scaled modal weight mag-
nitudes extracted from experimental data (triangles)
and predicted by theoretical model for polypropy-
lene floes (black circles). Incident steepnesses are:
ka = 0.04 (blue, triangles down); 0.08 (green, up);
0.1 (magenta, right); and 0.15 (red, left).

The model is able to capture the magnitudes of
the modal weights accurately. The model predic-
tions are marginally more accurate for the thinner
floes. Note that the logarithmic scale used to dis-
play the results emphasises errors for modal weights
with small magnitudes. The model-data agreement
found indicates that nonlinear phenomena inherent
in wave-floe interactions, in particular, overwash, but
also slamming and drift, have only a negligible effect
on flexural motions.

Overwash model

The linear model is extended to a nonlinear model
that incorporates overwash, by assuming:

(i) floe motions are governed by linear theory;

(ii) the height of the wave above the floe edges and
its horizontal velocity forces overwash; and

(iii) overwash does not influence the surrounding
wave field.
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The model is two-dimensional (one horizontal dimen-
sion and one vertical dimension). Figure 6 shows an
example snapshot of motions predicted by the model.

floe

Figure 4: Overwash model: overwash fluid surface
(green) and surrounding fluid surface (blue).

The overwashed fluid is modelled by the shallow-
water equations, which, in conservative form, are

(h)t + (hu)x = 0. (3a)

and (hu)t + (hu2 + 1/2 ∗ gh2)x = 0. (3b)

Here h(x, t) is the depth of the overwashed fluid,
u(x, t) is the depth-averaged horizontal fluid veloc-
ity. Equations (3) account for the motion of the floe
beneath the fluid. They are solved numerically us-
ing the finite volume method outlined in Kurganov
& Tadmor (2000) and Kurganov et al. (2001) for
spatial discretisation in conjunction with a total
variation diminishing Runge-Kutta method for time
stepping. The numerical scheme accurately resolves
the bores produced by the shallow-water equations
which is evident in figure 6.
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Figure 5: Comparisons of model overwash pre-
dictions (blue circles) with experimental data (red
squares) for 5 mm thick polypropylene floes.
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Figure 6: As in figure 5 but for a 10 mm thick floe.

Figures 5–6 show example comparisons of model
predictions of the overwash depth mean and stan-
dard deviation at the centre of the floe and values
calculated from the experimental data. Results are,
again, for polypropylene floes.

In general:

• overwash becomes deeper as incident waves be-
come steeper and the incident period increases;

• and overwash tends to be deepest for the thin-
ner floes.

In terms of the model-data agreement:

• the model tends to slightly overestimate the
mean depth and underestimate the standard
deviation;

• the model is marginally more accurate for the
polypropylene floes; and

• the model is least accurate for deep overwash
(greater than approximately 5–6 mm), presum-
ably because the model assumptions are no
longer valid in the deep overwash regime.

Summary

1. A linear model accurately predicts the motions
of a model floe induced by regular incident
waves.

2. A relatively simple model, in which overwash
is forced by the linear model, predicts mean
overwash depth with pleasing accuracy.
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Highlights:

• Radiation problem for a cylinder submerged in the fluid with a finite elastic plate is solved in two ways:
Wiener-Hopf technique and matched eigenfunction expansions.
• The influence of a finite patch of ice-free water in an ice sheet on the hydrodynamic characteristics of oscil-
lating cylinder is investigated.

1. Introduction

The linear 2-D time-harmonic water-wave problem de-
scribing small oscillations of a horizontal cylinder is
considered for two classes of a hydroelastic system. The
fluid surface is either open, except in a finite region
where it is covered by a thin-elastic plate, which rep-
resents an ice floe, or covered by two semi-infinite thin
elastic plates with different properties, except in a fi-
nite patch of ice-free water (polynya). In both cases,
the fluid domain is of infinite horizontal extent and fi-
nite depth.

Radiation of waves by a cylinder submerged in fluid
having mixed boundary conditions on the upper sur-
face were studied in [1,2] for a floating semi-infinite
elastic plate and in [3,4] for two semi-infinite elastic
plates connected by the vertical and flexural rotational
springs as a model of a partially frozen crack in ice
sheet. These problems were solved by the method of
matched eigenfunction expansions for the velocity po-
tentials. The interaction of a submerged body with a
floating elastic platform of finite length was considered
by Hermans [5] using the Green’s function method.

In this paper, Hermans’s problem is solved by
two different methods: Wiener-Hopf technique and
matched eigenfunction expansions. Wave generation
by an oscillating submerged cylinder in the presence
of a polynya is studied only by using the method of
matched eigenfunction expansions. The hydrodynamic
load and the amplitudes of vertical displacements of the
free surface and elastic plates are calculated.

2. Mathematical formulation

The problem is analyzed in 2-D Cartesian coordinate
system with the x-axis directed along the undisturbed
mean water surface perpendicular to the cylinder axis,
and the y-axis pointing vertically upwards. The fluid is
assumed to be inviscid and incompressible, its motion
is irrotational. The depth of fluid is equal to H. The
plates are in contact with the water at all points for
all time. The plate drafts are neglected. It is assumed
that the edges of the plates are free.

The wave motions are generated by the small oscil-
lations of submerged rigid body with wetted surface S
at a frequency ω with amplitudes ζj (j = 1, 2, 3) for the
sway, heave and roll problems, respectively. Under the
usual assumptions of linear theory, the time-dependent
velocity potential can be written as

Φ(x, y, t) = ℜ
[
iω

3∑

j=1

ζjϕj(x, y) exp(iωt)

]
, (1)

where ϕj(x, y) are complex valued functions and t is
time. The vertical displacements of the free surface
and elastic plates W (x, t) can be determined from the
relation

∂W

∂t
=

∂Φ

∂y

∣∣∣∣
y=0

.

By analogy with representation (1), the expression for
W (x, t) can be written in the form:

W (x, t) = ℜ
[ 3∑

j=1

ζjwj(x) exp(iωt)

]
,

wj(x) =
∂ϕj

∂y

∣∣∣∣
y=0

. (2)

The radiation potentials ϕj(x, y) satisfy the
Laplace equation in the fluid domain

∇2ϕj = 0 (−∞ < x < ∞, −H < y < 0) (3)

except in the region occupied by the cylinder.
The boundary condition on the closed smooth con-

tour of the submerged body S has the form:

∂ϕj

∂n
= nj (x, y ∈ S). (4)

Here, n = (nx, ny) is the inward normal to the contour
S. The notations

n1 = nx, n2 = ny, n3 = (y−y0)n1−(x−x0)n2 (5)

are used where x0, y0 are the coordinates of the center
of the roll oscillations.
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The boundary condition at the bottom is

∂ϕj

∂y
= 0 (−∞ < x < ∞, y = −H). (6)

In the far field a radiation condition should be imposed
that requires the radiated waves to be outgoing.

Finite plate. The upper boundary of the fluid
is covered partly with an elastic homogeneous plate
(0 < x < L, y = 0) with mass density ρ and thickness
d. The free surface condition in the open water regions
is given by

∂ϕj

∂y
− ω2

g
ϕj = 0, (x < 0, x > L, y = 0), (7)

where g is the acceleration due to gravity.
On the elastic covered surface, the radiation po-

tentials ϕj(x, y) satisfy the boundary condition in the
form

(
D

∂4

∂x4
− ω2M + gρ0

)
∂ϕj

∂y
− ρ0ω

2ϕj = 0 (8)

(0 < x < L, y = 0),

where D = Ed3/[12(1−ν2)], M = ρd, E is the Young’s
modulus for the elastic plate, ν is its Poisson’s ration,
ρ0 is the fluid density. At the plate edges, free edge
conditions require vanishing the bending moment and
the shear force:

∂3ϕj

∂x2∂y
=

∂4ϕj

∂x3∂y
= 0 (x = 0+, L−, y = 0). (9)

Polynya. Two semi-infinite elastic plates Λ1 (x <
0) and Λ2 (x > L) float on water surface. The left
plate Λ1 and the right plate Λ2 have the characteris-
tics E1, d1, ρ1, ν1 and E2, d2, ρ2, ν2, respectively.
The boundary conditions for the fluid in contact with
the plates Λ1 and Λ2 are similar (8) using the corre-
sponding values of E, d, ρ, ν. Free edge conditions (9)
are fulfilled at (x = 0−, L+, y = 0). The free surface
condition (7) takes place at (0 < x < L, y = 0).

3. Method of solution.

In solving the problem (3), (4), (6)-(9), for each of the
body oscillation modes we introduce an unknown mass
source distribution σj(x, y) over the contour S. The
radiation potentials at any point of fluid can be repre-
sented in the form

ϕj(x, y) =

∫

S

σj(ξ, η)G(x, y; ξ, η)ds. (10)

The Green function G(x, y; ξ, η) satisfies the following
equation

∇2G = 2πδ(x − ξ)δ(y − η)

with the boundary conditions analogous to (6)-(9) and
the radiation condition in the far field, and δ is the
Dirac delta-function.

We describe briefly the determination of the Green
function for the case of finite plate by the Wiener -

Hopf technique. The characteristic length l = g/ω2

and dimensionless variables and parameters are used:

x′ =
x

l
, y′ =

y

l
, t′ = ωt, H ′ =

H

l
, L′ =

L

l
,

β =
D

ρ0gl4
, γ =

M

ρ0l
.

Below, the primes are omitted. Then boundary condi-
tions on the upper surface of the fluid (7), (8) have the
form

Ω1(ϕj) ≡ ∂ϕj

∂y
−ϕj = 0, (x < 0, x > L, y = 0), (11)

Ω2(ϕj) ≡
(

β
∂4

∂x4
+ 1 − γ

)
∂ϕj

∂y
− ϕj = 0, (12)

(0 < x < L, y = 0).

Two different expressions for the same Green func-
tions are used. For the first one we seek the Green
function in the form

G(x, y; ξ, η) = G0(x, y; ξ, η) + G1(x, y; ξ, η),

where G0 is the Green function for the fluid with the
infinite free upper surface and the condition of non-
flow on the bottom, G1 is the added function to ful-
fil the conditions (8), (9) on the plate. This expres-
sion is convenient when the points (x, y) and (ξ, η) are
at short distance, because the logarithmic singularity
is expressed evidently. For the determination of the
function of G1 we obtain the same problem (3), (6),
(9), (11), (12), only in the condition (12) the right side
is non-zero function. This problem is solved by the
Wiener - Hopf technique in [6]. For other case we ex-
press the Green function in the form of series. We use
the Fourie transformation on x

Ψ+(α, y) =

∞∫

L

eiα(x−L)G(x, y)dx, (13a)

Ψ−(α, y) =

0∫

−∞

eiαxG(x, y)dx, (13b)

Ψ1(α, y) =

L∫

0

eiαxG(x, y)dx, (13c)

Ψ(α, y) = Ψ−(α, y) + Ψ1(α, y) + eiαLΨ+(α, y),

∂2Ψ/∂y2 − α2Ψ = 2πeiαξδ(y − η). (13d)

The solution of Eq. (13d) with the condition (6) on
the bottom has the form

Ψ(α, y) = C(α)Y (α, y)+

2π

α
eiαξ

{
sinh(α(y + H)) cosh(α(η + H)) (y > η)
cosh(α(y + H)) sinh(α(η + H)) (y < η),

Y (α, y) =
cosh(α(y + H))

cosh(αH)
.

206



We denote D±(α), D1(α) the integrals of the type
(13a-c) where the function G is replaced by the expres-
sion Ω1(G) and F±(α), F1(α) are analogous integrals
where G is replaced by Ω2(G). Further the functions
D(α) and F (α) are introduced:

D(α) = D−(α) + D1(α) + eiαLD+(α),

F (α) = F−(α) + F1(α) + eiαLF+(α),

D(α) =
2π

α
eiαξ[α cosh(αH) − sinh(αH)]×

cosh(α(η + H)) + C(α)K1(α), (14)

F (α) =
2π

α
eiαξ[(βα4 +1−γ)α cosh(αH)− sinh(αH)]×

cosh(α(η + H)) + C(α)K2(α). (15)

From the conditions (11) and (12) we have D−(α) =
D+(α) = 0, D1(α) = D(α), F1(α) = 0.

We express C(α) from (14) and substitute to (15).
After transformations we obtain

F−(α) + eiαLF+(α) =

[
2πeiαξ(γ − βα4)Y (α, η) + D1(α)K2(α)

]
/K1(α).

This equation is solved in a similar manner as in
[6]. The solution of this equation and expressions
for the Green function are detailed in [7]. An alter-
native method of determining the Green function is
the method of matched eigenfunction expansions which
was used in [1-4].

Using boundary condition (4) on the body surface
S, we obtain the integral equation for the functions
σj(x, y)

πσj(x, y) −
∫

S

σj(ξ, η)
∂G

∂n
ds = nj .

Once the distribution of the singularities σj(x, y) has
been calculated, we can determine the radiation poten-
tials (10). The vertical deflections of the free surface
and elastic plates can be determined from (2):

wj(x) =

∫

S

σj(ξ, η)
∂G

∂y

∣∣∣∣
y=0

ds.

The radiation load acting on the oscillating body is
determined by the force F = (F1, F2) and the moment
F3 which, without account for the hydrostatic term,
have the form

Fk =

3∑

j=1

ζjτkj (k = 1, 2, 3),

τkj = ρω2

∫

S

ϕjnkds = ω2µkj − iωλkj

where µkj and λkj are the added mass and damping
coefficients, respectively. There is the symmetry con-
dition τkj = τjk. Reciprocity relations between the
damping coefficients and wave characteristics in the far

field agree with the case of infinitely extended free sur-
face (see, e.g., [8]) for a finite elastic plate and with the
case of a crack between two semi-infinite elastic plates
[3,4] for a polynya.

4. Numerical results

The calculations are performed for the elliptic contour
S : (x − c)2/a2 + (y + h)2/b2 = 1, where a and b
are the major and minor axes of the ellipse, respec-
tively, and the coordinates of its center are equal to
x = c, y = −h (h > 0). Rotational oscillations oc-
cur with respect to the point x0 = 0, y0 = −h in (5).
The following input data are used: E = 5GPa, ρ =
922.5kg/m3, ν = 0.3, ρ0 = 1025kg/m3, d = 2m, b =
10m, a = h = 20m, H = 500m.

Figures 1, 2 represent dimensionless values of the
coefficients of hydrodynamic load as functions of di-
mensionless frequency b/l = ω2b/g:

µ∗
kj =

µkj

πρ0b2
, λ∗

kj =
λkj

πρ0ωb2
,

µ∗
k3 =

µk3

πρ0b3
, λ∗

k3 =
λk3

πρ0ωb3
(k, j = 1, 2),

µ∗
33 =

µ33

πρ0b4
, λ∗

kj =
λkj

πρ0ωb4
.

More detailed results for the hydrodynamic load on
the cylinder and the amplitudes of the displacements
of the ice sheets and the free surface will be presented
at the Workshop.
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Figure 1: The hydrodynamic load of a cylinder beneath an ice floe at c/b = 5. Curves 1 and 2 correspond to solutions

obtained at L/b = 15 by Wiener-Hopf technique and matched eigenfunction expansions, respectively. Curve 3 shows

the results for a semi-infinite ice sheet [2].

Figure 2: The hydrodynamic load of a cylinder beneath a polynya between two ice sheets with identical properties.

Curves 1 and 2 correspond to L/b = 6, c/b = 3 and L/b = 10, c/b = 5, respectively. Curve 3 shows the results for

infinitely extended free surface.
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1. Introduction 

Deep water structures are usually positioned in sea 

by mooring lines, which perform strong nonlinearity. 

The structure system usually has a very low natural 

frequency, and can be inspired lager reciprocating drift 

motion by nonlinear wave force at low frequency.  

To deal with the problem due to mooring 

nonlinearity, Sarkar and Eatock Taylor (1998, 2001) 

proposed a two-scale perturbation method to 

investigate the interactions of nonlinear mooring 

stiffness and wave hydrodynamics, and established a 

frequency domain perturbation method for this 

problem. 

The nonlinear problem is more widely studied in 

the time domain, and coupling analysis must be carried 

out for wave interaction with floater and mooring 

system. As the total time domain coupling analysis is 

complex and tremendous, hydrodynamic load is often 

computed by a perturbation expansion method (as Yang 

et al (2012)), or by Cummins method based on the 

frequency domain perturbation expansion (as Kim et al 

(2013)).  

Perturbation method is powerful when body 

motion is not very large. However, in deep water the 

floater may oscillate with an amplitude larger than 

wave lengths. At this condition, the traditional 

perturbation expansion is obviously not correct. The 

most obvious disadvantages of the present perturbation 

method are that the phase change of the wave load due 

to body motion and the change of the encountering 

frequency of incident waves are unable to be 

considered. To solve those problems, a time domain 

twice expansion method is proposed in this study. The 

displacement of floater motion is divided into two part: 

one is a large amplitude motion with low frequency, 

and the other is an oscillation about the low frequency 

motion at higher frequency. The large amplitude 

motion at low frequency is obtained by numerical 

filtering of body response with progress of the 

simulation. This position is called as the instantaneous 

mean position. The smaller amplitude motion about the 

mean position is computed by perturbation expansion 

method. Thus, it can be guaranteed that the perturbation 

expansion factor is always smaller.   

 

 

The numerical filtering is implemented by a 

wavelet transform method in this study, and a HOBEM 

is applied to calculate the wave field at each time step. 

At each time step, the overall body and free surface 

meshes vary with the low frequency movement, but the 

relative location of the computational grids is invariant. 

Recursive interpolation is used to get the physical 

values for those nodes inside the free surface mesh, and 

Taylor series expansion is used for the boundary nodes 

after the body and the mesh have translated to a new 

position. At the new position, computation is similar 

with that for wave interaction with a body moving in a 

steady current.  

2. Definition of coordinate systems and 

decomposition of body motion 

To describe the motion of a floating body, three 

coordinate systems (Fig. 1) are defined. The first is an 

earth-fixed coordinate system  at the initial 

equilibrium position of the body, the second is an 

instantaneous mean coordinate system 

translating horizontal with the body at low frequency 

and the third is a body-fixed coordinate system 

. The origins of the coordinate systems  

and  are at the still water surface, and the  

and the  axes measure vertically upward.  

 
Fig. 1 Definition sketch of coordinate systems 

 

When the body is undergoing a large drift motion, 

the second coordinate system will be far away from the 

first one. For any point on the body, the coordinate 

vector X in the earth-fixed coordinate system can be 
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represented by the coordinate vector 𝑿′ in the body-

fixed coordinate system and it motion components in 

the following relationship:  

( ) ( )t t X X'              (1) 

and  

0( ) ( ) ( ( ( ) ( ))t t t t     X X' X'      (2) 

where  is the displacement of the instantaneous 

mean coordinate system  with only the 

horizontal translation, 𝑿𝟎
′  is the body rotation center,  

ξ  and   are the body translation and rotation 

components relative to the instantaneous mean 

coordinate system.  will be obtained by a 

numerical filtering method with the simulation of body 

response, which will be introduced in the next section.  

Following the Stokes expansion procedure, we 

expand the body motion relative to the instantaneous 

mean position  into perturbation series as 

follows: 

  
( 1 ) 2 ( 2 )( ) ( , ) ( , )t t t       X X         (3) 

(1) 2 (2)( ) ( , ) ( , )t t t     X X        (4) 

The superscripts (1) and (2) indicate separately the 

wave components at the first-order and the second-

order of ε respectively.  

In the same way, the velocity potential  and wave 

elevation  can be expanded as 
(1) 2 (1)( , ) ( , ) ( , )t t t      X X X       (5) 

(1) 2 (1)( , ) ( , ) ( , )t t t      X X X       (6) 

at the instantaneous mean positions by the parameter .  

Then the Stokes perturbation expansions are 

substituted into the Laplace equation and the 

corresponding boundary conditions are expanded about 

the still water surface and the instantaneous mean body 

surface. The boundary value problems at the order of ε 

and ε2 in the perturbation expansions can be established. 

As the instantaneous mean coordinate system 

moves with very low frequency, the acceleration of the 

system is a higher order term of ε, and the system can 

be approximated as an inertial system. Thus, the 

governing equation, boundary conditions, wave force 

and motion equation are the same as in the earth-fixed 

coordinate system, and computation can be done in the 

same way as for a steady moving body in waves (Liu et 

al, 2012). 

3. Computation of mean position and mesh 

translation  

Deep water moored platforms may move to far 

distances from their initial positions. For accurate 

computation, an instantaneous mean position is needed 

to get and carries out perturbation expansion about the 

position. According to the time sequence of the motion 

response simulated, we use a wavelet transform to get 

the mean position of the motion response (Chritopher 

and Gilbert, 1998). 

Assuming that the time sequence of the motion 

response is Ξ(t) (0, t), and is progressing with the time, 

the continuous wavelet transform of a discrete 

sequence is defined as the convolution of Ξ with a 

scaled and translated version of Ψ0(η). By the 

convolution theorem, the wavelet transform is the 

inverse Fourier transform of the product 
1

i*

0

ˆ ˆ( , ) ( ) k

N
n t

k

n

WT s t s e
 






             (7) 

In the actual application of wavelet transform, the 

selection of mother wavelet function has a crucial 

impact on the analysis results. For the same problem, 

the analysis results may differ very much if different 

mother wavelets are chosen. In the present analysis, the 

instantaneous mean displacement  is not needed 

to be unique, but only the total displacement  to 

be needed unique. The study in this paper is based on 

the Morlet wavelet as the mother wavelet. Since the 

wavelet transform is a band pass filter with a known 

response function, it is possible to reconstruct the 

original time series using either deconvolution or the 

inverse filter.  
1/2

1/2
00

Re{ ( , )}
( )

(0)

J
j

j j

WT s tj t
t

C s



 


            (8) 

where Cδ is the reconstruct coefficient. For the mean 

position of the displacement time series, there is no 

need to evaluate all the scales. The small scales just 

should be left out and the expected results 

( ( ), ( ))x yX t X t  will be obtained. 

When the Morlet wavelet is selected as the mother 

wavelet, the value of reconstruct coefficients Cδ and 

ψ0(0) will be 0.776 and π-1/4.  
Let the body surface mesh and free surface mesh 

drift horizontally with the body mean displacement. 

When the meshes moving to new mean positions, the 

right-hand side of integration equation, i.e. the known 

quantities, would be evaluated based on the values at 

the last time step. The wave elevation also needs to 

conduct recursive calculation by the free surface 

conditions. Due to the meshes moving as a whole, the 

grid shape will not change, so that the velocity 

potentials and wave elevations at the new time step can 

be determined by interpolation for those points inside 

the free surface meshes or by using Taylor expansion 

for those points at the boundaries of the free surface 

mesh as 
(1) (1)

(1) (1)

0 0

2 (1) 2 (1)
(2) (2) 2 2

0 0 2 2

2 (1) (2) (2)

( , ) ( , )

1 1
( , ) ( , )

2 2

                 (8)
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where f indicates scattered potential ϕs or scattered 

wave evaluation ηs at the free surface.  

4. Example analyses 

To validate the present method, a forced moving 

truncated cylinder in monochromatic waves and a free 

moving truncated cylinders in bichromatic waves are 

considered.     

4.1. Forced motion in waves 

The first evaluation is about forced oscillation of 

a truncated cylinder in monochromatic waves. The 

cylinder has a radius of 1m and a draft of 0.5m in a 

water depth of 1.5m. The incident waves have an 

amplitude of A=0.1m with a frequency of 

𝜔=2.98rad/s (k=0.6m-1), and propagating in the x-

direction.  

The cylinder is under a forced dual-frequency 

motion: 

1 1 1 2 2 2sin( ) sin( )x A t A t           (9) 

where A1=0.4m, ω1=2.98rad/s (k1=1.0m-1) and 
φ1=45° are the amplitude, frequency and initial phase 

of the higher-frequency small-amplitude motion, and 

A2=2.0m, ω2=0.19rad/s (k2=0.05m-1) and φ2=0° are 
the amplitude, frequency and initial phase of the lower-

frequency large-amplitude motion. 

The wave exciting force on the moving body is 

decomposed into the components due to the incident 

potential and the scattered potential, which are defined 

as  and . Fig. 2 and 3 how the comparison of the 

first order and the second order forces by the present 

method with the original expanded method in the earth-

fixed coordinate system. From Fig. 2, it can be seen that 

there exists obvious phase difference between the 

incident wave forces from the two methods. When 

body mean position is positive, the phase of the 

incident wave force obtained by the present method is 

later than that by the original one, as the incident waves 

reach the present body position later than the original 

position. In turn, when the mean position is negative, 

the phase of incident wave force obtained by the 

present method is earlier than that by the original 

method. This conclusion is consistent with the actual 

situation. While to the wave force generated by the 

scattered potential, the phases of wave forces obtained 

by the two methods are the same, but the envelop 

shapes are different. The present results fluctuate 

around the original ones, and the oscillating period is 

equal to the period of the low frequency forced motion. 

The difference is from the motion velocity of the 

instantaneous mean position which is neglected in the 

original method.  

The total force is the summation of the two parts. 

It was observed the total forces from the two methods 

are quite different. The amplitude of the total force 

from the original method is steady and uniform, but the 

force amplitude from the present method oscillating 

with the time. When body moves to a position where 

incident wave force and scattered wave force have the 

same phase, the total force from the present method are 

much bigger than that from the original ones. 

Oppositely, the present results are smaller than the 

original ones. 

The second-order total wave force contains more 

complex components. There are more differences 

between the present and the original methods. 

 

 
Fig. 2 Comparison of the first-order wave force 

 

  
Fig. 3 Comparison of the second-order wave force 

 

4.2. Free motion in waves 

It is seen that the present method gets quite 

different results for a body undergoing a large 

amplitude motion from that by the original method. 

Through analysis and comparison, it is believed that the 

present method is more reasonable and more suitable 

for realistic conditions.  

This example shows the analysis for a free moving 

truncated cylinder moored by linear elastic constrain 

under the action of bichromatic waves. The cylinder 

has a radius of 1.0m and a draft of 3.0m in a water depth 

of 10.0m. A linear spring is arranged in the surge 

direction to constrain the motion of the cylinder and the 

stiffness of the spring is 4×102N/m. The natural 

vibration frequency of the system is about 0.151rad/s. 

The parameters of the bichromatic waves are shown in 

35 40 45 50 55

-2000

-1500

-1000

-500

0

500

1000

1500

2000

35 40 45 50 55

-6000

-4000

-2000

0

2000

4000

6000

(a) First-order scattered wave force

F
(1

)
w

(N
)

t (s)

 Original

 Present

(a) First-order incident wave force

F
(1

)
s

(N
)

t (s)

 Original

 Present

35 40 45 50 55

-90

-60

-30

0

30

60

90

35 40 45 50 55

-6000

-4000

-2000

0

2000

4000

6000

F
(2

)
w

(N
)

t (s)

 Original

 Present

(a) Second-order incident wave force

F
(2

)
s

(N
)

t (s)

 Original

 Present

(b) Second-order scattered wave force

211



 

 

Tab. 1 as follow. 

 
Tab. 1 Parameters of the bichromatic waves 

Items Wave 

Amplitude(m) 

Wave 

Frequency(rad/s) 

Wave 

Direction(°) 

A1 A2 ω1 ω2 θ1 θ2 

Value 0.20 0.18 2.20 2.40 0.00 0.00 

 

From the above table, we can see that the 

difference frequency of the bichromatic waves is 

0.2rad/s that is in the same order of the natural 

frequency of the system.  

Fig. 4 shows the comparison of the wave forces 

from the present and the original methods. Fig. 5 shows 

the comparison of the surge displacements from the 

present and the original methods. From Figs. 4 and 5, it 

can be seen that the first order wave forces and the body 

motion from the two methods are almost the same, as 

the total surge displacement is much less than the wave 

lengths. The second-order wave forces from the two 

method exist some differences, and difference between 

the second order displacements is very obvious. It can 

also be seen that the second order displacement is much 

larger than the first order displacement as the difference 

frequency of the bichromatic waves is close to the 

natural frequency of the moored cylinder.  

 

 
Fig. 4 Comparison of wave forces  

 

 
Fig. 5 Comparison of surge displacement 

5. Conclusion 

A twice expansion method in the time domain is 

developed in this study. The present method firstly gets 

the instantaneous mean position with the simulation by 

filtering the total motion response, and then carries out 

perturbation expansion about the mean position to 

assure the perturbation expansion factor is always 

smaller. The present method can deal with the problems 

of the phase change of incident wave action with the 

body motion and the change of encountering frequency 

of the incident waves with body moving velocity.  

Two numerical examples are carried out, and 

comparisons are made between the present and the 

original methods. One is the forced motion of a 

truncated cylinder with dual-frequencies in a 

monochromatic waves, and the other is the free motion 

of a moored truncated cylinder in a bichromatic waves. 

Comparisons show that when the displacement of the 

body motion is large, both the first order and the second 

order force are different for the two methods, and when 

the displacements are smaller comparing to wave 

lengths the first order forces and displacements are 

almost the same, but the second order responses still 

have obvious difference. 
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Highlights

� Near-motion-trapping in heave is demon-
strated experimentally;

� Tuned and detuned geometries tested;

� Range of radiation damping values is appar-
ent from body motion;

� Small differences in damping apparent in
analysis of radiated field.

1 Introduction

Trapped modes and near-trapped modes have
been of considerable interest in water-wave prob-
lems for some time; sloshing trapped modes
around fixed structures were found by Callan et al.
[1991] and many subsequent authors, while slosh-
ing near-trapped modes were found in arrays of
vertical circular cylinders by Evans and Porter
[1997]. Motion-trapped modes, in which a struc-
ture moves with a local oscillation of the free sur-
face, but no oscillation in the far-field, were dis-
covered by McIver and McIver [2006]. A previous
contribution to this workshop, subsequently pub-
lished as Wolgamot et al. [2014], identified a struc-
ture which approximated motion-trapping charac-
teristics to high accuracy: 8 heaving truncated cir-
cular cylinders, evenly spaced around the circum-
ference of a circle. The theoretical investigations
above (and other similar works) have used poten-
tial flow theory.

Experimental investigations of sloshing trapped
modes were undertaken by Cobelli et al. [2011],
while various authors have investigated sloshing
near-trapped modes experimentally. However, no

attempt has been made to investigate motion-
trapped (or near-trapped) modes experimentally
to the authors’ knowledge. Hence this paper de-
scribes a small experimental campaign to investi-
gate the 8 cylinder structure referred to above.

2 Experimental methods

As the theory of motion-trapped modes assumes
an ideal fluid it was desirable to minimise viscous
effects in the experiments. To this end, the 8
cylinder structure investigated had hemispherical
ends on each cylinder - the predicted trapping be-
haviour was not significantly altered compared to
the truncated cylinders, though the trapping fre-
quency changed as a result of the change in added
mass. Each cylinder was fabricated from 160mm
dia. PVC pipe, with a (clear) plastic hemisphere
of the same diameter attached to the bottom. The
cylinders were attached by radial spokes to a cen-
tral hub, and could be attached at different posi-
tions along the spokes to change the radius of the
ring, while adjusting the ballast in the cylinders
adjusted the draft. Water was used as ballast -
no internal sloshing was observed so there was no
need to attempt to suppress such oscillations.

Tests were carried out in the Coastal Basin at
Plymouth University’s COAST Laboratory. This
facility is a rectangular basin 15.5m x 10m, with
an array of piston-type wavemakers (switched off
throughout testing) and a beach on opposite short
sides and 0.5m water depth during testing. The
model was suspended from a beam across the tank
(with the hemispherical ends completely immersed
in all cases) and then released using a latch sys-
tem. The motion of the model was tracked using
a 6 DOF motion tracking system and the motion
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of the free surface measured by wave gauges at
seven points (both systems sampling at 128 Hz).
The wave gauge locations are shown in Figure 1;
Figure 2 is a photo of the experimental set-up.

1

2

3

4

5

6

7

Figure 1: Layout of wave gauges WG1-WG7 (in-
dicated by numbered crosses) relative to the cylin-
ders for ring radius 5a. Note that the wave gauges
were not moved when the ring radius was changed.

Figure 2: Experimental set-up showing model and
wave gauges attached to the support beams.

The near-motion-trapped geometry had a ring
radius of 5a, where a is the cylinder radius, and an
equilibrium draft of 2.5a. In addition to this tuned
case, a number of de-tuned cases, with different
ring radii and drafts, were tested in the same way.
The test geometry matrix is given in Table 1.

3 Results

One problem affecting both body motion and wave
gauge data is reflection from the sidewalls of the
tank. Based on the wave gauge readings it is esti-
mated that the reflected waves from the sidewall
reached the model about 5 seconds after release.

XXXXXXXXXXXDraft
Radius

4a 5a 6a

2a 0.5a

2.5a
0.5a 0.5a 0.5a
0.75a 0.75a 0.75a
a a a

3a
0.5a
0.75a
a

3.5a
0.5a 0.5a
0.75a 0.75a

Table 1: Test matrix of different 8 cylinder con-
figurations tested. Entries of the table correspond
to initial release height. The near-motion-trapped
mode occurs at draft 2.5a and ring radius 5a.

3.1 Model heave

The model heave motion was found to behave lin-
early - no higher harmonics were evident when the
frequency content was examined and the time se-
ries for different release heights, scaled by the ini-
tial value, matched extremely well (as seen in Fig-
ure 3). This behaviour suggests that nonlinear vis-
cous damping of the model was negligible and that
the viscous damping present can be considered lin-
ear. The different geometries were predicted to
exhibit a range of radiation damping values - as
indicated in Table 2.
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Figure 3: Heave oscillations of model at three dif-
ferent release heights, normalised by initial release
height (to match nominal 40mm, actual release
43mm) to indicate linear scaling.

A number of methods were used to investigate
the damping of the model. Dramatically differ-
ent behaviour was observed for the most and least
damped cases, as shown in Figure 4. However,
it was difficult to differentiate between the decay
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XXXXXXXXXXXDraft
Radius

4a 5a 6a

2a 2.7

2.5a 1.9 0.0018* 0.9

3a 3.0

3.5a 29 10

Table 2: Predicted linear radiation damping of the
various geometries tested (kg/s). *Note that this
geometry is still slightly mistuned - at a frequency
' 0.002 Hz higher the predicted damping is more
than 2 orders of magnitude lower, though this has
little relevance experimentally.

rates of the models with small radiation damp-
ing, where the differences were masked by viscous
damping. No simple theoretical way of accurately
calculating the viscous damping to eliminate it
from the problem could be found, but further anal-
ysis will be reported at the workshop. Figure 5
illustrates the behaviour of the different models
by means of a plot of the predicted and measured
natural periods and damping coefficients for each
of the geometries given in Table 2. The damping
is shown on a log scale. Note also in this figure
the generally good agreement between predicted
and measured oscillation period.
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Figure 4: Measured time series of model oscilla-
tions in heave for the tuned geometry and geome-
try with the highest radiation damping.

3.2 Free surface elevation

The free surface elevation data was filtered in the
frequency domain to remove the signal due to
vibrations of the supporting beam (which sup-
ported both the model and wave gauges). As
this beam vibration frequency occurred at approx-
imately 5.5Hz, much higher than the wave fre-
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Figure 5: Predicted and measured model oscil-
lation period and damping. The arrow indicates
the predicted values for the tuned case (third from
left).

quencies, this was straightforward. In contrast
to the model heave data, and as expected, higher
harmonics were found to be present in the free sur-
face elevation data. The radiated field data dis-
tinguished between the near-motion-trapped case
and the other cases with moderately low damping.
This is shown in Figure 6, where the time series
and the Fourier transformed data (calculated us-
ing 212 points, i.e. 32 seconds, commencing at
1.5 seconds after release) are shown for the near-
motion-trapping geometry and the geometry with
the 2nd lowest radiation damping (ring radius 6a,
draft 2.5a).

Figure 6a shows the time series of the free sur-
face elevations for the tuned case. It may be seen
that in the tuned case, after the initial transient
has passed, there is negligible radiation at linear
frequencies outside the array (WG3) despite the
fact that the internal free surface continues to os-
cillate. A comparison of the power spectral den-
sity at the heave frequency for wave gauges 1 and
3 (inside and outside the array) shows a ratio of
almost 103 for the optimised geometry. There is
noticeable radiation at double the linear frequency
and the arrival of reflections at about 5 seconds
may be seen. Figure 6b shows this pronounced
2nd harmonic and the absence of a linear signal
outside the array. In Figures 6c and 6d, by con-
trast, there is a clear linear signal outside the array
which dominates over the 2nd harmonic. It should
be noted that the relative position of WG3 is closer
to the model when the ring radius is increased, but
as WG4 to 7 (omitted here for clarity) show sim-
ilar behaviour this point is not significant.
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Figure 6: (a) time series of free surface elevations for the tuned case (ring radius 5a, draft 2.5a).
WG3BP is band pass filtered to eliminate frequencies outside the range 0.5f1 < f < 1.5f1, where f1 =
peak linear frequency; (b) power spectrum for case (a); (c) time series for ring radius 6a, draft 2.5a;
(d) power spectrum for case (c).

4 Conclusions

Even though viscous damping is present in the
experiments, the behaviour of the near-trapped
mode is retained and is clearly visible: the heave
motion persists for longer, and there is little wave
radiation at the heave frequency after a starting
transient. Further analysis, including fully non-
linear simulations of the experiment and videos
taken during the testing will be presented at the
Workshop.
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Highlights

• The unsteady linearized free-surface condition is implemented within a numerical framework based on the
Reynolds-Averaged Navier-Stokes equations. The target application for the novel solver is the simulation of
ship maneuvering, and in particular, cases in which the fluid viscosity and turbulence are important and the
rudders and propellers are moving.

• The method is more computationally efficient than viscous-flow methods that satisfy the fully-nonlinear free-
surface conditions and is computationally equivalent to a numerical method that solves for a velocity potential
via discretization of the flow domain (not the domain boundary).

• The new solver is validated by comparing with results from other numerical methods and physical experiments
of the waves generated by a heaving catamaran, and the force on the hull of the naval destroyer 5415 moving
with prescribed horizontal-plane motion.

Introduction

This paper discusses the pursuit of simulating the unsteady Reynolds-Average Navier-Stokes (URANS) equa-
tions for problems in which ship-wave interaction and fluid turbulence are both important. The primary
engineering problem of interest is the prediction of the trajectory of a maneuvering ship, although many other
related problems are well suited for analysis with the proposed method, such as ship seakeeping and powering
predictions. The key idea of the method is that state-of-the-art URANS technology can be employed together
with the linearized free-surface conditions to produce a computational tool that is both accurate and efficient
such that the results can be useful within the time constraints of the ship design process.

Prediction of ship maneuvering is challenging due to the complex relationship between the ship motion and
the unsteady manner in which the flow separates (forms a recirculation region) from the body. The physical
process of viscous separation is influenced by the wave system generated by the ship, and has a substantial role on
the flow seen by the propeller and rudder. Thus it is necessary to consider the effects of viscosity and turbulence
for accurate prediction of ship maneuvering. Indeed, methods that neglect viscosity are severely challenged to
predict the force, moment, and trajectory of the ship in a general maneuver. While URANS methods are
capable of simulating maneuvering flows, the computational expense of solving the URANS equations with the
fully nonlinear free-surface boundary conditions is very large, and their use is limited to academic or research
applications [5], and not widely used for industrial benefit. Indeed, the objective of this work is to substantially
reduce the computational burden, by simplifying the algorithm with respect to the free-surface solution, so that
RANS-based maneuvering simulations can be brought into engineering practice more immediately.

Two problems are studied in this abstract to motivate our approach. The first is the prediction of the un-
steady wave generated by a heaving catamaran. This problem has been studied experimentally and numerically
by several authors [1, 2, 3]. Although turbulence is not necessarily important for the model tests, the resonance
behavior of the wave system can be grossly overpredicted by methods that do not rationally account for the
dissipation and transport of energy away from the body. Furthermore, using this problem, the novel URANS
approach is compared to a method in which the linearized problem is solved in terms of a velocity potential.
This grants the opportunity to directly compare computational expense of each approach. It is shown that
the costs are very similar between the two methods. Although the URANS approach has more than three
unknowns (in two spatial dimensions), the bulk of the expense is due to the solution of the pressure variable
that is governed by a partial differential equation that is elliptic in nature, just like the governing equation of
the velocity potential. This implies that for problems in which viscosity and turbulence play an important role,
a breakthrough in accuracy is available for the small incease in expense due to the addition of the primitive
RANS variables.

The second problem studied in this abstract is the prediction of the force on the naval destroyer hull form
DTMB 5415 that is undergoing prescribed horizontal-plane motion. In this problem, the turbulent-boundary
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layer on the body interacts with the unsteady-ship-generated wave system. Model-test results are available for a
setup in which the hull is fitted with bilge keels, but otherwise unappended. Compared to fully nonlinear viscous
flow methods, the linearized free-surface approach offers an extreme advantage in terms of the computational
requirements. The novel method is more efficient for several reasons. First, the domain is inherently smaller
since only the water portion is discretized. Second, the need for highly-resolved cells to capture or track an
interface is eliminated. Instead, relatively large cells can be used, especially far from a body, while still accurately
resolving the first-order wave field.

Numerical Approach

All problems are solved in a earth-fixed Cartesian coordinate system, with z oriented upwards. The linearized
flow domain is below z = 0. The governing equations are solved using the finite-volume method on a discretiza-
tion of the flow domain comprised of non-overlapping polyhedra of arbitrary number of sides. The kinematic
condition for the free-surface elevation is solved using a finite-area method on the linearized free-surface bound-
ary z = 0. The solvers used in this work are developed using the OpenFOAM open-source CFD library.

URANS The URANS equations are solved in the arbitrary-Lagrangian-Eulerian (ALE) form to allow for a

moving grid. The fluid velocity in the earth-fixed coordinate is denoted ~U , and the velocity of the mesh is
~Umesh. The relative velocity is defined as ~Urel = ~U − ~Umesh. The free-surface elevation is represented by η. The
fluid pressure is p, and the effective viscosity is the sum of the molecular and turbulent viscosities µeff = µ+µt.

The conservation of momentum and mass equations are written for each computational cell that has volume V
and is bounded by the surface S with outward normal ~n.

d

dt

∫

V

ρ~U dV +

∫

S

ρ~U ~Urel ·n̂ dS =

∫

V

(−∇ p+ ρ~g) dV +

∫

S

µeff

(
∇~U +∇~UT

)
·n̂ dS and

∫

S

~U ·n̂ dS = 0 (1)

Two fundamental steps are taken to numerically approximate the conservation equations on each cell. The
flow unknowns are interpolated from the cell centers to the cell face centers, and then the surface integrals
are approximated with a mid-point quadrature rule. Both the interpolation and quadrature are second-order
accurate, with upwind-biased schemes used for the interpolation of the convection term and centered schemes
otherwise.

Similarly, the ALE form of the kinematic free-surface boundary condition is used to evolve the free-surface
elevation η via:

∂

∂t

∫

S0

η dS −
∫

l

η~Umesh · n̂ dl =

∫

S0

w dS on z = 0 (2)

where S0 is the portion of the boundary of a computational cell that is adjacent to the plane z = 0, and l is the
contour of this area. The pressure boundary condition is applied according to the linear dynamic free-surface
boundary condition:

p− ρgη = 0 on z = 0 (3)

Field potential The velocity-potential method used in the results section solves the discretized form of the
Laplacian in the field. The Laplacian solver is second-order accurate in space. In the calm-water plane, the
unsteady, zero-forward speed, combined free-surface boundary condition is satisfied. This equation is discretized
with a second-order backward scheme for the time term, and a one-sided, second-order scheme for the vertical
gradient of the potential.

∂2φ

∂t2
= −g ∂φ

∂z
on z = 0 (4)

Results

Heaving catamaran with gap resonance The problem of a heaving catamaran is studied to demonstrate
the ability to accurately predict the wave motion between the hulls and in the far field for a wide range of
oscillation frequency. The experiments were performed at MARINTEK in 2010 [3]. The experiments were
performed in a wave flume so that the radiated wave is practically two dimensional. The flow domain is two-
dimensional and comprised of rectangular cells that are clustered around the body. The body boundary condition
is satisfied on the mean position of the body for both the linearized RANS and potential-flow simulations.
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Figure 1: Wave amplitudes from heaving catamaran

A summary of the results appears in Figure 1. In this figure, two groups of data are shown, one for the wave
amplitude in the gap, and another for the wave amplitude in the far-field. For each group of data, four sources
of prediction are represented: the experimental measurements, the present linearized URANS, the present field
potential, and potential results from [3], labeled Kristiansen et al. potential. The Kristiansen et al. potential
results are said to be consistent with the linear analytical potential solution from [1].

As shown in Figure 1, the Kristiansen et al. potential results significantly overpredict the wave amplitude
both in the gap and the far-field near the resonant frequency. On the other hand, the field potential only slightly
over predicts the wave amplitude near resonance, with an increasing over-prediction as the oscillation period
increases. The substantial improvement in the potential-flow prediction for the wave amplitude in the gap can
be attributed by the fact that the second-order-accurate field discretization has a dissipative quality that is
sufficient to prevent the artificial accumulation of energy in the gap between the hulls. The dissipation in the
scheme depends on the grid resolution, but for the set of grids tested in our work, the results are very weakly
dependent on the grid. Between the medium and fine grids, the relative error of the wave amplitude in the gap
is only 0.3% for the period of 1.2 s.

The field URANS approach shows very strong agreement with the experimental measurements throughout
the frequency range, and a small improvement over the field potential results. In addition, the computational
time required for the field potential and linearized URANS formulations is nearly identical.

DTMB 5415 in pure yaw motion A pure yaw planar motion mechanism (PMM) test is simulated for the
DTMB 5415 hull form. Experiments are included for testing done on a model of length L = 3.048 m [4]. The
Froude number is 0.28, and length-based Reynolds number is 4.46 million. The hull is unappended with the
exception of bilge keels. The hull is fixed at the dynamic sinkage and trim for both the simulation and the
experiment. The sway motion has amplitude η0/L = 0.1073 and period 7.48 s. The body-boundary condition

is satisfied exactly as ~U = ~Ubody.
Three numerical grids are used, denoted coarse, medium, and fine. The coarse grid contains about 200,000

cells, and the fine grid about 920,000 cells. Figure 2 (left) shows the discretization of the free-surface plane
for the coarse grid. The posteriori calculation of the dimensionless near-wall spacing indicates the average y+

value is 60 for the coarse grid and 40 for the fine grid. The Spalart-Allmaras turbulence model is used with a
universal wall-function. The numerical simulations are performed on the parallel computer flux hosted by the
University of Michigan.

Figure 2 (right) presents the time series of the yaw moment through one PMM period. The numerical results
from each grid are compared to the experimental measurements. It is striking to note the manner in which the
numerical results converge with refinement of the grid. This behavior is not frequently seen for fully nonlinear
URANS results because it is rarely possible to use a sufficiently fine discretization such that the solution has
converged. In the present case, the first-order wave system requires fewer computational cells. The first-order
system has the same range of length-scales as the higher-order system, but does not permit breaking, and the
simplified condition is satisfied on a known boundary, z = 0.
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Also, any of the numerical results agree well with the experiment. Although not shown here, the present
results are comparable to fully nonlinear URANS results [5]. Furthermore, the computational time required
to perform a single PMM period ranges from 10 to 200 cpu-hours. This means that the coarse grid set-up is
well-suited for desktop computing on a multi-core workstation.

Conclusions and future work

Linearized free-surface approximations provide an efficient alternative to fully nonlinear, multiphase CFD meth-
ods. While employing a simplified theory, they can produce suitably accurate results for a variety of engineering
problems. Within the approach of a linearized free-surface, a URANS method is shown to be as computation-
ally efficient as a field potential method. However, in addition to efficiency, the linearized URANS formulation
benefits from the inclusion of viscous effects. Force and moment predictions are shown to compare well with
experimental data. This technology has been expanded to include rotating propellers for prescribed motion
simulations. Future work includes developing the technology for self-propelled, free-running model tests by
solving for the motion of the ship in the horizontal directions.
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highlights: 

 oblique water entry of a wedge with vortex wake is simulated 

 the Kutta condition is imposed at the wedge apex and the local pressure jump is removed 

1. Introduction 

Wedge water entry is one of the most typical fluid/structure impact problems. For water entry of a 

symmetric wedge with only vertical motion, Howison et al. (1991), Mei et al. (1999), Korobkin & Iafrati (2005) 

presented the analytical solutions based on the Wagner theory; Dobrovol’skaya (1969) considered the fully 

nonlinear similarity solution; Zhao & Faltinsen (1993), Lu et al (1999), Wu et al (2004), Battistin & Iafrati 

(2003) simulated the nonlinear impact through the boundary element method (BEM). For water entry of an 

asymmetric wedge or oblique water entry, typical work include those by Iafrati & Semenov (2006) and Xu et al 

(2008, 2010). In their results pressure jump was observed at the wedge apex. As there is transverse flow passing 

the sharp corner, such discontinuity or singularity in the potential flow was not unexpected. In real flow there 

would be strong vortex shedding at a sharp corner. To simulate water entry of a wedge with transverse flow at its 

tip, flow separation due to vortex shedding needs to be treated properly. Riccardi & Iafrati (2004) investigated 

the vortex shedding of the water entry of an asymmetric wedge through conformal mapping, although the effect 

of the free surface elevation was ignored. Point vortex and Kutta condition were introduced to remove the 

velocity singularity at the apex. 

The general problem of vortex shedding at a sharp corner of a marine structure has been receiving extensive 

attentions. Downie et al (1988) studied the vortex shedding of a rectangular barge in waves. Kristiansen & 

Faltinsen (2010) simulated the vortex shedding of a rectangular box in waves through BEM. The damping 

effects due to the shed vortices were accounted for properly. However, it seems that there is far less work in the 

context of water entry of a wedge, which is the focus of the present study. A Kutta condition for numerical 

simulation is imposed at the sharp edge. The pressure jump at the wedge apex is removed. Results for the free 

surface profile and pressure distribution are provided. 

2. Mathematic equations 
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(a)            (b) 

Fig.1 illustration of (a) the wedge water entry with vortex shedding and (b) the local wake surface 

The velocity potential theory is adopted to describe the flow field since the viscosity and compressibility 

effects are less important during high speed water entry over a short period of time. As shown in Fig.(1a), the 

origin of the space-fixed  Cartesian coordinate system zox   is located on the initially calm water 
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surface with z  pointing upwards. The introduced velocity potential   satisfies Laplace equation in the fluid 

domain 

0
2

2

2

2
2 











zx


                 (1) 

On the body surface 
0S , the boundary condition can be written as 

nU
n







                  (2) 

where ),( WUU 


is the translational constant velocity of the body and ),( zx nnn 


 is the unit normal vector 

pointing out of the fluid domain. In the Lagrangian framework, the free surface boundary conditions can be 

written as 





2

1

dt

d
                 (3) 

zdt

dz

xdt

dx












,                 (4) 

When there is transverse flow at the wedge apex, vortex wake will be shed into the fluid. On the wake 

surface 
wS , the dipole strength can be written as 

  ww                    (5) 

while the normal velocity across 
wS is continuous, or 

nn

ww








  
                 (6) 

In Eq.(5) 

w  and 

w  are the velocity potentials on the two sides of the wake surface, as shown in Fig.(1b). At 

the apex of the wedge, we impose the Kutta condition in the following form (Xu & Wu 2013) 

apexapexapex
xxx

lll  











                  (7) 

where the tangential vector in 

apexxl 

 has the same direction as 

apexx
l 

  , as shown in Fig.(1b). The continuity 

of the pressure p  across the wave surface gives 

0
dt

d
                   (8) 

We notice that the wedge water entry problem usually starts from a contact point. An ideal approach is to 

use the stretched coordinate system (Wu et al 2004). It has the advantage that both the computational domain 

and the element size remain similar size in the stretched system as body continues to enter water in the physical 

domain. We define 

Wts  , Uth                    (9) 

In the stretched coordinate system  o , we write 

),,(),,( tstyx   , sx  , sy              (10) 

Laplace equation in the stretched system retains the same form, while the body surface boundary condition 

becomes 




WnUn

n




                   (11) 

and the free surface boundary conditions can be written as 
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To solve the above equations, following the numerical procedure of Xu & Wu (2013), we have the boundary 

integral equation at 1m  time step  
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where 







 arctan),( qpH , 

1wS is the dipole element attached to the sharp edge, 
j is the point vortex 

formed from vortex dipole element in the thj )1(   time step. 

3. Results and discussions 
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Fig.2 oblique water entry of a wedge, (a) free surface profile and (b) the pressure distribution,  '  
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(a)      (b)      (c) 

Fig.3 oblique wedge water entry with 4/  RL
, 0.1s , (a) 3.0 (b) 5.0  (c) 7.0  

The work is still on-going and only some preliminary results from the simulation are presented here. 

Oblique water entry of a symmetric wedge at constant velocity with left and right deadrise angles 

4/  RL
, 5.0/  WU  is considered. The initial free surface profile and the velocity potential are 

prescribed at 001.0s  and are obtained from the similarity solution without vortex shedding. At this moment, 

there is just one vortex dipole of the same size of element as that on the wedge surface at its apex. The 

simulation is then carried out based on the procedure discussed in the previous section. The shed vortex wake is 

updated through Eq.(8). Figure 2 gives the obtained results. It can be seen that unlike the solution without the 

vortex wake, the pressure is continuous at the tip. Fig.2 also shows that the variations of the free surface profile 

and pressure distribution with s  in the stretched system are hardly visible. We note that negative pressure 

exists near the jet root of the left hand side of the wedge. Air could be sucked into the fluid and air cavities could 

be formed. 
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Further simulations are carried out with different  . Fig.3 gives the pressure distribution at 

7.0,5.0,3.0 . Comparing with the similarity solution without vortex shedding (Xu, Duan & Wu 2008), the 

pressure jump at the wedge apex has been removed. This is a result of the imposed Kutta condition and vortex 

wake, through which the flow velocity becomes continuous. The pressure on the left hand side of the wedge is 

lower than the similarity solution, while the pressure on the right hand side has a lower peak and a smaller slope. 

We note that when 7.0 , the pressure on the left hand side of the wedge has two troughs, which may be due 

to the flow induced by the shed vortices. Further analysis and results will be provided at the Workshop. 
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Highlights

• A finite difference approach and a spectral approach of resolving the velocity potential in the
vertical are compared in a fully nonlinear potential flow model. The spectral approach shows
improved accuracy and efficiency for two test cases.

• The resultant model simulates well the propagation and nonlinear interactions of irregular waves
over a submerged bar in comparison to experimental data.

Introduction
To model waves in the nearshore region, it is necessary to have accurate, rapid models that can
simulate the nonlinear and dispersive effects over large spatial domains. Models ranging from the
mild slope equation to CFD (Computational Fluid Dynamics) approaches based on the Navier-
Stokes equations are used for a variety of different applications, with varying degrees of accuracy
and computational cost. Potential flow theory models, based on the assumption of irrotational flow,
may be an ideal compromise between simplified linear wave models and CFD approaches modeling
the fine scale processes.

Potential flow wave models require the resolution of the Laplace equation in the fluid domain with
specification of the boundary conditions. Boundary integral methods are commonly used to develop
highly accurate fully nonlinear models (e.g. [6]), but recent work also uses a finite difference approach
(e.g. [7, 3, 5]). The relative simplicity of this approach, in comparison to more mathematically
complex projection methods, may be ideal when studying nonlinear wave-body interactions [3].

Here, a fully nonlinear potential flow theory model resolving the Zakharov equations [12] is
developed. The Zakharov equations express the temporal evolution of the free surface elevation η
and velocity potential φ̃, which require calculating the free surface vertical velocity w̃. The accuracy
and efficiency of two methods of calculating w̃ as a function of (η, φ̃) (“Dirichlet-to-Neumann” or
DtN problem) is compared as a function of the horizontal and vertical resolution for two test cases.
The optimal spectral approach is then validated with a comparison to experimental data.

Overview of the mathematical and numerical models
By assuming irrotational flow, the velocity potential φ(x

¯
, z, t) satisfies the Laplace equation in the

three dimensional (x
¯
, z) fluid domain:

∇2φ+ φzz = 0, −h(x
¯
) ≤ z ≤ η(x

¯
, t), (1)

with free surface elevation z = η(x
¯
, t) and a bottom boundary z = −h(x

¯
). By assuming continuity

of the fluid from the bottom to the free surface (i.e. non-overturning free surface), setting the
free surface atmospheric pressure equal to 0, and defining the free surface velocity potential as
φ̃(x

¯
, t) ≡ φ(x

¯
, η(x

¯
, t), t), the kinematic and dynamic surface nonlinear boundary conditions are derived

as a function of φ̃, following Zakharov [12]:

ηt = −∇η · ∇φ̃+ w̃(1 + (∇η)2), (2)

φ̃t = −gη − 1
2

(
∇φ̃

)2
+ 1

2
w̃2(1 + (∇η)2), (3)
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where w̃(x
¯
, t) is the vertical velocity at the free surface defined by:

w̃(x
¯
, t) = φz(x

¯
, η(x

¯
, t), t). (4)

By specifying the lateral boundary conditions and solving the DtN problem to calculate the free
surface velocity w̃(x

¯
, t) from (η(x

¯
, t), φ̃(x

¯
, t)), (2) and (3) model the temporal evolution of the free

surface quantities η and φ̃.
Equations (2) and (3) are integrated in time using the classical explicit four-step, fourth-order

Runge-Kutta scheme. Fourth-order finite difference schemes with regular or irregular point distribu-
tion are used to calculate horizontal gradients and Laplacian operators. Two methods of resolving
the DtN problem are compared in one horizontal dimension, x, which is discretized by NX points.

• Model A. Following [3], [5], and [4], the domain is discretized with NZ points in the vertical
(N = NZ − 1 fluid layers), and fourth-order finite difference schemes are used to resolve the
vertical spatial derivatives.

• Model B. The second method, based on the spectral approach of [9], expresses the vertical
profile of φ as a linear combination of Chebyshev orthogonal polynomials of the first kind (NT

is the maximum order of the polynomial). (See [11] for more details).

For both methods, a system of NX(N + 1) linear equations must be solved at each time step,
where N = NL, the number of layers in the vertical for Model A, and N = NT , the maximum order
Chebyshev polynomial for Model B. The direct solver MUMPS (“MUltifrontal Massively Parallel
Solver”, v4.10.0) [1] is applied in the Fortran code using the default settings.

Test Cases: comparison of accuracy and efficiency
Propagation of a regular nonlinear wave

The first test case compares the resolution of the DtN problem and errors in propagating a regular,
nonlinear wave of permanent form in a uniform depth periodic domain. The initial conditions are
calculated using a highly accurate Fourier series approximation (20th order) of the stream function
method [8] for a wave with wavelength L = 64 m and wave height H = 6.4 m in a water depth
h = 64 m (domain length L). The wave steepness is H/L = 0.1 (or ka = kH/2 = π/10), and the
relative water depth is h/L = 1 (or kh = 2π).

The normalized error of the free surface vertical velocity decreases with an increase in the vertical
resolution N , and both models converge to the same minimum for large values of N (Figure 1). Model
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Figure 1: Convergence of the free surface vertical velocity w̃ for a regular nonlinear wave with wave steepness
H/L = 0.1 (ka = π/10) and relative water depth h/L = 1 (kh = 2π) for (A) Model A and (b) Model B.
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A converges algebraically with errors decreasing as N−k, with k ≈ 3.8, while Model B converges
geometrically, with errors decreasing as exp(−qN), with q ≈ 1.26. Propagation errors in maximum
free surface elevation and phase lag after 25 periods of wave propagation show a strong dependence
on the horizontal and vertical resolution. Errors are similar in both model approaches, with expected
increases in errors with decreases in resolution, and the optimal value of vertical resolution N for both
models appears to be in the range 7 < N < 15. Comparisons of the computational time required
to obtain certain thresholds in total energy errors also shows improved efficiency using the Model B
approach.

Motion of a nonlinear standing wave
The second test case compares the motion of a nonlinear standing wave in a domain with fully
reflective lateral boundaries. After an integer number of wave periods, the wave characteristics
should remain identical to those of the initial condition, calculated using the highly accurate (14th
order) Fourier method of [10]. A wave with wavelength L = 192 m, relative water depth kh = 3,
and wave steepness ka = 0.42 is calculated (with a corresponding water depth and wave height of
h ≈ 91.6732 m and H ≈ 25.6685 m, respectively). The simulation is initiated with the displacement
of the free surface η in a domain of length L, with no initial fluid velocity.

After 100 periods of wave motion, errors in the maximum free surface position primarily increase
with increasing CFL number and decreasing horizontal resolution. Overall, Model B generally pro-
duces smaller free surface position errors than Model A, with the exception of the coarsest horizontal
grid. Errors in the total energy also increase with increasing CFL number and decreasing horizontal
resolution. For small CFL numbers, Model B has overall smaller errors than Model A. For large CFL
numbers, the two methods converge to the same errors.

Validation case: propagation of irregular nonlinear waves over a bar
Finally, the selected approach, Model B is validated by simulating the propagation of irregular waves
over a submerged bar, reproducing a non-breaking flume experiment of [2]. In the experiments, waves
were generated using a piston-type random wave-maker with a JONSWAP spectrum with a peak
enhancement factor of γ = 3.3, with a significant wave height of Hm0 = 0.34 m and a peak period
of Tp = 2.39 s (fp = 0.418 Hz). The simulation results are compared to the free surface elevation
measured at 16 wave probes throughout the domain. In the numerical model, waves are generated in
a relaxation zone using the wave spectra calculated at the probe located at the base of the submerged
bar, and absorbed in a relaxation zone at the end of the beach.

The simulated wave energy spectra (with NT = 7, ∆x = 0.05 m, and ∆t = 0.07 s) agree well
with the experimental data, showing the transfer of energy to super- and sub-harmonics (up to 5fp,
e.g. Figure 2) as the waves shoal and pass over the trough behind the bar. The spatial variability
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Figure 2: Simulated and measured wave energy density spectra at (left) the base of the bar and (right) the
crest of the bar. Vertical black lines indicate the location of the peak frequency and the first four harmonics.
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of the integral parameters (significant wave hight, mean period, kurtosis, horizontal and vertical
asymmetry) also agrees well with the observations along the bathymetric profile.

Conclusions
Two test cases were used to compare the convergence properties, propagation errors, and CPU time
of two approaches to solving the fully nonlinear potential flow problem in 1DH. The Model B spectral
approach shows improved accuracy and efficiency in comparison with the Model A fourth-order finite
difference schemes. Model B has an exponential convergence rate, while Model A has an algebraic
convergence rate, as expected. Based on these tests, the Model B approach was selected and applied
to a final validation test case where comparison with experimental data showed its ability to simulate
the propagation of irregular nonlinear waves in a wave tank. The optimal value of the vertical
resolution, which reduces model errors while limiting the computational time, is recommended in
the range of 5 < NT < 10 for practical applications with this model. Ongoing work includes the
optimization and extension of the Model B approach to 2DH domains.
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Highlights: 
 
 A formulation for hydro-elastoplastic analysis is provided to fully couple the time-dependent response of a floating 

plate with elastoplastic material. 
 A numerical procedure based on the incremental finite element analysis is applied to analyze the elastoplastic 

material behavior. 
 The effects of plastic deformations on the response of a floating plate in a regular wave are investigated by 

comparing the solutions of hydroelastic and hydro-elaistoplastic analyses. 
   
1. Introduction 
 

Hydroelasticity is concerned with interactions between the deformations of floating elastic structures and 
hydrodynamic responses. Since the deformation effect is more dominant to the dynamic responses as the size of floating 
structures is getting larger, hydroelastic analysis has been applied to the design of very large floating structures such as 
pontoon-type offshore structures and bridges, floating airports, and ice floes. In recent years, the analytical and numerical 
methods have been developed to solve the nonlinear problems of hydroelasticity. Many studies have focused on 
nonlinear effects related to hydrodynamic forces. However, studies on the nonlinear structural response have been rarely 
founded. 

The recent review [1] mentions the hydroplastic analysis as a way toward future development in hydroelasticity of 
ships, which may be required to analyze the dynamic collapse response of ship’s hull, propagation of crack and so on. In 
this context, a 2D hydro-elastoplasticity method was proposed by combining strip theory and simplified progressive 
collapse method for the nonlinear dynamic responses of a ship beam in extreme waves [2]. The aim of the present study 
is to provide a numerical method that can consider fully coupled behaviors between the deformations of floating 
elastoplastic plate and linear hydrodynamic loads in time domain. 

In this abstract, firstly, the formulation for the 2D hydro-elastoplastic analysis of floating structures is briefly described. 
Then, the numerical procedure of hydroelastic analysis in time domain and elastoplastic analysis is presented based on 
finite element method. Finally, the present method is validated by comparing numerical results of previous studies. In 
addition, the plastic effects on the response of floating structures in a regular wave are investigated by comparing the 
results of hydroelastic and hydro-elastoplastic analyses. 
 
2. Mathematical model 
 

Let consider a floating plate on water surface under a constant water depth h . The fixed Cartesian coordinate system 
( )1 2 3, ,x x x  is defined on the free surface of the calm water. It is assumed that the floating plate with homogeneous, 

isotropic and elastoplastic material is infinite in the 3x direction and is sufficiently thin enough that the draft is ignorned. 
The motion and strain of the floating plate are assumed to be small. The equilibrium equations of the floating plate at 
time t  are 

2

t

ij t t t

s i s it

ij

g u
x

s
ρ δ ρ

∂
− −

∂
    in tV ,     t t t t

ij j jn p nσ = −    on t

BS ,                 (1) 

 
where ijσ  is the Cauchy stress tenor, iu is the displacement vector, sρ is the density of the structure, p  denotes the 

total water pressure. Note that 2

t t

w dp gx pρ−= +  , in which dp  is the hydrodynamic pressure. Also, jn  is the unit 

normal vector outward from the structure to the fluid, and ijδ  is the Kronecker delta. The overdot means the material 

time derivative. V  denotes the structural domain, and BS  means the wet body surface. 
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The principle of virtual work for the floating plate at time t  can be written as 

2 2
t t t t t

B B

t t t t t t t t

s i i ij ij s w i i d i i

V V V S S

u u dV e dV g u dV g x n u dS p n u dSρ d s d ρ d ρ dd + = − + −∫ ∫ ∫ ∫ ∫ ,          (2) 

where iuδ  and ijeδ  refer to the virtual displacement vector and small strain tensor, respectively. Employing the 
materially-nonlinear-only formulation based on the incremental equilibrium equation [3], Eqs. (2) is linearized as 

2

B B

t t t EP t t t t t t t t

s i i ijkl t ij ij w i i d i i ij ij

V V s S V

u u dV C e e dV g u n u dS p n u dS e e dVρ dd  ρ dd  s d+∆ +Λ +∆ +∆+ − = − −∫ ∫ ∫ ∫ ∫ ,       (3) 

where EP

ijklC  is the elastoplastic stress-strain relation tensor. Note that the hydrostatic analysis is not performed in this 
problem since we assume that the static equilibrium state is known [4]. 

The incompressible, inviscid and irrotational fluid flow is assumed and surface tension is neglected. The incident wave 
is coming from right side to plate and its amplitude is small enough to use the linear wave theory. This implies that the 
hydrodynamic pressure can be described in form of the convolution integral of the arbitrary time-dependent motion with 
the radiation Rφ  and diffraction Dφ  potentials corresponding to the impulsive velocity of the plate or impulsive wave 
elevation, respectively [5].The hydrodynamic pressure is expressed by the linearized Bernoulli equation as follows 

( ) ( ) ( ) ( )1 2 1 2, ; , ;R D

d wp x x t u d x x t d
t t

ρ φ t t t φ t η t t
∞ ∞

−∞ −∞

∂ ∂
= − − + −

∂ ∂

 
  
∫ ∫  

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , ; , ;
t

D

w x x u x x t u d x x t d
t t

ρ ψ ϕ t t t φ t η t t
∞

−∞ −∞

∂ ∂
= − + − + −

∂ ∂

 
  

∫ ∫ 

,       (4) 
where η  is the incident wave elevation. Note that ( ) ( ) ( ) ( )1 2 1 2, , ;R x x t x x t h tφ ψ δ ϕ= + , in which ( )h t is the 
Heaviside function. 

Substituting the Eqs. (4) into Eqs. (3), we finally obtain the equation coupled between an elastoplastic plate and fluid:   

2

B B B

t t
t t t t t EP t t t t

s i i w i i i w i i i ijkl t ij ij w i i

V S S V S

u u dV u n u dS u n u dSd C e e dV g u n u dS
t

ρ d ρ ψ d ρ jd  t d ρ d
+∆

+∆ +∆ +∆ +∆

−∞

∂
− − + −

∂∫ ∫ ∫ ∫ ∫ ∫    

B

D t t

w i i ij ij

S V

n u dSd e e dV
t

ρ φ η d t σd
∞

−∞

∂
= −

∂∫ ∫ ∫ .                         (5) 

 
3. Numerical Procedure  
 
  The formulation in Eqs. (5) can be transformed into the matrix form using the standard finite element discretization as 

( ) ( ) ( ) ( ) ( )
t t

t t t t t tt t d t t dt t t t t t
+∆ ∞

+∆ +∆

−∞ −∞

+ + ∆ − + + = + ∆ − −∫ ∫M + A U B U C U KU X η F  ,
       

(6) 

in which the matrices and vectors are defined as follows: 
t t T t t

s i i

V

u u dVρ d d+∆ +∆=∫ U M U , 
B

t t t t

w i i i

S

Tu n u dSρ ψ d d+∆ +∆− =∫ U A U

 , 

( ) ( )
B

t t t t

w i i i

S

Tu n u dSd t t d
t

ρ ϕ d t t t td
+∆ +∆

−∞ −∞

∂
− = + ∆ −

∂∫ ∫ ∫ B UU 

 , 2

B

t t T t t

w i i

S

g u n u dSρ d d+∆ +∆− =∫ U C U , 

t EP t t T t

ijkl t ij ij

V

C e e dVd d+∆ =∫ U KU , ( ) ( )
B

D T

w i i

S

n u dSd t t d
t

ρ φ η d t t t td
∞ ∞

−∞ −∞

∂
= + D −

∂∫ ∫ ∫ X ηU , t t T

ij ij

V

e e dVσd  d=∫ U F . (7) 

 
We here employ the 2-node Euler-Bernoulli beam element for the finite element model of plate structures in 2D and 

the three-dimensional von Mises plasticity model with the associated flow rule and isotropic hardening for the 
elastoplastic material. At each integration point in beam cross-sections, the unknown stress and plastic strain are 
implicitly evaluated by solving a single nonlinear equation in accordance with the governing parameter method [6, 7]. In 
order to solve the nonlinear Eqs. (6), the full Newton-Raphson iterative scheme and Newmark method are employed. 

Since the impulse response functions such as A , B  and X  are related to the corresponding coefficients in the 
frequency domain by Fourier transformation, we evaluate the frequency domain results using the direct coupling analysis 
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of floating structures, in which we solve the coupled equations discretized by finite and boundary elements for structure 
and fluid, respectively [4, 8, 9]. A 2-node boundary element is used for fluid modeling. 

 
4. Numerical Experiments  
 

To validate the proposed formulation, the numerical results are compared with reference solutions. Since there are no 
available results for hydro-elastoplastic analysis of floating plates, we solve two basic problems. The first problem deals 
with the transient response of a floating elastic plate and the second problem considers the dynamic response of an 
elastoplastic beam. 

Meylan and Sturova (2009) provided the benchmark solutions for the time-dependent motion of a floating elastic plate 
released from rest [10]. As shown in Fig. 1, our numerical solutions were in good agreement with the reference solutions 
for a symmetric initial displacement case ( / 0.02h L = ). 

 

  
Fig. 1. Time history of the floating elastic plate deflection.  

 
We consider a cantilever beam with bilinear elastoplastic material model subject to an impact load and compare the 

results with the reference solutions obtained using ADINA [11] as shown in Fig 2. The results show that the proposed 
formulation is suitable for hydro-elastoplastic analysis.  
 

 
Fig. 2. (a) Elastoplastic cantilever beam problem and (b) deflection at the free tip. 

 
To investigate the effect of plastic deformations on the response of floating plate in a regular wave, we consider a 

floating plate subjected to an impact load at the middle and compare the numerical results of hydroelastic and hydro-
elastoplastic analyses. The structural properties are based on the weight-drop experiment carried out by Endo and Yago 
[12] and the regular wave length is 3.25mλ = . As shown in Fig. 3, the response of the floating plate is influenced by 
the plastic deformation. It is observed that the deflection of the elastoplastic plate is smaller than that of the elastic plate 
since the energy is dissipated due to plastic mechanism. 
 
5. Conclusions 
 

In this study, we proposed a formulation for hydro-elastoplastic analysis of a floating plate in regular waves and 
compared our solutions with available numerical results for hydroelastic and elastoplastic analyses. However, it is 
necessary to carry out related experimental tests and to validate the proposed formulation. In order to extend the research 
scope, we will investigate elastoplastic behaviors of floating structures under various conditions and extend to the 
formulation for 3D hydro-elastoplastic analysis. 
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Fig. 3. (a) A floating plate subjected to an impact load in a regular wave and (b) deflections at the middle of plate 
calculated using hydroelastic and hydro-elastoplastic analyses. 
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Highlights 

 Development of double Doppler shift theory 
 Application of double Doppler shift theory on the prediction of water waves generated by a translating and oscillating 

source 

Introduction 

The V-shaped wakes behind a translating source on calm water have been widely investigated by many researchers, and 
the wake half-angle ψ = arcsin (1/3) ≈ 19.47°. However, as the source point are advancing in waves, the scattered wave 
patterns become complicated. As indicated by Becker [1] and Noblesse [2], there exists three wave systems ( shown in 
Figure 1 (a) ) as the parameter τ < 0.25 (τ = ωeu/g, ωe is the encounter frequency, u is the forward speed, and g is the 
gravity acceleration): one ring wave system, which are approximately elliptical in shape, and two Kelvin fan wave systems 
confined within two distinct wedges, which can be referred as ‘outer and inner V waves’. At τ < 0.25, as shown in Figure 
1 (b), the upstream portion of the ring waves do not exist. The constant-phase curves depicted in Figure 1 can be obtained 
by the stationary phase method, which is based on the framework of Green function method.  

 

Figure 1 Far-field wave patterns for a translating and pulsating source point located at (0, 0, z), z > 0. (a) τ = 0.2; (b) τ = 0.5. 

The present study attempts to establish a method based on physical propagation of the waves to investigate the far-field 
wave patterns, and this method is referred as double Doppler shift theory hereafter. It should be noticed that the present 
method was firstly used by Das and Cheung [3] to satisfy the radiation condition for the marine vessels advancing in 
waves, and Yuan et al. [4] verified this theory through a series of numerical simulation about a single or two ships 
advancing in waves.

Mathematical expression of double Doppler shift theory 

 

Figure 2 Sketch of the physical propagation of the waves. 

Figure 2 shows the propagation of the scattered waves 
produced by a translating and oscillating source. 
Supposing there is source point travelling along x-axis 
from point A to point O with constant forward speed u0. 
The traveling time should be t = AO/u0. During this 
period of time, the translating and oscillating source 
produces scattered waves all along AO, and the scattered 
waves produced at point A is propagating to point B. 
Compared to waves produced at point O, the wave 
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direction has been rotated by an angle θ. Let’s define the 
velocity of the scattered wave as c, then AO/u0 = AB/c. 
According to the sine theorem, it can be easily 
transferred to 

0 sin

sin

u

c




   (1) 

The scattered wave velocity at B can be expressed as 

2 tanh s
s

g
c k d

k
   (2) 

where s  is the angular frequency of the scattered 

waves from a fixed reference point given as 

0 cos( )s e su k        (3) 

The local dispersion relation for the scattered waves is 

2 tanhs s sgk k d    (4) 

where ks is the local wave number at any point on the 
free surface and d is the water depth. The dimensionless 
local wave length and local wave number can be defined 
as 

2
0

2
0

2
,    s

s

k ug

gk u

     (5) 

Combining Eqs. (1)-(5), the following governing 
equation can be obtained 

2 2 0A B       (6) 

The coefficient A and B are defined as 
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where Fh is the depth Froude number and can be written 
as 

0
h

u
F

gd
   (9) 

At infinite water depth, d→∞, Eq. (6) can be reduced to  
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 (10) 

2D wave patterns 

Let’s firstly discuss the wave length on x-axis. At α →0 

or π,  1sin sin 0    and Eq. (10) becomes 

2 2 2cos ( ) 2 cos( ) 1 0            (11) 

The solutions for Eq. (11) can be written as  

2

1 2 cos 1 4 cos

2 cos

   
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  
   (12) 

In the positive x-axis (α →0), cos 1  and Eq. (12) 
can be expressed as 

1,2

1 2 1 4

2

    
   (13) 

Substitute Eq. (13) into Eq.(5), we can obtain the 
dimensionless local wave length on positive x-axis as 

1,2

4

1 2 1 4


 


 

  (14) 

In the negative x-axis (α → π), cos 1   and Eq. (12) 
can be expressed as 

3,4

1 2 1 4

2

    
   (15) 

Substitute Eq. (15) into Eq.(5), we can obtain the 
dimensionless local wave length on negative x-axis as 

3,4

4

1 2 1 4


 


 

  (16) 

The dimensionless local wave length defined in Eq. (14) 
and (16) is depicted in Figure 3. The results in Figure 3 
are consistent with the solutions provided by Becker[1]. 
At τ < 0.25, there are four wave systems on the x-axis. 
At τ > 0.25, the wave systems on positive x-axis vanish 
and only two wave systems exist on negative x-axis. At 
τ = 0, the dimensionless local wave length γ1 and γ3 
(corresponding to the ring wave system, which will be 
discussed further on) turn to be infinity, and γ2 and γ4 
merge together as Kelvin wave with the dimensionless 
local wave length γ = 2π.  
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Figure 3 Dimensionless wavelength on x-axis. 

It should also be noticed that at infinite water depth, as 
α →π, 

 1
1 1 4 0

2s        (17) 

The physical explanation of this negative local 
encounter frequency is similar to that of encounter 
frequency [5]. The apparent direction of the scattered 
wave propagation is obtained by observation. When

0s  , the ship outraces the waves and their crests 

actually appear to be moving from the ship’s bow 
toward her stern. Therefore, γ4 represents the wave 
length behind the ship propagating in the opposite 
direction. 

3D wave patterns 

From Eq. (6) we find the dimensionless local wave 
number is determined by three independent parameters:  
τ, Fh and α. For a given τ in infinite water depth, from 
Eq. (10) it can be found that the dimensionless local 
wave number is only determined by α. Based on the 
similar idea of stationary phase method, the curves of 
equal phase for the various systems of waves can be 
drawn as α varies from 0 to 2π. For a given α, the 
nonlinear equation in Eq. (10) can be solved by a 
numerical iterative scheme. Figure 4 shows the solutions 
of Eq. (10) for parameter τ = 0.25 and τ = 0.5 at infinite 
water depth. Typically, there are four solutions for Eq. 
(10), and these solutions can be only found at some 
limited range of α. For the case of τ = 0.25, two sets of 
solution can be found in the entire range of α, and at α  
= 0, these two sets of solution merge at κ = 25.12. The 
rest two sets of solution are limited at α  > 162.12°. For 
the case of τ = 0.5, two sets of the solution only exist at 
α  > 107.47°, and the rest two sets of solution only exist 
at α  > 163.26°. As parameter increases, these four 
solutions become small and are close to each other, and 
they are limited to a very small range of α, which is 
approaching 180°. 

 

 

Figure 4 Typical solutions of Eq.(10)  

Defining κi as the i-th solution for Eq.(10), and each 
solution corresponds to an independent wave system, 
then the corresponding points of stationary phase can be 
written as 

cos

,    1, 2,3, 4
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  (18) 

Eq. (18) is parametric equation defining the curves (x, y) 
along which the phase Ψ remains constant. It can be 
found from Eq. (18) that the curves are symmetrical 
about x-axis. Therefore, only the plane of y ≥ 0 will be 
displayed hereafter. The constant-phase curves defined 
by the parametric equation (18) are depicted in Figure 5 
for a set of values of Ψ with increment equal to 2π, and 
for following six values of τ: 0.2, 0.25, 0.26, 0.5, 1 and 
4. This figure shows that, for values of τ smaller than 
0.25, three distinct wave systems can be identified. 
These wave systems consist of ‘ring waves’ which are 
approximately elliptical in shape, and two wave systems 
found in two distinct regions. The raindrop-shape wave 
system appeared downstream can be called ‘raindrop 
waves’, and the helical-shape wave system, which 
appears mainly upstream, can be called ‘helical waves’. 
For value of τ = 0.25, the helical waves merge with the 
ring waves in the positive x-axis. As τ → 0.25+, there is 
no wave existing in the positive x-axis. For value of τ > 
0.25, the helical waves merge with the ring waves, 
forming an integrated and closed wave system. And as 
the parameter τ increases, this integrated wave system 
shifts downstream, merging with the raindrop-shape 
wave system gradually. 
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Figure 5 Far-field wave patterns for a translating and pulsating source point with six values of τ: 0.2, 0.25, 0.26, 0.5, 1 and 4. 

 

Steady wave patterns 

Particularly, as τ → 0, Eq. (10) can be reduced to 

 2 1 2cos sin sin 0        
  (19) 

The solutions for Eq. (19) can be written as  

1

2,3 2

1

4
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 


    

  (20) 

Substituting Eq. (20) into Eq. (18), we can obtain the 
constant-phase wave patterns, as shown in Figure 6. κ1 
corresponds to the particular case u = 0 and ωe ≠, and 
the wave pattern represents the waves generated by a 
pulsating source. The other case which makes τ = 0 is u 
≠ 0 and ωe = 0, and the wave pattern represents the 
waves generated by a translating source. κ2 and κ3 are the 
solutions corresponding to this case. It can be observed 
from Figure 6 that κ2 and κ3 merged into the raindrop 

waves as 22cos (9cos 2 7)   → 0. The raindrop 

waves will confined within 11 7
cos 19.47

2 9
     

 
 , 

which is exact the same as Kelvin angle. 

 
Figure 6 Far-field wave patterns for a translating and 
pulsating source point at τ = 0. 
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high filling
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1 Introduction

Violent liquid sloshing is of concern to cargo tank designers due to the problems of safety in extreme
loadings. It is an interesting topic with still some disputable problems. For example Abramson, Bass,
Faltinsen and Olsen [1] investigated the sloshing and resultant loads in liquid natural gas carriers for
different tank geometries and liquid fill depths. Ibrahim [3] provided a comprehensive study with
examples of free tank motions. Cooker [2] analysed with experiments a horizontal rectangular wave
tank which swings at the lower end of a pendulum. Ten, Malenica and Korobkin [5], presented a semi-
analytical approach for fluid-structure interactions inside tanks in different impact situations with
high and low fillings. Our work is about the sloshing of standing waves inside a closed highly filled
container. Unsteady two-dimensional (2-D), irrotational flow is treated. The liquid-roof interaction
is discussed with and without the effect of gravity and a comparison is made. The short-time model
of the liquid-roof impact is governed by a Mixed Boundary Value Problem (MBVP), which is solved
numerically and using the asymptotic methods.

2 Mathematical formulation

In figure 1, a stationary highly filled rectangular tank, containing an inviscid incompressible liquid is
shown. The flow is 2-D and irrotational and surface tension force is neglected. The container has height
H and length 2L and lies in the region ỹ ≥ 0. Here ỹ = 0 is the bottom and ỹ = H is the roof of the
container, ỹ = H−h is the still water level, and x̃ = ±L are the rigid impermeable walls. The lengths,
time, velocity potential and pressure are scaled by H,

√
H/g, h

√
Hg and ρgh, respectively, where g

is the gravitational acceleration and ρ is the constant density. The small parameter ε = h/H � 1 is
responsible for linearisation. In non-dimensional variables (without tilde), the initial shape of the free
surface is given by the equation y = f(x), f(x) = 1 − ε + 2ε

λ

∑∞
n=1 an cos(knx), an and kn are known

constants and λ = L
H .

x̃

ỹ

x̃ =Lx̃ =-L o

ỹ = H

ỹ = 0

h = 0.05H Free surface’s level state

Rigid roof

Figure 1: Container description with free surface at its level state.

Considering the container to be without the rigid roof, in non-dimensional linearised initial bound-
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ary problem at the leading order the velocity potential φl(x, y, t) and the surface elevation ηl(x, t) read

φl(x, y, t) =
∞∑

n=1

ān cosh(kny) cos(knx) sin(wnt), (1)

ηl(x, t) =
2

λ

∞∑

n=1

an cos(knx) cos(wnt), an = −ānωn cosh(kn), (2)

where the angular frequencies ωn are related to the wave numbers kn = nπ/λ by the dispersion
relation ωn =

√
kn tanh(kn), for n ∈ N . In the next section we introduce the rigid roof to the tank,

we decompose the velocity potential φ(x, y, t) and the surface elevation η(x, t) into two parts. This
has been done by adding unknown functions: a so called correction velocity potential φc(x, y, t) and a
correction surface elevation ηc(x, t) resulting in φ = φc + φl and η = ηl + ηc respectively.

3 Semi-analytical solution

At the leading order, we derive the linearised non-dimensional MBVP, with gravity and the rigid roof
included. During the early stage of the impact, with some asymptotic analysis, we have found that
gravity has a small influence. We define δ � 1 to stretch the time t = t∗+ δt̂, t = t∗ instant of impact,
consequently the other variables, x = δ1/2x̂, y = δ1/2ŷ, φc(x, y, t) = δ1/2φ̂c(x̂, ŷ, t̂), xc0(t) = δ1/2x̂c0(t̂)
and ηl(x, t) = δη̂l(x̂, t̂). By combining the dynamic and kinematic boundary conditions we arrive at
(without hat)

∂2φc
∂t2

+ δ
3
2
∂φc
∂y

= 0 |x| > xc(t), y = 0, (3)

where x = xc(t) is where the free surface meets the roof. The corresponding limiting problem as δ → 0
is depicted in Figure 2. This problem does not account for gravity.

φc = 0φc = 0
y = 0

∂φc
∂y = −∂2ηl

∂t2

∂2φc
∂x2

+ ∂2φc
∂y2

= 0

φc −→ 0 as x2 + y2 −→∞

• •
x = −xc0(t) x = xc0(t)

Figure 2: The MBVP at the leading order.

Working with stretched variables, we can approximately replace the wall and the bottom conditions
with the far-field condition given in Figure 2. With the condition introduced by Wagner [6] at the
contact points and the displacement potential Φ(x, y, t) =

∫ t
0 φc(x, y, τ)dτ introduced by Korobkin [4],

we are able to calculate semi-analytically the leading order position of the contact point, x = xc0(t),
during impact. Consequently the hydrodynamic pressure distribution can be found (see Figure 3).

4 Numerical solution

A collocation method was used for the symmetric flow considered in the original coordinates x
and y. The unknowns, velocity potential φ(x, y, t), surface elevation η(x, t) and the pressure on the
roof p(x, 0, t) are respectively presented by Fourier series. The domain is discretized into N regularly
spaced nodes (N = 350 in our calculations).
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The combined kinematic and dynamic boundary conditions (with gravity included) lead to a sys-
tem of the form

~η = ~ηl −A−1B ~P −A−1
M−1∑

m=1

Gtm~p tm , (4)

where the initial pressure ~p t1 , found in the previous section, with respect to this algorithm is given.
The tri-diagonal matrix A is associated with unknown and known surface elevation vectors, ~η and
~ηl respectively. The matrix G is calculated at every time step while the matrix B is independent of
time and depends only on the time step length. The pressure ~P and surface elevation ~η are to be
determined at the instant t = tM . However, the fact that on the free surface, xc0(tM ) < x < 1, we
have p(x, tM ) = 0 and on the impact region, 0 < x < xc0(tM ), we have η(x, tM ) = 1, with some
rearrangements makes the system (4) solvable on its own. The free surface and the wetted region are
distinguished and updated at each time step by calculating the position of x = xc0(tM ) as part of
the solution. The pressure vector ~p tm is known from the previous time steps t = tm, for 1 ≤ m ≤M−1.

Continuing with the stretched variables introduced from Section 3, we study the gravity influence
on the length of the wetted region during the impact stage, that is xc0(t) + δ · xc1(t). The correction
due to gravity xc1(t) in Figure 4b, is found to be almost completely insignificant at the early stage of
impact. As time goes on the effect of gravity is that it decreases the length of the wetted region and
even at the very late period of this stage, its effect is found to be small. Figure 4a shows the wetted
length with and without gravity. More results of the numerical simulation will be presented at the
workshop.
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Figure 3: Semi-analytical pressure distribution without gravity at: (a) t = 1.0790; (b) t = 1.5760.

Figure 4: Contact point position with correction due to gravity, here t = 0 is the impact time: (a) The leading order
contact point, blue line,and the contact point with correction due to gravity, red line; (b) details of correction xc1(t) due
to gravity,for the contact point position.
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1 Introduction

The accurate prediction of nonlinear wave loads on a ship with a forward speed is critical to the evaluation
of it’s global motion performance and manoeuvring capabilities. The seakeeping performance is one of the key
factors for hull form optimization. Traditionally, the seakeeping computation can be performed using the strip
theory developed, for example, by Salvesen et al. (1970) or the one extended to the body-exact version in time-
domain for large amplitude motion computations by Zhang et al. (2010a). Recently, with rapid development
of computing hardware, three-dimensional time-domain approaches using Rankine sources or desingularized
sources have been developed to accurately model and capture the forward speed effects. Due to the nonlinear
properties of both the free surface kinematic and dynamic boundary conditions (FSBC) applied on the unknown
free surface, the FSBC and body boundary condition (BBC) are often linearized with respect to the calm water
surface at z = 0 (z is the vertical coordinate). Different forms of linearizations have been developed over the
past several decades, including Neumann-Kelvin linearization (NKL) and double body linearization (DBL). The
comparisons of those linearized approaches to a time-domain body exact strip theory and experiments have been
extensively studied in a previous paper (Zhang et al., 2010b).

However, due to the assumptions made upon deriving the linearized FSBC and BBC, both NKL and DBL
may have limited validity depending on Froude number or slenderness of a hull. The details on the NKL and
DBL models are presented in the next Section. Without any assumptions on small parameters, fully nonlinear
computations may provide more reliable solutions and can be employed as a benchmark for the linearized or
quasi-nonlinear models.

The primary focus of the present study is on identifying and quantifying the nonlinearities associated with
wave-body interaction including forward speed and hull slenderness. We developed a fully nonlinear model to
compute the wave radiation forces on vessels travelling with a forward speed. The final objective is to quantify
validity of different linearized models.

2 Theory and Approach

2.1 Fully nonlinear model

We developed a fully nonlinear potential flow computational model to study the wave radiation problem
for ships with a forward speed. Desingularized sources and Rankine panels are applied on the free surface
and instantaneous wetted hull surface, respectively. On the free surface, a mixed Euler-Lagrange free surface
tracking scheme is employed (Longuet-Higgins & Cokelet, 1976; Yeung, 1982; Zhang et al., 2010a,b). The
nonlinearities associated with both the body boundary condition and the free surface boundary conditions
(except wave breaking) are automatically accounted for in the developed three-dimensional time-domain model.

The vessel is assumed to move with speed U(t) = (Uo(t), 0, 0), and may be undergoing unsteady oscillations
in six degrees of freedom. The fluid is assumed to be ideal and the flow irrotational. Three coordinate systems
are employed: the xo system is fixed in space, the x system is fixed to the mean position of the ship (moving
with forward speed U(t) along the straight track of the ship), and the x system is fixed to the ship. The
boundary value problem is solved in the right hand moving coordinate system (x, y, z), as illustrated in Figure
1. The x-axis points in the direction of travel and the z-axis points upward. The origin is on the calm water
plane at midship.

In the x coordinate system, a velocity potential is introduced to describe the fluid motion by using the
above assumptions such that the fluid velocity can be expressed as the gradient of a potential function,

V(x, t) = ∇Φ = ∇(−Uo(t)x + φ(x, y, z, t)) (1)

∗Presenting author. Email: xinshuz@sjtu.edu.cn

241



where φ is the disturbance velocity potential which may include the radiation and/or diffraction potential.
The velocity potential φ(x, y, z, t) satisfies the Laplace equation

φxx + φyy + φzz = 0 (2)

The exact nonlinear kinematic and dynamic free surface boundary conditions are

∂η

∂t
=

∂φ

∂z
− ∇φ · ∇η + Uo(t)

∂η

∂x
on z = η(x, y, t) (3)

∂φ

∂t
= −gη − 1

2
∇φ · ∇φ + Uo(t)

∂φ

∂x
on z = η(x, y, t) (4)

where η(x, y, t) represents the free surface elevation; g is the gravitational acceleration. All the velocity potentials
satisfy the Laplace equation under the assumption of ideal potential flow.

The exact body boundary condition can be written as

n · ∇φ = Uo(t)n1 + VH · n − ∇φI · n on SB (5)

where SB is the instantaneous wetted body surface; Uo(t) is the time-dependent translating velocity of the body
in the x direction; n is the inward unit normal on the body surface(out of fluid); n1 is the component of the
unit normal in the x direction; VH is the motion velocity including rotational modes of a point on the ship’s
surface; φI is the velocity potential for an incident wave .

The initial conditions at t = 0 are

Φ = Φt = 0 in the fluid domain (6)

At each time step, a mixed boundary value problem must be solved; the potential is given on the free
surface and the normal derivative of the potential is known on the body surface. In order to solve the initial
boundary value problem, desingularized sources are distributed over the free surface and constant strength flat
panels are utilized on the body surface. Given the strength of the desingularized sources above the free surface
and sources distributed on the body surface, the potential at any point in the fluid domain can be obtained. The
details on the application of desigularized sources and panels have been presented in previous papers (Zhang
et al., 2010a,b).

The free surface is time stepped through applying a mixed Euler-Lagrange scheme on the fully nonlinear
free surface boundary conditions (3) and (4). The wetted hull surface is re-panelized at each time step by
updating the instantaneous intersection curve between the wetted hull and dynamic wave surface. After solving
the boundary value problem at each time step, the wave radiation force and moments, and the hydrodynamic
coefficients can be computed.

2.2 Neumann-Kelvin linearization (NKL)

The nonlinear free surface boundary conditions are often linearized by introducing a basis flow Ψ. The
total perturbation velocity potential can be written as

φ = Ψ + φ
′

(7)

where Ψ ∼ O(1) and φ
′ ∼ O(ǫ) are assumed.

In Neumann-Kelvin linearization, it is assumed that the uniform flow −U0(t)x in translating coordinate
system x is not disturbed due to the presence of a hull, which leads to Ψ = 0. Linearized FSBC and BBC can
be obtained by substitute φ ∼ O(ǫ) and η ∼ O(ǫ) into Eqns. (3), (4) and (5).

2.3 Double-body basis flow linearization (DBL)

In double-body linearization, the basis flow is computed by assuming an unbounded uniform flow passing
a double-body. Hence we have the following:

∂Ψ/∂z = 0 at z = 0 (8)

n · ∇Ψ = Uo(t)n1 on SB̄ (9)

where SB̄ is the mean wetted body surface. A set of linearized FSBC and BBC can be derived through
substituting Eqns. (7), (8) and (9) into Eqns. (3), (4) and (5) and keeping all the leading order terms. We
remark the obtained linearized BBC contains so-called m-terms which represent the coupling effects between
the steady flow and unsteady flow (see Zhang et al., 2010b). For purpose of comparison, we also build up a
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Figure 1: Definition of the problem and coordinate systems

model (called LFS DB m-terms) using the double-body m-terms in BBC while retaining the linearized free
surface boundary conditions the same as the one in Neumann-Kelvin model.

It should be noted that wave breaking, which is a natural phenomenon, can occur in both wave radiation
and diffraction problems for a ship travelling with a forward speed. The wave breaking normally can be observed
near the bow, stern and in the wake. In the present study, we focus on non-wave breaking cases and keep the
forward speed and the forced motion amplitude of hull relatively small to prevent the wave breaking in the
simulations.

3 Results and Discussion

The developed fully nonlinear model is validated by comparing the obtained numerical solutions to exper-
iments and other numerical results using different linearized models. The tested hull forms include Wigley I
hull and a Series 60 hull with CB = 0.7. The comparison of the diagonal/coupling added mass and damping
coefficients due to a heave motion are illustrated in Fig.2. The forced motion frequencies ω

√
L/g vary from 2.2

to 4.5. The numerical solutions using fully nonlinear computations are compared with those using DBL, NKL,
linearized FSBC with double-body m-terms, and experimental data reported by Journeé (1992). As can be seen
from the figure, the present computations of added mass and damping agree quite well with experiments and
show better agreement with measured data than other linearized models including NKL and linearized FSBC
with double-body m-terms (LFS, DB m-terms). We remark here that the predictions using fully nonlinear sim-
ulations are very close to the solutions using DBL. This confirms that DBL is a valid linearized model for the
Wigley I hull at Fn = 0.3. The computed hydrodynamic coefficients due to a forced pitch motion are illustrated
in Fig.3. The same conclusion is found for the predicted hydrodynamic coefficients.

We are also investigating the dependence of the hydrodynamic coefficients on Froude number and the hull
slenderness, for both a Wigley hull and a Series 60 hull. The additional results will be presented at the workshop.
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Figure 2: The hydrodynamic coefficients due to a forced heave motion for Wigey I hull, Froude number Fn = 0.3,
heave motion amplitude a/L = 0.01, L is the length of the ship; ω is the forced motion frequency.
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Figure 3: The hydrodynamic coefficients due to a forced pitch motion for Wigey I hull, Froude number Fn = 0.3,
pitch motion amplitude a = 0.05 rad with L = 10 m.
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Highlights: 

 A numerical method is developed for predicting ship maneuvering in waves, based on the two-time scale model. 

 The linear hydrodynamic forces on the maneuvering hull are evaluated based on the double body model with a 

trailing vortex sheet, and the effects of the trailing vortices on the wave forces are considered indirectly. 

 The present method is validated by comparing the numerical results with the free running model test data. 

 

1 Introduction 

Prediction of ship maneuverability is typically carried out in 

clam water conditions. This gives valuable information at 

the ship design stage. However, an actual seagoing ship 

usually maneuvers in the presence of waves. From the 

viewpoint of ship safety, it is meaningful to understand the 

maneuvering behavior of a ship in waves. 

To study the maneuverability of a ship in waves, combining 

the theories of maneuvering and seakeeping is needed. A 

practical combining approach is to use the two-time scale 

model, which separates the basic motion equations into two 

groups: the one for high frequency wave-induced motion 

and the other for the low frequency maneuvering motion. 

Typical works in this area have been reported by Skejic 

and Faltinsen [1], Yasukawa and Nakayama [2] and Seo and 

Kim [3]. 

In the present study, numerical simulations of the ship 

maneuvering in waves are carried out. The maneuvering 

motion is calculated using 4-DOF MMG model, whereas the 

wave-induced motions are determined by solving a 

linearized boundary value problem (BVP) in time domain. 

The maneuvering and seakeeping problem is integrated by a 

two-time scale model, following the approach of Seo and 

Kim [3]. Numerical results for the S-175 container ship 

turning in waves are presented and compared with 

experimental data to validate the numerical method. 

2 Mathematical formulations 
2.1 Coordinate systems 

Two coordinate systems are adopted, as shown in Fig. 1. The 

first one ( , , )x x y z  is body-fixed, with the positive x 

towards the bow and the positive z pointing upward. The xy 

plane is coincident with the calm water level and the origin 

of the frame is at the midship; the second one ( , , )X X Y Z


 

is fixed in space. 

 
Fig. 1 Coordinate systems 

2.2 Basic motion equations 

The ship is assumed rigid and undergoing six degrees of 

freedom oscillations while translating with forward speed u, 

transverse speed v and rotating with yaw rate r in regular 

waves. Based on the two-time scale model, ship motion is 

assumed to be the sum of the high frequency wave-induced 

motion and the low frequency maneuvering motion. 

The 6-DOF motion equations for high frequency problem 

are expressed as: 

     [ ] ( ) [ ] ( )   ( , 1,2 6)ij j ij j iM t C t F i j        (1) 

where 1 2 3( , , )T   


 and 4 5 6( , , )R   


represent the 

ship’s translational and rotational displacements, 

respectively; [ ]ijM is the inertial matrix for the hull, [ ]ijC is 

the matrix of hydrostatic restoring coefficients and 

  ( , , , , , )i x y z x y zF F F F M M M  denotes the hydrodynamic 

force and moment for high frequency component. The ship 

displacement about the body-fixed frame is written as: 

( , , )x y z T R x        
                     (2) 

The equations of low frequency ship maneuvering motion 
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are expressed as: 
2( )

( )

( )

( )

G G H P R W

G G H R W

xx G H R W

zz G H R W

m u vr x r rz X X X X

m v ur x r z Y Y Y

I p mz v ur K K K

I r mx v ur N N N





      


      


     
     


 

 
 

   (3) 

where m is ship’s mass, Ixx and Izz are moments of inertia. xG 

and zG represent the coordinates of the center of gravity, the 

subscripts H, P, and R denote the hydrodynamic forces of 

low frequency motion on the hull, propeller and rudder, 

respectively; the subscript W denotes the wave drift forces. 

The hull force ( , , , )H H H H HF X Y K N


 can be decomposed as 

( )

sin ( )

H x y nonlinear

H y x v r nonlinear

H H H

H zz v r nonlinear

X m u m v X R u

Y m v m u Y v Y r Y

K mgGM K z Y

N J r N v N r N

    

     

   
    












 
       (4) 

where mx and my are the added masses, and Jzz and Jxx are the 

added moments of inertia in zero frequency. 

In the present study, the linear force ( , , ,v r v rY v Y r N v N r ), the 

high frequency force  iF , and the wave drift forces are 

calculated by solving the BVPs. The rudder, propeller and 

nonlinear hull force components are obtained from the 

model test [4]. 

2.3 Modeling of hydrodynamic forces 

In order to calculate the hydrodynamic forces in time 

domain, temporal discretizations must be introduced. Since 

the frequencies of maneuvering motion and wave-induced 

motion are very different, two different time scales, denoted 

by L  and H , are used in the low frequency problem and 

the high frequency problem, respectively. The ratio between 

L  and H  is donated by N, which is generally much larger 

than 1. 

During the interval of each maneuvering time step L , the 

ship speed is assumed to be constant, and is defined as  

( ) ( ) 0W u ry i v rx j k    
  

            (5) 

where ( , , )i j k
 

 are the unit vectors associated with the 

ship-fixed coordinates. 

Under the assumption that the fluid is inviscid and 

incompressible, and the flow is irrotational, the fluid 

velocity potential can be introduced. The total disturbance 

potential ( , )x t   satisfies the following BVP: 

 

2

  

0     

( ( ) )[ ( , , )] 0      z= ( , , )

1
 z= ( , , )

2

( , )
   

in fluid domain

on

on

on body surface

W z x y t x y t
t

W g x y t
t

x t
W n n

n t

 

 



  
      
 

         
        





   

 (6) 

where n
 is the inward unit normal on the hull surface. 

In addition, for the ship in oblique or turning motion, which 

can be regarded as a lifting body, a Kutta condition should 

be imposed at the trailing edge of the hull. 

To linearize the free surface boundary conditions, the total 

disturbance potential   is decomposed  into a basis flow 

( )x   and a perturbation flow ( , )P x t  : 

( , ) ( ) ( , )Px t x x t                 (7) 

The basis flow is assumed to be the main component with its 

order of (1)O  and is related to the double body flow, which 

includes the one induced by maneuvering motion. To 

account for the lifting effect associated with the 

maneuvering motion, trailing vortex sheets are introduced 

which are assumed shed from the hull at both the keel line 

and the trailing edge of the hull, as shown in Fig. 2. By 

referring the work of Matsui et al. [5], a linear trailing vortex 

sheet is adopted. In the numerical approach, the length of the 

vortex sheets are assumed to be six times of the ship length 

and the angle    between the x-axis and the free vortex line 

is determined by the following formula: 

 0.5arctan( / )v u               (8) 

 
Fig. 2 The vortex model 

The perturbation potential ( , )P x t  and the wave elevation 

  are assumed to be order of ( )O  . They are decomposed 

as: 
( , ) ( , ) ( , )P Ix t x t x t                  (9) 

( , , ) ( , , ) ( , , )Ix y t x y t x y t             (10) 

where ( , )I x t   represents the incident wave potential, 

( , , )I x y t  is the incident wave elevation. ( , )x t  and

( , , )x y t  denote the remaining parts of the disturbance 

potential and wave elevation, respectively. 

The linearized BVP for ( , )x t   is written as follows: 

2

2

6

1

[ ( ) ]   on z=0

[ ( ) ]     on z=0

( )   on 

I

I

j I
j j j B

j

W
t z z

W g
t

n m S
n t n
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  

  


   
       

   


        
 

      





  (11) 

where 1 2 3( , , )n n n n  , 4 5 6( , , )n n n x n    and jm  is the 

so-called m-terms, which are evaluated as 

1 2 3

4 5 6

( , , ) ( )( )  , 

( , , ) ( )( ( ))

m m m n W

m m m n x W

  

   


           

 
(12) 

Theoretically, an interaction exists between the trailing 
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vortices and the disturbance potential ( , )x t  . In the present 

study, however, the influence of the wave potential on the 

trailing vortices is neglected, because of the difficulty to 

determine the strength of the vortex in the presence of free 

surface and incident waves. The error introduced by this 

treatment is supposed to be small, since ( , )x t   is smaller 

than ( )x 
 by an order of magnitude. On the other hand, the 

effects of the trailing vortices on the wave potential ( , )x t   

are considered through the m-terms as well as the 

leading-order terms kept in the free surface boundary 

conditions. 

Using Bernoulli’s equation, the hydrodynamic pressure is 

obtained 

(0) 1
( )

2
p W     


        (13) 

(1) ( ( ) )p U
t

 
     




          (14) 

where (0)p  and (1)p  denote the pressures from the base 

flow and the perturbation flow, respectively. 

The linear forces for low frequency motion satisfy the 

following equations: 
(0)

2  
B

v r S
Y v Y r p n ds               (15) 

(0)
6   

B
v r S

N v N r p n ds              (16) 

The generalized hydrodynamic force for high frequency 

motion can be determined by: 
(1) ,    1,2, ,6

B
j jS

F p n ds j           (17) 

The second-order hydrodynamic force (2)F


 is evaluated by 

the following equation: 

(2)

2

1 1
[ ] ( )

2 2

1

B BS S

F W gz n ds nds 


           
     

1

1
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2
BS

Z n dsW g W
t

   
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BS WL

znds g ndlW
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 
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( )
1

[ (0) (0)]
2WL

z ndlW   
        
  

 

1

1
[ (0) (0)]( )

2WL

zW n dl        
                (18) 

where 1n
  and 2n

  mean the linear and second-order 

components of normal vector on the body surface, 

respectively. Details about Eq. (18) can be found in 

Joncquez [6]. The mean values of the x and y component of 
(2)F


 equal to the wave drift forces WX  and WY , 

respectively. The wave drift moments WK  and WN  are 

neglected in the present study, because their magnitudes are 

generally small. 

In this study, the linearized BVP (11) is solved by a time 

domain Rankine panel method, following the approach of 

Kring [7]; whereas the maneuvering motion equations (3) is 

solved by a 4th-order Runge-Kutta scheme. Referring to the 

study by Seo and Kim [3], a parallel time marching scheme 

is used (See Fig. 3). The linearized BVP (11) is firstly 

solved for N time steps to obtain the wave-induced ship 

motion as well as the linear forces (Eqs. (15) and (16)) and 

the wave drift forces. Then the maneuvering motions are 

simulated for one time step and the resulted ship speed and 

position are substituted back to update the BVP for the next 

time step. This cycle is continued until the end of 

time-marching procedure. 

 
Fig. 3 Time marching scheme 

3 Numerical results and discussion 

Numerical simulations of the turning tests of the S-175 

container ship are carried out, and the numerical results are 

compared with the data of model tests carried out at the 

Ocean Engineering Model Basin of Shanghai Jiao Tong 

University. 

Fig. 4 illustrates the comparisons of the turning trajectory in 

clam water and in waves. It can be seen that the turning 

trajectories move both along and normal to the wave 

progress direction. The numerical results can generally give 

the drift tendency of the turning trajectories, but the 

predicted turning circles are smaller than those of the 

experiment. The reason for this difference may be due to the 

inaccurate evaluation of the mean drift forces. 

 

 
Fig. 4 Comparison of turning trajectories of S-175 model, rudder 

angle 35   (port side), wave height 0.01A L . 
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Fig. 5 illustrates the comparisons of roll and pitch motion 

when the wave direction 180   . Fig. 6 shows that of 

90   . As seen in the figures, the predictions for roll and 

pitch motion roughly capture the increasing and decreasing 

of wave-induced motion amplitude associated with turning 

motion. But a time lag could be found between the predicted 

motions and the experimental measurements, especially for 

60t s . The reasons for this difference may be as follows: 

The turning period of the S-175 model is about 60s. For 

60t s , the discrepancies between the numerical prediction 

of the low frequency motion and the experiment become 

more remarkable. The poor predictions of the ship turning 

trajectory result in an error in the encounter frequency of the 

waves and therefore decrease the prediction accuracy of the 

wave-induced motions. 

4 Concluding remarks 

A numerical study on ship maneuvering in waves is carried 

out, based on the two-time scale model. In order to validate 

the present numerical method, the turning tests of S-175 

model in the presence of waves are simulated. The 

numerical results are compared with the model test data, 

which shows that the present method can roughly capture 

the maneuvering performance of the ship in waves. A further 

study to improve the present method is still in process. 

 
(a) Roll comparison 

 
(b) Pitch comparison 

Fig. 5 Time histories for S-175 model 
( 1.0,  0.01 ,  180L A L     ) 

 
(a) Roll comparison 

 
(b) Pitch comparison 

Fig. 6 Time histories for S-175 model 
( 1.0,  0.01 ,  90L A L     ) 
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Highlights:

• We set the level of the GN model to Level III, i.e., GN-3 model, and use it to compare the results
with the results of a program we developed based on the theory of BOUSS-2D.

• For nonlinear shallow water waves, we increase the wave amplitude; both the GN-3 results and the
Boussinesq results are presented and compared with the stream function theory.

1 Introduction

Nwogu’s (1993, 1996) Boussinesq-type equations are widely used to study wave-current interaction, wave
breaking, run-up (Nwogu and Demirbilek, 2001, 2010), among others. Nwogu’s (1993) Boussinesq-type
equations are based on the assumption that the wave heights are much smaller than the water depth. This
may limit the ability of the equations to describe highly nonlinear waves in shallow water, and therefore
this led Wei et al. (1995) to derive a fully nonlinear form of the equations. Wei et al. (1995) derived the
equations from the dynamic free-surface boundary condition by retaining all nonlinear terms, up to the order
of truncation of the dispersive terms. Nwogu (1996) derived a more compact form of the equations. The
computer program BOUSS-2D is based on the Boussinesq-type equations derived by Nwogu (1993, 1996).
The equations are depth-integrated equations for the conservation of mass and momentum for nonlinear
waves propagating in shallow and intermediate water depths.

The Green-Naghdi approach (see e.g., Demirbilek and Webster, 1992) is fundamentally different from
the perturbation method which is used in deriving the Boussinesq model. The GN model only introduces an
assumption on the velocity variation in the vertical direction across the fluid layer or sheet. No restriction is
placed on the wave amplitude. Following the development of different polynomial orders for the description
of velocity in the vertical direction, the GN theory can be of different levels, such as I (GN-1), II (GN-2),
III (GN-3), and so forth. Zhao et al. (2014) applied the GN-3, GN-5 and GN-7 models to some wave
transformation problems, and they showed that high-level GN models can simulate strongly dispersive and
strongly nonlinear waves.

In this study, we set the level of the GN model to Level III. And use the GN-3 model to compare
the results with a computer program we developed based on the theory of the BOUSS-2D model to study
nonlinear wave propagation for periodic and solitary waves.

2 The BOUSS-2D model

In the BOUSS-2D model, the vertical profile of the flow field is obtained by expanding the velocity potential,
Φ(x, z, t), in a Taylor series about an arbitrary elevation, zα, in the water column. For waves of length, L,
much longer than the water depth, h, the series is truncated at the second order resulting in a quadratic
variation of the velocity potential over depth:

Φ(x, z, t) = φα + µ2(zα − z)[∇φα · ∇h]
+ 1

2µ2
[
(zα + h)2 − (z + h)2

]
∇2φα

(1)
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where φα = Φ(x, zα, t), ∇ = (∂/∂x, ∂/∂y), and µ = h/Lis a measure of frequency dispersion. The horizontal
and vertical velocities are obtained from the velocity potential as:

u(x, z, t) = ∇Φ = uα + (zα − z)[∇(uα · ∇h) + (∇ · uα)∇h]
+1

2

[
(zα + h)2 − (z + h)2

]
∇(∇ · uα)

(2)

w(x, z, t) =
∂Φ

∂z
= −[uα · ∇h + (z + h)∇ · uα] (3)

where uα = ∇Φ|zα
is the horizontal velocity at z = zα. Given a vertical profile for the flow field, the

continuity and Euler (momentum) equations can be integrated over depth, reducing the three-dimensional
problem to two dimensions. Nwogu and Demirbilek (2001) gave the revised form of the fully nonlinear
equations as

η,t + ∇ · uf = 0 (4)

uα,t + g∇η + (uη · ∇)uη + wη∇wη+
(zα − η)[∇(uα,t · ∇h) + (∇ · uα,t)∇h]
+1

2

[
(zα + h)2 − (η + h)2

]
∇(∇ · uα,t)

−[uα,t · ∇h + (η + h)∇ · uα,t]∇η
+[∇(uα · ∇h) + (∇ · uα)∇h + (zα + h)∇(∇ · uα)]zα,t = 0

(5)

where zα is now a function of time and is given by zα + h = 0.465(h + η). The volume flux density uf is
given by:

uf = (h + η)

{
uα +

[
(zα + h) − (h+η)

2

]
[∇(uα · ∇h) + (∇ · uα)∇h]

+
[
1
2 (zα + h)2 − 1

6 (h + η)2
]
∇(∇ · uα)

}
(6)

3 The GN-3 model

In the GN-3 model, the horizontal velocity along the water column also changes as a quadratic polynomial.
It is

u(x, z, t) = u0(x, t) + u1(x, t)z + u2(x, t)z2 (7)

The GN-3 equations are as follows:

∂β

∂t
=

K∑

n=0

βn

(
wn − ∂β

∂x
un

)
(8)

∂

∂x
(Gn + gS1n) + nEn−1 − αn ∂

∂x
(G0 + gS10) = 0 for n = 1, 2, 3, · · · ,K (9)

where K = 3 in this work. For more details on the GN-3 model, the reader is referred to Demirbilek and
Webster (1992), Webster et al. (2011) and Zhao et al. (2014).

4 Test cases

In this section, we simulate periodic nonlinear regular waves in shallow water generated through the stream
function theory at the wavemaker through the computer programs we developed. The water depth is
h = 0.4m and the wave period is T = 2.02s. We increase the wave height H from 0.16m to 0.20m, 0.24m
and 0.28m. This means that the nonlinearity parameter, H/h, changes from 0.4 to 0.5, 0.6 and 0.7. The
results of the Boussinesq equations are shown in Figure 1. The GN-3 results are shown in Figure 2.

For this case, the dimensionless depth is around kh = 0.63. Both the Boussinesq model and the GN-3
model should be able to simulate waves with this dispersive property. But we see that the results from Figures
1 and 2 show that neither of them can simulate successfully the largest-amplitude wave when H/h = 0.7.
For waves when H/h = 0.5 and 0.6, we observe that the GN-3 results agree with the stream function wave
theory better than the Boussinesq model.
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Figure 1: Snapshots at t=40s, solid line: Boussinesq model, dashed line: stream function wave theory.
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Figure 2: Snapshots at t=40s, solid line: GN-3 model, dashed line: stream function wave theory.
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Figure 4: H/h = 0.7

We also studied the steady solitary wave solution from the GN-3 and Boussinesq models. Figure 3 shows
that the Boussinesq model shows some differences compared with the Euler solution when H/h = 0.6. Figure
4 shows that the GN-3 model can simulate large amplitude solitary wave even when H/h = 0.7. More results
will be presented at the workshop.

5 Conclusions

In this paper, we studied the GN-3 and Boussinesq models comparatively. We determined that the GN-3
model is more suitable to simulate strongly nonlinear solitary waves. For periodic waves, it appears that
both models are incapable of simulating very large waves that are near breaking.
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Highlight

Wave-interference and wave-breaking effects on the wave pattern of a ship that advances at constant
speed along a straight path in calm water are considered. Realistic numerical computations, based on
the Neumann-Michell theory or the related Hogner approximation, for seven ship hulls that correspond
to broad ranges of main hull-shape parameters (beam/length, draft/length, beam/draft, waterline en-
trance angle), show that the apparent wake angle ψmax where the largest waves created by a ship
(monohull or catamaran) are found (at high Froude numbers) is only weakly influenced by the hull
shape, and moreover can be well approximated by simple analytical relations. These relations provide
useful relatively-accurate practical estimates (without computations) of the apparent wake angle ψmax

for general monohull ships and catamarans at any Froude number. Furthermore, elementary consider-
ations suggest that wave-breaking effects are significant and result in a lower bound ψmin < |ψ|. This
lower bound complements Kelvin’s classical upper bound |ψ| ≤ ψK ≈ 19◦28′ and the more precise
high-Froude-number upper bound |ψ| ≤ ψmax ≤ ψK related to interference between divergent waves.

1. Simple analytical models of far-field ship wave patterns

• 1.1 The 1-point wavemaker approximation and Kelvin’s analysis
The simplest analysis of the wave pattern of a ship was given by Kelvin in 1887. A ship is approximated
as a 1-point wavemaker in this classical analysis. Although particularly crude, the 1-point approximation
is sufficient to determine essential features of the far-field waves created by a ship. In particular, Kelvin
showed that ship waves can only be found inside a wedge |ψ | ≤ ψK with ψK ≈ 19◦28′. Kelvin’s analysis
also shows that the pattern of transverse and divergent waves created by a ship does not depend on the
length L or the shape of the ship and only depends on the ship speed V, specifically on (X,Y )g/V 2.

• 1.2 Wave-interference effects
Within the context of a linear potential-flow analysis, considered by Kelvin and here, the flow around a
ship hull can be represented by a continuous distribution of sources over the ship hull surface. The 1-point
wavemaker approximation used in Kelvin’s analysis evidently cannot account for interference effects that
occur between the waves created by the sources distributed over a ship hull surface. However, wave-
interference effects are very important. Indeed, interference between transverve waves is an essential
element of the design of common displacement ships, and [1] shows that observations of narrow wave
patterns at high Froude numbers are explained by interference effects between divergent waves.

• 1.3 The 2-point wavemaker approximation
[1] shows how interference effects can be approximately taken into account via a trivial refinement
of Kelvin’s analysis. Specifically, a monohull ship is approximated in [1] as a 2-point wavemaker, in
accordance with the well-known property that a steadily-advancing ship creates two dominant waves that
originate at the ship bow and stern (where the hull geometry varies most rapidly). The superposition
of two basic Kelvin wakes with origins at the bow and the stern of a ship considered in [1] introduces
an important additional parameter, the ship length L, that determines the occurrence of constructive
or destructive interference between the basic Kelvin bow and stern wakes. Thus, the superposition of
two Kelvin wakes associated with the dominant waves created by the bow and the stern of a monohull
ship, or by the bows (or sterns) of the twin hulls of a catamaran, introduces the Froude numbers

F ≡ V/
√
gL or Fs ≡ V/

√
gS ≡ F

√
L/S (1)

where S denotes the lateral separation distance between the two hulls of a catamaran. The elementary
analysis of interference effects given in [1] does not involve the amplitudes of the dominant (bow and/or
stern) waves created by a ship, and is then a particularly simple ‘geometrical’ analysis.

• 1.4 Longitudinal (x) interference effects for a 2-point wavemaker
[1] shows that longitudinal (x) interference between two basic Kelvin wakes associated with the dominant
bow and stern waves created by a monohull ship yields largest waves along rays ψ = ±ψx

max that are
inside the cusp lines ψ = ±ψK of the Kelvin wake for Froude numbers F x < F . The apparent wake
angle ψx

max and the related Froude number F x are given by the analytical relations
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ψx
max ≈ arctan

(√
π2F 4/`2−1

2π2F 4/`2−1

)
≈ arctan

(
0.16 `

F 2

)
and F x =

√
`/π

(2/3)1/4
≈ 0.62

√
` (2)

where ` denotes the nondimensional distance (related to the dimensional distance `L) between the
effective origins of the bow and stern waves, assumed to be located slightly aft of the bow or slightly
ahead of the stern. For lack of better knowledge, ` is taken as ` = 0.9 in [1], as commonly used by naval
architects in the analysis of interference between the transverse waves created by a ship bow and stern
and the selection of a ship length L that avoids unfavorable interference effects (and related humps of
the wave resistance curve). The choice ` = 0.9 in (2) yields ψmax ≈ arctan(0.14/F 2) and F x ≈ 0.59.

• 1.5 Lateral (y) interference effects for a 2-point wavemaker
[1] also shows that lateral (y) interference between two Kelvin wakes associated with the dominant waves
created by the twin bows (or the twin sterns) of the two hulls of a catamaran similarly yields largest
waves along rays ψ = ±ψy

max that are inside the cusp lines ψ = ±ψK of the Kelvin wake for Froude
numbers F y

s <Fs with Fs defined by (1). The wake angle ψy
max and the Froude number F y

s are given by

ψy
max ≈ arctan



√√

1+16π2F 4
s −1

2(1+16π2F 4
s )


 ≈ arctan

(
0.2

Fs

)
and F y

s ≡
31/4

2
√
π
≈ 0.37 (3)

The Froude numbers F that correspond to Fs = 0.37 are F ≈ 0.17, 0.26, 0.33 for S/L = 0.2, 0.5, 0.8.

• 1.6 Merits and limitations of the 2-point wavemaker approximation
The basic relations (2) and (3) show that the apparent wake angle ψmax decreases like 1/F 2 for longi-
tudinal (x) interference or like 1/F for lateral (y) interference. These relations are based on a highly-
simplified analysis that essentially approximates a continuous distribution of sources over a ship hull
surface by means of a point source and a point sink (for a monohull ship) or two point sources (for a
catamaran), i.e. as a 2-point wavemaker. This relatively crude approximation has the merit of providing
useful basic insight into wave interference effects, ignored in Kelvin’s classical analysis. Another merit of
the elementary analysis given in [1] is that it yields the simple analytical relations (2) and (3), which pro-
vide a realistic practical estimate of the apparent wake angle of a ship without computations. However,
the analytical estimates (2) and (3) are based on a relatively crude 2-point wavemaker approximation,
and therefore cannot be expected to be very accurate (obviously).

2. Numerical analysis of wave-interference effects

• 2.1 Practical numerical determination of apparent wake angle
A more precise estimate of the apparent wake angle ψmax related to the largest waves created by
a ship requires numerical computations. A realistic and practical method for determining ψmax for
arbitrary ship hulls (and/or distributions of pressure at the free surface) is used in [2]. The method,
which closely follows [3], is based on the numerical determination of the highest peak of the amplitude
function associated with the Fourier-Kochin representation of far-field ship waves [4]. The amplitude
function in the Fourier-Kochin representation of far-field waves is evaluated in [2] via the classical
Hogner approximation [4,5]. Numerical predictions (of the sinkage, trim, and drag experienced by
several ship hulls, and of wave profiles along the hulls, for a range of Froude numbers) based on the
Hogner approximation are found in [4,5] to be consistent with experimental measurements as well as
numerical predictions given by the more accurate Neumann-Michell theory. The Hogner approximation
is explicitly defined in terms of the speed and the length of a ship (the Froude number) and the hull shape
via a distribution of sources with density nx equal to the x-component of the unit vector n ≡ (nx, ny, nz)
normal to the hull surface. An important major consequence of this feature is that the far-field waves
created by a ship (and the related wave drag of the ship) can be determined without having to compute
the near-field flow around the ship hull, i.e. very simply, as is well known [4]. Indeed, the method
considered in [2] can be applied to realistic ship hulls (including multihulls) of arbitrary shape (as well
as general pressure distributions over the free surface), and moreover only involves elementary numerical
computations that can be performed simply and very efficiently.

• 2.2 Apparent wake angle ψmax(F ) for general monohull ships
The method considered in [2] is applied to seven simple (analytically-defined) hull forms at ten Froude
numbers F ≈ 0.65, F = 0.7, 0.8, ..., 1.5. The seven hull forms correspond to a broad range of main
hull-form parameters; specifically, to beam/length ratio B/L, draft/length ratio D/L, beam/draft ratio
B/D and waterline entrance angle 2α within the ranges 0.1 ≤ B/L ≤ 0.25, 0.025 ≤ D/L ≤ 0.1,

254



1 ≤ B/D ≤ 10, 33◦≤ 2α ≤ 90◦. A notable interesting finding of the numerical computations reported
in [2] is that the main parameters related to the shape of a ship hull only have a modest influence on the
wake angle ψmax . A useful practical consequence of this finding is that ψmax can be estimated (without
computations) for general monohulls (of any shape), specifically via the simple analytical relations

ψmax ≈ ψK ≈ 19◦28′ for F ≤ 0.573 (4a)

ψmax ≈ arctan(0.116/F 2) for 0.573 ≤ F ≤ 0.85 (4b)

ψmax ≈ arctan[0.08(1+ 0.6/F )/F ] for 0.85 ≤ F (4c)

These relations account for both longitudinal interference between the waves created by the fore and
aft regions of a monohull ship and lateral interference between the waves created by the port and
starboard sides of the hull, whereas the relation (2) only accounts for longitudinal interference between
the dominant bow and stern waves. As expected, the relations (4) yield a practical estimate of the
wake angle ψmax(F ) of a general monohull ship that is more precise than the analytical estimate (2),
although differences are not very large.

• 2.3 Apparent wake angle ψmax(F, s) for general catamarans
Interference effects are significantly more complicated for catamarans than for monohull ships because
catamarans essentially are 4-point wavemakers and involve the additional parameter s ≡ S/L that defines
the lateral separation distance between the two hulls of the catamaran. Furthermore, interference effects
between the divergent waves created by a monohull ship and a catamaran differ in a major way because
a peak, called outer peak in [6], of the amplitude function in the Fourier-Kochin-Hogner representation
of far-field waves [2] can occur for ψy

max < |ψ | < ψK for catamarans (but not for monohulls). The
method given in [2] is applied to catamarans in [6], where seven simple (analytically-defined) hulls are
considered for lateral separation distances s ≡ S/L and corresponding Froude numbers Fs within the
ranges 0.2 ≤ s ≤ 0.8 and 0.4 ≤ Fs ≤ 3.5. The seven hulls correspond to a broad range of main hull-form
parameters; specifically, to 0.05 ≤ B/L ≤ 0.1, 0.0375 ≤ D/L ≤ 0.075, 1 ≤ B/D ≤ 2, 17◦≤ 2α ≤ 48◦.
The parametric study considered in [6] shows that the main parameters related to the shape of a ship hull
only have a weak influence on the wake angle ψmax , as also found in [2] for monohull ships. Moreover,
the numerical computations considered in [6] show that the relation (3) that defines the inner peak of
the amplitude function in the Fourier-Kochin-Hogner representation of far-field waves can be refined as

ψmax ≈ ψK ≈ 19◦28′ for F ≤ 0.46− 0.02/s (5a)

ψmax ≈ ψy
max +

1.4

s

(
0.39 + 0.13s−√sF

0.39− 0.77s+ 0.55s2

)2
for 0.46− 0.02

s
≤ F ≤ 0.39 + 0.13s√

s
(5b)

ψmax ≈ ψy
max for (0.39 + 0.13s)/

√
s ≤ F where s ≡ S/L (5c)

Here, ψy
max is given by (3) and the angles ψmax and ψy

max are assumed to be expressed in degrees. The
relation (5c) shows that the apparent wake angle ψmax is equal to the angle ψy

max if F is large and/or
if s is large, i.e. for fast and/or wide catamarans. The Froude number F = (0.39 + 0.13s)/

√
s in (5c)

varies between 0.93 and 0.55 for 0.2 ≤ s ≤ 0.8. Thus, the systematic numerical study considered in [6]
shows that lateral interference effects between the two hulls of a catamaran are dominant for fast and/or
wide catamarans. However, longitudinal interference effects are important and cannot be ignored for
slow narrow catamarans. Indeed, the outer peak can be higher than the inner peak in a region of the
‘Froude-number and separation-distance plane’ (F, s) that corresponds to small values of F and s. This
relatively small region of the (F, s) plane where the outer peak is dominant and the relations (5a)-(5c)
are not valid is given in [6].

• 2.4 Neumann-Michell computations of Kelvin wakes
The numerical results obtained in [2] for monohulls and in [6] for catamarans are based on the Hogner
approximation, used to evaluate the amplitude function in the Fourier-Kochin representation of far-field
ship waves. The relations (4) and (5) are further considered in [7] via the Neumann-Michell theory
given in [4,5]. Specifically, computations of far-field waves are reported in [7] for seven monohull ships
that correspond to broad ranges of main hull-shape parameters at four Froude numbers F = 0.58,
0.68, 0.86, 1.58, for which the relations (4b) and (4c) yield ψmax ≈ 19◦, 14◦, 9◦, 4◦. These numerical
computations confirm that the apparent wake angle ψmax related to the largest waves created by a
ship is only weakly influenced by the hull shape and thus mostly depends on the Froude number, in
accordance with the relations (4). The Neumann-Michell theory is also used in [6] to supplement and
confirm the ‘Hogner-approximation-based’ parametric study of interference effects for catamarans.
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3. Wave-interference effects in shallow water
The elementary analysis of longitudinal (x) or lateral (y) interference between the dominant waves cre-
ated by the bow and the stern of a monohull ship, or by the bows of the twin hulls of a catamaran, given
in [1] for deep water is extended in [8,9] to the more general, and considerably more complicated, case of
uniform finite water depth. This analysis shows that the largest waves due to constructive interference
are found at an ‘apparent wake angle’ ψmax that can differ greatly from the cusp or asymptote angles
associated with the wave pattern of a ship when interference effects are ignored. Thus, wave-interference
effects on the wave signature of a ship in shallow water are very large and cannot be ignored. The analy-
sis given in [8,9] also yields practical relations that determine when water-depth effects on the apparent
wake angle ψmax are small and can be neglected.

4. Wave-breaking effects on the Kelvin wake
The foregoing linear potential-flow analysis of wave-interference effects ignores important effects related
to wave-breaking, notably the breaking of bow waves. Indeed, ship bow waves typically are higher and
shorter, and therefore steeper as well as far more influenced by nonlinear effects, than waves aft of the
bow wave. Two main types of ship bow waves exist. Specifically, a slow ship with a blunt bow typically
creates a highly unsteady and turbulent bow wave, whereas the bow wave created by a fast ship with a
fine bow consists of a detached thin sheet of water that is mostly steady, until it hits the main free surface
and undergoes turbulent breaking up and diffusion [10]. Both these two bow-wave regimes result in the
dissipation of a portion of the wave energy of a ship bow wave, as well as the partial transformation
of the wave drag of a ship into a wave-breaking drag component [11]. A reasonable conjecture is that
the wave-breaking that commonly occurs at a ship bow destroys short waves more effectively than long
waves. This assumption means that wave-breaking may result in the effective elimination of short waves
with wavelengths λ < λmin from the spectrum of farfield ship waves. Moreover, the wavelength λmin

may be taken as a fraction ε of the longest wave λmax ≡ 2πF 2 created by a ship, i.e. as

λmin = ε λmax ≡ ε 2πF 2 (6)
The assumption that wavelengths λ < λmin are eliminated as a result of wavebreaking is mathematically
equivalent to the restriction λmin< λ, which is mathematically equivalent to the relation ψmin < |ψ | as
shown in [12] if ε ≤ 2/3. Specifically, expression (15) in [12] yields the approximation

ψmin ≈ arctan(
√
ε/2) where 0 < ε ≡ λmin/λmax ≤ 2/3 (7)

The special case ε = 2/3 corresponds to ψmin = ψK ≈ 19◦28′, and means that all divergent waves are
eliminated. The relation (7) yields

ψmin ≈ 6◦23′ ≈ ψK/3 for ε = 5% and ψmin ≈ 12◦32′ ≈ 2ψK/3 for ε = 20% (8)

Thus, the angle ψmin of the ‘no-divergent-wave wake’ that is obtained if waves with wavelengths smaller
than 5% or 20% of the dominant wavelength λmax ≡ 2πF 2 are assumed to be eliminated due to wave-
breaking is approximately equal to ψK/3 or 2ψK/3, i.e. is not small, and much larger than the angle
ψmin related to surface-tension effects [1]. The relations (8) suggest that wave-breaking, commonly
found at a ship bow, may be assumed to have a very large influence on the Kelvin wake of a ship.
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