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Highlights

We investigate experimentally ǫ-near-zero (ENZ) analogue for water waves in nonlinear regime
by tuning bathymetry of the system. We obtain uniform phase at the edge of a semi circular
lens, resulting in expected lensing effect. Two-dimensional time space measurements of the surface
elevation allow us to separate the linear component and harmonics generated due to nonlinearities.
The origin of the harmonics is analyzed in the frame of the competition between free-waves and
bound-waves. The results show dominance of free-waves. Surprisingly, we observe a cascade of sub
wavelength focal spots with respect to the first harmonic.

1 Introduction

One of the group of newly-designed metamaterials is the so-called ǫ-near-zero materials. In the
context of electromagnetic wave, medium filled with such material can be characterized by a very
large wavelength. This property makes tailoring phase pattern feasible. Using a semi circular shape
at the output of ENZ material, one can obtain extremely well focused wave at the center of such
lens. Two-dimensional electromagnetic wave in transverse magnetic polarization can be described
by the following equation:
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with H the magnetic field, ω is the frequency, c0 is the light speed in vacuum and ǫ is the permit-
tivity. As ǫ approaches zero value, refractive index tends to vanish. This allows to achieve constant
phase throughout the medium.

In the context of water waves, the ENZ analogy can be analyzed by first considering shallow
water approximation:
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Figure 1: Experimental setup. Position of the lens is marked with white dashed line.

where h denotes the water depth at rest and g stands for the gravitational acceleration. In this
regime, wavenumber is given as kSW = ω/

√
gh. By comparing Eqs.(1) and (2), one obtains corre-

spondence of permittivity for water waves, i.e. 1/ǫ ↔ h, indicating that the ENZ can be realized in
water waves system for h−1-near-zero. By increasing depth, we end up with deep water approxima-
tion for which wavenumber is given as kDW = ω2/g. Therefore, the efficiency of the h−1-near-zero
is given through refractive index defined as n = kSW/kDW =

√

g/ω2h.

2 Experimental arrangements

Our system consists of a lens inside a waveguide. The lens is a semi circular edge of diameter
d = 20cm. The width of the waveguide is adjusted to the size of the lens. The lens is a boundary
between two regions with different depths. Depth in a shallow water part (behind the lens) is set
to hSW = 7 mm, while in a deep water region it is 67 mm. Waves are generated by a paddle wave
maker working within a frequency range ω ∈ [6.28; 13.19] s−1, which is shown together with the
experimental setup in Fig. 1. We perform time space resolved measurements of the surface elevation
using Fourier Transform Profilometry method adapted by our team for water wave measurements
[2, 3]. We project fringes by means of a high-resolution projector (1920 × 1080pix2). Images are
recorded using 4MPix camera with sampling frequency 15Hz. The area of interest is 0.4 × 0.2 m2

large and covers deep and shallow water regions.

3 Results and analysis

As expected, in the deep water region wave has a almost constant phase and focuses in shallow
water region. As shallow water waves are easily nonlinear, we give the measure of nonlinearity by
Ursell number, which in our case is typically of order Ur = 378. Hence, we investigate strongly
nonlinear case. Temporal spectrum, determined at the center of the lens, indicates the magnitude
of second harmonic which is 30% of the fundamental component, while higher-order terms remain
significant.

Temporal decomposition of the obtained surface elevation fields allows us to separate the influ-
ence of each of harmonics. We suppose that surface elevation η can be expressed as:



Figure 2: Measured dispersion relation in: a) shallow-water region and b) deep-water region. Solid
lines correspond to linear dispersion relation in both regions.

η(x, y, t) =

N
∑

n=0

η̂n(x, y) exp (inωt) (3)

where η̂n(x, y) denote complex field corresponding to the n-th harmonic of the fundamental pulsa-
tion ω. We extract η̂n using Fast Fourier Transform.

To describe nature of the harmonics we consider two different types of waves related to nonlinear
regime, i.e. bound-waves and free-waves. We can discriminate them because of the difference in
dispersion relation. Wavenumber related to free-waves can be described as k = D(nω), whereas
bound-waves indicate relation k = nD(nω). To determine dispersion relation in our experiments
we first consider inhomogeneous Helmholtz equation. Neglecting source terms [1], appearing due
to nonlinearities, yields the homogeneous problem corresponding to free-waves:
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η̂n (x, y) = 0 (4)

where kn is linked to nω through the linear dispersion relation. To calculate wavenumber kn from a
given complex pattern η̂n(x, y), the norm function ||
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η̂n|| is minimized in the complex plane
kn [4]. We determine wavenumbers in the far-field of deep and shallow-water regions separately. By
applying described procedure we obtain k for the first and higher harmonics. Measured dispersion
relation for all of the components is presented in Fig. 2a),b). In shallow-water part results are in
agreement with linear dispersion relation. This confirms that harmonics are dominated by free-
waves rather than bound-waves.

Having the nature of harmonics described, we are interested in the quality of the obtained
focusing, which is presented in Fig. 3. We show the total field, defined as I(x, y) = max

t∈[0,T ]
η2(x, y, t),

and the intensity fields In (x, y) = |η̂n (x, y) |2 (normalized by the maximum intensity value of each
term max In) corresponding to first four harmonics. Surprisingly, each successive n−th harmonic is
characterized by more and more focused spot. Shape of the focal spot differs among harmonics. The
lateral size of the focal spot is decreasing for higher-order terms, meanwhile the horizontal extension
remains almost constant. We determine the efficiency of the lens by the following quantities: (i)
axial and lateral extension of the focal spot Lx and Ly, (ii) axial position of the maximum intensity
X, and (iii) contrast of the focal spot Amax/A. The results indicate that Lx/λSW, with λSW being
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Figure 3: Normalized intensity of the wave field (I/Imax) for ω1 = 9.86 s−1 and ω2 = 12.39 s−1.
White dashed line marks the position of the lens. Scale bar in the left top figure corresponds to
0.1 m.

wavelength in shallow water region, varies slowly with the pulsation, while Ly/λSW follows expected
scaling law λ/2.

4 Conclusions

Characteristic property of the ENZ metamaterials is their incredibly high value of phase velocity,
resulting in almost constant phase through a medium. Theoretically, this should allow to perfectly
focus waves at a single point. Due to intrinsic properties of water waves one has to face constraints,
which do not allow to obtain similar phase velocities. The limitation is governed by the deep-water
approximation. Nevertheless, our experiments illustrate that thanks to ENZ analogy it is possible
to focus water waves efficiently. With large amplitude of an incident wave we obtained surprising
cascade of highly focused nonlinear components.
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